TWI721524B - Resonant generator - Google Patents
Resonant generator Download PDFInfo
- Publication number
- TWI721524B TWI721524B TW108128707A TW108128707A TWI721524B TW I721524 B TWI721524 B TW I721524B TW 108128707 A TW108128707 A TW 108128707A TW 108128707 A TW108128707 A TW 108128707A TW I721524 B TWI721524 B TW I721524B
- Authority
- TW
- Taiwan
- Prior art keywords
- coil
- core
- permanent magnet
- inner rotor
- parallel
- Prior art date
Links
Images
Landscapes
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
一種共振型發電機,包括一內轉子及一外定子,該內轉子包含軸向延伸排列的永久磁鐵單元,每一永久磁鐵單元包含2N(N≧1)個環繞吸附於一圓管狀鐵材外表面且不導電的鐵氧體永久磁鐵,且相鄰的該鐵氧體永久磁鐵的磁性相異;該外定子包含至少一感應單元,其具有呈一直線排列的M(M≧1)個線圈繞組,每一線圈繞組對應該內轉子之軸向相鄰的兩個永久磁鐵單元,並且包含一導磁不導電的鎳鋅鐵氧體鐵心及一繞設在該鎳鋅鐵氧體鐵心上的線圈,該內轉子相對該外定子旋轉時,該線圈將不斷地切割該內轉子之軸向相鄰的兩個永久磁鐵單元產生的交變磁場而產生感應電流。A resonant generator includes an inner rotor and an outer stator. The inner rotor includes permanent magnet units arranged axially. Each permanent magnet unit includes 2N (N≧1) surrounding and adsorbed on the outer surface of a circular tubular iron material. And non-conductive ferrite permanent magnets, and adjacent ferrite permanent magnets have different magnetic properties; the outer stator includes at least one induction unit, which has M (M≧1) coil windings arranged in a straight line, Each coil winding corresponds to two adjacent permanent magnet units in the axial direction of the inner rotor, and includes a magnetically conductive and non-conductive nickel-zinc ferrite core and a coil wound on the nickel-zinc ferrite core, When the inner rotor rotates relative to the outer stator, the coil will continuously cut the alternating magnetic field generated by the two axially adjacent permanent magnet units of the inner rotor to generate an induced current.
Description
本發明是有關於一種發電機,特別是指一種共振型發電機。 The present invention relates to a generator, in particular to a resonance type generator.
參見圖1,習知一種低轉速發電機1主要由一定子11及一被該定子11包圍的轉子12構成,該定子11具有一呈圓環形狀的鐵心111,該鐵心111朝向該轉子12的一側具有複數個等距間隔排列的凸極112以及繞設在該等凸極112上的三相線圈U、V、W。此外,該定子11的鐵心通常採用導電的鐵材或矽鋼片,因此,當定子11上的三相線圈U、V、W連接一負載而將所產生的感應電流輸出至該負載時,定子11上也會同時產生渦電流而生熱,導致定子11的電阻上升而影響發電效率。
1, a conventional low-
而且,為了加速激磁,轉子12通常採用具有強磁的永久磁鐵,例如釹鐵硼永久磁鐵,但此種永久磁鐵具有導電性,會感應定子11上產生的渦電流而發熱,導致定子12加速消磁而影響發電效率。且低轉速發電機1運轉後產生的電能(輸出功率)是固定的,不會隨著所連接的外部負載2的變化而改變,因此,如圖2所示,當
該低轉速發電機1透過三相線圈U、V、W供電給該外部負載2,但接受供電的外部負載2未能消耗掉低轉速發電機1產生的電能時,低轉速發電機1的各相線圈U、V、W將會以熱(發熱)的型式將未消耗的電能耗散掉,而導致低轉速發電機1升溫且溫度高於一正常值,因此習知的做法是必須另外安裝散熱系統或冷卻系統20對定子、轉子及各相線圈U、V、W進行散熱或冷卻,使該低轉速發電機1降溫。但該冷卻系統20,例如已知的水冷卻系統、氣(氫氣)冷卻系統、油冷卻系統、水氫冷卻系統或使用液態氮、液態氫的化學冷卻系統等除了體積相當龐大之外,其在運作過程中亦需消耗大量的能源(消耗電能至少為該低轉速發電機1所產生電能的一半),因此需要再額外設置一提供電力給該冷卻系統20的電力設備21(例如另一發電機組),因而造成發電效率更加低落。
Moreover, in order to accelerate the excitation, the
因此,本發明之目的,即在提供一種不易升溫生熱而無需額外使用冷卻系統進行降溫的共振型發電機。 Therefore, the object of the present invention is to provide a resonant generator that is not easy to raise temperature and generate heat without using an additional cooling system for cooling.
