TWI711249B - Output overvoltage sensing system and sensing method - Google Patents
Output overvoltage sensing system and sensing method Download PDFInfo
- Publication number
- TWI711249B TWI711249B TW108109140A TW108109140A TWI711249B TW I711249 B TWI711249 B TW I711249B TW 108109140 A TW108109140 A TW 108109140A TW 108109140 A TW108109140 A TW 108109140A TW I711249 B TWI711249 B TW I711249B
- Authority
- TW
- Taiwan
- Prior art keywords
- control chip
- voltage
- switch
- control
- overvoltage
- Prior art date
Links
Images
Landscapes
- Protection Of Static Devices (AREA)
- Dc-Dc Converters (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
本發明提供一種輸出過壓感測系統和感測方法。輸出過壓感測系統包括控制晶片和位於控制晶片外部並與控制晶片耦合的電阻。控制晶片包括電流源、控制電容、比較器、過壓感測電路。電流源的電流大小由控制晶片外部耦合的電阻設定。控制電容在控制晶片驅動開通延遲一段時間後進行放電清零,在控制晶片驅動關斷後輸出電感的退磁時間內由控制晶片的電流源充電。比較器對控制電容兩端的電壓與取樣電阻上的當前開關週期的峰值電壓進行對比。過壓感測電路回應於指示控制晶片驅動關斷後輸出電感完全退磁的退磁結束信號,基於比較器的比較結果來確定是否感測到過壓狀態。 The invention provides an output overvoltage sensing system and sensing method. The output overvoltage sensing system includes a control chip and a resistor located outside the control chip and coupled with the control chip. The control chip includes a current source, a control capacitor, a comparator, and an overvoltage sensing circuit. The current size of the current source is set by the externally coupled resistance of the control chip. The control capacitor is discharged and cleared after the control chip drive is turned on for a period of time, and is charged by the current source of the control chip during the demagnetization time of the output inductor after the control chip drive is turned off. The comparator compares the voltage across the control capacitor with the peak voltage of the current switching cycle on the sampling resistor. The overvoltage sensing circuit responds to a demagnetization end signal indicating that the inductance is completely demagnetized after the control chip is driven off, and determines whether an overvoltage state is sensed based on the comparison result of the comparator.
Description
本發明總體涉及晶片領域,更具體地,涉及一種輸出過壓感測系統和感測方法。 The present invention generally relates to the field of wafers, and more specifically, to an output overvoltage sensing system and sensing method.
輸出過壓保護可以在系統異常時,防止輸出電壓過高引起系統損壞。輸出電壓感測於是成為輸出過壓保護中的關鍵。傳統地,電壓感測一般通過直接感測系統的輸出電壓或者通過感測系統中輸出電感兩端的電壓來實現。然而,在某些系統應用條件下,無法直接對系統的輸出電壓或系統中輸出電感兩端的電壓進行感測,常常需要通過增加額外的元件來輔助實施電壓感測。 The output over-voltage protection can prevent the system from being damaged when the output voltage is too high when the system is abnormal. Output voltage sensing then becomes the key to output overvoltage protection. Traditionally, voltage sensing is generally achieved by directly sensing the output voltage of the system or by sensing the voltage across the output inductor in the system. However, under certain system application conditions, it is impossible to directly sense the output voltage of the system or the voltage across the output inductor in the system, and it is often necessary to add additional components to assist in implementing voltage sensing.
根據本發明的一方面,提供了一種輸出過壓感測系統,包括控制晶片和電阻,該電阻位於控制晶片外部並與控制晶片耦合。控制晶片包括電流源、控制電容、比較器、過壓感測電路。電流源的電流大小由控制晶片外部耦合的電阻設定。控制電容在控制晶片驅動開通延遲一段時間後進行放電清零,並在控制晶片驅動關斷後輸出電感的退磁時間內由控制晶片的電流源充電,其中比較器對控制電容兩端的電壓與取樣電阻上的當前開關週期的峰值電壓進行對比;並且過壓感測電路回應於指示控制晶片驅動關斷後輸出電感完全退磁的退磁結束信號,基於比較器的比較結果來確定是否感測到過壓狀態。 According to an aspect of the present invention, there is provided an output overvoltage sensing system, including a control chip and a resistor, the resistor being located outside the control chip and coupled with the control chip. The control chip includes a current source, a control capacitor, a comparator, and an overvoltage sensing circuit. The current size of the current source is set by the externally coupled resistance of the control chip. The control capacitor is discharged and cleared after a period of delay after the drive of the control chip is turned on, and is charged by the current source of the control chip during the demagnetization time of the output inductor after the drive of the control chip is turned off. The comparator controls the voltage across the control capacitor and the sampling resistor. Compare the peak voltage of the current switching cycle on the above; and the overvoltage sensing circuit responds to the demagnetization end signal indicating that the inductance is completely demagnetized after the control chip is driven off, and determines whether the overvoltage state is sensed based on the comparison result of the comparator .
根據本發明的另一方面,提供了一種輸出過壓感測方法,包括:採集控制晶片中控制電容兩端的電壓,其中控制電容在控制晶片驅動開通延遲一段時間後進行放電清零,並在控制晶片驅動關斷後輸出電感 的退磁時間內由控制晶片的電流源充電,其中,控制晶片的電流源的電流大小由控制晶片外部耦合的電阻設定;採集取樣電阻上的當前開關週期的峰值電壓;將控制電容兩端的電壓與所述峰值電壓進行對比;以及回應於指示控制晶片驅動關斷後輸出電感完全退磁的退磁結束信號,基於比較器的比較結果來確定是否感測到過壓狀態。 According to another aspect of the present invention, there is provided an output overvoltage sensing method, including: collecting the voltage across a control capacitor in a control chip, wherein the control capacitor is discharged and cleared after a delay in driving the control chip on for a period of time, and the control chip Output inductance after chip drive is turned off During the demagnetization time, the current source of the control chip is charged by the current source of the control chip. The current size of the current source of the control chip is set by the resistor externally coupled to the control chip; the peak voltage of the current switching cycle on the sampling resistor is collected; the voltage across the control capacitor is compared with The peak voltage is compared; and in response to a demagnetization end signal indicating that the output inductor is completely demagnetized after the control chip is driven off, it is determined whether an overvoltage state is sensed based on the comparison result of the comparator.
