TWI715488B - A time-based recommendation system applied to iptv and method thereof - Google Patents
A time-based recommendation system applied to iptv and method thereof Download PDFInfo
- Publication number
- TWI715488B TWI715488B TW109114341A TW109114341A TWI715488B TW I715488 B TWI715488 B TW I715488B TW 109114341 A TW109114341 A TW 109114341A TW 109114341 A TW109114341 A TW 109114341A TW I715488 B TWI715488 B TW I715488B
- Authority
- TW
- Taiwan
- Prior art keywords
- time
- sharing
- iptv
- recommendation list
- sharing recommendation
- Prior art date
Links
Images
Landscapes
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Abstract
Description
本發明關於一種影音節目的推薦技術,尤其指應用於IPTV之分時推薦系統及其方法。 The present invention relates to a recommendation technology for audio-visual programs, in particular to a time-sharing recommendation system and method applied to IPTV.
目前的市場上已出現許多影音串流平台,例如:Netflix、Youtube、Spotify、KKBOX等,而這些影音串流平台會透過各式各樣的方法推薦用戶可能會感到興趣的影片或音樂,以提供用戶專屬的影音服務,進而提高用戶對於特定平台的依賴度及商業上的收益。 Many video and audio streaming platforms have appeared in the current market, such as Netflix, Youtube, Spotify, KKBOX, etc., and these video and audio streaming platforms will recommend videos or music that users may be interested in through various methods to provide User-specific audio-visual services, thereby increasing the user’s reliance on specific platforms and commercial benefits.
舉例而言,一用戶A喜歡在一影音串流平台A中觀看動作電影或影集,因此,影音串流平台A在蒐集用戶A經常觀看影片的類型後,進一步推薦更多的動作電影或影集給用戶A,以滿足用戶A需求。 For example, a user A likes to watch action movies or albums on an audio-visual streaming platform A. Therefore, the audio-visual streaming platform A collects the types of movies that user A frequently watches, and further recommends more action movies or albums to User A to meet the needs of user A.
然而,以目前的技術來說通常會有兩個缺點,(1)這些影音串流平台均是透過各個用戶所建立的帳號以針對該帳號的使用習慣進行推薦,因此,無法應用於網路協定電視(Internet Protocol Television,IPTV),也就是當家人們一起收看電視節目時,以現有的推薦方式無法在沒有特定用戶的使用習慣下進行推薦,因此,容易出現無法配合所有用戶的推薦清單;(2)現今的影音串流平台均是 以用戶為出發點,亦即影音串流平台所推薦的影片或音樂是以用戶的使用體驗作為第一考量,然而,對於IPTV平台業者來說,這類型專屬用戶的推薦方法卻無法及時反應到收益,換句話說,IPTV平台業者無法有效的推薦其他類型的節目或影片給用戶,進而無法提升收益。 However, the current technology usually has two shortcomings. (1) These audio-visual streaming platforms use accounts created by each user to recommend the account’s usage habits. Therefore, they cannot be applied to network protocols. Television (Internet Protocol Television, IPTV), that is, when people watch TV programs together, the existing recommendation method cannot make recommendations without the usage habits of specific users. Therefore, it is easy to have a recommendation list that cannot match all users; (2) ) Today’s video streaming platforms are Taking the user as the starting point, that is, the video or music recommended by the video streaming platform is based on the user experience as the first consideration. However, for the IPTV platform industry, this type of exclusive user recommendation method cannot reflect the revenue in time In other words, IPTV platform operators cannot effectively recommend other types of programs or movies to users, and thus cannot increase revenue.
因此,如何提供適用於IPTV的推薦方法,且能及時反應IPTV平台業者的收益之問題,並如何提升IPTV的系統效益,即為目前所亟待解決的課題之一。 Therefore, how to provide a recommendation method suitable for IPTV, which can promptly reflect the problem of the income of the IPTV platform industry, and how to improve the system efficiency of IPTV is one of the issues that needs to be solved urgently.
