[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI715488B - A time-based recommendation system applied to iptv and method thereof - Google Patents

A time-based recommendation system applied to iptv and method thereof Download PDF

Info

Publication number
TWI715488B
TWI715488B TW109114341A TW109114341A TWI715488B TW I715488 B TWI715488 B TW I715488B TW 109114341 A TW109114341 A TW 109114341A TW 109114341 A TW109114341 A TW 109114341A TW I715488 B TWI715488 B TW I715488B
Authority
TW
Taiwan
Prior art keywords
time
sharing
iptv
recommendation list
sharing recommendation
Prior art date
Application number
TW109114341A
Other languages
Chinese (zh)
Other versions
TW202141993A (en
Inventor
王博琳
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW109114341A priority Critical patent/TWI715488B/en
Application granted granted Critical
Publication of TWI715488B publication Critical patent/TWI715488B/en
Publication of TW202141993A publication Critical patent/TW202141993A/en

Links

Images

Landscapes

  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

The invention provides a time-based recommendation system applied to IPTV and method thereof, including a processing module, a calculation module and a playback module. The invention cuts IPTV programs according to time to provide different time-based recommendation lists, making it suitable for different users in the same home. And calculate preset scores, clicks, revenue and dynamic parameters to get the time-based recommendation lists that matches users' using preferences and increase the revenue of IPTV platform operators to improve the system benefit of IPTV.

Description

一種應用於IPTV之分時推薦系統及其方法 A time-sharing recommendation system and method applied to IPTV

本發明關於一種影音節目的推薦技術,尤其指應用於IPTV之分時推薦系統及其方法。 The present invention relates to a recommendation technology for audio-visual programs, in particular to a time-sharing recommendation system and method applied to IPTV.

目前的市場上已出現許多影音串流平台,例如:Netflix、Youtube、Spotify、KKBOX等,而這些影音串流平台會透過各式各樣的方法推薦用戶可能會感到興趣的影片或音樂,以提供用戶專屬的影音服務,進而提高用戶對於特定平台的依賴度及商業上的收益。 Many video and audio streaming platforms have appeared in the current market, such as Netflix, Youtube, Spotify, KKBOX, etc., and these video and audio streaming platforms will recommend videos or music that users may be interested in through various methods to provide User-specific audio-visual services, thereby increasing the user’s reliance on specific platforms and commercial benefits.

舉例而言,一用戶A喜歡在一影音串流平台A中觀看動作電影或影集,因此,影音串流平台A在蒐集用戶A經常觀看影片的類型後,進一步推薦更多的動作電影或影集給用戶A,以滿足用戶A需求。 For example, a user A likes to watch action movies or albums on an audio-visual streaming platform A. Therefore, the audio-visual streaming platform A collects the types of movies that user A frequently watches, and further recommends more action movies or albums to User A to meet the needs of user A.

然而,以目前的技術來說通常會有兩個缺點,(1)這些影音串流平台均是透過各個用戶所建立的帳號以針對該帳號的使用習慣進行推薦,因此,無法應用於網路協定電視(Internet Protocol Television,IPTV),也就是當家人們一起收看電視節目時,以現有的推薦方式無法在沒有特定用戶的使用習慣下進行推薦,因此,容易出現無法配合所有用戶的推薦清單;(2)現今的影音串流平台均是 以用戶為出發點,亦即影音串流平台所推薦的影片或音樂是以用戶的使用體驗作為第一考量,然而,對於IPTV平台業者來說,這類型專屬用戶的推薦方法卻無法及時反應到收益,換句話說,IPTV平台業者無法有效的推薦其他類型的節目或影片給用戶,進而無法提升收益。 However, the current technology usually has two shortcomings. (1) These audio-visual streaming platforms use accounts created by each user to recommend the account’s usage habits. Therefore, they cannot be applied to network protocols. Television (Internet Protocol Television, IPTV), that is, when people watch TV programs together, the existing recommendation method cannot make recommendations without the usage habits of specific users. Therefore, it is easy to have a recommendation list that cannot match all users; (2) ) Today’s video streaming platforms are Taking the user as the starting point, that is, the video or music recommended by the video streaming platform is based on the user experience as the first consideration. However, for the IPTV platform industry, this type of exclusive user recommendation method cannot reflect the revenue in time In other words, IPTV platform operators cannot effectively recommend other types of programs or movies to users, and thus cannot increase revenue.

因此,如何提供適用於IPTV的推薦方法,且能及時反應IPTV平台業者的收益之問題,並如何提升IPTV的系統效益,即為目前所亟待解決的課題之一。 Therefore, how to provide a recommendation method suitable for IPTV, which can promptly reflect the problem of the income of the IPTV platform industry, and how to improve the system efficiency of IPTV is one of the issues that needs to be solved urgently.

本發明提供一種應用於IPTV之分時推薦系統,係包括:一處理模組及計算模組,該處理模組係用以取得一時間範圍內的一第一分時推薦清單與建立一分潤表,以供該處理模組再取得一用戶點擊該第一分時推薦清單中之各IPTV節目的一點擊次數表,而該計算模組係依據該第一分時推薦清單、該分潤表及該點擊次數表計算出一加權數值,以依據該加權數值之產生一第二分時推薦清單,其中,該處理模組持續地更新該用戶點擊該第二分時推薦清單中之各IPTV節目的點擊次數表,以由該計算模組依據該分潤表與該更新後之點擊次數表持續地更新該第二分時推薦清單,俾提供該經更新的第二分時推薦清單給該用戶。 The present invention provides a time-sharing recommendation system applied to IPTV, which includes: a processing module and a calculation module, the processing module is used to obtain a first time-sharing recommendation list within a time range and establish a share Table for the processing module to obtain a table of the number of times a user clicks each IPTV program in the first time-sharing recommendation list, and the calculation module is based on the first time-sharing recommendation list and the profit sharing table And the click count table calculates a weighted value to generate a second time-sharing recommendation list based on the weighted value, wherein the processing module continuously updates the user clicking each IPTV program in the second time-sharing recommendation list Click the number of times table for the calculation module to continuously update the second time-sharing recommendation list according to the profit sharing table and the updated click number table, so as to provide the updated second time-sharing recommendation list to the user .