根據本發明的輸出過壓感測系統和感測方法,可以便於在控制晶片的基準地無法直接感測輸出電壓或輸出電感兩端的電壓時實現電壓感測並進而實現輸出過壓保護功能,而無需額外的輔助電路,因此能夠有助於減小系統體積並進而降低成本。 According to the output overvoltage sensing system and sensing method of the present invention, it is convenient to realize voltage sensing and thereby realize the output overvoltage protection function when the reference ground of the control chip cannot directly sense the output voltage or the voltage across the output inductor, and No additional auxiliary circuit is needed, so it can help reduce the system volume and thereby reduce the cost.
1、3、4‧‧‧框 1, 3, 4‧‧‧Frame
3013、4016‧‧‧比較器 3013, 4016‧‧‧Comparator
2、303‧‧‧負載 2, 303‧‧‧Load
3014、4017‧‧‧過壓感測電路 3014, 4017‧‧‧Overvoltage sensing circuit
13‧‧‧電流感測模組 13‧‧‧Current Sensing Module
4011‧‧‧轉換器 4011‧‧‧Converter
14‧‧‧退磁感測模組 14‧‧‧Demagnetization Sensing Module
FB‧‧‧信號 FB‧‧‧Signal
16‧‧‧驅動器 16‧‧‧Drive
IL‧‧‧輸出電感電流 I L ‧‧‧Output inductor current
301、401‧‧‧控制晶片 301, 401‧‧‧control chip
ISET‧‧‧電流 I SET ‧‧‧Current
3011、4012‧‧‧電流源 3011、4012‧‧‧Current source
S1、S1 4013‧‧‧第一開關
S 1 、
3012、C 4014‧‧‧控制電容
3012,
S2、S2 4015‧‧‧第二開關
S 2 、
C‧‧‧控制電容的電容值 C‧‧‧Control the capacitance of the capacitor
S701-S705、S801-S808‧‧‧步驟 S701-S705, S801-S808‧‧‧Step
ICS_PEAK‧‧‧流過取樣電阻的電流 I CS_PEAK ‧‧‧The current flowing through the sampling resistor
T‧‧‧時間 T‧‧‧Time
L‧‧‧輸出電感的電感值 L‧‧‧Inductance value of output inductor
TDMG‧‧‧退磁時間 T DMG ‧‧‧Demagnetization time
RCS‧‧‧取樣電阻的電阻值 R CS ‧‧‧Resistance value of sampling resistor
TON_DELAY‧‧‧延遲時間 T ON_DELAY ‧‧‧Delay time
VC‧‧‧控制電容兩端的電壓 V C ‧‧‧Control the voltage across the capacitor
VDD‧‧‧電源電壓 V DD ‧‧‧Power supply voltage
VCS_PEAK‧‧‧取樣電阻的峰值電壓 V CS_PEAK ‧‧‧Peak voltage of sampling resistor
VOUT‧‧‧輸出電壓 V OUT ‧‧‧Output voltage
302、RSET、RSET 402‧‧‧電阻 302, RSET, RSET 402‧‧‧Resistor
11‧‧‧欠壓保護(UVLO)模組 11‧‧‧Undervoltage protection (UVLO) module
12‧‧‧恒流(CC)/恒壓(CV)調節模組 12‧‧‧Constant current (CC)/constant voltage (CV) adjustment module
15‧‧‧脈衝寬度調變(PWM)控制模組 15‧‧‧Pulse width modulation (PWM) control module
17‧‧‧過壓保護(OVP)模組 17‧‧‧Over Voltage Protection (OVP) Module
GATE‧‧‧控制晶片驅動的開通與關斷的信號 GATE‧‧‧The signal that controls the turn-on and turn-off of the chip drive
OVP‧‧‧過壓感測電路的感測結果信號 OVP‧‧‧Sensing result signal of over-voltage sensing circuit
從下面結合圖式對本發明的具體實施方式的描述中可以更好地理解本發明,其中:第1圖示出了一種通過光耦實現輸出電壓感測的示例性系統的示意圖;第2圖示出了一種通過輔助繞組實現輸出電壓感測的示例性系統的示意圖;第3圖示出了根據本發明實施例的一種輸出過壓感測系統的示意框圖;第4圖示出了根據本發明實施例的一種輸出過壓感測系統的電路示意圖;第5圖示出了根據本發明實施例的一種輸出過壓感測系統在感測到過壓狀態時的控制波形的示意圖;第6圖示出了示出了根據本發明實施例的一種輸出過壓感測系統在未感測到過壓狀態時的控制波形的示意圖。 The present invention can be better understood from the following description of the specific embodiments of the present invention in conjunction with the drawings, in which: Figure 1 shows a schematic diagram of an exemplary system for output voltage sensing through an optocoupler; Figure 2 A schematic diagram of an exemplary system for output voltage sensing through an auxiliary winding is shown; Figure 3 shows a schematic block diagram of an output overvoltage sensing system according to an embodiment of the present invention; A schematic circuit diagram of an output overvoltage sensing system according to an embodiment of the present invention; Figure 5 shows a schematic diagram of a control waveform of an output overvoltage sensing system according to an embodiment of the present invention when an overvoltage state is sensed; sixth The figure shows a schematic diagram showing a control waveform of an output overvoltage sensing system according to an embodiment of the present invention when the overvoltage state is not sensed.
第7圖示出了根據本發明實施例的一種輸出過壓感測方法的流程圖。 Figure 7 shows a flowchart of an output overvoltage sensing method according to an embodiment of the present invention.