本發明提供一種應用於IPTV之分時推薦系統,係包括:一處理模組及計算模組,該處理模組係用以取得一時間範圍內的一第一分時推薦清單與建立一分潤表,以供該處理模組再取得一用戶點擊該第一分時推薦清單中之各IPTV節目的一點擊次數表,而該計算模組係依據該第一分時推薦清單、該分潤表及該點擊次數表計算出一加權數值,以依據該加權數值之產生一第二分時推薦清單,其中,該處理模組持續地更新該用戶點擊該第二分時推薦清單中之各IPTV節目的點擊次數表,以由該計算模組依據該分潤表與該更新後之點擊次數表持續地更新該第二分時推薦清單,俾提供該經更新的第二分時推薦清單給該用戶。 The present invention provides a time-sharing recommendation system applied to IPTV, which includes: a processing module and a calculation module, the processing module is used to obtain a first time-sharing recommendation list within a time range and establish a share Table for the processing module to obtain a table of the number of times a user clicks each IPTV program in the first time-sharing recommendation list, and the calculation module is based on the first time-sharing recommendation list and the profit sharing table And the click count table calculates a weighted value to generate a second time-sharing recommendation list based on the weighted value, wherein the processing module continuously updates the user clicking each IPTV program in the second time-sharing recommendation list Click the number of times table for the calculation module to continuously update the second time-sharing recommendation list according to the profit sharing table and the updated click number table, so as to provide the updated second time-sharing recommendation list to the user .
本發明提供一種應用於IPTV之分時推薦方法,係包括:取得一時間範圍內的一第一分時推薦清單與建立一分潤表;取得一用戶點擊該第一分時推薦清單中之各IPTV節目的一點擊次數表;依據該第一分時推薦清單、該分潤表及該點擊次數表計算出一加權數值,以依據該加權數值產生一第二分時推薦 清單;持續地更新該用戶點擊該第二分時推薦清單中之各IPTV節目的該點擊次數表;以及依據該分潤表與該更新後之點擊次數表持續地更新該第二分時推薦清單,以提供該經更新的第二分時推薦清單給該用戶。 The present invention provides a time-sharing recommendation method applied to IPTV, which includes: obtaining a first time-sharing recommendation list within a time range and creating a profit table; obtaining a user clicking each of the first time-sharing recommendation list A click count table of an IPTV program; a weighted value is calculated according to the first time-sharing recommendation list, the share table, and the click count table to generate a second time-sharing recommendation based on the weighted value List; continuously update the click count table of each IPTV program in the second time-sharing recommendation list by the user; and continuously update the second time-sharing recommendation list according to the profit sharing table and the updated click count table To provide the updated second time-sharing recommendation list to the user.
在一實施例中,更包括一播放模組,係傳輸該第二分時推薦清單中之各IPTV節目至一播放設備上以供顯示、播放並提供該用戶訂閱或觀看而產生點擊次數,進而將該點擊次數傳輸至該播放模組以更新該點擊次數表,其中,該處理模組係從該播放模組中取得該點擊次數表。 In one embodiment, it further includes a playback module, which transmits each IPTV program in the second time-sharing recommendation list to a playback device for display, playback, and subscription or viewing by the user to generate clicks, and then The click count is transmitted to the playback module to update the click count table, wherein the processing module obtains the click count table from the playback module.
在一實施例中,該處理模組係於一資料庫中取得該時間範圍內的該第一分時推薦清單,且該第一分時推薦清單係具有該各IPTV節目及其對應的預設分數;該分潤表係具有該各IPTV節目及其對應的收益;以及該點擊次數表係具有該各IPTV節目及其對應的點擊次數。此外,該處理模組係具有預設一動態參數。 In one embodiment, the processing module obtains the first time-sharing recommendation list within the time range from a database, and the first time-sharing recommendation list has the IPTV programs and their corresponding presets Score; the profit sharing table has each IPTV program and its corresponding revenue; and the click count table has each IPTV program and its corresponding click count. In addition, the processing module has a preset dynamic parameter.
在一實施例中,該計算模組利用該各IPTV節目之該預設分數、該點擊次數表之點擊次數、該收益及該動態參數對該第一分時推薦清單進行運算以獲得該各IPTV節目之加權數值,其中,該計算模組依據該動態參數調高該分潤表之收益較高的IPTV節目之加權數值,且降低該點擊次數表之點擊次數較高的IPTV節目之加權數值,藉此,該計算模組透過該加權數值重新排序該各IPTV節目的推薦名次以產生該第二分時推薦清單。 In an embodiment, the calculation module uses the preset score of each IPTV program, the number of clicks in the click count table, the revenue, and the dynamic parameter to perform calculations on the first time-sharing recommendation list to obtain each IPTV The weighted value of the program, wherein the calculation module increases the weighted value of the IPTV program with higher revenue in the profit sharing table according to the dynamic parameter, and reduces the weighted value of the IPTV program with higher clicks in the click table, In this way, the calculation module reorders the recommended rankings of the IPTV programs through the weighted value to generate the second time-sharing recommendation list.