於是,本發明共振型發電機包括一內轉子及一外定子。該內轉子包含一圓管狀鐵材及2M(M≧1)個吸附於該圓管狀鐵材外表面且軸向延伸排列而包覆該圓管狀鐵材的永久磁鐵單元,每一永久磁鐵單元包含2N(N≧1)個環繞該圓管狀鐵材外表面且不導電的鐵氧體永久磁鐵,且兩兩相鄰的該鐵氧體永久磁鐵的磁性相異。 該外定子包含至少一個感應單元,該感應單元具有呈一直線排列的M(M≧1)個線圈繞組,每一線圈繞組對應該內轉子之軸向相鄰的兩個永久磁鐵單元,且每一線圈繞組包含一導磁不導電的鎳鋅鐵氧體鐵心及一繞設在該鎳鋅鐵氧體鐵心上的線圈,該內轉子相對該外定子旋轉時,該線圈將不斷地切割該內轉子之軸向相鄰的兩個永久磁鐵單元產生的交變磁場而產生感應電流。 Therefore, the resonance generator of the present invention includes an inner rotor and an outer stator. The inner rotor includes a round tubular iron material and 2M (M≧1) permanent magnet units adsorbed on the outer surface of the round tubular iron material and arranged axially to cover the round tubular iron material. Each permanent magnet unit contains 2N (N≧1) non-conductive ferrite permanent magnets surrounding the outer surface of the round tubular iron material, and the magnetic properties of the two adjacent ferrite permanent magnets are different. The outer stator includes at least one induction unit with M (M≧1) coil windings arranged in a straight line, and each coil winding corresponds to two adjacent permanent magnet units in the axial direction of the inner rotor, and each The coil winding includes a magnetically conductive and non-conductive nickel-zinc ferrite core and a coil wound on the nickel-zinc ferrite core. When the inner rotor rotates relative to the outer stator, the coil will continuously cut the inner rotor The alternating magnetic field generated by the two adjacent permanent magnet units in the axial direction generates an induced current.
在本發明的一些實施態樣中,該共振型發電機還包括至少一與該感應單元的該線圈連接的假性負載電路,該假性負載電路包含:一第一無極性低頻電容,其一端與該線圈的一端連接;一變壓器,其包括一次側線圈和二次側線圈,該一次側線圈的一端與該第一無極性低頻電容的另一端連接;一第一電性阻尼器,其一端與該一次側線圈的另一端連接,其另一端與該線圈的另一端連接,且該第一電性阻尼器的電阻值隨頻率變化;一第二無極性低頻電容,其與該二次側線圈並聯;及一第二電性阻尼器,其與該第二無極性低頻電容並聯,且該第二電性阻尼器的電阻值隨頻率變化。 In some embodiments of the present invention, the resonance generator further includes at least one dummy load circuit connected to the coil of the induction unit, and the dummy load circuit includes: a first non-polar low frequency capacitor, one end of which is Connected to one end of the coil; a transformer, which includes a primary side coil and a secondary side coil, one end of the primary side coil is connected to the other end of the first non-polar low frequency capacitor; a first electrical damper, one end of Connected to the other end of the primary side coil, the other end of which is connected to the other end of the coil, and the resistance value of the first electrical damper varies with frequency; a second non-polar low frequency capacitor, which is connected to the secondary side The coils are connected in parallel; and a second electrical damper, which is connected in parallel with the second non-polar low-frequency capacitor, and the resistance value of the second electrical damper varies with frequency.
在本發明的一些實施態樣中,其中M>1時,該等線圈繞組的該線圈相串聯,且該假性負載電路與串聯後的該等線圈連接。 In some embodiments of the present invention, when M>1, the coils of the coil windings are connected in series, and the dummy load circuit is connected with the series connected coils.
在本發明的一些實施態樣中,該感應單元有三個時,會有三個假性負載電路與該等感應單元的該線圈對應連接。 In some embodiments of the present invention, when there are three induction units, there will be three dummy load circuits correspondingly connected to the coils of the induction units.
在本發明的一些實施態樣中,該第一電性阻尼器具有 一磁阻鐵心及一繞設在該磁阻鐵心上的第一線圈,該第一線圈的一端與該一次側線圈的另一端連接,該第一線圈的另一端與相對應的該線圈的另一端連接。 In some embodiments of the present invention, the first electrical damper has A magnetoresistive iron core and a first coil wound on the magnetoresistive iron core, one end of the first coil is connected to the other end of the primary side coil, and the other end of the first coil is connected to the other end of the corresponding coil Connect at one end.
在本發明的一些實施態樣中,該第一電性阻尼器的該磁阻鐵心是呈「口」字型。 In some embodiments of the present invention, the magnetoresistive core of the first electrical damper is in the shape of a "mouth".