第8圖示出了根據本發明實施例的一種輸出過壓感測方法的具體示例的流程圖。 Fig. 8 shows a flowchart of a specific example of a method for output overvoltage sensing according to an embodiment of the present invention.
下面將詳細描述本發明的各個方面的特徵和示例性實施例。在下面的詳細描述中,提出了許多具體細節,以便提供對本發明的全面理解。但是,對於本領域技術人員來說很明顯的是,本發明可以在不需要這些具體細節中的一些細節的情況下實施。下面對實施例的描述僅僅是為了通過示出本發明的示例來提供對本發明的更好的理解。本發明決不限於下面所提出的任何具體配置,而是在不脫離本發明的精神的前提下覆蓋了元素、部件和演算法的任何修改、替換和改進。在圖式和下面的描述中,沒有示出公知的結構和技術,以便避免對本發明造成不必要的模糊。 The features and exemplary embodiments of various aspects of the present invention will be described in detail below. In the following detailed description, many specific details are proposed in order to provide a comprehensive understanding of the present invention. However, it is obvious to those skilled in the art that the present invention can be implemented without some of these specific details. The following description of the embodiments is only to provide a better understanding of the present invention by showing examples of the present invention. The present invention is by no means limited to any specific configuration proposed below, but covers any modification, replacement and improvement of elements, components and algorithms without departing from the spirit of the present invention. In the drawings and the following description, well-known structures and technologies are not shown in order to avoid unnecessary obscurity of the present invention.
第1圖示出了一種通過光耦實現輸出電壓感測的示例性系統的示意圖。如第1圖所述,該示例性系統應用高壓交流電(AC,Alternate Current)為控制系統供電,進而為負載提供電力。更具體地,輸入高壓AC被施加到由四個二極體構成的整流橋的兩個輸入端,通過整流橋整流之後再經濾波電容濾波,然後由虛線框1指示的控制晶片控制整個系統為負載2提供電力。
Figure 1 shows a schematic diagram of an exemplary system for output voltage sensing through an optocoupler. As described in Figure 1, this exemplary system uses high-voltage alternating current (AC, Alternate Current) to supply power to the control system, thereby providing power to the load. More specifically, the input high-voltage AC is applied to the two input ends of a rectifier bridge composed of four diodes, and then rectified by the rectifier bridge and then filtered by a filter capacitor, and then the entire system is controlled by the control chip indicated by the dashed box 1
如第1圖所示,控制晶片包括欠壓保護(UVLO,Under Voltage Lock Out)模組11、恒流(CC,Constant-current)/恒壓(CV,Constant-voltage)調節模組12、電流感測模組13、退磁感測模組14、脈衝寬度調變(PWM,Pulse Width Modulation)控制模組15、驅動器16、以及過壓保護(OVP,Over Voltage Protection)模組17。
As shown in Figure 1, the control chip includes UVLO (Under Voltage Lock Out)
欠壓保護(UVLO)模組)11感測電源電壓VDD是否低於欠壓保護閾值時,並且當電源電壓VDD低於欠壓保護閾值時控制晶片處於保護狀態。恒流(CC)/恒壓(CV)調節模組12根據負載情況實現CC和CV模式的調節。脈衝寬度調變(PWM)控制模組15對電壓波形執行脈衝寬度調變。驅動器16通過信號GATE驅動開關電晶體開通或關斷。電
流感測(CS,Current Sensor)模組13通過取樣信號CS感測流過取樣電阻的電流。退磁感測模組14感測開關電晶體關斷(即控制晶片驅動關斷)後輸出電感完全退磁的時間。過壓保護(OVP)模組17通過信號FB感測輸出電壓是否高於輸出過壓保護閾值,並且當感測到的電壓高於輸出過壓保護閾值時啟動過壓保護。
The under-voltage protection (UVLO) module) 11 senses whether the power supply voltage V DD is lower than the under-voltage protection threshold, and when the power supply voltage V DD is lower than the under-voltage protection threshold, the control chip is in a protection state. The constant current (CC)/constant voltage (CV)
如第1圖所述,示例性系統通過光耦元件和相關電路(圖中虛線框3和框4所示)來輔助實現電壓感測。
As described in Figure 1, the exemplary system uses optocoupler elements and related circuits (shown in dashed
第2圖示出了一種通過輔助繞組實現輸出電壓感測的示例性系統的示意圖。第2圖中與第1圖相同的元件以及功能在此不再贅述,所不同的是在第2圖中在輸出電感左側位置增加了輔助繞組,借助於這些繞組來實現輸出電壓感測。 Figure 2 shows a schematic diagram of an exemplary system for output voltage sensing through an auxiliary winding. The components and functions in Figure 2 that are the same as those in Figure 1 will not be repeated here. The difference is that in Figure 2, auxiliary windings are added to the left of the output inductor, and output voltage sensing is realized by these windings.
然而,在第1圖和第2圖所示的示例性系統中,控制晶片都需要增加額外的輔助電路來輔助實現輸出電壓感測,這增大了系統體積並進而增加了成本。 However, in the exemplary systems shown in FIG. 1 and FIG. 2, the control chip needs to add additional auxiliary circuits to assist in realizing output voltage sensing, which increases the volume of the system and further increases the cost.
根據本發明的實施例提供了一種新型的輸出過壓感測技術,這種新型的輸出過壓感測技術可以便於在控制晶片的基準地無法直接感測輸出電壓或輸出電感兩端的電壓時實現電壓感測並進而實現輸出過壓保護功能,而無需額外的輔助電路,因此能夠有助於減小系統體積並進而降低成本。 According to the embodiment of the present invention, a new type of output overvoltage sensing technology is provided. This new type of output overvoltage sensing technology can be easily implemented when the reference ground of the control chip cannot directly sense the output voltage or the voltage across the output inductor Voltage sensing and then realize the output overvoltage protection function without additional auxiliary circuit, so it can help reduce the system volume and thereby reduce the cost.