在一實施例中,該處理模組持續地更新該用戶點擊該第二分時推薦清單中之各IPTV節目的點擊次數表,由該計算模組依據該分潤表之收益與該更新後之點擊次數表之點擊次數對該動態參數進行深度學習以得到一新動態參數,再由該計算模組利用該新動態參數、該預設分數、該更新後之點擊次數表之 點擊次數及該收益對該各IPTV節目之加權數值重新進行計算,以持續地更新該第二分時推薦清單。 In one embodiment, the processing module continuously updates the click count table of each IPTV program in the second time-sharing recommendation list by the user, and the calculation module is based on the profit sharing table and the updated value The number of clicks in the click count table performs deep learning on the dynamic parameter to obtain a new dynamic parameter, and the calculation module uses the new dynamic parameter, the preset score, and the updated click count table. The number of clicks and the revenue are recalculated for the weighted value of each IPTV program to continuously update the second time-sharing recommendation list.
綜上所述,本發明之一種應用於IPTV之分時推薦系統及其方法以分時來取代專屬用戶的推薦清單,是以,利用分時將IPTV節目依據時間進行切割使推薦清單能適用於同住家不同用戶,且具信任度。此外,基於用戶原有喜好的推薦清單,利用IPTV平台業者可獲得的收益及用戶對各IPTV節目的點擊次數對推薦清單進行調整,進而提升IPTV平台業者的收益且推薦的IPTV節目亦符合用戶的喜好,進而提升IPTV的系統效益。 In summary, the time-sharing recommendation system and method of the present invention applied to IPTV replace the recommended list of exclusive users by time-sharing. Therefore, the time-sharing is used to cut IPTV programs according to time so that the recommendation list can be applied to Different users in the same home, and have trust. In addition, based on the user’s original preferences, the recommended list is adjusted using the revenue obtained by the IPTV platform industry and the number of user clicks on each IPTV program, thereby increasing the revenue of the IPTV platform industry and the recommended IPTV programs are also in line with the user’s needs. Preferences, thereby enhancing the system benefits of IPTV.
1:一種應用於IPTV之分時推薦系統 1: A time-sharing recommendation system applied to IPTV
10:處理模組 10: Processing module
11:計算模組 11: Calculation module
12:資料庫 12: Database
13:播放模組 13: Play module
S21~S25:步驟 S21~S25: steps
第1圖係為本發明之一種應用於IPTV之分時推薦系統的示意圖;以及 Figure 1 is a schematic diagram of a time-sharing recommendation system applied to IPTV according to the present invention; and
第2圖係為本發明之一種應用於IPTV之分時推薦方法的流程圖。 Figure 2 is a flowchart of a time-sharing recommendation method applied to IPTV according to the present invention.
須知,本說明書所附圖式所繪示之結構、比例、大小等,均僅用以配合說明書所揭示之內容,以供熟悉此技藝之人士之瞭解與閱讀,並非用以限定本發明可實施之限定條件,故不具技術上之實質意義,任何結構之修飾、比例關係之改變或大小之調整,在不影響本發明所能產生之功效及所能達成之目的下,均應仍落在本發明所揭示之技術內容得能涵蓋之範圍內。同時,本說明書中所引用之如「上」、「第一」、「第二」及「一」等之用語,亦僅為便於敘述之明瞭,而非用以限定本發明可實施之 範圍,其相對關係之改變或調整,在無實質變更技術內容下,當視為本發明可實施之範疇。 It should be noted that the structures, proportions, sizes, etc. shown in the drawings in this manual are only used to match the contents disclosed in the manual for the understanding and reading of those familiar with the art, and are not intended to limit the implementation of the present invention Therefore, it does not have any technical significance. Any structural modification, proportional relationship change, or size adjustment should still fall within the scope of the present invention without affecting the effects and objectives that can be achieved. The technical content disclosed by the invention can be covered. At the same time, the terms such as "on", "first", "second" and "one" cited in this manual are only for ease of description and are not used to limit the implementation of the present invention. The change or adjustment of the scope and the relative relationship shall be regarded as the scope within which the present invention can be implemented without substantially changing the technical content.