在本發明的一些實施態樣中,該第一電性阻尼器的該磁阻鐵心是呈倒「日」字型,而具有垂直且相對設置的兩個直柱,連接該兩個直柱且平行設置的橫柱,以及設於該兩個直柱之間並與該兩個直柱平行的中柱,且該第一線圈繞設在該中柱上。 In some embodiments of the present invention, the magnetoresistive core of the first electrical damper is in the shape of an inverted "day" shape, and has two vertical and oppositely arranged straight columns, connecting the two straight columns and A horizontal column arranged in parallel, and a center column arranged between the two straight columns and parallel to the two straight columns, and the first coil is wound on the center column.
在本發明的一些實施態樣中,該第二電性阻尼器具有一磁阻鐵心及一繞設在該磁阻鐵心上的第二線圈,該第二線圈的兩端與該第二無極性低頻電容並聯。 In some embodiments of the present invention, the second electrical damper has a magnetoresistive core and a second coil wound on the magnetoresistive core, and two ends of the second coil are connected to the second non-polar low frequency The capacitors are connected in parallel.
在本發明的一些實施態樣中,該第二電性阻尼器的該磁阻鐵心是呈「口」字型。 In some embodiments of the present invention, the magnetoresistive core of the second electrical damper is in the shape of a “mouth”.
在本發明的一些實施態樣中,該第二電性阻尼器的該磁阻鐵心是呈倒「日」字型,而具有垂直且相對設置的兩個直柱,連接該兩個直柱且平行設置的橫柱,以及設於該兩個直柱之間並與該兩個直柱平行的中柱,且該第二線圈繞設在該中柱上。 In some embodiments of the present invention, the magnetoresistive core of the second electrical damper is in an inverted "day" shape, and has two vertical and oppositely arranged straight columns, connecting the two straight columns and A horizontal column arranged in parallel, and a center column arranged between the two straight columns and parallel to the two straight columns, and the second coil is wound on the center column.
本發明之功效在於:藉由該內轉子採用不導電的鐵氧體永久磁鐵以及該外定子採用導磁不導電的鎳鋅鐵氧體鐵心,使得 該內轉子及該外定子不易因感應電流而生熱,因此除了不會因為生熱而影響發電效率外,也不需額外使用冷卻系統進行降溫;再者,藉由與該線圈連接的該假性負載電路吸收及耗散該外部負載沒有消耗完的剩餘電能,使得在消耗電能的過程中不致升溫或產生大量的熱,而不需額外使用冷卻系統進行散熱。 The effect of the present invention is that the inner rotor adopts a non-conductive ferrite permanent magnet and the outer stator adopts a magnetically conductive and non-conductive nickel-zinc ferrite core, so that The inner rotor and the outer stator are not easy to generate heat due to the induced current, so in addition to not affecting the power generation efficiency due to heat generation, there is no need to use an additional cooling system for cooling; furthermore, the false The linear load circuit absorbs and dissipates the remaining power that the external load has not consumed, so that it does not heat up or generate a lot of heat during the process of power consumption, and does not require additional cooling systems for heat dissipation.
31:內轉子 31: inner rotor
311:圓管狀鐵材 311: Round tubular iron
312:永久磁鐵單元 312: permanent magnet unit
3121:鐵氧體永久磁鐵 3121: Ferrite permanent magnet
32:外定子 32: Outer stator
321:感應單元 321: Induction unit
3211:線圈繞組 3211: Coil winding
3212:鎳鋅鐵氧體鐵心 3212: Ni-Zn Ferrite Core
3213:線圈 3213: Coil
33:假性負載電路 33: false load circuit
5:外部負載 5: External load
R、S、T:三相線圈 R, S, T: three-phase coil
C1:第一無極性低頻電容 C1: The first non-polar low frequency capacitor
C2:第二無極性低頻電容 C2: The second non-polar low frequency capacitor
T:變壓器 T: Transformer
I:磁阻鐵心 I: Magnetoresistive core
I1:矽鋼片組 I1: Silicon steel sheet group
I2:非晶質鐵心 I2: Amorphous core
L1:一次側線圈 L1: Primary side coil
L2:二次側線圈 L2: Secondary side coil
L3:第一線圈 L3: first coil
L4:第二線圈 L4: second coil
R1:第一電性阻尼器 R1: The first electrical damper
R2:第二電性阻尼器 R2: Second electrical damper
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地顯示,其中:圖1是習知低轉速發電機的主要構造示意圖;圖2是習知發電機需要使用一冷却系統及一電力設備進行降溫示意圖;圖3是本發明共振型發電機的一實施例的基本構造示意圖;圖4是本實施例共振型發電機的另一基本構造示意圖;圖5是本實施例共振型發電機的具體構造的頂視示意圖;圖6是本實施例共振型發電機的具體構造的側視示意圖;圖7是本實施例共振型發電機的三相線圈與相對應的假性負載電路並聯的電路示意圖;圖8是本實施例呈「口」字型的磁阻鐵心的構造示意圖;圖9是本實施例呈倒「日」字型的磁阻鐵心的構造示意圖;及圖10是本實施例構成磁阻鐵心的矽鋼片組與非晶質鐵心之磁 滯曲線示意圖。 The other features and effects of the present invention will be clearly shown in the embodiments with reference to the drawings, in which: Figure 1 is a schematic diagram of the main structure of a conventional low-speed generator; Figure 2 is a conventional generator that requires a cooling system and a Figure 3 is a schematic diagram of the basic structure of an embodiment of the resonance generator of the present invention; Figure 4 is a schematic diagram of another basic structure of the resonance generator of this embodiment; Figure 5 is a schematic diagram of the resonance type generator of this embodiment The schematic top view of the specific structure of the motor; Figure 6 is a schematic side view of the specific structure of the resonant generator of this embodiment; Figure 7 is the parallel connection of the three-phase coil of the resonant generator of this embodiment with the corresponding dummy load circuit Figure 8 is a schematic diagram of the structure of the magnetoresistive core in the shape of a "mouth" in this embodiment; Figure 9 is a schematic diagram of the structure of the magnetoresistive core in the shape of an inverted "day" in this embodiment; and Figure 10 is the present embodiment The magnetism of the silicon steel sheet group and the amorphous iron core constituting the magnetoresistive iron core Schematic diagram of hysteresis curve.