第3圖示出了根據本發明實施例的一種輸出過壓感測系統的示意框圖。請注意,為不模糊本發明,第3圖中僅圖示了有助於理解本發明的部分,實際上系統還可以包括其他的元件,例如,退磁感測模組、電流感測模組、驅動器、開關電晶體、取樣電阻、輸出電感等等,並且這些其他元件具有與第1圖和第2圖中所示那樣相同的功能和操作。 Figure 3 shows a schematic block diagram of an output overvoltage sensing system according to an embodiment of the present invention. Please note that in order not to obscure the present invention, Figure 3 only illustrates the parts that are helpful for understanding the present invention. In fact, the system may also include other components, such as demagnetization sensing modules, current sensing modules, Drivers, switching transistors, sampling resistors, output inductors, etc., and these other components have the same functions and operations as shown in Figures 1 and 2.
如第3圖所示,該系統包括控制晶片301以及位於控制晶片外部並與控制晶片耦合的電阻302。控制晶片301控制對負載303的供電。
As shown in Figure 3, the system includes a control chip 301 and a
控制晶片301包括電流源3011、控制電容3012、比較器3013、過壓感測電路3014。
The control chip 301 includes a
電流源3011的電流大小由控制晶片301外部耦合的電阻302設定。
The magnitude of the current of the
控制電容3012在控制晶片301驅動開通延遲一段時間後進行放電清零,並在控制晶片301驅動關斷後輸出電感的退磁時間由控制晶片301的電流源3011充電。
The
比較器3013對控制電容3012兩端的電壓與取樣電阻上的當前開關週期的峰值電壓進行對比。
The
過壓感測電路3014回應於指示控制晶片301驅動關斷後輸出電感完全退磁的退磁結束信號,基於比較器3013的比較結果來確定是否感測到過壓狀態。
The
在一些實施例中,回應於退磁結束時比較器3013的比較結果指示控制電容3012兩端的電壓低於取樣電阻上的當前開關週期的峰值電壓時,過壓感測電路3014感測到過壓狀態。回應於退磁結束時比較器3013的比較結果指示控制電容3012兩端的電壓高於取樣電阻上的當前開關週期的峰值電壓時,過壓感測電路3014未感測到過壓狀態。
In some embodiments, in response to the comparison result of the
在一些實施例中,控制晶片301還包括第一開關S1和第二開關S2,第一開關S1跨接在控制電容3012兩端,並且第二開關S2串聯在控制電容3012與電流源3011之間,並且其中,在控制晶片301驅動開通時,第二開關S2被關斷,延遲一段時間後,第一開關S1被開通,並且在控制晶片301的驅動關斷後輸出電感的退磁時,第一開關S1被關斷,而第二開關S2被開通。
In some embodiments, the control chip 301 further includes a first switch S 1 and a second switch S 2. The first switch S 1 is connected across the
第4圖示出了根據本發明實施例的一種輸出過壓感測系統的感測電路示意圖。 Figure 4 shows a schematic diagram of a sensing circuit of an output overvoltage sensing system according to an embodiment of the present invention.
如第4圖所示,系統包括控制晶片401(如虛線框所示)以及位於控制晶片401外部並與控制晶片401耦合的電阻RSET 402。晶片
電源電壓被載入到控制晶片401,在電阻RSET 402的設定下經由轉換器4011被轉換為電流源電流ISET以作為施加到控制晶片401的內部電流。
As shown in FIG. 4, the system includes a control chip 401 (shown as a dashed frame) and a
控制晶片還包括電流源4012、第一開關S1 4013、控制電容C 4014、第二開關S2 4015、比較器4016和過壓感測電路4017。
The control chip also includes a
電流源4012為控制晶片401提供內部電流ISET。
The
第一開關S1 4013跨接在控制電容C 4014兩端,回應於控制晶片驅動開通延遲一段時間TON_DELAY後而被開通,並回應於控制晶片驅動關斷而被關斷。
The
控制電容C 4014在控制晶片401驅動開通延遲一段時間TON_DELAY後進行放電清零,並在控制晶片驅動關斷後輸出電感的退磁時間(TDMG)內由控制晶片401的內部電流ISET充電。
The
第二開關S2 4015串聯在控制電容C 4014與電流源4012之間,回應於控制晶片401的驅動關斷而被開通,並回應於控制晶片感測到輸出電感退磁結束而被關斷(退磁結束後,控制晶片可以進入下一開關週期,進而進入新迴圈)。
The
比較器4016對控制電容C 4014兩端的電壓與取樣電阻上的當前開關週期的峰值電壓(VCS_PEAK)進行對比。
The
過壓感測電路4017回應於指示控制晶片401驅動關斷後輸出電感完全退磁的退磁結束信號(DMG,Demagnetization),基於比較器4016的比較結果來確定是否感測到過壓狀態。在一些實施例中,在退磁結束後比較器4016的比較結果指示控制電容C 4014兩端的電壓低於取樣電阻上的當前開關週期的峰值電壓時,過壓感測電路4017感測到過壓狀態,進而過壓保護被啟動。在退磁結束後比較器4016的比較結果指示控制電容C 4014兩端的電壓高於取樣電阻上的當前開關週期的峰值電壓時,過壓感測電路4017未感測到過壓狀態,控制晶片照常工作。
The
第5圖示出了根據本發明實施例的一種輸出過壓感測系統在感測到過壓狀態時的控制波形的示意圖;第6圖示出了根據本發明實 施例的一種輸出過壓感測系統未感測到過壓狀態時的控制波形的示意圖。 Figure 5 shows a schematic diagram of the control waveform of an output overvoltage sensing system when an overvoltage state is sensed according to an embodiment of the present invention; Figure 6 shows an implementation according to the present invention A schematic diagram of outputting the control waveform when the overvoltage sensing system does not sense the overvoltage state of the embodiment.