本發明提供一種應用於IPTV之分時推薦方法,係包括:取得一時間範圍內的一第一分時推薦清單與建立一分潤表;取得一用戶點擊該第一分時推薦清單中之各IPTV節目的一點擊次數表;依據該第一分時推薦清單、該分潤表及該點擊次數表計算出一加權數值,以依據該加權數值產生一第二分時推薦 清單;持續地更新該用戶點擊該第二分時推薦清單中之各IPTV節目的該點擊次數表;以及依據該分潤表與該更新後之點擊次數表持續地更新該第二分時推薦清單,以提供該經更新的第二分時推薦清單給該用戶。 The present invention provides a time-sharing recommendation method applied to IPTV, which includes: obtaining a first time-sharing recommendation list within a time range and creating a profit table; obtaining a user clicking each of the first time-sharing recommendation list A click count table of an IPTV program; a weighted value is calculated according to the first time-sharing recommendation list, the share table, and the click count table to generate a second time-sharing recommendation based on the weighted value List; continuously update the click count table of each IPTV program in the second time-sharing recommendation list by the user; and continuously update the second time-sharing recommendation list according to the profit sharing table and the updated click count table To provide the updated second time-sharing recommendation list to the user.

在一實施例中,更包括一播放模組,係傳輸該第二分時推薦清單中之各IPTV節目至一播放設備上以供顯示、播放並提供該用戶訂閱或觀看而產生點擊次數,進而將該點擊次數傳輸至該播放模組以更新該點擊次數表,其中,該處理模組係從該播放模組中取得該點擊次數表。 In one embodiment, it further includes a playback module, which transmits each IPTV program in the second time-sharing recommendation list to a playback device for display, playback, and subscription or viewing by the user to generate clicks, and then The click count is transmitted to the playback module to update the click count table, wherein the processing module obtains the click count table from the playback module.

在一實施例中,該處理模組係於一資料庫中取得該時間範圍內的該第一分時推薦清單,且該第一分時推薦清單係具有該各IPTV節目及其對應的預設分數;該分潤表係具有該各IPTV節目及其對應的收益;以及該點擊次數表係具有該各IPTV節目及其對應的點擊次數。此外,該處理模組係具有預設一動態參數。 In one embodiment, the processing module obtains the first time-sharing recommendation list within the time range from a database, and the first time-sharing recommendation list has the IPTV programs and their corresponding presets Score; the profit sharing table has each IPTV program and its corresponding revenue; and the click count table has each IPTV program and its corresponding click count. In addition, the processing module has a preset dynamic parameter.

在一實施例中,該計算模組利用該各IPTV節目之該預設分數、該點擊次數表之點擊次數、該收益及該動態參數對該第一分時推薦清單進行運算以獲得該各IPTV節目之加權數值,其中,該計算模組依據該動態參數調高該分潤表之收益較高的IPTV節目之加權數值,且降低該點擊次數表之點擊次數較高的IPTV節目之加權數值,藉此,該計算模組透過該加權數值重新排序該各IPTV節目的推薦名次以產生該第二分時推薦清單。 In an embodiment, the calculation module uses the preset score of each IPTV program, the number of clicks in the click count table, the revenue, and the dynamic parameter to perform calculations on the first time-sharing recommendation list to obtain each IPTV The weighted value of the program, wherein the calculation module increases the weighted value of the IPTV program with higher revenue in the profit sharing table according to the dynamic parameter, and reduces the weighted value of the IPTV program with higher clicks in the click table, In this way, the calculation module reorders the recommended rankings of the IPTV programs through the weighted value to generate the second time-sharing recommendation list.

在一實施例中,該處理模組持續地更新該用戶點擊該第二分時推薦清單中之各IPTV節目的點擊次數表,由該計算模組依據該分潤表之收益與該更新後之點擊次數表之點擊次數對該動態參數進行深度學習以得到一新動態參數,再由該計算模組利用該新動態參數、該預設分數、該更新後之點擊次數表之 點擊次數及該收益對該各IPTV節目之加權數值重新進行計算,以持續地更新該第二分時推薦清單。 In one embodiment, the processing module continuously updates the click count table of each IPTV program in the second time-sharing recommendation list by the user, and the calculation module is based on the profit sharing table and the updated value The number of clicks in the click count table performs deep learning on the dynamic parameter to obtain a new dynamic parameter, and the calculation module uses the new dynamic parameter, the preset score, and the updated click count table. The number of clicks and the revenue are recalculated for the weighted value of each IPTV program to continuously update the second time-sharing recommendation list.

綜上所述,本發明之一種應用於IPTV之分時推薦系統及其方法以分時來取代專屬用戶的推薦清單,是以,利用分時將IPTV節目依據時間進行切割使推薦清單能適用於同住家不同用戶,且具信任度。此外,基於用戶原有喜好的推薦清單,利用IPTV平台業者可獲得的收益及用戶對各IPTV節目的點擊次數對推薦清單進行調整,進而提升IPTV平台業者的收益且推薦的IPTV節目亦符合用戶的喜好,進而提升IPTV的系統效益。 In summary, the time-sharing recommendation system and method of the present invention applied to IPTV replace the recommended list of exclusive users by time-sharing. Therefore, the time-sharing is used to cut IPTV programs according to time so that the recommendation list can be applied to Different users in the same home, and have trust. In addition, based on the user’s original preferences, the recommended list is adjusted using the revenue obtained by the IPTV platform industry and the number of user clicks on each IPTV program, thereby increasing the revenue of the IPTV platform industry and the recommended IPTV programs are also in line with the user’s needs. Preferences, thereby enhancing the system benefits of IPTV.

1:一種應用於IPTV之分時推薦系統 1: A time-sharing recommendation system applied to IPTV

10:處理模組 10: Processing module

11:計算模組 11: Calculation module

12:資料庫 12: Database

13:播放模組 13: Play module

S21~S25:步驟 S21~S25: steps

第1圖係為本發明之一種應用於IPTV之分時推薦系統的示意圖;以及 Figure 1 is a schematic diagram of a time-sharing recommendation system applied to IPTV according to the present invention; and

第2圖係為本發明之一種應用於IPTV之分時推薦方法的流程圖。 Figure 2 is a flowchart of a time-sharing recommendation method applied to IPTV according to the present invention.