在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。 Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same numbers.
參閱圖3至圖7,是本發明共振型發電機的一實施例的構造示意圖,其主要包括一內轉子31、一外定子32及至少一個假性負載電路33(參見圖7)。
3 to 7 are schematic diagrams of the structure of an embodiment of the resonant generator of the present invention, which mainly includes an
該內轉子31包含一圓管狀鐵材311及2M(M≧1)個吸附於該圓管狀鐵材311外表面且軸向延伸排列而包覆該圓管狀鐵材311的永久磁鐵單元312,每一永久磁鐵單元312包含2N(N≧1)個環繞吸附於該圓管狀鐵材311外表面且不導電的鐵氧體永久磁鐵3121,且兩兩相鄰的該鐵氧體永久磁鐵3121的磁性相異而相吸。例如圖3所示,以M=1及N=1為例,圖3所示的該內轉子31具有兩個永久磁鐵單元312,每一永久磁鐵單元312由兩個磁性相異而相吸的半圓弧形之鐵氧體永久磁鐵3121組成。其中該鐵氧體永久磁鐵3121是由鐵氧體燒結的等方性永久磁鐵,其相反的兩個表面磁性相異,以圖3為例,若該鐵氧體永久磁鐵3121的外表面為N極,則其內表面為S極,反之,若該鐵氧體永久磁鐵3121的外表面為S極,則其內表面為N極。
The
再例如圖4所示,以M=1,N=2為例,圖4所示的該內
轉子31具有兩個永久磁鐵單元312,每一永久磁鐵單元312由四個相鄰磁性相異而相吸的弧形的鐵氧體永久磁鐵3121組成。又例如圖5及圖6所示,是M>1且N>2(圖5以N=12為例)的情況,其中每一永久磁鐵單元312由十二個相鄰磁性相異而相吸的弧形的鐵氧體永久磁鐵3121組成。由此可知,內轉子31可視實際應用上的需求,決定所需使用的該永久磁鐵單元312的數量以及構成每一永久磁鐵單元312的該鐵氧體永久磁鐵3121的數量。例如若做為高轉速的發電機,則每一永久磁鐵單元312中的該鐵氧體永久磁鐵3121的面積較大且數量較少,而若做為低轉速的發電機,則每一永久磁鐵單元312中的該鐵氧體永久磁鐵3121的面積較小且數量較多。
For another example, as shown in Fig. 4, taking M=1 and N=2 as an example, the inner part shown in Fig. 4
The
如圖3及圖4所示,該外定子32包含至少一個感應單元321(圖3及圖4是以兩個感應單元321為例),該感應單元321具有呈一直線排列的M(M≧1)個線圈繞組3211,每一線圈繞組3211對應軸向相鄰的兩個永久磁鐵單元312,且每一線圈繞組3211包含一導磁不導電的鎳鋅鐵氧體鐵心3212以及一繞設在該鎳鋅鐵氧體鐵心3212上的線圈3213。
As shown in Figures 3 and 4, the
以圖3及圖4為例,M=1,即各該感應單元321只有一個線圈繞組3211,其中的鎳鋅鐵氧體鐵心3212呈「[」形,其兩端對應內轉子31之軸向相鄰且磁性相反的兩個鐵氧體永久磁鐵3121。再以圖5及圖6為例,該外定子32具有三個感應單元321,且M>1,
即每一個感應單元321具有多個線圈繞組3211,該等線圈繞組3211中的該等鎳鋅鐵氧體鐵心3212沿著該內轉子31的軸向延伸方向呈一直線排列,並分別與吸附在該圓管狀鐵材311上的軸向兩兩相鄰的該等永久磁鐵單元312對應,即一個鎳鋅鐵氧體鐵心3212對應軸向相鄰的兩個永久磁鐵單元312。且各該感應單元321的該等線圈繞組3211中的該等線圈3213相串聯而構成一單相線圈,因此,三個感應單元321將構成三相線圈R、S、T。且本實施例主要以該外定子32能構成三相線圈R、S、T為例,該三相線圈R、S、T可以視實際運用需求連接成Y型結構或△型結構。
Take Fig. 3 and Fig. 4 as an example, M=1, that is, each
藉此,如圖3至圖6所示,當該內轉子31相對該外定子32旋轉時,經過該外定子32的各該感應單元321的由該內轉子31上的該等永久磁鐵單元312產生的磁場將不斷地交替變化,使得該外定子32上的各該感應單元321之各該線圈繞組3211中的該線圈3213將不斷地切割交替變化的磁場而產生感應電流,亦即圖6中的三相線圈R、S、T將分別產生感應電流而達到發電的目的。
Thus, as shown in FIGS. 3 to 6, when the
此外,如圖7所示,本實施例的該三相線圈R、S、T連接一外部負載5時,由於該外定子32是採用導磁不導電的鎳鋅鐵氧體鐵心3212,因此不易在鎳鋅鐵氧體鐵心3212上產生渦電流,而不易使該外定子32發熱,因而不會導致該外定子32的電阻增加,故不會影響或降低發電機的發電效率。再者,由於該內轉子31採用不
導電的該鐵氧體永久磁鐵3121,因此該內轉子31在旋轉過程中,不易感應該外定子32上生成的渦電流,因此不會因為感應電流而生熱,故不會加速消磁而不致影響發電機的發電效率。而且,由於該內轉子31及該外定子32都不易生熱,因此不需要另外安裝散熱系統或冷卻系統對其進行散熱,故不會額外消耗電能,而不致降低發電機的發電效率。