如第5圖和第6圖所示,圖中都圖示了四個物理量(即GATE、IL、VC、OVP)隨時間T的變化曲線圖,其中,GATE表示控制晶片驅動的開通與關斷的信號,IL表示輸出電感電流,VC表示控制電容兩端的電壓,OVP表示過壓感測電路的感測結果信號。在第5圖和第6圖中,作為示例,僅圖示出兩個開關週期,本領域技術人員能夠理解這些波形曲線可以包含更多或更少的開關週期。 As shown in Figure 5 and Figure 6, the figures both illustrate the four physical quantities (ie GATE, I L , V C , OVP) over time T, where GATE represents the turn-on and control chip drive Turn-off signal, IL represents the output inductor current, V C represents the voltage across the control capacitor, and OVP represents the sensing result signal of the overvoltage sensing circuit. In Figures 5 and 6, as an example, only two switching periods are shown. Those skilled in the art can understand that these waveform curves may include more or fewer switching periods.
首先參見第5圖,在GATE曲線中,高位準表示控制晶片驅動開通時間,低位準表示控制晶片驅動關斷時間。如圖所示,可以看出每個開關週期內控制晶片先開通,經過一段時間後(如圖中虛線所示),進入TON_DELAY(在此時間期間,第一開關S1開通)。請注意,第二開關S2在控制晶片驅動的整個開通時間都是關斷的。接著,控制晶片關斷,輸出電感進入退磁時間TDMG(在此時間期間,第二開關S2開通,第一開關S1關斷)。 First, referring to Figure 5, in the GATE curve, the high level represents the turn-on time of the control chip drive, and the low level represents the turn-off time of the control chip drive. As shown in the figure, it can be seen that the control chip is turned on first in each switching cycle, and after a period of time (shown by the dotted line in the figure), it enters T ON_DELAY (during this time, the first switch S 1 is turned on). Please note that the second switch S 2 is turned off during the entire turn-on time of the control chip drive. Then, the control chip is turned off, and the output inductor enters the demagnetization time T DMG (during this time, the second switch S 2 is turned on, and the first switch S 1 is turned off).
接下來是輸出電感電流IL曲線,從其中可見在控制晶片的驅動開通時間內(即,GATE信號處於高位準),輸出電感電流從零逐漸增大,在控制晶片驅動關斷後輸出電感的退磁時間內(即,GATE信號處於低位準),輸出電感電流逐漸降低至零。在控制晶片驅動關斷時(即GATE信號在高位準到低位準的轉變時),輸出電感電流達到峰值IL_PEAK。 Next is the output inductor current IL curve. It can be seen that during the turn-on time of the control chip (that is, the GATE signal is at a high level), the output inductor current gradually increases from zero. After the control chip is driven off, the output inductor current During the demagnetization time (that is, the GATE signal is at a low level), the output inductor current gradually decreases to zero. When the control chip drive is turned off (that is, when the GATE signal transitions from a high level to a low level), the output inductor current reaches the peak value I L_PEAK .
接下來是控制電容兩端的電壓VC曲線,從其中可見,在控制晶片驅動開通延遲一段時間後(這段時間對應於GATE信號曲線中從控制晶片驅動開通到進入TON_DELAY之間的那段延遲時間),控制電容兩端的電壓即降為零,即清零復位。之後,在控制晶片驅動關斷後輸出電感的退磁時間TDMG內,由於控制電容被控制晶片的內部電流ISET充電而逐漸增大。在圖中,控制電容兩端的峰值電壓均小於取樣電阻的峰值電壓VCS_PEAK。 Next is the voltage V C curve across the control capacitor. It can be seen that after the control chip drive is turned on for a period of time (this time corresponds to the delay from the control chip drive on to the T ON_DELAY in the GATE signal curve) Time), the voltage across the control capacitor drops to zero, that is, clears and resets. After that, during the demagnetization time T DMG of the output inductor after the control chip is driven off, the control capacitor is gradually increased due to the internal current I SET of the control chip being charged. In the figure, the peak voltage across the control capacitor is less than the peak voltage V CS_PEAK of the sampling resistor.
接下來是過壓感測電路的感測結果信號OVP曲線,從其 中可見,在控制晶片的驅動開通時間內,且在控制電容兩端的電壓VC復位清零之前,過壓感測電路的感測結果信號OVP處於高位準,因此感測到過壓狀態,進而啟動過壓保護。 Next is the OVP curve of the sensing result signal of the overvoltage sensing circuit. It can be seen from it that during the driving on time of the control chip and before the voltage V C across the control capacitor is reset and cleared, the sensing of the overvoltage sensing circuit The measurement result signal OVP is at a high level, so the overvoltage state is sensed, and the overvoltage protection is activated.
第6圖與第5圖不同的是控制電容兩端的電壓VC和過壓感測電路的感測結果信號OVP曲線。由於每一開關週期內控制電容兩端的峰值電壓均大於取樣電阻的峰值電壓VCS_PEAK。因此,在這兩個開關週期內均未感測到過壓狀態。 The difference between Figure 6 and Figure 5 is the voltage V C across the control capacitor and the OVP curve of the sensing result signal of the overvoltage sensing circuit. Because the peak voltage across the control capacitor in each switching cycle is greater than the peak voltage V CS_PEAK of the sampling resistor. Therefore, the overvoltage condition is not sensed during these two switching cycles.
根據本發明的輸出過壓感測系統,可以便於在控制晶片的基準地無法直接感測輸出電壓或輸出電感兩端的電壓時實現電壓感測並進而實現輸出過壓保護功能,而無需額外的輔助電路,因此能夠有助於減小系統體積並進而降低成本。 According to the output overvoltage sensing system of the present invention, it is convenient to realize voltage sensing and then realize the output overvoltage protection function when the reference ground of the control chip cannot directly sense the output voltage or the voltage across the output inductor, without additional auxiliary The circuit can therefore help reduce the size of the system and thereby reduce costs.