第1圖係為本發明之一種應用於IPTV之分時推薦系統1的示意圖,係包括:一處理模組10、一計算模組11、一資料庫12及一播放模組13,且該些模組係設置於電腦、主機、伺服器(如遠端伺服器、雲端伺服器、網路伺服器)等中。
Figure 1 is a schematic diagram of a time-sharing recommendation system 1 applied to IPTV of the present invention, which includes: a
具體而言,處理模組10依據設定的一時間範圍(例如,下午6:00~8:00)從資料庫12中取得時間範圍內的一第一分時推薦清單,且第一分時推薦清單係具有各IPTV節目及其對應的預設分數,又處理模組10建立IPTV節目之一分潤表,且分潤表具有各IPTV節目及其對應的收益,以及處理模組10取得一用戶點擊第一分時推薦清單中之各IPTV節目的一點擊次數表,且點擊次數表具有各IPTV節目及其對應的點擊次數。
Specifically, the
再者,計算模組11利用各IPTV節目之預設分數、點擊次數表、收益及處理模組10預設之一動態參數對第一分時推薦清單進行運算以獲得各IPTV節目之加權數值,其中,計算模組11依據動態參數調高分潤表之收益較高的IPTV節目之加權數值,且降低點擊次數表之點擊次數較高的IPTV節目之加權數值,藉此,計算模組11透過加權數值重新排序各IPTV節目的推薦名次以產生一第二分時推薦清單。並由播放模組13傳輸第二分時推薦清單中之各IPTV節目至播放設備(如電視、智慧型手機、平板等播放設備)上以供顯示、播放並提供用戶訂閱或觀看而產生點擊次數,進而提升未訂閱或觀看過的IPTV節目之曝光度,使IPTV平台業者的收益增加。
Furthermore, the
此外,為避免推薦的IPTV節目並非用戶喜好的IPTV節目,而造成用戶降低觀看IPTV節目的意願,處理模組10再持續地更新用戶點擊第二分時推
薦清單中之各IPTV節目的點擊次數表,由計算模組11依據分潤表之收益與更新後之點擊次數表之點擊次數對動態參數進行深度學習以得到一新動態參數,並由計算模組11利用新動態參數、預設分數、更新後點擊次數表及收益對各IPTV節目之加權數值重新進行計算,以更新第二分時推薦清單,進而提供符合用戶喜好且IPTV平台業者亦能獲得較高收益的IPTV節目之推薦清單。
In addition, in order to avoid that the recommended IPTV program is not the user’s favorite IPTV program, which may cause the user to reduce their willingness to watch the IPTV program, the
於一實施例中,處理模組10係從播放模組13中取得點擊次數表,其中,於產生點擊次數後,係傳輸該點擊次數至播放模組13以更新點擊次數表。
In one embodiment, the
於一實施例中,計算模組11依據分潤表之收益與更新後點擊次數表之點擊次數對動態參數進行深度學習以得到一新動態參數,其中,計算模組11所採用的深度學習之方式如深度神經網路、卷積神經網路和深度置信網路和迴圈神經網路,且計算模組11會不斷透過用戶點擊各IPTV節目所產生的點擊次數表之點擊次數及分潤表之收益,以持續地進行深度學習,進而不斷更新動態參數並對第二分時推薦清單進行調整。
In one embodiment, the
於一實施例中,計算模組11係透過公式(1)計算出各IPTV節目之加權數值,其中,動態參數或新動態參數係包含一第一動態參數(a)及一第二動態參數(b),點擊次數表包含各IPTV節目之點擊次數,且依據各IPTV節目之預設分數、點擊次數、收益、第一動態參數(a)及第二動態參數(b)透過公式(1)進行計算以產生各IPTV節目之加權數值,公式(1)如下所示:
In one embodiment, the
加權數值=a×收益-b×點擊次數+預設分數 (1) Weighted value = a×revenue-b×number of clicks+preset score (1)
第2圖係為本發明之一種應用於IPTV之分時推薦方法的流程圖,並請參閱第1圖一併說明之。 Figure 2 is a flowchart of a time-sharing recommendation method applied to IPTV according to the present invention, and please refer to Figure 1 for description.
於步驟S21中,處理模組10取得一時間範圍內的一第一分時推薦清單與建立一分潤表。
In step S21, the
於步驟S22中,處理模組10取得一用戶點擊第一分時推薦清單中之各IPTV節目的一點擊次數表。
In step S22, the
於步驟S23中,計算模組11依據第一分時推薦清單、分潤表及點擊次數表計算出一加權數值,以依據加權數值產生一第二分時推薦清單。
In step S23, the
於步驟S24中,處理模組10持續地更新用戶點擊第二分時推薦清單中之各IPTV節目的點擊次數表。
In step S24, the
於步驟S25中,計算模組11依據分潤表與更新後之點擊次數表以持續地更新第二分時推薦清單,進而提供符合用戶需求且IPTV平台業者亦能獲得較高收益的經更新的第二分時推薦清單給用戶。
In step S25, the
此外,以下係為本發明之一種應用於IPTV之分時推薦系統1的一實施例,並請參閱第1、2圖一併說明之。當一用戶於當日下午6:00~8:00透過電視觀看一IPTV平台業者所提供的IPTV節目時,一處理模組10從一資料庫12中取得當日下午6:00~8:00的一第一分時推薦清單,且第一分時推薦清單係具有各IPTV節目及其對應的預設分數,以依據預設分數的高低推薦對應的IPTV節目給用戶,以及處理模組10建立IPTV節目之一分潤表,且分潤表包含各IPTV節目及其對應的收益,此外,處理模組10透過播放模組13取得用戶點擊第一分時推薦清單中之各IPTV節目的一點擊次數表,其中,第一分時推薦清單、分潤表及點擊次數表,如表1~3所示。
In addition, the following is an embodiment of the time-sharing recommendation system 1 applied to IPTV of the present invention, and please refer to FIGS. 1 and 2 for description. When a user watches an IPTV program provided by an IPTV platform provider on TV from 6:00 pm to 8:00 pm on the same day, a
表1:第一分時推薦清單
表2:分潤表
表3:點擊次數表
接著,為推薦用戶訂閱或觀看的其他未被點擊的IPTV節目以提高IPTV平台業者的收益,由計算模組11依據各IPTV節目之預設分數、點擊次數表之點擊次數、收益、預設之第一動態參數(a=1)及第二動態參數(b=3)對第一分
時推薦清單進行加權數值的計算,以產生第二分時推薦清單,是以,計算模組11透過公式(1)(加權數值=a×收益-b×點擊次數+預設分數)進行運算以獲得各IPTV節目之加權數值,並依據加權數值將各IPTV節目由大至小排序,以推薦其他未被訂閱或觀看且收益較高的IPTV節目給用戶,例如,節目A之加權數值係為1×20-3×3+10=21、節目B之加權數值係為1×20-3×5+9=14等,是以,節目A~節目G經計算出加權數值後所產生的第二分時推薦清單如表4所示。
Then, for recommending users to subscribe or watch other unclicked IPTV programs to increase the revenue of the IPTV platform industry, the
表4:第二分時推薦清單
如表4所示,計算模組11透過第一動態參數及第二動態參數調高分潤表之收益較高且降低點擊次數表之點擊次數較高的IPTV節目之加權數值,藉此,播放模組13係傳輸其他未被點擊的IPTV節目,並提供於電視上,以推薦給用戶訂閱或觀看,進而提升未訂閱或觀看過的IPTV節目之曝光度,使IPTV平台業者的收益增加。
As shown in Table 4, the
此外,為使推薦的IPTV節目符合用戶的喜好,以避免造成用戶降低觀看IPTV節目的意願,處理模組10從播放模組13持續更新用戶點擊第二分時推薦清單中之各IPTV節目的點擊次數表,如表5所示。
In addition, in order to make the recommended IPTV programs in line with the user’s preferences, so as to avoid reducing the user’s willingness to watch IPTV programs, the
表5:更新後點擊次數表
計算模組11依據分潤表之收益與更新後點擊次數表之點擊次數對第一動態參數及第二動態參數進行深度學習,以得到新第一動態參數(a=1)及新第二動態參數(b=2),並由計算模組11再利用新第一動態參數(a=1)、新第二動態參數(b=2)、預設分數、更新後點擊次數表之點擊次數及收益對各IPTV節目之加權數值重新進行計算,以更新第二分時推薦清單,進而提供符合用戶喜好且IPTV平台業者亦能獲得較高收益的IPTV節目之推薦清單,經更新的第二分時推薦清單如表6所示。
The
表6:經更新的第二分時推薦清單
再者,本發明之一種應用於IPTV之分時推薦系統1中處理模組10會持續的取得用戶點擊取得第二分時推薦清單中之各IPTV節目的點擊次數以更新點擊次數表,再透過計算模組11持續地進行深度學習以產生新第一動態參數
及新第二動態參數,進而不斷地提供更新後第二分時推薦清單,且使更新後第二分時推薦清單符合用戶的喜好並同時增加IPTV平台業者的收益。
Furthermore, the
另一方面,當處理模組10為首次透過播放模組13取得用戶點擊第一分時推薦清單中之各IPTV節目的點擊次數表時,點擊次數表中各IPTV節目的點擊次數係均為0,接著,由計算模組11依據各IPTV節目之預設分數、點擊次數表之點擊次數(點擊次數為0)、收益及動態參數以產生第二分時推薦清單,進而由播放模組13提供用戶訂閱或觀看第二分時推薦清單,因此,播放模組13僅提供由計算模組11計算後之第二分時推薦清單給用戶訂閱或觀看,此外,處理模組10會依據點擊次數表調整第一分時推薦清單之預設分數,以將各IPTV節目進行排序。
On the other hand, when the
綜上所述,本發明之一種應用於IPTV之分時推薦系統及其方法以分時來取代專屬用戶的推薦清單,是以,利用分時將IPTV節目依據時間進行切割使推薦清單能適用於同住家不同用戶,且具信任度,此外,基於用戶原有喜好的推薦清單,利用IPTV平台業者可獲得的收益及用戶對各IPTV節目的點擊次數對推薦清單進行調整,進而提升IPTV平台業者的收益且推薦的IPTV節目亦符合用戶的喜好,以提升IPTV的系統效益。 In summary, the time-sharing recommendation system and method of the present invention applied to IPTV replace the recommended list of exclusive users by time-sharing. Therefore, the time-sharing is used to cut IPTV programs according to time so that the recommendation list can be applied to Different users in the same home, and have a degree of trust. In addition, based on the user’s original favorite recommendation list, the income obtained by the IPTV platform industry and the number of user clicks on each IPTV program are used to adjust the recommendation list, thereby improving the IPTV platform industry The profitable and recommended IPTV programs are also in line with users' preferences, so as to enhance the system benefits of IPTV.
再者,本發明之一種應用於IPTV之分時推薦系統及其方法可具備下列優點或技術功效。 Furthermore, a time-sharing recommendation system and method applied to IPTV of the present invention can have the following advantages or technical effects.
一、本發明將IPTV節目依據時間進行分時,藉此,能在不同時段提供不同的推薦清單以符合於同住家而不同用戶之收看節目的需求,且進一步達到推薦的節目清單不限定於特定用戶的效果。 1. The present invention time-shares IPTV programs according to time, so that different recommended lists can be provided at different time periods to meet the needs of watching programs of different users in the same home, and further achieve that the recommended program list is not limited to specific User effect.
二、本發明利用深度學習之技術,依據用戶的每次點擊IPTV節目的次數及IPTV平台業者的收益以調整動態參數,進而提供符合用戶觀看喜好且提升IPTV平台業者收益的推薦清單。 2. The present invention uses deep learning technology to adjust dynamic parameters according to the number of times the user clicks on the IPTV program and the income of the IPTV platform operator, thereby providing a recommendation list that meets the user's viewing preferences and improves the income of the IPTV platform operator.
1:一種應用於IPTV之分時推薦系統 1: A time-sharing recommendation system applied to IPTV
10:處理模組 10: Processing module
11:計算模組 11: Calculation module
12:資料庫 12: Database
13:播放模組 13: Play module
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109114341A TWI715488B (en) | 2020-04-29 | 2020-04-29 | A time-based recommendation system applied to iptv and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109114341A TWI715488B (en) | 2020-04-29 | 2020-04-29 | A time-based recommendation system applied to iptv and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI715488B true TWI715488B (en) | 2021-01-01 |
TW202141993A TW202141993A (en) | 2021-11-01 |
Family
ID=75237351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109114341A TWI715488B (en) | 2020-04-29 | 2020-04-29 | A time-based recommendation system applied to iptv and method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI715488B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI779889B (en) * | 2021-10-20 | 2022-10-01 | 中華電信股份有限公司 | Device, system and method of a streaming dynamic sales |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130263168A1 (en) * | 2010-07-02 | 2013-10-03 | Joong-in Choi | Cooperative Filtering Algorithm-Based Personal Preference Program Recommendation System for IPTV |
US20160212484A1 (en) * | 2009-03-30 | 2016-07-21 | Time Warner Cable Enterprises Llc | Recommendation engine apparatus and methods |
US20180189293A1 (en) * | 2014-12-01 | 2018-07-05 | Comcast Cable Communications, Llc | Content Recommendation System |
CN108419100A (en) * | 2018-01-29 | 2018-08-17 | 山东浪潮商用系统有限公司 | A kind of user's film plays the acquisition methods and system of behavior similarity |
US20180373778A1 (en) * | 2012-10-26 | 2018-12-27 | Mobitv, Inc. | Feedback loop content recommendation |
EP2759129B1 (en) * | 2011-09-22 | 2020-04-15 | TCL Research America Inc. | Least click tv |
-
2020
- 2020-04-29 TW TW109114341A patent/TWI715488B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160212484A1 (en) * | 2009-03-30 | 2016-07-21 | Time Warner Cable Enterprises Llc | Recommendation engine apparatus and methods |
US20130263168A1 (en) * | 2010-07-02 | 2013-10-03 | Joong-in Choi | Cooperative Filtering Algorithm-Based Personal Preference Program Recommendation System for IPTV |
EP2759129B1 (en) * | 2011-09-22 | 2020-04-15 | TCL Research America Inc. | Least click tv |
US20180373778A1 (en) * | 2012-10-26 | 2018-12-27 | Mobitv, Inc. | Feedback loop content recommendation |
US20180189293A1 (en) * | 2014-12-01 | 2018-07-05 | Comcast Cable Communications, Llc | Content Recommendation System |
CN108419100A (en) * | 2018-01-29 | 2018-08-17 | 山东浪潮商用系统有限公司 | A kind of user's film plays the acquisition methods and system of behavior similarity |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI779889B (en) * | 2021-10-20 | 2022-10-01 | 中華電信股份有限公司 | Device, system and method of a streaming dynamic sales |
Also Published As
Publication number | Publication date |
---|---|
TW202141993A (en) | 2021-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11416536B2 (en) | Content recommendation system | |
US10587923B2 (en) | Personalized content recommendations based on consumption periodicity | |
US9235574B2 (en) | Systems and methods for providing media recommendations | |
US10798465B2 (en) | Digital audiovisual content campaigns using merged television viewer information and online activity information | |
US8732737B1 (en) | Geographic context weighted content recommendation | |
US10110959B2 (en) | Recommending media content based on quality of service at a location | |
US10524021B2 (en) | Method and system for retrieving online content in an interactive television environment | |
US10827228B2 (en) | Methods and systems for recommending providers of media content to users viewing over-the-top content based on quality of service | |
US20200236193A1 (en) | Providing content based on event related information | |
US20140149424A1 (en) | Time weighted content recommendation | |
US10165333B2 (en) | Recommending media content based on the trajectory of the user | |
AU2016246507A1 (en) | Global recommendation systems for overlapping media catalogs | |
US10614079B1 (en) | Identifying a level of relevancy of a keyword cluster related to an event category for a given time period relative to the event | |
US20140149425A1 (en) | View count weighted content recommendation | |
JP6023219B2 (en) | Targeted advertising | |
US11693984B2 (en) | Methods and systems for implementing parental controls | |
US20240259632A1 (en) | Behavior modeling based on content genre | |
CN106471819A (en) | System and method for improving the accuracy in media asset recommended models | |
TWI715488B (en) | A time-based recommendation system applied to iptv and method thereof | |
US10397652B2 (en) | Recommending a location based on quality of service at a location | |
US20170330243A1 (en) | Bid recommendations for budget constrained campaigns | |
WO2016130547A1 (en) | Relevance table aggregation in a database system | |
US10085062B2 (en) | Presenting media guidance data based on the trajectory of the user | |
TWI516101B (en) | Method and device for presenting video navigating interface, displaying device and computer programming product | |
Bin et al. | User Behavior Analysis of a Mobile Short Video Application |