In addition, as shown in FIG. 7, when the three-phase coils R, S, and T of this embodiment are connected to an
且如圖7所示,本實施例還具有三個分別與該三相線圈R、S、T對應連接的假性負載電路33。具體而言,該三相線圈R、S、T與該三個假性負載(Dummy Load)電路33對應並聯,每一假性負載電路33包含一第一無極性低頻電容C1、一變壓器T、一第一電性阻尼器R1、一第二無極性低頻電容C2及一第二電性阻尼器R2。該第一無極性低頻電容C1的一端與相對應的該線圈R(S、T)的一端電連接。該變壓器T是一般之1:1變壓器且具有一次側線圈L1和二次側線圈L2,該一次側線圈L1的一端與該第一無極性低頻電容C1的另一端連接。
And as shown in FIG. 7, this embodiment also has three
第一電性阻尼器R1的一端與該一次側線圈L1的另一端連接,其另一端與相對應的該線圈R(S、T)的另一端連接。該第二無極性低頻電容C2與該變壓器T的該二次側線圈L2並聯。該第二電性阻尼器R2與該第二無極性低頻電容C2並聯。且該第一、第二電性阻尼器R1、R2是電阻值會隨頻率變化的動態電阻元件,亦即, 該第一、第二電性阻尼器R1、R2是具有頻率響應的交流電阻,例如磁阻,但不以此為限,其中包含阻抗(容抗)會隨著頻率增加而增加的介電電容(阻尼電容)以及阻抗(感抗)會隨著頻率增加而減少的介電電感(阻尼電感),其詳細工作原理可參見台灣第I423272號專利。 One end of the first electrical damper R1 is connected to the other end of the primary coil L1, and the other end is connected to the other end of the corresponding coil R (S, T). The second non-polar low frequency capacitor C2 is connected in parallel with the secondary winding L2 of the transformer T. The second electrical damper R2 is connected in parallel with the second non-polar low frequency capacitor C2. And the first and second electrical dampers R1 and R2 are dynamic resistance elements whose resistance values change with frequency, that is, The first and second electrical dampers R1 and R2 are AC resistances with frequency response, such as magnetoresistance, but not limited to this, including dielectric capacitance whose impedance (capacitive reactance) increases with increasing frequency The dielectric inductance (damping capacitor) and impedance (inductive reactance) decrease with the increase of frequency (damping inductance). The detailed working principle can be found in Taiwan Patent No. I423272.
且如圖8所示,該第一電性阻尼器R1具有一磁阻鐵心I及一繞設在該磁阻鐵心上的第一線圈L3,該磁阻鐵心I是由一矽鋼片組I1及一非晶質鐵心I2重疊組合而形成的一「口」字型鐵心;該第一線圈L3的一端與該一次側線圈L1的另一端連接,該第一線圈L3的另一端與相對應的該線圈R(S、T)的另一端連接。 And as shown in Figure 8, the first electrical damper R1 has a reluctance iron core I and a first coil L3 wound on the reluctance iron core, the reluctance iron core I is composed of a silicon steel sheet group I1 and An amorphous iron core I2 is overlapped and combined to form a "mouth"-shaped iron core; one end of the first coil L3 is connected to the other end of the primary coil L1, and the other end of the first coil L3 is connected to the corresponding one The other end of the coil R (S, T) is connected.