須知,本說明書所附圖式所繪示之結構、比例、大小等,均僅用以配合說明書所揭示之內容,以供熟悉此技藝之人士之瞭解與閱讀,並非用以限定本發明可實施之限定條件,故不具技術上之實質意義,任何結構之修飾、比例關係之改變或大小之調整,在不影響本發明所能產生之功效及所能達成之目的下,均應仍落在本發明所揭示之技術內容得能涵蓋之範圍內。同時,本說明書中所引用之如「上」、「第一」、「第二」及「一」等之用語,亦僅為便於敘述之明瞭,而非用以限定本發明可實施之 範圍,其相對關係之改變或調整,在無實質變更技術內容下,當視為本發明可實施之範疇。 It should be noted that the structures, proportions, sizes, etc. shown in the drawings in this manual are only used to match the contents disclosed in the manual for the understanding and reading of those familiar with the art, and are not intended to limit the implementation of the present invention Therefore, it does not have any technical significance. Any structural modification, proportional relationship change, or size adjustment should still fall within the scope of the present invention without affecting the effects and objectives that can be achieved. The technical content disclosed by the invention can be covered. At the same time, the terms such as "on", "first", "second" and "one" cited in this manual are only for ease of description and are not used to limit the implementation of the present invention. The change or adjustment of the scope and the relative relationship shall be regarded as the scope within which the present invention can be implemented without substantially changing the technical content.

第1圖係為本發明之一種應用於IPTV之分時推薦系統1的示意圖,係包括:一處理模組10、一計算模組11、一資料庫12及一播放模組13,且該些模組係設置於電腦、主機、伺服器(如遠端伺服器、雲端伺服器、網路伺服器)等中。 Figure 1 is a schematic diagram of a time-sharing recommendation system 1 applied to IPTV of the present invention, which includes: a processing module 10, a calculation module 11, a database 12, and a playback module 13, and these The module is set in the computer, host, server (such as remote server, cloud server, network server), etc.

具體而言,處理模組10依據設定的一時間範圍(例如,下午6:00~8:00)從資料庫12中取得時間範圍內的一第一分時推薦清單,且第一分時推薦清單係具有各IPTV節目及其對應的預設分數,又處理模組10建立IPTV節目之一分潤表,且分潤表具有各IPTV節目及其對應的收益,以及處理模組10取得一用戶點擊第一分時推薦清單中之各IPTV節目的一點擊次數表,且點擊次數表具有各IPTV節目及其對應的點擊次數。 Specifically, the processing module 10 obtains a first time-sharing recommendation list within the time range from the database 12 according to a set time range (for example, 6:00 pm to 8:00 pm), and the first time-sharing recommendation The list has each IPTV program and its corresponding preset score, and the processing module 10 establishes a profit sharing table of IPTV programs, and the profit sharing table has each IPTV program and its corresponding revenue, and the processing module 10 obtains a user Click a click count table of each IPTV program in the first time-sharing recommendation list, and the click count table has each IPTV program and its corresponding click count.

再者,計算模組11利用各IPTV節目之預設分數、點擊次數表、收益及處理模組10預設之一動態參數對第一分時推薦清單進行運算以獲得各IPTV節目之加權數值,其中,計算模組11依據動態參數調高分潤表之收益較高的IPTV節目之加權數值,且降低點擊次數表之點擊次數較高的IPTV節目之加權數值,藉此,計算模組11透過加權數值重新排序各IPTV節目的推薦名次以產生一第二分時推薦清單。並由播放模組13傳輸第二分時推薦清單中之各IPTV節目至播放設備(如電視、智慧型手機、平板等播放設備)上以供顯示、播放並提供用戶訂閱或觀看而產生點擊次數,進而提升未訂閱或觀看過的IPTV節目之曝光度,使IPTV平台業者的收益增加。 Furthermore, the calculation module 11 uses the preset scores of each IPTV program, the click count table, the profit and a dynamic parameter preset by the processing module 10 to calculate the first time-sharing recommendation list to obtain the weighted value of each IPTV program. Among them, the calculation module 11 increases the weighted value of the IPTV program with a higher profit in the profit sharing table according to the dynamic parameters, and reduces the weighted value of the IPTV program with a higher number of clicks in the click table, whereby the calculation module 11 passes The weighted value reorders the recommended rankings of each IPTV program to generate a second time-sharing recommendation list. And the playback module 13 transmits each IPTV program in the second time-sharing recommendation list to a playback device (such as a TV, a smart phone, a tablet, etc.) for display and playback, and provides users with subscription or viewing to generate clicks , Thereby enhancing the exposure of IPTV programs that have not been subscribed or watched, and increasing the revenue of IPTV platform operators.

此外,為避免推薦的IPTV節目並非用戶喜好的IPTV節目,而造成用戶降低觀看IPTV節目的意願,處理模組10再持續地更新用戶點擊第二分時推 薦清單中之各IPTV節目的點擊次數表,由計算模組11依據分潤表之收益與更新後之點擊次數表之點擊次數對動態參數進行深度學習以得到一新動態參數,並由計算模組11利用新動態參數、預設分數、更新後點擊次數表及收益對各IPTV節目之加權數值重新進行計算,以更新第二分時推薦清單,進而提供符合用戶喜好且IPTV平台業者亦能獲得較高收益的IPTV節目之推薦清單。 In addition, in order to avoid that the recommended IPTV program is not the user’s favorite IPTV program, which may cause the user to reduce their willingness to watch the IPTV program, the processing module 10 continues to update the user’s second time-sharing push For the click count table of each IPTV program in the recommended list, the calculation module 11 performs deep learning on the dynamic parameters based on the revenue of the profit sharing table and the click count in the updated click count table to obtain a new dynamic parameter. Group 11 recalculates the weighted value of each IPTV program with new dynamic parameters, preset scores, updated clicks table, and revenue, to update the second time-sharing recommendation list, and provide users with preferences and access to IPTV platform operators Recommended list of higher-yield IPTV programs.