第7圖示出了根據本發明實施例的一種輸出過壓感測方法的流程圖。如第7圖所示,該輸出過壓保護方法包括步驟S701-S705。 Figure 7 shows a flowchart of an output overvoltage sensing method according to an embodiment of the present invention. As shown in Figure 7, the output overvoltage protection method includes steps S701-S705.
在步驟S701,採集控制晶片中控制電容兩端的電壓,其中,控制電容在控制晶片驅動開通延遲一段時間後進行放電清零,並在控制晶片驅動關斷後輸出電感的退磁時間由控制晶片的電流源充電,其中,控制晶片的電流源的電流大小由控制晶片外部耦合的電阻設定。 In step S701, the voltage across the control capacitor in the control chip is collected, where the control capacitor is discharged and cleared after a period of delay when the control chip is driven on, and the demagnetization time of the output inductor is determined by the current of the control chip after the control chip is driven off. Source charging, where the current size of the current source of the control chip is set by a resistor externally coupled to the control chip.
在步驟S702,獲取取樣電阻上的當前開關週期的峰值電壓。 In step S702, the peak voltage of the current switching cycle on the sampling resistor is obtained.
在步驟S703,將控制電容兩端的電壓與所述峰值電壓進行對比。 In step S703, the voltage across the control capacitor is compared with the peak voltage.
在步驟S704和步驟S705,回應於指示控制晶片驅動關斷後輸出電感完全退磁的退磁結束信號,基於比較的比較結果來確定是否感測到過壓狀態。在一些實施例中,當比較器的比較結果指示控制電容兩端的電壓低於電流取樣電阻上的當前開關週期的峰值電壓時,感測到過壓狀態;在比較器的比較結果指示控制電容兩端的電壓高於電流取樣電阻上的當前開關週期的峰值電壓時,未感測到過壓狀態,控制晶片照常工作。 In step S704 and step S705, in response to a demagnetization end signal indicating that the output inductor is completely demagnetized after the control chip is driven off, it is determined whether an overvoltage state is sensed based on the comparison result. In some embodiments, when the comparison result of the comparator indicates that the voltage across the control capacitor is lower than the peak voltage of the current switching cycle on the current sampling resistor, the overvoltage state is sensed; the comparison result of the comparator indicates that the two When the voltage at the terminal is higher than the peak voltage of the current switching cycle on the current sampling resistor, the overvoltage state is not sensed and the control chip works as usual.
在一些實施例中,通過系統的狀態及輸出電感的退磁時間開來確定控制晶片的通斷時間。具體地,控制晶片還可包括第一開關和第二開關,第一開關跨接在控制電容兩端,並且第二開關串聯在控制電容與電流源之間,並且其中,在控制晶片的驅動開通時,第二開關被關斷,延遲一段時間後,第一開關被開通,並且在控制晶片驅動關斷後輸出電感退磁時,第一開關被關斷,而第二開關被開通。 In some embodiments, the on-off time of the control chip is determined by the state of the system and the demagnetization time of the output inductor. Specifically, the control chip may further include a first switch and a second switch, the first switch is connected across the control capacitor, and the second switch is connected in series between the control capacitor and the current source, and wherein the driving of the control chip is turned on When the second switch is turned off, after a delay, the first switch is turned on, and when the output inductor is demagnetized after the control chip is driven off, the first switch is turned off and the second switch is turned on.
第8圖示出了根據本發明實施例的一種輸出過壓感測方法的具體示例的流程圖。如8圖所示,該示例的輸出過壓感測方法包括步驟S801-S808。 Fig. 8 shows a flowchart of a specific example of a method for output overvoltage sensing according to an embodiment of the present invention. As shown in Figure 8, the output overvoltage sensing method of this example includes steps S801-S808.
在步驟S801,通過控制晶片外部耦合的電阻RSET來設定控制晶片的電流源的電流ISET。電流ISET作為施加到控制晶片的內部電流。 In step S801, the current I SET of the current source of the control chip is set by controlling the resistor R SET externally coupled to the chip. The current I SET is used as the internal current applied to the control chip.
在步驟S802,在控制晶片的輸出電感的退磁時間內,電流源的電流ISET對控制晶片中的控制電容進行充電。 In step S802, during the demagnetization time of the output inductor of the control chip, the current I SET of the current source charges the control capacitor in the control chip.
在步驟S803,採集控制電容兩端的電壓。 In step S803, the voltage across the control capacitor is collected.
在步驟S804,獲取取樣電阻上的當前開關週期的峰值電壓。 In step S804, the peak voltage of the current switching cycle on the sampling resistor is obtained.
在步驟S805,將控制電容兩端的電壓與所述峰值電壓進行對比。 In step S805, the voltage across the control capacitor is compared with the peak voltage.
在步驟S806和步驟S807,回應於指示控制晶片驅動關斷後輸出電感完全退磁的退磁結束信號,基於比較的比較結果來確定是否感測到過壓狀態。在一些實施例中,當比較器的比較結果指示控制電容兩端的電壓低於電流取樣電阻上的當前開關週期的峰值電壓時,感測到過壓狀態;在比較器的比較結果指示控制電容兩端的電壓高於電流取樣電阻上的當前開關週期的峰值電壓時,未感測到過壓狀態,控制晶片照常工作。 In step S806 and step S807, in response to a demagnetization end signal indicating that the output inductor is completely demagnetized after the control chip is driven off, it is determined whether an overvoltage state is sensed based on the comparison result. In some embodiments, when the comparison result of the comparator indicates that the voltage across the control capacitor is lower than the peak voltage of the current switching cycle on the current sampling resistor, the overvoltage state is sensed; the comparison result of the comparator indicates that the two When the voltage at the terminal is higher than the peak voltage of the current switching cycle on the current sampling resistor, the overvoltage state is not sensed and the control chip works as usual.
在步驟S808,控制晶片驅動開通延遲一段時間後,控制電容進行放電清零。 In step S808, after the control chip drive is turned on for a period of time delay, the control capacitor is discharged and cleared.
根據上述實施例的輸出過壓感測方法,可以便於在控制 晶片的基準地無法直接感測輸出電壓或輸出電感兩端的電壓時實現電壓感測並進而實現輸出過壓保護功能,而無需額外的輔助電路,因此能夠有助於減小系統體積並進而降低成本。 According to the output overvoltage sensing method of the above embodiment, it is convenient to control The chip's reference ground cannot directly sense the output voltage or the voltage across the output inductor to achieve voltage sensing and then realize the output over-voltage protection function without additional auxiliary circuits, so it can help reduce the size of the system and thereby reduce the cost .
下面給出本發明的實施輸出過壓保護的技術原理。如上所述,控制晶片進入過壓保護的條件為:
此外,輸出電感在退磁階段將電感能量傳輸至輸出電容,其運算式為:V OUT .T DMG =L.I CS_PEAK (2) In addition, the output inductor transfers the energy of the inductor to the output capacitor during the demagnetization phase, and the calculation formula is: V OUT . T DMG = L. I CS_PEAK (2)
通過上述兩個運算式,可以得出VOUT電壓進入保護的條件為:
其中VC表示控制電容兩端的電壓,C為控制電容的電容值,ISET為控制晶片的內部電流,TDMG表示控制晶片驅動關斷後輸出電感的退磁時間,VCS_PEAK表示取樣電阻的峰值電壓,ICS_PEAK表示流過取樣電阻的電流,RCS表示取樣電阻的電阻值,L為輸出電感的電感值,VOUT表示輸出電壓。控制電容的電容值C為固定值,輸出電感的電感值L與取樣電阻的電阻值RCS在同一系統下也為固定值。 Where V C represents the voltage across the control capacitor, C is the capacitance value of the control capacitor, I SET is the internal current of the control chip, T DMG is the demagnetization time of the output inductor after the control chip is driven off, and V CS_PEAK is the peak voltage of the sampling resistor , I CS_PEAK represents the current flowing through the sampling resistor, R CS represents the resistance value of the sampling resistor, L is the inductance value of the output inductor, and V OUT represents the output voltage. The capacitance value C of the control capacitor is a fixed value, and the inductance value L of the output inductor and the resistance value R CS of the sampling resistor are also fixed values under the same system.
因此,只需通過調整RSET電阻阻值改變ISET電流,即可設置輸出電壓的輸出過壓保護閾值。因此,在不便直接感測輸出電壓或輸出電感兩端的電壓的情況下,通過感測控制電容兩端的電壓並與取樣電阻的當前開關週期的峰值電壓進行比較來感測是否感測到過壓狀態,並進而決定是否啟動過壓保護。 Therefore, only by adjusting the resistance of the R SET resistor to change the I SET current, the output overvoltage protection threshold of the output voltage can be set. Therefore, when it is inconvenient to directly sense the output voltage or the voltage across the output inductor, the overvoltage state is sensed by sensing the voltage across the control capacitor and comparing it with the peak voltage of the current switching cycle of the sampling resistor , And then decide whether to activate the overvoltage protection.
請注意,在上文中提到了“一個實施例”、“另一實施例”、“又一實施例”,然而應理解,在各個實施例中提及的特徵並不一定只能應 用於該實施例,而是可能用於其他實施例。一個實施例中的特徵可以應用於另一實施例,或者可以被包括在另一實施例中。 Please note that “one embodiment”, “another embodiment”, and “another embodiment” are mentioned above. However, it should be understood that the features mentioned in each embodiment are not necessarily only applicable Used in this embodiment, but may be used in other embodiments. Features in one embodiment may be applied to another embodiment, or may be included in another embodiment.
上文中提到了“第一”、“第二”....等序數詞。然而應理解這些表述僅僅是為了敘述和引用的方便,所限定的物件並不存在次序上的先後關係。 The ordinal numbers such as "first" and "second" are mentioned above. However, it should be understood that these expressions are only for the convenience of narrative and reference, and there is no sequence relationship between the defined objects.
本發明可以以其他的具體形式實現,而不脫離其精神和本質特徵。例如,特定實施例中所描述的演算法可以被修改,而系統體系結構並不脫離本發明的基本精神。因此,當前的實施例在所有方面都被看作是示例性的而非限定性的,本發明的範圍由所附申請專利範圍而非上述描述定義,並且,落入申請專利範圍的含義和等同物的範圍內的全部改變從而都被包括在本發明的範圍之中。 The present invention can be implemented in other specific forms without departing from its spirit and essential characteristics. For example, the algorithm described in the specific embodiment can be modified, and the system architecture does not deviate from the basic spirit of the present invention. Therefore, the current embodiments are regarded as illustrative rather than restrictive in all aspects, and the scope of the present invention is defined by the scope of the attached patent application rather than the above description, and the meaning and equivalents falling within the scope of the patent application All changes within the scope of things are thus included in the scope of the present invention.
301‧‧‧控制晶片 301‧‧‧control chip
302‧‧‧電阻 302‧‧‧Resistor
303‧‧‧負載 303‧‧‧Load
3011‧‧‧電流源 3011‧‧‧Current source
3012‧‧‧控制電容 3012‧‧‧Control capacitor
3013‧‧‧比較器 3013‧‧‧Comparator
3014‧‧‧過壓感測電路 3014‧‧‧Overvoltage sensing circuit
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910106954.3A CN109917174B (en) | 2019-02-02 | 2019-02-02 | Output overvoltage detection system and detection method |
CN201910106954.3 | 2019-02-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202030960A TW202030960A (en) | 2020-08-16 |
TWI711249B true TWI711249B (en) | 2020-11-21 |
Family
ID=66961388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108109140A TWI711249B (en) | 2019-02-02 | 2019-03-18 | Output overvoltage sensing system and sensing method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109917174B (en) |
TW (1) | TWI711249B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111007307B (en) * | 2019-12-19 | 2020-12-08 | 珠海智融科技有限公司 | USB charging equipment access detection system and method |
CN115190682B (en) * | 2022-09-07 | 2022-12-20 | 深圳利普芯微电子有限公司 | Overvoltage protection circuit and LED drive power supply |
CN117200586B (en) * | 2023-11-06 | 2024-02-06 | 恩赛半导体(成都)有限公司 | Auxiliary power supply, power supply system and power supply equipment |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203632943U (en) * | 2013-12-30 | 2014-06-04 | 常州矽能电子科技有限公司 | LED energy storage driving system with reusable AC-DC converter |
CN104319996A (en) * | 2014-10-30 | 2015-01-28 | 武汉大学 | Synchronous rectification step-down converter chip with high-precision current detection function |
CN204271914U (en) * | 2014-10-30 | 2015-04-15 | 武汉大学 | A kind of synchronous rectification step-down controller chip that there is high-precision current and detect |
TW201608804A (en) * | 2014-08-27 | 2016-03-01 | 財團法人金屬工業研究發展中心 | Power factor correction controller and power supply apparatus using the same |
US9397550B2 (en) * | 2013-09-26 | 2016-07-19 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for over-temperature protection and over-voltage protection for power conversion systems |
CN207884935U (en) * | 2018-01-10 | 2018-09-18 | 上海灿瑞科技股份有限公司 | A kind of overvoltage crowbar applied to LED drive chip |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103199499B (en) * | 2013-04-22 | 2015-05-13 | 上海晶丰明源半导体有限公司 | Overvoltage protection circuit in LED (Light Emitting Diode) driving power supply, and LED driving power supply |
CN104093254B (en) * | 2014-07-22 | 2016-09-21 | 矽力杰半导体技术(杭州)有限公司 | LED over-voltage detection circuit and drive circuit and LED illumination System |
CN104466913B (en) * | 2014-12-02 | 2017-07-18 | 成都芯源系统有限公司 | Switching conversion circuit and method thereof |
CN104868448A (en) * | 2015-06-19 | 2015-08-26 | 杭州士兰微电子股份有限公司 | Switching power supply, control circuit and method for switching power supply, and open-circuit protection setting circuit for switching power supply |
CN105655985B (en) * | 2016-03-29 | 2018-10-16 | 昂宝电子(上海)有限公司 | The system and method for overvoltage protection for LED illumination |
-
2019
- 2019-02-02 CN CN201910106954.3A patent/CN109917174B/en active Active
- 2019-03-18 TW TW108109140A patent/TWI711249B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9397550B2 (en) * | 2013-09-26 | 2016-07-19 | On-Bright Electronics (Shanghai) Co., Ltd. | Systems and methods for over-temperature protection and over-voltage protection for power conversion systems |
CN203632943U (en) * | 2013-12-30 | 2014-06-04 | 常州矽能电子科技有限公司 | LED energy storage driving system with reusable AC-DC converter |
TW201608804A (en) * | 2014-08-27 | 2016-03-01 | 財團法人金屬工業研究發展中心 | Power factor correction controller and power supply apparatus using the same |
CN104319996A (en) * | 2014-10-30 | 2015-01-28 | 武汉大学 | Synchronous rectification step-down converter chip with high-precision current detection function |
CN204271914U (en) * | 2014-10-30 | 2015-04-15 | 武汉大学 | A kind of synchronous rectification step-down controller chip that there is high-precision current and detect |
CN207884935U (en) * | 2018-01-10 | 2018-09-18 | 上海灿瑞科技股份有限公司 | A kind of overvoltage crowbar applied to LED drive chip |
Also Published As
Publication number | Publication date |
---|---|
CN109917174B (en) | 2022-04-12 |
TW202030960A (en) | 2020-08-16 |
CN109917174A (en) | 2019-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104660022B (en) | The system and method that overcurrent protection is provided for supply convertor | |
TWI596874B (en) | System controller and method for a power converter | |
US9479060B2 (en) | Control circuit, battery power supply device and control method | |
US9621068B2 (en) | Load driving circuit and method thereof | |
US10075081B2 (en) | Insulated synchronous rectification DC/DC converter | |
US7592790B2 (en) | Start-up circuit with feedforward compensation for power converters | |
US8461766B2 (en) | Driver circuit with primary side state estimator for inferred output current feedback sensing | |
US5233287A (en) | Current limiting bilateral converter having a ground referenced current sensor | |
US9614448B2 (en) | Switching power-supply device | |
CN110391744B (en) | Light load efficiency improvement method and apparatus for hybrid switched capacitor converter | |
CN108173434B (en) | Switching power supply circuit | |
CN105226951B (en) | Switching power unit | |
CN102480236B (en) | Switching power unit and the image processing system with switching power unit | |
TWI558083B (en) | Insulation type dc power supply unit and control method | |
US7522398B2 (en) | Method and apparatus for overcurrent protection in DC-DC power converters | |
US20120224397A1 (en) | Devices and methods of constant output current and voltage control for power supplies | |
US20140132184A1 (en) | Power Supply Circuit with a Control Terminal for Different Functional Modes of Operation | |
TWI711249B (en) | Output overvoltage sensing system and sensing method | |
JP4481879B2 (en) | Switching power supply | |
TWI763527B (en) | Flyback converter power supply and control method thereof | |
US8836294B2 (en) | Switching regulator and control circuit and method therefor | |
JP6982236B2 (en) | Synchronous rectifier circuit and switching power supply | |
TWI578847B (en) | A system for providing an output current to one or more light emitting diodes | |
JP4218862B2 (en) | Synchronous rectifier circuit for flyback converter | |
JP6951631B2 (en) | Synchronous rectifier circuit and switching power supply |