再者,如圖9所示,該磁阻鐵心I也可以是由一矽鋼片組I1及一非晶質鐵心I2重疊組合而形成的一倒「日」字型鐵心,而具有垂直且相對設置的兩個直柱,連接該兩個直柱且平行設置的橫柱,以及設於該兩個直柱之間並與該兩個直柱平行的中柱,且該第一線圈L3是繞設在該中柱上。此外,該磁阻鐵心I的細部構造亦可參見台灣第I608694號專利中揭露的鐵心單元。 Furthermore, as shown in FIG. 9, the magnetoresistive iron core I can also be an inverted "day"-shaped iron core formed by overlapping a silicon steel sheet group I1 and an amorphous iron core I2, and has a vertical and opposite arrangement. The two straight columns, a horizontal column connected to the two straight columns and arranged in parallel, and a middle column arranged between the two straight columns and parallel to the two straight columns, and the first coil L3 is wound On the center pillar. In addition, the detailed structure of the magnetoresistive core I can also refer to the core unit disclosed in Taiwan Patent No. I608694.
該第二電性阻尼器R2與該第一電性阻尼器R1具有相同的構造,而同樣具有如圖8或圖9所示的該磁阻鐵心I以及繞設在該磁阻鐵心上的一第二線圈L4,且該第二線圈L4的兩端與該第二無極性低頻電容C2並聯。 The second electrical damper R2 has the same structure as the first electrical damper R1, and also has the magnetoresistive core I as shown in FIG. 8 or 9 and a magnet wound on the magnetoresistive core I The second coil L4, and both ends of the second coil L4 are connected in parallel with the second non-polar low-frequency capacitor C2.
且如圖7所示,該一次側線圈L1的兩端分別與該第一無極性低頻電容C1及該第一電性阻尼器R1串聯構成一串聯諧振電路,該二次側線圈L2的兩端與該第二無極性低頻電容C2及該第二電性阻尼器R2並聯而構成一並聯諧振電路。且藉由適當選擇該第一無極性低頻電容C1及該第二無極性低頻電容C2的電容值,適當選擇該一次側線圈L1及該二次側線圈L2的電感值,以及適當設計該第一、第二電性阻尼器R1、R2,能使該串聯諧振電路及該並聯諧振電路具有相同的一諧振頻率,且該諧振頻率與該共振型發電機3產生的交流電能的頻率,例如60Hz相同。 And as shown in Figure 7, both ends of the primary side coil L1 are respectively connected in series with the first non-polar low frequency capacitor C1 and the first electrical damper R1 to form a series resonant circuit, and both ends of the secondary side coil L2 In parallel with the second non-polar low frequency capacitor C2 and the second electrical damper R2, a parallel resonant circuit is formed. And by appropriately selecting the capacitance values of the first non-polar low-frequency capacitor C1 and the second non-polar low-frequency capacitor C2, appropriately selecting the inductance values of the primary side coil L1 and the secondary side coil L2, and appropriately designing the first 2. The second electrical dampers R1 and R2 enable the series resonant circuit and the parallel resonant circuit to have the same resonant frequency, and the resonant frequency is the same as the frequency of the AC power generated by the resonant generator 3, such as 60 Hz .