於一實施例中,處理模組10係從播放模組13中取得點擊次數表,其中,於產生點擊次數後,係傳輸該點擊次數至播放模組13以更新點擊次數表。 In one embodiment, the processing module 10 obtains the click count table from the playback module 13, wherein after the click count is generated, the click count is transmitted to the playback module 13 to update the click count table.

於一實施例中,計算模組11依據分潤表之收益與更新後點擊次數表之點擊次數對動態參數進行深度學習以得到一新動態參數,其中,計算模組11所採用的深度學習之方式如深度神經網路、卷積神經網路和深度置信網路和迴圈神經網路,且計算模組11會不斷透過用戶點擊各IPTV節目所產生的點擊次數表之點擊次數及分潤表之收益,以持續地進行深度學習,進而不斷更新動態參數並對第二分時推薦清單進行調整。 In one embodiment, the calculation module 11 performs deep learning on the dynamic parameters based on the profit of the profit sharing table and the number of clicks in the updated clicks table to obtain a new dynamic parameter. Among them, the deep learning used by the calculation module 11 Methods such as deep neural network, convolutional neural network, deep belief network and loop neural network, and the calculation module 11 will continue to use the click count and share table of the click count table generated by the user clicking each IPTV program In order to continue deep learning, we can continuously update dynamic parameters and adjust the second time-sharing recommendation list.

於一實施例中,計算模組11係透過公式(1)計算出各IPTV節目之加權數值,其中,動態參數或新動態參數係包含一第一動態參數(a)及一第二動態參數(b),點擊次數表包含各IPTV節目之點擊次數,且依據各IPTV節目之預設分數、點擊次數、收益、第一動態參數(a)及第二動態參數(b)透過公式(1)進行計算以產生各IPTV節目之加權數值,公式(1)如下所示: In one embodiment, the calculation module 11 calculates the weighted value of each IPTV program through formula (1), where the dynamic parameter or new dynamic parameter includes a first dynamic parameter (a) and a second dynamic parameter ( b). The click count table contains the click count of each IPTV program, and is based on the preset score, click count, revenue, first dynamic parameter (a) and second dynamic parameter (b) of each IPTV program through formula (1) Calculate to generate the weighted value of each IPTV program, the formula (1) is as follows:

加權數值=a×收益-b×點擊次數+預設分數 (1) Weighted value = a×revenue-b×number of clicks+preset score (1)

第2圖係為本發明之一種應用於IPTV之分時推薦方法的流程圖,並請參閱第1圖一併說明之。 Figure 2 is a flowchart of a time-sharing recommendation method applied to IPTV according to the present invention, and please refer to Figure 1 for description.

於步驟S21中,處理模組10取得一時間範圍內的一第一分時推薦清單與建立一分潤表。 In step S21, the processing module 10 obtains a first time-sharing recommendation list within a time range and creates a profit sharing table.

於步驟S22中,處理模組10取得一用戶點擊第一分時推薦清單中之各IPTV節目的一點擊次數表。 In step S22, the processing module 10 obtains a click count table for a user to click each IPTV program in the first time-sharing recommendation list.

於步驟S23中,計算模組11依據第一分時推薦清單、分潤表及點擊次數表計算出一加權數值,以依據加權數值產生一第二分時推薦清單。 In step S23, the calculation module 11 calculates a weighted value according to the first time-sharing recommendation list, the share table, and the click count table to generate a second time-sharing recommendation list according to the weighted value.

於步驟S24中,處理模組10持續地更新用戶點擊第二分時推薦清單中之各IPTV節目的點擊次數表。 In step S24, the processing module 10 continuously updates the user's click count table of each IPTV program in the second time-sharing recommendation list.

於步驟S25中,計算模組11依據分潤表與更新後之點擊次數表以持續地更新第二分時推薦清單,進而提供符合用戶需求且IPTV平台業者亦能獲得較高收益的經更新的第二分時推薦清單給用戶。 In step S25, the calculation module 11 continuously updates the second time-sharing recommendation list according to the profit sharing table and the updated click count table, thereby providing an updated updated list that meets user needs and that IPTV platform operators can also obtain higher revenue The second time-sharing recommendation list to users.

此外,以下係為本發明之一種應用於IPTV之分時推薦系統1的一實施例,並請參閱第1、2圖一併說明之。當一用戶於當日下午6:00~8:00透過電視觀看一IPTV平台業者所提供的IPTV節目時,一處理模組10從一資料庫12中取得當日下午6:00~8:00的一第一分時推薦清單,且第一分時推薦清單係具有各IPTV節目及其對應的預設分數,以依據預設分數的高低推薦對應的IPTV節目給用戶,以及處理模組10建立IPTV節目之一分潤表,且分潤表包含各IPTV節目及其對應的收益,此外,處理模組10透過播放模組13取得用戶點擊第一分時推薦清單中之各IPTV節目的一點擊次數表,其中,第一分時推薦清單、分潤表及點擊次數表,如表1~3所示。 In addition, the following is an embodiment of the time-sharing recommendation system 1 applied to IPTV of the present invention, and please refer to FIGS. 1 and 2 for description. When a user watches an IPTV program provided by an IPTV platform provider on TV from 6:00 pm to 8:00 pm on the same day, a processing module 10 obtains the one from a database 12 from 6:00 pm to 8:00 pm on that day. The first time-sharing recommendation list, and the first time-sharing recommendation list has each IPTV program and its corresponding preset score, to recommend the corresponding IPTV program to the user according to the level of the preset score, and the processing module 10 creates the IPTV program One-point profit table, and the profit-sharing table includes each IPTV program and its corresponding income. In addition, the processing module 10 obtains a click count table of each IPTV program in the first time-sharing recommendation list by the user through the playback module 13 , Among them, the first time-sharing recommendation list, profit sharing table and click count table are shown in Tables 1~3.