藉此,如圖7所示,當該共振型發電機3運轉而使該三相線圈R、S、T產生感應電流並輸出交流電力供給與該三相線圈R、S、T連接的外部負載5時,由於該共振型發電機3運轉後產生的電能(輸出功率)是固定的,不會隨著所連接的外部負載5的變化而改變,且該外部負載5的內阻遠小於該假性負載電路33的阻抗,因此該共振型發電機3產生的電能將優先供應給該外部負載5,除非該外部負載5未能消耗完該共振型發電機3供應的交流電力,此時由於與各該線圈R、S、T對應並聯的各該假性負載電路33中的該串聯諧振電路產生串聯諧振,該一次側線圈L1與該第一無極性低頻電容C1串聯的阻抗為零,且第一電性阻尼器R1在諧振頻率下的電阻為零,各該串聯諧振電路相當於短路狀態,因此各該串聯諧振電路會將該外部
負載5未能消耗完的剩餘的交流電力(電能)完全吸收,並經由該變壓器T的該一次側線圈L1將吸收的電能耦合至該二次側線圈L2,而暫存於各該假性負載電路33的該並聯諧振電路中,同時,由於各該假性負載電路33中的該並聯諧振電路亦產生並聯諧振,該二次側線圈L2與該第二無極性低頻電容C2構成一共振腔,該第二電性阻尼器R2在諧振頻率下的電阻為零,因此,暫存於該並聯諧振電路(共振腔)中的電能將儲存在該二次側線圈L2(電場能轉磁場能)或該第二無極性低頻電容C2(磁場能轉電場能),而在該二次側線圈L2與該第二無極性低頻電容C2之間來回振盪,且當電能儲存在該第二無極性低頻電容C2時,由於該第二電性阻尼器R2在諧振頻率下相當於短路(電阻為零),因此該第二無極性低頻電容C2將對該第二電性阻尼器R2放電,而加速電能的耗散,使得進入各該假性負載電路33中的電能在經過5個時間常數後即消耗迨盡。
As a result, as shown in FIG. 7, when the resonance generator 3 is operated, the three-phase coils R, S, T generate induced current and output AC power to the external load connected to the three-phase coils R, S, T. At 5 o'clock, since the electric energy (output power) generated by the resonance generator 3 after operation is fixed, it will not change with the change of the connected
且參見圖10顯示的矽鋼片組I1與非晶質鐵心I2之磁滯曲線可知,相較於矽鋼片,非晶質鐵心的磁滯及渦流損很小,故其鐵損相較於矽鋼片鐵心大為降低,使得藉由該磁阻鐵心I將電能(來自一次側線圈L1)轉為磁能(磁阻鐵心I被來自一次側線圈L1的電流激磁後磁化)再轉為電能(二次側線圈L2感應磁阻鐵心I的磁通量並轉為電能)的過程中不易升溫。再者,該矽鋼片組I1繞設有線圈而呈現電感的特性(即上述的阻尼電感),但將該非晶質鐵心I2與該矽 鋼片組I1重疊組合成該磁阻鐵心I後,經實測發現,該非晶質鐵心I2會使得該矽鋼片組I1的電抗(XL)下降,換言之,會使得該矽鋼片組I1的電感量下降,因此可以推知該非晶質鐵心I2具有電容的特性(即上述的阻尼電容),亦即電容的電納(YC,電抗XL的倒數)上升會使得電感的電抗下降,而使得該磁阻鐵心I在磁電轉換的過程中不易產生大量的熱而升溫。 And referring to the hysteresis curve of the silicon steel sheet group I1 and the amorphous iron core I2 shown in Figure 10, it can be seen that compared to the silicon steel sheet, the amorphous iron core has very small hysteresis and eddy current loss, so its iron loss is compared with that of the silicon steel sheet. The iron core is greatly reduced, so that the reluctance iron core I converts electrical energy (from the primary side coil L1) into magnetic energy (the reluctance iron core I is magnetized by the current from the primary side coil L1) and then into electrical energy (secondary side) The coil L2 induces the magnetic flux of the magnetoresistive core I and converts it into electrical energy), which is not easy to heat up. Furthermore, the silicon steel sheet group I1 is wound with a coil and exhibits the characteristics of inductance (that is, the above-mentioned damping inductance), but after the amorphous iron core I2 and the silicon steel sheet group I1 are overlapped and combined to form the reluctance iron core I, it is measured It is found that the amorphous iron core I2 will reduce the reactance (X L ) of the silicon steel sheet group I1. In other words, it will reduce the inductance of the silicon steel sheet group I1. Therefore, it can be inferred that the amorphous iron core I2 has the characteristic of capacitance (ie The above-mentioned damping capacitor), that is, the increase in the susceptance of the capacitor (Y C , the reciprocal of the reactance X L ) will reduce the reactance of the inductance, making the magnetoresistive core I less likely to generate a lot of heat and heat up during the magnetoelectric conversion process .