表1:第一分時推薦清單

Figure 109114341-A0101-12-0008-1
Table 1: The first time-sharing recommendation list
Figure 109114341-A0101-12-0008-1

表2:分潤表

Figure 109114341-A0101-12-0008-2
Table 2: Profit Sharing Table
Figure 109114341-A0101-12-0008-2

表3:點擊次數表

Figure 109114341-A0101-12-0008-4
Table 3: Clicks table
Figure 109114341-A0101-12-0008-4

接著,為推薦用戶訂閱或觀看的其他未被點擊的IPTV節目以提高IPTV平台業者的收益,由計算模組11依據各IPTV節目之預設分數、點擊次數表之點擊次數、收益、預設之第一動態參數(a=1)及第二動態參數(b=3)對第一分 時推薦清單進行加權數值的計算,以產生第二分時推薦清單,是以,計算模組11透過公式(1)(加權數值=a×收益-b×點擊次數+預設分數)進行運算以獲得各IPTV節目之加權數值,並依據加權數值將各IPTV節目由大至小排序,以推薦其他未被訂閱或觀看且收益較高的IPTV節目給用戶,例如,節目A之加權數值係為1×20-3×3+10=21、節目B之加權數值係為1×20-3×5+9=14等,是以,節目A~節目G經計算出加權數值後所產生的第二分時推薦清單如表4所示。 Then, for recommending users to subscribe or watch other unclicked IPTV programs to increase the revenue of the IPTV platform industry, the calculation module 11 is based on the preset scores of each IPTV program, the number of clicks in the click table, the revenue, and the preset The first dynamic parameter (a=1) and the second dynamic parameter (b=3) are The time-sharing recommendation list calculates the weighted value to generate the second time-sharing recommendation list. Therefore, the calculation module 11 uses the formula (1) (weighted value=a×revenue-b×number of clicks+preset score) to calculate Obtain the weighted value of each IPTV program, and sort the IPTV programs from large to small according to the weighted value to recommend other unsubscribed or watched IPTV programs with higher revenue to users. For example, the weighted value of program A is 1. ×20-3×3+10=21, the weighted value of program B is 1×20-3×5+9=14, etc. Therefore, the second value generated by program A~program G after calculating the weighted value The time-sharing recommendation list is shown in Table 4.

表4:第二分時推薦清單

Figure 109114341-A0101-12-0009-5
Table 4: Second time sharing recommendation list
Figure 109114341-A0101-12-0009-5

如表4所示,計算模組11透過第一動態參數及第二動態參數調高分潤表之收益較高且降低點擊次數表之點擊次數較高的IPTV節目之加權數值,藉此,播放模組13係傳輸其他未被點擊的IPTV節目,並提供於電視上,以推薦給用戶訂閱或觀看,進而提升未訂閱或觀看過的IPTV節目之曝光度,使IPTV平台業者的收益增加。 As shown in Table 4, the calculation module 11 uses the first dynamic parameter and the second dynamic parameter to increase the profit of the profit sharing table and reduce the weighted value of the IPTV program with the higher number of clicks in the click table, thereby playing The module 13 transmits other unclicked IPTV programs and provides them on the TV to recommend to users to subscribe or watch, thereby increasing the exposure of unsubscribed or watched IPTV programs, and increasing the revenue of the IPTV platform industry.

此外,為使推薦的IPTV節目符合用戶的喜好,以避免造成用戶降低觀看IPTV節目的意願,處理模組10從播放模組13持續更新用戶點擊第二分時推薦清單中之各IPTV節目的點擊次數表,如表5所示。 In addition, in order to make the recommended IPTV programs in line with the user’s preferences, so as to avoid reducing the user’s willingness to watch IPTV programs, the processing module 10 continuously updates the user’s clicks on each IPTV program in the second time-sharing recommendation list from the playback module 13 The frequency table is shown in Table 5.

表5:更新後點擊次數表

Figure 109114341-A0101-12-0010-6
Table 5: Clicks table after update
Figure 109114341-A0101-12-0010-6

計算模組11依據分潤表之收益與更新後點擊次數表之點擊次數對第一動態參數及第二動態參數進行深度學習,以得到新第一動態參數(a=1)及新第二動態參數(b=2),並由計算模組11再利用新第一動態參數(a=1)、新第二動態參數(b=2)、預設分數、更新後點擊次數表之點擊次數及收益對各IPTV節目之加權數值重新進行計算,以更新第二分時推薦清單,進而提供符合用戶喜好且IPTV平台業者亦能獲得較高收益的IPTV節目之推薦清單,經更新的第二分時推薦清單如表6所示。 The calculation module 11 performs deep learning on the first dynamic parameter and the second dynamic parameter according to the profit of the profit sharing table and the number of clicks in the updated click frequency table to obtain the new first dynamic parameter (a=1) and the new second dynamic parameter Parameter (b=2), and the calculation module 11 reuses the new first dynamic parameter (a=1), the new second dynamic parameter (b=2), the preset score, the number of clicks in the updated click table and Revenue recalculates the weighted value of each IPTV program to update the second time-sharing recommendation list, thereby providing a recommended list of IPTV programs that meet user preferences and IPTV platform operators can also obtain higher revenue. The updated second time-sharing The recommended list is shown in Table 6.

表6:經更新的第二分時推薦清單

Figure 109114341-A0101-12-0010-7
Table 6: Updated second time-sharing recommendation list
Figure 109114341-A0101-12-0010-7

再者,本發明之一種應用於IPTV之分時推薦系統1中處理模組10會持續的取得用戶點擊取得第二分時推薦清單中之各IPTV節目的點擊次數以更新點擊次數表,再透過計算模組11持續地進行深度學習以產生新第一動態參數 及新第二動態參數,進而不斷地提供更新後第二分時推薦清單,且使更新後第二分時推薦清單符合用戶的喜好並同時增加IPTV平台業者的收益。 Furthermore, the processing module 10 in the time-sharing recommendation system 1 applied to the IPTV of the present invention will continuously obtain the clicks of each IPTV program in the second time-sharing recommendation list by the user's clicks to update the clicks table, and then through The calculation module 11 continuously performs deep learning to generate new first dynamic parameters And new second dynamic parameters, and then continuously provide the updated second time-sharing recommendation list, and make the updated second time-sharing recommendation list meet the user's preferences and increase the income of the IPTV platform industry at the same time.

另一方面,當處理模組10為首次透過播放模組13取得用戶點擊第一分時推薦清單中之各IPTV節目的點擊次數表時,點擊次數表中各IPTV節目的點擊次數係均為0,接著,由計算模組11依據各IPTV節目之預設分數、點擊次數表之點擊次數(點擊次數為0)、收益及動態參數以產生第二分時推薦清單,進而由播放模組13提供用戶訂閱或觀看第二分時推薦清單,因此,播放模組13僅提供由計算模組11計算後之第二分時推薦清單給用戶訂閱或觀看,此外,處理模組10會依據點擊次數表調整第一分時推薦清單之預設分數,以將各IPTV節目進行排序。 On the other hand, when the processing module 10 obtains the click count table of each IPTV program in the first time-sharing recommendation list by the user through the play module 13 for the first time, the click count of each IPTV program in the click count table is 0. , Then, the calculation module 11 generates a second time-sharing recommendation list based on the preset scores of each IPTV program, the number of clicks in the click table (the number of clicks is 0), revenue, and dynamic parameters, which are then provided by the playback module 13 The user subscribes or watches the second time-sharing recommendation list. Therefore, the playback module 13 only provides the second time-sharing recommendation list calculated by the calculation module 11 for the user to subscribe or watch. In addition, the processing module 10 will base the click count on the list Adjust the preset score of the first time-sharing recommendation list to sort the IPTV programs.

綜上所述,本發明之一種應用於IPTV之分時推薦系統及其方法以分時來取代專屬用戶的推薦清單,是以,利用分時將IPTV節目依據時間進行切割使推薦清單能適用於同住家不同用戶,且具信任度,此外,基於用戶原有喜好的推薦清單,利用IPTV平台業者可獲得的收益及用戶對各IPTV節目的點擊次數對推薦清單進行調整,進而提升IPTV平台業者的收益且推薦的IPTV節目亦符合用戶的喜好,以提升IPTV的系統效益。 In summary, the time-sharing recommendation system and method of the present invention applied to IPTV replace the recommended list of exclusive users by time-sharing. Therefore, the time-sharing is used to cut IPTV programs according to time so that the recommendation list can be applied to Different users in the same home, and have a degree of trust. In addition, based on the user’s original favorite recommendation list, the income obtained by the IPTV platform industry and the number of user clicks on each IPTV program are used to adjust the recommendation list, thereby improving the IPTV platform industry The profitable and recommended IPTV programs are also in line with users' preferences, so as to enhance the system benefits of IPTV.

再者,本發明之一種應用於IPTV之分時推薦系統及其方法可具備下列優點或技術功效。 Furthermore, a time-sharing recommendation system and method applied to IPTV of the present invention can have the following advantages or technical effects.

一、本發明將IPTV節目依據時間進行分時,藉此,能在不同時段提供不同的推薦清單以符合於同住家而不同用戶之收看節目的需求,且進一步達到推薦的節目清單不限定於特定用戶的效果。 1. The present invention time-shares IPTV programs according to time, so that different recommended lists can be provided at different time periods to meet the needs of watching programs of different users in the same home, and further achieve that the recommended program list is not limited to specific User effect.

二、本發明利用深度學習之技術,依據用戶的每次點擊IPTV節目的次數及IPTV平台業者的收益以調整動態參數,進而提供符合用戶觀看喜好且提升IPTV平台業者收益的推薦清單。 2. The present invention uses deep learning technology to adjust dynamic parameters according to the number of times the user clicks on the IPTV program and the income of the IPTV platform operator, thereby providing a recommendation list that meets the user's viewing preferences and improves the income of the IPTV platform operator.

1:一種應用於IPTV之分時推薦系統 1: A time-sharing recommendation system applied to IPTV

10:處理模組 10: Processing module

11:計算模組 11: Calculation module

12:資料庫 12: Database

13:播放模組 13: Play module

Claims (10)

一種應用於IPTV之分時推薦系統,係包括: A time-sharing recommendation system applied to IPTV, including: 一處理模組,係用以取得一時間範圍內的一第一分時推薦清單與建立一分潤表,以供該處理模組再取得一用戶點擊該第一分時推薦清單中之各IPTV節目的一點擊次數表;以及 A processing module is used to obtain a first time-sharing recommendation list within a time range and create a profit sharing table for the processing module to obtain a user clicking each IPTV in the first time-sharing recommendation list A table of the number of clicks of the program; and 一計算模組,係依據該第一分時推薦清單、該分潤表及該點擊次數表計算出一加權數值,以依據該加權數值產生一第二分時推薦清單; A calculation module, which calculates a weighted value according to the first time-sharing recommendation list, the profit sharing table, and the click count table, so as to generate a second time-sharing recommendation list according to the weighted value; 其中,該處理模組持續地更新該用戶點擊該第二分時推薦清單中之各IPTV節目的點擊次數表,以由該計算模組依據該分潤表與該更新後之點擊次數表持續地更新該第二分時推薦清單,俾提供該經更新的第二分時推薦清單給該用戶。 Wherein, the processing module continuously updates the click count table of each IPTV program in the second time-sharing recommendation list that the user clicks, so that the calculation module continuously based on the share table and the updated click count table The second time-sharing recommendation list is updated to provide the updated second time-sharing recommendation list to the user. 如申請專利範圍第1項所述之分時推薦系統,更包括一播放模組,係傳輸該第二分時推薦清單中之各IPTV節目至一播放設備上以供顯示、播放,並提供該用戶訂閱或觀看而產生點擊次數,進而將該點擊次數傳輸至該播放模組以更新該點擊次數表,其中,該處理模組係從該播放模組中取得該點擊次數表。 For example, the time-sharing recommendation system described in item 1 of the scope of patent application further includes a playback module, which transmits each IPTV program in the second time-sharing recommendation list to a playback device for display and playback, and provides the The user subscribes or watches and generates clicks, and then transmits the clicks to the play module to update the clicks table. The processing module obtains the clicks table from the play module. 如申請專利範圍第1項所述之分時推薦系統,其中,該處理模組係於一資料庫中取得該時間範圍內的該第一分時推薦清單,且該第一分時推薦清單係具有該各IPTV節目及其對應的預設分數,而該分潤表係具有該各IPTV節目及其對應的收益,以及該點擊次數表係具有該各IPTV節目及其對應的點擊次數,而該處理模組係具有預設一動態參數。 For example, the time-sharing recommendation system described in item 1 of the scope of patent application, wherein the processing module obtains the first time-sharing recommendation list within the time range from a database, and the first time-sharing recommendation list is Has the IPTV programs and their corresponding preset scores, and the profit sharing table has the IPTV programs and their corresponding revenues, and the click count table has the IPTV programs and their corresponding click counts, and the The processing module has a preset dynamic parameter. 如申請專利範圍第3項所述之分時推薦系統,其中,該計算模組利用該各IPTV節目之該預設分數、該點擊次數表之點擊次數、該收益及該動態參 數對該第一分時推薦清單進行運算以獲得該各IPTV節目之加權數值,其中,該計算模組依據該動態參數調高該分潤表之收益較高的IPTV節目之加權數值,且降低該點擊次數表之點擊次數較高的IPTV節目之加權數值,以使該計算模組透過該加權數值重新排序該各IPTV節目的推薦名次而產生該第二分時推薦清單。 For example, the time-sharing recommendation system described in item 3 of the scope of patent application, wherein the calculation module uses the preset score of each IPTV program, the number of clicks in the click count table, the revenue and the dynamic parameter The first time-sharing recommendation list is calculated to obtain the weighted value of each IPTV program, wherein the calculation module increases the weighted value of the IPTV program with the higher profit of the share table according to the dynamic parameter, and reduces The weighted value of the IPTV program with the higher number of clicks in the click count table, so that the calculation module reorders the recommended ranking of each IPTV program through the weighted value to generate the second time-sharing recommendation list. 如申請專利範圍第3項所述之分時推薦系統,其中,該處理模組持續地更新該用戶點擊該第二分時推薦清單中之各IPTV節目的點擊次數表,由該計算模組依據該分潤表之收益與該更新後之點擊次數表之點擊次數對該動態參數進行深度學習以得到一新動態參數,再由該計算模組利用該新動態參數、該預設分數、該更新後之點擊次數表之點擊次數及該收益對該各IPTV節目之加權數值重新進行計算,以持續地更新該第二分時推薦清單。 For example, the time-sharing recommendation system described in item 3 of the scope of patent application, wherein the processing module continuously updates the table of the number of clicks that the user clicks on each IPTV program in the second time-sharing recommendation list, and the calculation module is based on it The profit of the profit sharing table and the number of clicks in the updated clicks table perform deep learning on the dynamic parameters to obtain a new dynamic parameter, and then the calculation module uses the new dynamic parameter, the preset score, and the update The number of clicks in the subsequent clicks table and the weighted value of the revenue for each IPTV program are recalculated to continuously update the second time-sharing recommendation list. 一種應用於IPTV之分時推薦方法,係包括: A time-sharing recommendation method applied to IPTV includes: 取得一時間範圍內的一第一分時推薦清單與建立一分潤表; Obtain a first time-sharing recommendation list within a time range and establish a profit sharing table; 取得一用戶點擊該第一分時推薦清單中之各IPTV節目的一點擊次數表; Obtain a click count table for a user to click each IPTV program in the first time-sharing recommendation list; 依據該第一分時推薦清單、該分潤表及該點擊次數表計算出一加權數值,以依據該加權數值產生一第二分時推薦清單; Calculating a weighted value according to the first time-sharing recommendation list, the profit table and the click count table, so as to generate a second time-sharing recommendation list according to the weighting value; 持續地更新該用戶點擊該第二分時推薦清單中之各IPTV節目的點擊次數表;以及 Continuously update the click count table of each IPTV program in the second time-sharing recommendation list by the user; and 依據該分潤表與該更新後之點擊次數表持續地更新該第二分時推薦清單,以提供該經更新的第二分時推薦清單給該用戶。 The second time-sharing recommendation list is continuously updated according to the profit sharing table and the updated click count table to provide the updated second time-sharing recommendation list to the user. 如申請專利範圍第6項所述之分時推薦方法,其中,係將該第二分時推薦清單中之各IPTV節目傳輸至一播放設備上以供顯示、播放,並提供該用戶訂閱或觀看而產生點擊次數,以更新與取得該點擊次數表。 For example, the time-sharing recommendation method described in item 6 of the scope of patent application, wherein each IPTV program in the second time-sharing recommendation list is transmitted to a playback device for display and playback, and the user is provided with subscription or viewing The click times are generated to update and obtain the click times table. 如申請專利範圍第6項所述之分時推薦方法,其中,於一資料庫中取得該時間範圍內的該第一分時推薦清單,且該第一分時推薦清單係具有該各IPTV節目及其對應的預設分數,而該分潤表係具有該各IPTV節目及其對應的收益,以及該點擊次數表係具有該各IPTV節目及其對應的點擊次數,而更預設一動態參數。 For example, the time-sharing recommendation method described in item 6 of the scope of patent application, wherein the first time-sharing recommendation list within the time range is obtained from a database, and the first time-sharing recommendation list has the IPTV programs And its corresponding preset score, and the profit sharing table has each IPTV program and its corresponding revenue, and the click count table has each IPTV program and its corresponding click count, and a dynamic parameter is preset . 如申請專利範圍第8項所述之分時推薦方法,其中,利用該各IPTV節目之該預設分數、該點擊次數表之點擊次數、該收益及該動態參數對該第一分時推薦清單進行運算以獲得該各IPTV節目之加權數值,其中,依據該動態參數調高該分潤表之收益較高的IPTV節目之加權數值,且降低該點擊次數表之點擊次數較高的IPTV節目之加權數值,以透過該加權數值重新排序該各IPTV節目的推薦名次俾產生該第二分時推薦清單。 For example, the time-sharing recommendation method described in item 8 of the scope of patent application, wherein the preset score of each IPTV program, the number of clicks in the click count table, the revenue and the dynamic parameter are used for the first time-sharing recommendation list Perform calculations to obtain the weighted value of each IPTV program, wherein according to the dynamic parameter, increase the weighted value of the IPTV program with higher revenue in the profit sharing table, and decrease the weighted value of the IPTV program with higher clicks in the click table The weighted value is used to re-sort the recommended rankings of the IPTV programs through the weighted value to generate the second time-sharing recommendation list. 如申請專利範圍第8項所述之分時推薦方法,其中,持續地更新該用戶點擊該第二分時推薦清單中之各IPTV節目的點擊次數表,依據該分潤表之收益與該更新後之點擊次數表之點擊次數對該動態參數進行深度學習以得到一新動態參數,再利用該新動態參數、該預設分數、該更新後之點擊次數表之點擊次數及該收益對該各IPTV節目之加權數值重新進行計算,以持續地更新該第二分時推薦清單。 For example, the time-sharing recommendation method described in item 8 of the scope of patent application, wherein the user clicks on each IPTV program in the second time-sharing recommendation list continuously updated according to the profit sharing table and the update The number of clicks in the subsequent clicks table performs deep learning on the dynamic parameter to obtain a new dynamic parameter, and then uses the new dynamic parameter, the preset score, the number of clicks in the updated clicks table, and the revenue The weighted value of the IPTV program is recalculated to continuously update the second time-sharing recommendation list.
TW109114341A 2020-04-29 2020-04-29 A time-based recommendation system applied to iptv and method thereof TWI715488B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109114341A TWI715488B (en) 2020-04-29 2020-04-29 A time-based recommendation system applied to iptv and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109114341A TWI715488B (en) 2020-04-29 2020-04-29 A time-based recommendation system applied to iptv and method thereof

Publications (2)

Publication Number Publication Date
TWI715488B true TWI715488B (en) 2021-01-01
TW202141993A TW202141993A (en) 2021-11-01

Family

ID=75237351

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109114341A TWI715488B (en) 2020-04-29 2020-04-29 A time-based recommendation system applied to iptv and method thereof

Country Status (1)

Country Link
TW (1) TWI715488B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI779889B (en) * 2021-10-20 2022-10-01 中華電信股份有限公司 Device, system and method of a streaming dynamic sales

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130263168A1 (en) * 2010-07-02 2013-10-03 Joong-in Choi Cooperative Filtering Algorithm-Based Personal Preference Program Recommendation System for IPTV
US20160212484A1 (en) * 2009-03-30 2016-07-21 Time Warner Cable Enterprises Llc Recommendation engine apparatus and methods
US20180189293A1 (en) * 2014-12-01 2018-07-05 Comcast Cable Communications, Llc Content Recommendation System
CN108419100A (en) * 2018-01-29 2018-08-17 山东浪潮商用系统有限公司 A kind of user's film plays the acquisition methods and system of behavior similarity
US20180373778A1 (en) * 2012-10-26 2018-12-27 Mobitv, Inc. Feedback loop content recommendation
EP2759129B1 (en) * 2011-09-22 2020-04-15 TCL Research America Inc. Least click tv

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160212484A1 (en) * 2009-03-30 2016-07-21 Time Warner Cable Enterprises Llc Recommendation engine apparatus and methods
US20130263168A1 (en) * 2010-07-02 2013-10-03 Joong-in Choi Cooperative Filtering Algorithm-Based Personal Preference Program Recommendation System for IPTV
EP2759129B1 (en) * 2011-09-22 2020-04-15 TCL Research America Inc. Least click tv
US20180373778A1 (en) * 2012-10-26 2018-12-27 Mobitv, Inc. Feedback loop content recommendation
US20180189293A1 (en) * 2014-12-01 2018-07-05 Comcast Cable Communications, Llc Content Recommendation System
CN108419100A (en) * 2018-01-29 2018-08-17 山东浪潮商用系统有限公司 A kind of user's film plays the acquisition methods and system of behavior similarity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI779889B (en) * 2021-10-20 2022-10-01 中華電信股份有限公司 Device, system and method of a streaming dynamic sales

Also Published As

Publication number Publication date
TW202141993A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
US11416536B2 (en) Content recommendation system
US10587923B2 (en) Personalized content recommendations based on consumption periodicity
US9235574B2 (en) Systems and methods for providing media recommendations
US10798465B2 (en) Digital audiovisual content campaigns using merged television viewer information and online activity information
US8732737B1 (en) Geographic context weighted content recommendation
US10110959B2 (en) Recommending media content based on quality of service at a location
US10524021B2 (en) Method and system for retrieving online content in an interactive television environment
US10827228B2 (en) Methods and systems for recommending providers of media content to users viewing over-the-top content based on quality of service
US20200236193A1 (en) Providing content based on event related information
US20140149424A1 (en) Time weighted content recommendation
US10165333B2 (en) Recommending media content based on the trajectory of the user
AU2016246507A1 (en) Global recommendation systems for overlapping media catalogs
US10614079B1 (en) Identifying a level of relevancy of a keyword cluster related to an event category for a given time period relative to the event
US20140149425A1 (en) View count weighted content recommendation
JP6023219B2 (en) Targeted advertising
US11693984B2 (en) Methods and systems for implementing parental controls
US20240259632A1 (en) Behavior modeling based on content genre
CN106471819A (en) System and method for improving the accuracy in media asset recommended models
TWI715488B (en) A time-based recommendation system applied to iptv and method thereof
US10397652B2 (en) Recommending a location based on quality of service at a location
US20170330243A1 (en) Bid recommendations for budget constrained campaigns
WO2016130547A1 (en) Relevance table aggregation in a database system
US10085062B2 (en) Presenting media guidance data based on the trajectory of the user
TWI516101B (en) Method and device for presenting video navigating interface, displaying device and computer programming product
Bin et al. User Behavior Analysis of a Mobile Short Video Application