而且,因為透過該假性負載電路33構成的假性負載吸收電能,且將電能轉為磁能再轉為電能,並使電能藉由振盪的型態消耗,而不是以產生熱能的型態消耗,因此各該假性負載電路33在消耗電能的過程中不會升溫或產生大量的熱,故不需額外使用散熱系統或冷卻系統進行散熱。
Moreover, because the dummy load formed by the
綜上所述,上述實施例的該共振型發電機3藉由內轉子31採用不導電的鐵氧體永久磁鐵3121以及外定子32採用導磁不導電的鎳鋅鐵氧體鐵心3212,使得內轉子31及外定子32不易因感應電流而生熱,除了不會因為生熱而影響發電效率外,也不需額外使用冷卻系統進行降溫;此外,藉由與三相線圈R、S、T對應並聯的該假性負載電路33產生串聯諧振吸收該外部負載5沒有消耗完的剩餘電能,並藉由該假性負載電路33產生並聯諧振,讓電能暫存在並聯諧振電路中不斷振盪並透過第二電性阻尼器R2加速電能的耗散,使得在消耗電能的過程中不致升溫或產生大量的熱,而不需額
外使用冷卻系統進行散熱,確實達到本發明的功效與目的。
In summary, the resonant generator 3 of the above embodiment uses a non-conductive ferrite
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 However, the above are only examples of the present invention. When the scope of implementation of the present invention cannot be limited by this, all simple equivalent changes and modifications made in accordance with the scope of the patent application of the present invention and the content of the patent specification still belong to This invention patent covers the scope.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108128707A TWI721524B (en) | 2019-08-13 | 2019-08-13 | Resonant generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108128707A TWI721524B (en) | 2019-08-13 | 2019-08-13 | Resonant generator |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202107826A TW202107826A (en) | 2021-02-16 |
TWI721524B true TWI721524B (en) | 2021-03-11 |
Family
ID=75745328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108128707A TWI721524B (en) | 2019-08-13 | 2019-08-13 | Resonant generator |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI721524B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102005983A (en) * | 2010-11-13 | 2011-04-06 | 李贵祥 | Double-section cross coupled inductive magnetic energy generator |
TWM470364U (en) * | 2013-08-07 | 2014-01-11 | Fu-Zi Xu | The switch magnetoresistive transformer |
CN105590745A (en) * | 2016-03-15 | 2016-05-18 | 东莞铭普光磁股份有限公司 | Rotary transformer |
TW201640801A (en) * | 2015-05-13 | 2016-11-16 | Fu-Tzu Hsu | Static reluctance magneto-electric amplification device |
US9584056B2 (en) * | 2006-06-08 | 2017-02-28 | Exro Technologies Inc. | Polyphasic multi-coil generator |
US9991772B2 (en) * | 2011-12-31 | 2018-06-05 | Philip Totaro | Low axial force permanent magnet machine and magnet assembly for permanent magnet machine |
-
2019
- 2019-08-13 TW TW108128707A patent/TWI721524B/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9584056B2 (en) * | 2006-06-08 | 2017-02-28 | Exro Technologies Inc. | Polyphasic multi-coil generator |
CN102005983A (en) * | 2010-11-13 | 2011-04-06 | 李贵祥 | Double-section cross coupled inductive magnetic energy generator |
US9991772B2 (en) * | 2011-12-31 | 2018-06-05 | Philip Totaro | Low axial force permanent magnet machine and magnet assembly for permanent magnet machine |
TWM470364U (en) * | 2013-08-07 | 2014-01-11 | Fu-Zi Xu | The switch magnetoresistive transformer |
TW201640801A (en) * | 2015-05-13 | 2016-11-16 | Fu-Tzu Hsu | Static reluctance magneto-electric amplification device |
CN105590745A (en) * | 2016-03-15 | 2016-05-18 | 东莞铭普光磁股份有限公司 | Rotary transformer |
Also Published As
Publication number | Publication date |
---|---|
TW202107826A (en) | 2021-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Grandi et al. | Model of laminated iron-core inductors for high frequencies | |
Huang et al. | Winding configuration and performance investigations of a tubular superconducting flux-switching linear generator | |
CN103270562B (en) | The apparatus and method of the unidirectional magnetic flux in compensator transformer iron core | |
JP2006504254A (en) | Superconducting current limiting device | |
Minh et al. | Finite element modeling of shunt reactors used in high voltage power systems | |
TWI721524B (en) | Resonant generator | |
AU2017393086B2 (en) | Harmonics filters using semi non-magnetic bobbins | |
Zhong et al. | Design and analysis of rotary transformer for brushless doubly fed induction generators | |
Mgunda | Optimization of Power Transformer Design: Losses, Voltage Regulation and Tests | |
Negi et al. | Causes of noise generation & its mitigation in transformer | |
CN114865870A (en) | Resonance type generator | |
Li et al. | Analysis of magnetic field and circulating current for HTS transformer windings | |
KR102319716B1 (en) | A pole transformer | |
Wang et al. | Study on controllable reactor magnetic structure and loss based on ANSYS | |
Curiac et al. | Prospects for magnetization of large PM rotors: conclusions from a development case study | |
CN202084398U (en) | Dry type transformer with integrated coil structure | |
CN207868889U (en) | A kind of structure stator of impulse generator | |
Chen et al. | Optimization of magnetic coupling structure of electric vehicle wireless charging DD coil | |
CN102800466A (en) | Dry-type transformer with integrated coil structure | |
CN203456246U (en) | Integral copper foil coil-structured dry transformer | |
TWM470365U (en) | A system circuit for damping function inductor | |
Jin et al. | Simplified model of contactless air-core power alternator and transfer using ideal superconductor | |
Lv et al. | Design and experiment of surface-mounted permanent-magnet motors with integrated magnetizing windings | |
Li et al. | " E+ Ǝ" Cores Magnetic Integrated Transformers for 2-Phase Parallel LLC Resonant Converter | |
Dou et al. | Analysis of Loss Characteristics and Parasitic Parameters of High-Frequency Transformer under Sinusoidal and Non-sinusoidal Excitation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |