TWI700458B - 基於吸附劑之機械調節式氣體儲存及輸送容器與容器供應試劑氣體之方法 - Google Patents
基於吸附劑之機械調節式氣體儲存及輸送容器與容器供應試劑氣體之方法 Download PDFInfo
- Publication number
- TWI700458B TWI700458B TW108112960A TW108112960A TWI700458B TW I700458 B TWI700458 B TW I700458B TW 108112960 A TW108112960 A TW 108112960A TW 108112960 A TW108112960 A TW 108112960A TW I700458 B TWI700458 B TW I700458B
- Authority
- TW
- Taiwan
- Prior art keywords
- container
- reagent gas
- adsorbent
- pressure
- mof
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C11/00—Use of gas-solvents or gas-sorbents in vessels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/223—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
- B01J20/226—Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0015—Organic compounds; Solutions thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/04—Arrangement or mounting of valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0338—Pressure regulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/012—Hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/06—Controlling or regulating of parameters as output values
- F17C2250/0605—Parameters
- F17C2250/0626—Pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
本發明描述用於自試劑氣體與一固體吸附劑介質保持吸附關係之一容器分配該試劑氣體之儲存及分配容器及相關系統及方法,該試劑氣體經容納在超大氣壓下且該固體吸附劑介質包括一金屬有機骨架材料。
Description
本發明大體係關於用於自其中試劑氣體與一固體吸附劑介質保持吸附關係之一容器選擇性分配該試劑氣體之儲存及分配系統及相關方法。
氣態原料(本文中被稱為「試劑氣體」)用於一系列行業及行業應用中。行業應用之一些實例包含用於處理半導體材料或微電子裝置中之應用,諸如:尤其離子植入、磊晶生長、電漿蝕刻、反應離子蝕刻、金屬化、物理氣相沈積、化學氣相沈積、原子層沈積、電漿沈積、光微影、清潔及摻雜,其中此等用途包含於尤其用於製造半導體、微電子、光伏打及平板顯示器裝置及產品之方法中。
在半導體材料及裝置之製造中,且在各種其他行業程序及應用中,需要氫化物及鹵化物氣體,以及各種其他程序氣體之可靠來源。實例包含矽烷、鍺烷、氨、磷化氫、砷化氫、二硼烷、銻化氫、硫化氫、硒化氫、碲化氫及對應及其他鹵化物(氯、溴、碘及氟)化合物。氣態氫化物砷化氫(AsH3)及磷化氫(PH3)通常用作離子植入中之砷(As)及磷(P)之來源。歸因於其等極端毒性及相對高之蒸氣壓,此等氣體之使用、傳送或儲
存導致明顯之安全顧慮。必須結合一高注意等級且許多安全防護措施儲存、傳送、處置且使用此等氣體。
各種不同類型之容器(container)用於容納、儲存、傳送且分配此等類型之試劑氣體。本文中被稱為「基於吸附劑之容器」之一些容納物使用包含於容器內之一多孔吸附劑材料容納一氣體,其中試劑氣體藉由被吸附於吸附劑材料上而儲存。經吸附之試劑氣體可容納於容器中與亦以冷凝及/或氣態形式存在之試劑氣體平衡,且容器之內部可處於、高於或低於大氣壓。
氣態原料必須以一濃縮或實質上純淨之形式輸送,且必須可以提供氣體之一可靠供應以在一製造系統中有效使用氣體之一經封裝形式獲得。一封裝氣態原料之一個特徵係可自一產品容器供應之可輸送材料之數量。一容器中之更高數量之可輸送材料(一更高「可輸送氣體容量」)改良一製程中使用容器及其容納之氣態原料之效率,此係因為容器在無替換的情況下可用於一更長時段(相對於具有更少數量的可輸送材料之一容器);操作效率增加,此係因為使用一新的容器替換一廢(例如,空)容器之頻率降低。基於吸附劑之容器可有效增加一容器之可輸送氣體容量。
當前,數個不同類型之基於吸附劑之氣體儲存及輸送容器係市售的。一些產品使用吸附劑(例如,碳)且在次大氣壓下容納氣體以用於在次大氣壓下儲存且輸送氣體。此等通常被稱為類型1之次大氣壓氣體儲存容器(或SAGS-1)。SAGS-1容器在次大氣壓下儲存且輸送氣體。
其他次大氣壓氣體輸送產品在超大氣壓下儲存氣體,且可包含一內部壓力調節器以容許在相對於內部儲存壓力降低之一壓力下(諸
如在一次大氣壓下)自容器輸送試劑氣體。此等容器可被分類為類型2之次大氣壓氣體儲存容器(或SAGS-2容器)。SAGS-2容器在次大氣壓下輸送氣體但可在超大氣壓下容納或儲存該氣體。見美國專利案第6,660,063號。以下描述係關於在一基於吸附劑之儲存容器中使用一有機金屬骨架材料(MOF)以在超大氣壓下儲存一試劑氣體。申請人已經判定將一MOF用作一吸附劑可在於一超大氣壓(尤其在中間至較高壓力範圍)下儲存一試劑氣體時容許有用或較佳之儲存能力。例如,將一MOF用作一吸附劑來在特定中間至較高位準之超大氣壓下容納一試劑氣體可產生在該等高壓下展現一更高儲存容量(即,「可輸送容量」)之一容器,此係與不包含吸附劑或包含一非MOF吸附劑(例如,碳或沸石吸附劑)之一相稱容器在相同高壓位準下且針對相同試劑氣體之儲存容量相比較;即使MOF吸附劑之儲存容量在一較低壓力下低於非MOF吸附劑之儲存容量,情況亦係如此。為此比較之目的,一「相稱」容器可為包含相同容器(例如,加壓鋼瓶)及相同體積量之吸附劑之一個容器,惟吸附劑係一基於沸石或碳之吸附劑且非一MOF吸附劑除外。針對此比較,一有用類型之基於碳之吸附劑之實例係用於SDS2® Safe Delivery Source®產品中之珠狀活性炭吸附劑及用於SDS3® Safe Delivery Source®產品中之成型碳吸附劑,其等皆可在商業上自Entegris,Inc.購得。
如描述之一容器容納MOF及試劑氣體,其中試劑氣體之一部分被吸附至MOF上且另一部分呈與被吸附部分平衡之一冷凝或氣態形式。為了在低於內部儲存壓力之一壓力(例如,在係次大氣壓之一壓力(低於760托))下自容器輸送氣體至一使用點,容器可配合一壓力調節器(例如,在容器內部)或複數個調節器(單級或雙級設計)使用或可容納一壓力
調節器或複數個調節器。
在一個態樣中,本發明係關於一種圍封用於保存試劑氣體之一內部體積之氣體儲存及分配容器。該容器包含:一埠;一閥,其安裝於該埠處;一壓力調節器,其經配置以維持自該容器排放之試劑氣體之一預定壓力;及金屬有機骨架材料吸附劑,其在該內部體積處。該容器可選擇性地致動以使氣體自該容器之該內部體積流動通過該壓力調節器及該閥以用於將該試劑氣體自該容器排放。
在另一態樣中,本發明係關於一種如描述般自一容器供應試劑氣體之方法。該方法包含在低於5200托且較佳地低於760托之一壓力下將(在超大氣壓下儲存之)試劑氣體自容器內部輸送至容器外部。
300:氣體儲存及分配系統/容器
302:容器
304:圓柱形側壁
306:底板部件
308:頸部
310:圓柱形凸環
311:MOF吸附劑
312:螺紋塞
314:閥頭部總成
315:頭部空間
316:充填通道
318:充填埠
320:中心流體流通道
322:閥元件/調節器
324:出口
326:手輪
328:內部體積
330:連接器流管
332:壓力調節器
334:過濾器單元
336:管狀接頭
圖1展示根據本發明之實施例之一例示性容器。
圖2至圖6展示容納MOF吸附劑之本發明之容器之吸附容量資料及容納碳吸附劑之比較容器。
圖7展示根據本發明之實施例之碳及一MOF吸附劑之比較吸附等溫線。
本申請案主張2018年9月13日申請之美國臨時申請案第62/730,754號之權利,該案出於所有目的以引用方式全部併入本文。
本描述係關於新穎且創新性儲存容器及使用儲存容器來傳送、儲存、處置且輸送試劑氣體之方法。容器包含至少部分包括一金屬有機骨架材料(MOF)之吸附材料。試劑氣體存在於容器內部,其中試劑氣體
之一部分被吸附至MOF上且另一部分呈氣態形式或冷凝及氣態形式且與被吸附部分平衡。容器之內部之壓力係超大氣壓。較佳容器之實例可展現相較於不使用吸附劑或使用一非MOF吸附劑(諸如一碳或沸石吸附劑)之容器及系統更高之一儲存容量,尤其係在配合相稱加壓試劑氣體儲存及輸送容器使用之一系列壓力內之中等至高內部壓力下。
在容器內部之超大氣壓下之試劑氣體可藉由在試劑氣體自容器流動時使試劑氣體通過一壓力調節器而在一降低之壓力(例如,次大氣壓)下自容器輸送。因此,容器視情況且較佳地包含一壓力調節器(或複數個壓力調節器),試劑氣體在自容器內部流動至一使用點處之一外部位置時必須通過該壓力調節器。壓力調節器可定位於容器內部以容許試劑氣體在相對於容器內部容納之試劑氣體之超大氣壓降低之一壓力(在輸送時)自加壓容器內部分配至一外部位置。替代地,容器可與定位在容器外部之一壓力調節器配接。
容器係包含金屬有機骨架材料吸附介質之一基於吸附劑之儲存容器。已知金屬有機骨架材料吸附介質,且其等不同於其他類型之吸附介質,諸如基於碳之吸附介質、聚合物吸附介質、沸石、矽石等。容器可容納MOF作為存在於容器內部之唯一類型之吸附介質,或(若須要)可容納與另一類型之吸附介質(諸如基於碳之吸附介質、聚合物吸附介質、沸石、矽石等)組合之MOF。在特定當前較佳實施例中,一容器中容納之吸附介質可實質上(例如,至少百分之50、80、90、95或97)或完全係如本文描述之MOF吸附介質,且不需要其他類型之吸附介質且可自容器內部排除其等。換言之,一容器之一內部容納之吸附劑之總量可包括MOF類型吸附介質、本質上由MOF類型吸附介質構成或由MOF類型吸附介質構
成,尤其包含本文描述之一般及特定類型之MOF吸附劑,諸如本文描述之沸石咪唑骨架材料(ZIF)吸附劑之一般及特定實例。
根據本描述,本質上由一指定材料或材料組合構成之一成分係含有指定材料或若干材料且不超過不顯著數量之任何其他材料(例如,不超過任何其他材料之2、1、0.5、0.1或0.05重量%)之一成分。例如,容納本質上由MOF吸附介質構成之吸附劑(例如,ZIF吸附劑)之一容器內部之一描述係指具有容納MOF吸附介質(例如ZIF吸附劑)且基於在容器內部之總重量吸附介質不超過任何其他類型之吸附介質之2、1、0.5、0.1或0.05重量%之一內部之一容器。
吸附劑具有對一或多個試劑氣體之一吸附親和性。吸附劑有助於選擇性(例如,可逆地)吸附且脫附試劑氣體於吸附劑上以容許試劑氣體:首先被輸送至容器中,使得導致試劑氣體吸附於吸附劑上;接著保持與亦在容器內部之一數量之冷凝或脫附、氣態試劑氣體平衡以將被吸附及氣態試劑氣體部分儲存於閉合之容器內部內(例如,在壓力下);且最後容許試劑氣體自吸附劑脫附且透過容器中之一開口作為氣態試劑氣體自容器移除(例如,藉由使用一壓力調節器以在相對於容器內部壓力降低之一壓力(例如,在約為大氣壓或為次大氣壓之一壓力)下輸送試劑氣體)。
MOF吸附劑可為任何已知或未來開發之MOF吸附劑,且可基於若干因素選擇,該等因素除其他因素外尤其包含:待在容器中容納之試劑氣體之類型(化學成分)及數量、容器之內部體積、試劑氣體將儲存於容器中之壓力。金屬有機骨架材料(MOF)係由配位至晶體結構中之金屬離子之有機交聯劑構成之奈米多孔材料。被稱為沸石咪唑骨架材料(ZIF)之MOF之一子類由藉由咪唑交聯劑之氮原子橋接之金屬(主要為四面體
Zn+2)構成。各種MOF吸附劑材料在試劑氣體、試劑氣體儲存及氣體分離技術中已知。MOF材料之特定實例在美國專利案9,138,720中,且亦在美國專利申請公開案2016/0130199中描述,此等文件之各者之全部內容以引用之方式併入本文中。
較佳MOF可相對於一吸附劑可在一儲存容器內在壓力下吸附之試劑氣體之數量展現尤其有用或有利之效能。特定當前較佳之MOF吸附劑材料可相較於相同但不容納吸附劑或容納一非MOF吸附劑(例如,一基於沸石或碳之吸附劑)之容器在一高「可輸送容量」方面展現預期或尤其有用之效能。術語「可輸送容量」係指可儲存且隨後可以有用、純的、未反應狀態自在滿與空(空通常由藉由氣體被輸送至之最終使用程序可達成之最低壓力界定,例如對離子植入工具通常為5托)之狀態之間的固定大小之一吸附劑容納容器輸送之氣體之一重量或體積量。
比較實例可形成於容納MOF吸附劑之一容器與在壓力下容納一相同數量之一有用之基於沸石或碳之吸附劑(例如,用於儲存砷化氫或磷化氫作為一試劑氣體)之相同容器之間。各容器具有相同之總內體積及相同之吸附劑體積量。容納基於碳之吸附劑之容器將展現一可輸送氣體容量曲線(在對容器之內部壓力作圖時),其在低於650托之壓力急劇增大,隨著壓力接近1000托緩速,且接著在一更高之內部壓力範圍(包含高於5,000或10,000托之壓力範圍,其包含商業上有用之內部壓力範圍)繼續更漸進地增大。作為比較,容納本描述之一有用或較佳之MOF吸附劑材料之一容器可在更高壓力範圍(例如,高於7,000托(絕對值),或高於10,000托(絕對值),或高於15,000托(絕對值),或高於20,000托(絕對值))相較於基於碳之吸附劑展現一相對更高之可輸送容量。即使在低於此等壓
力之一或多者的情況下,容納MOF之容器之可輸送容量低於基於碳之吸附劑之可輸送容量,此仍可發生。見下文之實例及圖2及圖3。
藉由此比較,尤其在至少高於7,000或高於10,000,或高於15,000托(絕對值)之一內部容器壓力下,容納MOF吸附劑材料之本描述之特定較佳容器被視為展現大於僅包含基於碳之吸附劑而非金屬有機骨架材料吸附劑之一相稱容器中之試劑氣體(例如,氫化物,諸如砷化氫或磷化氫)之一儲存容量(例如,「可輸送容量」)之試劑氣體之一儲存容量。將發生相對於碳吸附劑之可輸送容量之一改良之特定壓力可取決於容器、MOF吸附劑及試劑氣體之特徵,諸如試劑氣體之類型(化學成分)及吸附劑之類型(化學成分)。
金屬有機骨架材料包含由配位至晶體結構中之金屬離子或金屬氧化物叢集之有機交聯劑製成之大體高度多孔材料。作為本描述之一超大氣壓容器之一吸附劑有用或較佳之一類MOF係沸石咪唑骨架材料或(ZIF)之類。沸石咪唑骨架材料係包含藉由咪唑交聯劑連接之一四面體配位過渡金屬(諸如鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鎂(Mg)、錳(Mn)或鋅(Zn))的MOF類型,其在一特定ZIF成分內或相對於一ZIF結構之一單一過渡金屬原子可係相同或不同的。ZIF結構包含透過咪唑單元鏈接以產生基於四面體拓撲結構之延長骨架材料之四配位過渡金屬。ZIF據稱形成等效於沸石及其他無機微孔氧化物材料中發現之結構拓撲之結構拓撲。
特定具體實例形成一三維籠狀結構,其包含藉由形成一高度結構化殼體或「籠」之一表面界定之一內部體積,其中殼體或籠包含在籠之外表面處之開口或「孔」,其等容許對內部體積之接取。此等沸石咪唑骨架材料可藉由以下項特性化:除其他物理及化學性質外尤其包含過渡
金屬之類型(例如,鐵、鈷、鎳、銅、鎂、錳或鋅)、交聯劑之化學組成(例如,咪唑單元之化學取代基)、ZIF之孔大小、ZIF之表面積、ZIF分子「籠」之內部體積之特徵。已知許多(至少105個)獨有ZIF物種或結構,其等各具有基於組成骨架材料之過渡金屬之類型及交聯劑(或若干交聯劑)之類型之一不同化學結構。各拓撲結構使用一獨有ZIF名稱(例如,ZIF-1至ZIF-105)識別。針對ZIF之一描述,包含大量已知ZIF物種之特定化學成分及相關性質,見Phan等人之「Synthesis,Structure,and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks」,Accounts of Chemical Research,2010年,43(1),第58頁至第67頁(2009年4月6日接收)。
一MOF(例如,ZIF)之分子結構可影響MOF吸附一氣體之能力。具體言之,一籠類型之MOF或ZIF分子之孔大小、孔體積或兩者可影響晶體骨架材料吸附且容納一氣體分子之能力。一MOF之「孔大小」通常參考定位於結構之一表面處之孔之大小(即,骨架材料之表面孔或「接取孔」之大小)使用。本文使用之「孔體積」係指一MOF吸附劑材料之結構內之內部體積或敞開空間。
一ZIF之孔大小可影響一ZIF作為一吸附劑之效能。實例ZIF可具有在自約0.2至13埃及可能更大之一範圍中之孔大小。孔大小係指將穿過ZIF晶體之表面之最大球體之直徑。為用作本描述之一容器中之一吸附劑,一ZIF可具有有效提供所需儲存效能之任何孔大小,其中一特定試劑氣體之一較佳ZIF能夠在超大氣壓下提供相對於不容納吸附劑或容納一非ZIF或一非MOF吸附劑之容器之一改良儲存容量。可(例如)基於藉由ZIF吸附之試劑氣體之類型、將使用ZIF之壓力及其他因素選擇孔大小。
針對在如描述之一容器中使用,用於在超大氣壓下吸附一試劑氣體(例如,氫化物),一有用或較佳ZIF可為具有在自2.5至13埃或更特定言之自3埃至9埃或自3.2至12埃之一範圍中之一孔大小之ZIF。此等可容納更大且可能係中孔之大體積之內部孔,例如,大於20埃且低於500埃。
已經發現在如描述之一容器中有用之用於在超大氣壓下吸附氫化物試劑氣體(諸如砷化氫或磷化氫)之一ZIF之一個實例被稱為「ZIF-8」,其為二甲基咪唑鋅(又稱為「鋅(甲基咪唑)2」)。此沸石咪唑骨架材料據報告具有3.4埃之一孔大小。見除其他MOF外尤其描述ZIF-8之美國專利案9,138,720。
MOF可呈任何形式,諸如顆粒(粒子)、圓盤、丸粒、單片或以其他方式。針對各種實例實施例,一較佳MOF可呈粒子形式,其等可輕易放置(例如,傾倒)至一容器中,諸如包含一相對小之開口之一鋼瓶。又,其他形式之MOF亦可對於不同實施例係有用或甚至較佳的,包含單片或塊狀吸附劑、棒或空間充填多面體吸附劑。在一例示性容器內,在容器將用於輸送試劑氣體之一溫度下,所容納之試劑氣體可呈包含呈一冷凝或氣態形式(即,作為氣態試劑氣體)之與經吸附試劑氣體平衡之一部分之一形式。容器及試劑氣體之溫度可在一溫度範圍內,容器可在使用期間曝露於溫度範圍(例如,在自約0至約攝氏50度之一範圍中之一溫度)。此範圍包含操作溫度,其等係容器在一「環境溫度」或室溫環境中之受控儲存及使用期間所保持之典型溫度,一般理解為包含自約攝氏20度至約攝氏26度之一範圍中之溫度。針對特定應用,容器可替代地經加熱至高於室溫(例如,在約30至約150℃之一範圍中之一溫度)但低於試劑氣體及吸附劑之反應溫度之一溫度以促進移除經吸附試劑氣體。
在容器將用於輸送試劑氣體之一溫度下,氣態試劑氣體可在一超大氣壓下,即,在至少約1個大氣壓之一壓力(760托)(絕對值)下。容器之一較佳內部壓力可為在容器容納相較於一非MOF(例如,碳類型)吸附劑更高之數量之試劑氣體(例如,如藉由輸送容量量測)之一壓力。此一較佳壓力可為(例如)高於7,000、高於10,000或高於15,000托(絕對值),具有可輸送容量之一改良將取決於容器及試劑氣體之特徵(諸如試劑氣體之類型(化學成分)及吸附劑之類型(化學成分))而發生之特定壓力。容器之內部壓力在使用期間可在此範圍中,且尤其在容器容納最大量之試劑氣體時,即,在使用試劑氣體「充滿」容器時。在使用期間,在試劑氣體自容器逐漸移除時,內部容器壓力將逐漸降低且可甚至達到低於大氣壓之一壓力,例如在試劑氣體在次大氣壓下(在真空下)被移除時且在許多或多數試劑氣體已經自容器輸送之後。
已知用於在超大氣壓下儲存一試劑氣體之容器結構之各種實例且其等可藉由根據本描述之調適而係有用的。實例容器包含圓柱形容器(「鋼瓶」),其等包含界定一容器內部及在鋼瓶之一端處之一出口(或「埠」)之剛性圓柱形側壁。容器側壁可由金屬或另一剛性(例如,強化)材料製成,且經設計以耐受安全超過建議用於在容器內部容納試劑氣體之一預期最大壓力之一壓力位準。實例容器能夠在超大氣壓下儲存試劑氣體(例如,大於大氣壓之一壓力(約760托,絕對值)),例如,在高達約10,000托(絕對值)(例如,高達約15,000托(絕對值)或高達20,000或25,000托(絕對值))之一壓力(絕對值)下。
可敞開且閉合以啟用或停止容器內部與外部之間的流之一閥(「輸送閥」)通常附接至出口。
本描述之一容器亦包含一壓力調節器或複數個壓力調節器或配合其或其等使用,該壓力調節器或該複數個壓力調節器提供自容器內部至在容器之一外部處之一使用點之試劑氣體之一流動路徑之一部分。實例容器包含出口,一輸送閥附接至該出口(例如,作為一「閥頭部」之部分)以選擇性地容許試劑氣體被添加至容器內部或自容器內部移除。壓力調節器亦在容器之內部與一使用點之間的流動路徑中,且可在容器的內部存在於輸送閥與試劑氣體及吸附劑之間,即在輸送閥「上游」。輸送閥及壓力調節器之一有用配置容許閥敞開以使試劑氣體自內部流動通過壓力調節器,通過閥且至使用試劑氣體之容器之一外部處之一位置(即,試劑氣體之一「使用點」)。容器在閥頭部處亦可包含一雙埠閥總成以容許透過不同於輸送氣體所穿過之埠(閥)之一埠(閥)充填容器。
在容器內部在一高壓下存在之試劑氣體通過(若干)壓力調節器,且在一降低之壓力下離開(若干)壓力調節器。在容器、輸送閥及(若干)壓力調節器之一有用或較佳配置中,敞開輸送閥以容許試劑氣體自超大氣壓壓力內部流動通過(若干)壓力調節器且通過輸送埠,以在一明顯降低之壓力(諸如在次大氣壓)下流出容器。試劑氣體流出容器之次大氣壓可(例如)低於760托(絕對值),例如,低於675、650、600、500、400、200、100或50托(絕對值)。
將瞭解,氣體儲存及分配系統可具有相對於容器內部及外部之壓力調節器及輸送閥之任何有用配置,其中壓力調節器之定位存在於(例如)容器之內部體積之頸部或其他部分中及(視情況及較佳地)輸送閥之上游。在較佳實例中,壓力調節器可經定位為至少部分在容器之內部體積內以在容器之儲存、傳送及使用期間保護壓力調節器以防振動、衝撞及震
動。其亦有利地安全傳送可能有害之加壓試劑氣體以使氣體壓力在內部調節至一次大氣壓,使得輸送閥之意外敞開或損壞不會釋放高壓氣體。
一壓力調節器可為任何壓力調節裝置,其將有助於在試劑氣體存在於容器內部時將試劑氣體之一壓力降低至一使用點所預期之一實質上更低壓力;實例壓力調節器可以良好精度有效地將壓力自超過10,000、20,000或25,000托(絕對值)之一壓力降低至低於760托(絕對值)(例如,低於675、650、600、500、400、200、100或50托(絕對值))之一降低壓力。替代地,一第一調節器可用於以良好精度將10,000、20,000或25,000托之初始中等至高壓降低至6,000、5,000或4,000托之一中等壓力且一第二調節器以良好精度將中等壓力降低至低於760托(絕對值)之一降低壓力(例如,低於675、650、600、500、400、200、100或50托(絕對值))。
可有助於調節來自如描述之一容器之流之壓力調節器之實例包含被稱為「提動閥」之壓力調節器、被稱為機械毛細管型壓力調節器之壓力調節器及此等之組合。
特定實例包含一個或一組或一系列「提動閥」元件,各提動閥有效地降低通過調節器之流之一壓力。各提動閥偏壓抵靠一座結構,諸如藉由使用一隔膜板(diaphragm)及一或多個彈簧及彈簧調節,使得容許在不超過一預期最大壓力位準下之座結構與提動閥之間的氣態流體氣體之流,該壓力可被稱為調節器或提動閥及隔膜板之一「設定點」壓力。有用之商業上可得之壓力調節器之實例包含以Swagelok® HF商標之壓力調節器(商業上自Swagelok Company(www.swagelok.com)可得)出售之壓力調節器。使用高精度調節器容許試劑氣體在一預期相對低之設定點壓力位
準下自本描述之一壓力調節容器可靠地分配。
例如在美國專利案第6,620,225號、第6,660,063號及第6,857,447號中描述流體供應容器及附屬流量控制裝置(諸如可根據本描述以一般意義使用之類型之壓力調節器及流量控制閥),此等文件之各者之全部內容以引用之方式併入本文。
所描述之容器及方法可有助於儲存、處置且輸送可如描述般儲存之在一吸附部分與一冷凝或氣態部分之間達到平衡之任何試劑氣體。如描述之一容器可尤其期望用於儲存有害、有毒或以其他方式危險之一試劑氣體。所描述之容器及方法係有用的試劑氣體之繪示性實例包含下列非限制性氣體:矽烷、甲基矽烷、三甲基矽烷、氫、甲烷、氮、一氧化碳、二硼烷、BP3、砷化氫、磷化氫、光氣、氯、BCl3、BF3、二硼烷(B2H6及其氘類比物,B2D6)、六氟化鎢、氟化氫、氯化氫、碘化氫、溴化氫、鍺烷、氨、銻化氫、硫化氫、氰化氫、硒化氫、碲化氫,氘化氫化物、三甲基銻化氫、鹵化物(氯、溴、碘及氟)、氣態化合物(如NF3、ClF3、GeF4、SiF4、AsF5、PF3)、有機化合物、有機金屬化合物、碳氫化合物、有機金屬V族化合物(諸如(CH3)3Sb)及其他鹵化物,包含硼鹵化物(例如,三碘化硼、三溴化硼、三氯化硼),鍺鹵化物(例如,四溴化鍺、四氯化鍺)、矽鹵化物(例如,四溴化矽、四氯化矽)、磷鹵化物(例如,三氯化磷、三溴化磷、三碘化磷)、砷鹵化物(例如,五氯化砷)及氮鹵化物(例如,三氯化氮、三溴化氮、三碘化氮)。針對此等化合物之各者,可預期所有同位素。
在圖1展示本描述之一容器之一當前較佳實施例之一實例。
圖1係實例氣體儲存及分配系統300之一示意性橫截面視圖。系統300包含大體圓柱形形式之容器302,其中一圓柱形側壁304在其下端處藉由底板部件306閉合。頸部308在容器302之上端處,該頸部308包含界定且外切容器302之一頂部開口(埠)之一圓柱形凸環310。藉此,容器側壁304、底板部件306及頸部308如展示般圍封一內部體積328,其中如本文描述般以粉末、顆粒、微粒、丸粒、擠出物、塊、棒或單片形式容納MOF吸附劑311。MOF吸附劑311對亦包含在內部328之一試劑氣體具有一適當高吸附親和性及容量,使得試劑氣體藉由吸附劑吸附地保存以及在容器302之間隙及頭部空間315中以冷凝或氣態形式存在。
在容器302之頸部308處,閥頭部總成314之螺紋塞312與凸環310之內部螺紋開口螺紋接合。閥頭部總成314包含經結合與閥頭部總成中之一中心工作體積腔流體流連通之一中心流體流通道320。中心工作體積腔繼而結合至出口324,該出口324可在外部具有螺紋或以其他方式建構用於將一連接器及相關聯管路、導管等對其附接。
一閥元件322安置於中心工作體積腔中,該閥元件322經結合至所展示之實施例中之一手輪326,但可替代地結合至一自動閥致動器或其他控制器或致動構件。
閥頭部總成314亦在閥體中具備與容器302之充填埠318及內部體積328連通之一充填通道316。容器302可藉此使用加壓氣體充填,此後將充填埠閉合且加蓋,如展示。
閥頭部總成314中之中心流體流通道320在其下端處結合至連接器流管330,調節器322繼而結合至該連接器流管330。氣體壓力調節藉由一個(如描繪)或在一些實施例中兩個(在雙級調節的情況中)調節器332
完成。(若干)調節器322經設定以維持自容器302排放之試劑氣體之一選定壓力。在(若干)調節器332之下端處結合管狀接頭336,該管狀接頭336繼而(例如)藉由對接焊結合至可選過濾器單元334。過濾器單元334用來防止小顆粒自吸附劑床至(若干)壓力調節器332、閥頭部總成314或下游程序之可能流體傳送。
在使用中,試劑氣體在壓力下容納於容器302之內部體積328,藉由吸附劑吸附保存,且在容器之空隙及頭部空間315中呈氣態形式。(若干)壓力調節器332經設定至一選定設定點以在閥頭部總成314中之閥敞開時提供經分配之試劑氣體之流動,其中試劑氣體流動通過可選過濾器單元334、接頭336、(若干)調節器332、連接器流管330、閥頭部總成314中之中心流體流通道320、中心工作體積腔及出口324。閥頭部總成314可經結合至如在本發明之一給定最終使用應用中可預期或需要之其他管路、導管、流量控制器、監測構件等,且試劑氣體可在次大氣壓下流動通過其等。最終使用可藉由一系統或工具(諸如連接至出口324之一離子植入工具)執行。試劑氣體在一次大氣壓下可自出口324流動至工具且藉由工具在一次大氣壓下使用。
圖1之氣體儲存及分配容器302可藉由實例容納氫化物(例如,砷化氫或磷化氫)試劑氣體,其在本文描述之一壓力(例如,高達或超過7,000、10,000、15,000、20,000或25,000托(絕對值))下藉由MOF吸附劑(諸如一ZIF吸附劑(例如,ZIF-8))吸附保持於容器中。
圖1之容器300可經配置用於試劑氣體之超大氣壓儲存,用於在大約大氣壓下或在次大氣壓下分配。圖1之容器300展示為包含一單級內部調節器,其經配置使得試劑氣體在進入閥頭部314之前流動通過調
節器,此後試劑氣體流動通過其中之閥且流動通過出口324。圖1配置可結合經調適以保存容器300之一氣櫃中之一調節器使用,以藉此在容器300之閥頭部314以及其外部提供雙級調節器效能及個別壓力控制。
在本發明之特定實例中,容納氫化物(例如,砷化氫、磷化氫、鍺烷、矽烷、二硼烷、甲烷或此等之任一者之一組合)之一儲存容器(例如,300)包含包括沸石咪唑骨架材料吸附劑(例如,ZIF-8)、由其構成,或本質上由其構成之吸附劑311。容納包括沸石咪唑骨架材料(例如,ZIF-8)之吸附劑之一容器可容納至少百分之50、70、80或90之沸石咪唑(例如,ZIF-8)之吸附劑。由沸石咪唑(例如,ZIF-8)構成之一容器僅容納沸石咪唑(例如,ZIF-8)。本質上由沸石咪唑(例如,ZIF-8)構成之一容器容納不超過2、1、0.5、0.1或0.05重量%之另一類型吸附劑。
容納由ZIF-8構成之吸附劑及作為一試劑氣體之砷化氫或磷化氫之容器300可展現如藉由下列實例及圖2及圖3展示之試劑氣體容量。
測試鋼瓶經製備以包含ZIF-8(二甲基咪唑鋅或鋅(甲基咪唑)2)以用於與使用商用微孔碳丸粒充填之相稱鋼瓶比較。測試丸粒為一般具有0.5mm或更大之一直徑及1mm或更大之一長度之一圓柱形幾何結構。碳丸粒係大致2mm直徑×~2mm長度且相當堅固且穩固。相反,ZIF-8丸粒易碎得多。如製備,ZIF-8丸粒具有自~1mm至~10mm之長度及一更長之縱橫比(通常長度/直徑>5)。然而,ZIF-8丸粒之易碎性質意味著測試鋼瓶內之吸附劑裝載亦包含係更小粒子之一些破裂或屑粒碎片。
在一超大氣壓範圍中,一測試容器(容納ZIF-8丸粒)使用磷化氫充填,且另一測試容器(容納ZIF-8)使用砷化氫充填。亦在一超大氣壓範圍中,使用砷化氫及磷化氫充填單獨比較容器(具有碳吸附劑)。參見圖2及圖3。
如在圖2及圖3中展示,在一內部壓力650托及更低下之比較容器中容納之可輸送試劑氣體之數量展示碳吸附劑在次大氣壓範圍(realm)內之體積可輸送容量方面係優越得多的。資料亦展示,ZIF-8吸附劑在更高充填壓力下變得稍微更有效率。
在圖3展示表示高達約500psi(絕對值)之外推資料。一旦鋼瓶充填壓力超過100psi,ZIF-8材料便表現為比碳材料保存更多可輸送砷化氫。在約300psi下,對於可輸送磷化氫容量,ZIF-8趕上碳。自此資料,在使用吸附劑充填且使用高於100psi之正壓力之砷化氫或高於300psi之磷化氫填料之一機械調節鋼瓶中,ZIF-8 MOF材料展示可能大於碳吸附劑之可輸送容量。
容納由ZIF-8、MOF-5、Cu-MOF-74、Ni-MOF-74及Mg-MOF-74構成之吸附劑及作為一試劑氣體之磷化氫(PH3)之容器300可展現如藉由下列實例及圖4及圖5展示之試劑氣體容量。
測試鋼瓶經製備以包含ZIF-8(二甲基咪唑鋅)、MOF-5(側氧基對苯二甲酸鋅)、Cu-MOF-74(銅2,5-二羥基苯二羧酸)、Ni-MOF-74(鎳二羥基苯二羧酸)、Mg-MOF-74(鎂dobdc)、ZIF-67(二甲基咪唑鈷)及PCN-250(Fe)(偶氮苯四羧酸鐵)之各者以用於與使用商用微孔碳丸粒充填之相稱鋼瓶比較。測試MOF為大體具有0.01mm至0.05mm之一粒子大小
之一鬆散粉末或顆粒形式。碳丸粒係大致2mm直徑×~2mm長度。
測試容器(容納各種吸附劑介質)在自0.1托至高達4000托之一壓力範圍內使用磷化氫充填。參見圖4及圖5。
如在圖4及圖5中展示,在一內部壓力650托及更低下之比較容器中容納之可輸送試劑氣體之數量展示碳吸附劑在次大氣壓範圍內在體積可輸送容量方面比所有MOF優越得多。資料亦展示ZIF-8、MOF-5及Ni-MOF-74吸附劑在高於一個大氣壓或760托之充填壓力下變得略微更有效率。
測試資料展示MOF-5吸附劑在4000托之一充填壓力針對可輸送磷化氫容量趕上碳而ZIF-8及Ni-MOF-74縮小差距。此對Cu-MOF-74或Mg-MOF-74吸附劑在一極不明顯程度上係如此。
容納由Cu-BTC、Cu-MOF-74及Ni-MOF-74構成之吸附劑及作為一試劑氣體之三氟化硼(BF3)之容器300可展現如藉由下列實例及圖6展示之試劑氣體容量。
測試鋼瓶經製備以包含Cu-BTC(苯-1,3,5-三羧酸銅)、Cu-MOF-74(銅2,5-二羥基苯二羧酸)及Ni-MOF-74(鎳二羥基苯二羧酸)之各者以用於與使用商用微孔碳丸粒充填之相稱鋼瓶比較。測試MOF係大體具有0.01mm至0.05mm之一粒子大小之一鬆散粉末或顆粒形式。碳丸粒係大致2mm直徑×~2mm長度。
測試容器(容納各種吸附劑介質)在自0.1托至高達4000托之一壓力範圍內使用三氟化硼充填。參見圖6。
如在圖6中展示,在一內部壓力650托及更低下之比較容器
中容納之可輸送試劑氣體之數量展示碳吸附劑在次大氣壓範圍內在體積可輸送容量方面比所有MOF優越得多。資料亦展示Cu-BTC及Ni-MOF-74吸附劑在高於一個大氣壓或760托之充填壓力下變得略微更有效率。然而,此並不表現為對Cu-MOF-74吸附劑係明顯的。
在使用試劑氣體磷化氫(PH3)裝載時吸附劑PCN-250(Fe)可在容器充填壓力增大高於一個大氣壓時供應增強之儲存及輸送容量,如藉由下列實例及圖7建議。
磷化氫吸附等溫線對一商用碳吸附劑材料及金屬有機骨架材料吸附劑PCN-250(Fe)並行量測。PCN-250(Fe)吸附劑以具有0.01至0.05mm之顆粒大小之粉末形式進行測試。
如在圖7中展示,在低於600托的情況下,PCN-250(Fe)之重量分析磷化氫容量小於之碳之重量分析磷化氫容量,但隨著壓力增大至一個大氣壓(760托),PCN-250(Fe)材料趕上碳。吸附等溫曲線之形狀顯示若壓力進一步增大,則相較於碳,PCN-250(Fe)將繼續改良。
本文揭示之實例經包含以表示MOF創新性氣體儲存及供應容器之一小子集。其等不旨在限制本發明之實施例。被視為具有適當幾何結構及預期益處之其他MOF包含但不限於ZIF-11、ZIF-20、ZIF-67、ZIF-71、ZIF-90、MIL-53(Sc)、MIL-100、MIL-101、MOP-1、MOF-177、MOF-180、MOF-200、MOF-205、MOF-210、MOF-399、MOF-505、MOF-908、PCN-6、PCN-14、PCN-222、PCN-250(Fe)、NJU-Bai-41、NU-100、NU-109、NU-110、NU-111、MAF-38、UTSA-20、UMCM-2等或此等材料之兩個或兩個以上者之組合。歸因於構成籠內之
較大直徑內部腔(~1至4nm)之許多多孔體積(>0.75cc/g)具有小表面接取微孔(~0.3至~1.3nm)及大空隙分率(>65%)之所有複雜晶格籠結構化MOF被視為可能根據本發明之各種實施例良好地執行。
態樣1.一種氣體儲存及分配容器,其圍封用於保存試劑氣體之一內部體積,該容器包括:一埠;一閥,其經安裝於該埠處;一或多個壓力調節器,其或其等經配置以維持自該容器排放之試劑氣體之一預定壓力;及一或多個金屬有機骨架材料吸附劑,其或其等在該內部體積內;該容器可選擇性地致動以使氣體自該容器之該內部體積流動通過該(等)壓力調節器及該閥以用於將該試劑氣體自該容器排放。
態樣2.如態樣1之容器,其中一或多個壓力調節器以單級或雙級構形定位於該內部體積處。
態樣3.如態樣1之容器,其中該一或多個壓力調節器之一或多者以單級或雙級構形定位於該容器之外部處。
態樣4.如態樣1至3中任一項之容器,其中該金屬有機骨架材料具有在自2.5至13埃之一範圍中之一孔大小。
態樣5.如態樣1至4中任一項之容器,其中該金屬有機骨架材料包括一沸石咪唑骨架材料,其包括藉由咪唑交聯劑連接之四面體配位過渡金屬原子。
態樣6.如態樣4之容器,其中該等過渡金屬原子為鋅。
態樣7.如態樣5之容器,其中該沸石咪唑骨架材料係二甲基咪唑鋅。
態樣8.如態樣1至4中任一項之容器,其中該金屬有機骨架
材料包括選自ZIF-8、ZIF-11、ZIF-20、ZIF-67、ZIF-71、ZIF-90、MIL-53(Sc)、MIL-100、MIL-101、MOP-1、Cu-MOF-74、Ni-MOF-74、Mg-MOF-74、MOF-5、MOF-177、MOF-180、MOF-200、MOF-205、MOF-210、MOF-399、MOF-505、MOF-908、PCN-6、PCN-14、PCN-222、PCN-250(Fe)、NJU-Bai-41、NU-100、NU-109、NU-110、NU-111、Cu-BTC、MAF-38、UTSA-20及UMCM-2之一或多個材料。
態樣9.如態樣1至4中任一項之容器,其中該金屬有機骨架材料包括選自ZIF-8(二甲基咪唑鋅)、Cu-MOF-74(銅2,5-二羥基苯二羧酸)、Ni-MOF-74(鎳二羥基苯二羧酸)、Mg-MOF-74(鎂二羥基苯二羧酸)、MOF-5(側氧基對苯二甲酸鋅)、PCN-250(Fe)(偶氮苯四羧酸鐵)及Cu-BTC(苯-1,3,5-三羧酸銅)之一或多個材料。
態樣10.如態樣1至4中任一項之容器,其中該金屬有機骨架材料與包括一第二金屬有機骨架材料、碳、沸石、矽膠或多孔有機聚合物之另一吸附劑組合。
態樣11.如態樣1至10中任一項之容器,其中該吸附劑呈顆粒、微粒、珠、丸粒、圓盤、塊體、單片或空間充填多面體之形式。
態樣12.如態樣1至11中任一項之容器,其在超大氣壓下在該內部體積內具有試劑氣體,該試劑氣體包括吸附於該吸附劑上之一部分及作為與該經吸附試劑氣體平衡之冷凝或氣態試劑氣體存在之一部分。
態樣13.如態樣12之容器,其中該容器在超大氣壓下展現該試劑氣體之一儲存容量,其大於不具有吸附劑或包括碳或沸石吸附劑而非該金屬有機骨架材料吸附劑之一相稱容器中之該試劑氣體之該儲存容量。
態樣14.如態樣13之容器,其中該試劑氣體係矽烷、甲基矽烷、三甲基矽烷、氫、甲烷、氮、一氧化碳、二硼烷、BP3、砷化氫、磷化氫、光氣、氯、BCl3、BF3、二硼烷(例如,B2H6或B2D6)、六氟化鎢、氟化氫、氯化氫、碘化氫、溴化氫、鍺烷、氨、銻化氫、硫化氫、氰化氫、硒化氫、碲化氫,氘化氫化物、三甲基銻化氫、鹵化物(氯、溴、碘及氟)、NF3、ClF3、GeF4、SiF4、AsF5、PF3、有機金屬化合物、碳氫化合物、有機金屬V族化合物。
態樣15.如態樣13之容器,其中該試劑氣體係鹵化硼、鹵化鍺、鹵化矽、鹵化磷、鹵化砷及鹵化氮。
態樣16.如態樣13之容器,其中該試劑氣體係三氟化硼、四氟化鍺或四氟化矽。
態樣17.如態樣13之容器,其中該試劑氣體係氫化物。
態樣18.如態樣13之容器,其中該試劑氣體係砷化氫或磷化氫。
態樣19.如態樣13至18中任一項之容器,其中該金屬有機骨架材料包括一沸石咪唑骨架材料。
態樣20.如態樣19之容器,其中該金屬有機骨架材料具有在自3.2至12埃之一範圍中之一孔大小。
態樣21.如態樣19之容器,其中該沸石咪唑骨架材料係二甲基咪唑鋅。
態樣22.如態樣19、20或21之容器,其中:該試劑氣體係氫化物,及該容器具有至少7,000托之一內部壓力。
態樣23.如態樣22之容器,其中該氫化物係砷化氫或磷化氫。
態樣24.如態樣23之容器,其中該沸石咪唑骨架材料係二甲基咪唑鋅,該試劑氣體係砷化氫,及該容器具有至少7,000托之一內部壓力。
態樣25.如態樣23之容器,其中該沸石咪唑骨架材料係二甲基咪唑鋅,該試劑氣體係磷化氫,及該容器具有至少15,000托之一內部壓力。
態樣26.一種自如在態樣1至25中任一項陳述之一容器供應試劑氣體之方法,該方法包括將該試劑氣體自容器內部輸送至一容器外部,該試劑氣體在處於或低於5200托之一壓力下自該容器輸送。
態樣27.如態樣26之方法,其中該試劑氣體在低於760托之一壓力下輸送。
態樣28.如態樣26之方法,其中該試劑氣體在低於100托之一壓力下輸送。
態樣29.如態樣25、26或27之方法,其中該試劑氣體係氫化物。
態樣30.如態樣25、26或27之方法,其中該試劑氣體係砷化氫或磷化氫。
態樣31.如態樣26至30中任一項之方法,其包括輸送該試劑氣體至一半導體處理裝置。
態樣32.如態樣26至30中任一項之方法,其包括輸送該試劑氣體至一離子植入裝置。
300:氣體儲存及分配系統/容器
302:容器
304:圓柱形側壁
306:底板部件
308:頸部
310:圓柱形凸環
311:MOF吸附劑
312:螺紋塞
314:閥頭部總成
315:頭部空間
316:充填通道
318:充填埠
320:中心流體流通道
322:閥元件/調節器
324:出口
326:手輪
328:內部體積
330:連接器流管
332:壓力調節器
334:過濾器單元
336:管狀接頭
Claims (15)
- 一種氣體儲存及分配容器,其圍封用於保存試劑氣體之一內部體積,該容器包括:一埠;一閥頭部總成,其經安裝於該埠處;一或多個壓力調節器,其或其等經配置以維持自該容器排放之試劑氣體之一預定壓力;及一或多個金屬有機骨架材料吸附劑,其或其等在該內部體積內;該容器可選擇性地致動以使氣體自該容器之該內部體積流動通過該(等)壓力調節器及該閥頭部總成以用於將該試劑氣體自該容器排放。
- 如請求項1之容器,其中一或多個壓力調節器以單級或雙級構形定位於該內部體積處。
- 如請求項1之容器,其中該一或多個壓力調節器之一或多者以單級或雙級構形定位於該容器之外部處。
- 如請求項1之容器,其中該金屬有機骨架材料具有在自2.5至13埃之一範圍中之一孔大小。
- 如請求項1之容器,其中該金屬有機骨架材料包括一沸石咪唑骨架材 料,其包括藉由咪唑交聯劑連接之四面體配位過渡金屬原子。
- 如請求項5之容器,其中該等過渡金屬原子為鋅。
- 如請求項5之容器,其中該沸石咪唑骨架材料係二甲基咪唑鋅。
- 如請求項1之容器,其中該金屬有機骨架材料包括選自ZIF-8(二甲基咪唑鋅)、Cu-MOF-74(銅2,5-二羥基苯二羧酸)、Ni-MOF-74(鎳二羥基苯二羧酸)、Mg-MOF-74(鎂二羥基苯二羧酸)、MOF-5(側氧基對苯二甲酸鋅)、PCN-250(Fe)(偶氮苯四羧酸鐵)及Cu-BTC(苯-1,3,5-三羧酸銅)之一或多個材料。
- 如請求項1之容器,其中該金屬有機骨架材料與包括一第二金屬有機骨架材料、碳、沸石、矽膠或多孔有機聚合物之另一吸附劑組合。
- 如請求項1之容器,其中該吸附劑呈顆粒、微粒、珠、丸粒、圓盤、塊體、單片或空間充填多面體之形式。
- 如請求項1之容器,其在超大氣壓下在該內部體積內具有試劑氣體,該試劑氣體包括吸附於該吸附劑上之一部分及作為與該經吸附試劑氣體平衡之冷凝或氣態試劑氣體存在之一部分。
- 如請求項11之容器,其中該容器在超大氣壓下展現該試劑氣體之一 儲存容量,其大於不具有吸附劑或包括碳或沸石吸附劑而非該金屬有機骨架材料吸附劑之一相稱容器中之該試劑氣體之該儲存容量。
- 一種自如在請求項1中陳述之一容器供應試劑氣體之方法,該方法包括將該試劑氣體自容器內部輸送至一容器外部,該試劑氣體在處於或低於5200托之一壓力下自該容器輸送。
- 如請求項13之方法,其中該試劑氣體在低於760托之一壓力下輸送。
- 如請求項13之方法,其進一步包括輸送該試劑氣體至一離子植入裝置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862730754P | 2018-09-13 | 2018-09-13 | |
US62/730,754 | 2018-09-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202010976A TW202010976A (zh) | 2020-03-16 |
TWI700458B true TWI700458B (zh) | 2020-08-01 |
Family
ID=69773859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108112960A TWI700458B (zh) | 2018-09-13 | 2019-04-12 | 基於吸附劑之機械調節式氣體儲存及輸送容器與容器供應試劑氣體之方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11333302B2 (zh) |
EP (1) | EP3850265A4 (zh) |
JP (1) | JP7324275B2 (zh) |
KR (1) | KR102522934B1 (zh) |
CN (1) | CN112689728B (zh) |
SG (1) | SG11202102146TA (zh) |
TW (1) | TWI700458B (zh) |
WO (1) | WO2020055452A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210341106A1 (en) * | 2020-04-30 | 2021-11-04 | Entegris, Inc. | Regulator assembly and test method |
WO2022076546A1 (en) * | 2020-10-08 | 2022-04-14 | Entegris, Inc. | STORAGE AND DELIVERY VESSEL FOR STORING GeH4, USING A ZEOLITIC ADSORBENT |
WO2022140085A1 (en) * | 2020-12-23 | 2022-06-30 | Entegris, Inc. | Gas storage systems and method thereof |
CN112657558A (zh) * | 2021-01-29 | 2021-04-16 | 昆明理工大学 | 等离子体改性催化剂在脱除硫化氢、磷化氢、砷化氢中的应用 |
JP2024508954A (ja) * | 2021-03-09 | 2024-02-28 | インテグリス・インコーポレーテッド | ガス保管計量分配コンテナおよび当該ガス保管計量分配コンテナからの計量分配の方法 |
KR20240134186A (ko) * | 2022-01-18 | 2024-09-06 | 엔테그리스, 아이엔씨. | 제올라이트 흡착제를 사용하는 GeH4 저장용 저장 및 운반 용기 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201418141A (zh) * | 2012-09-21 | 2014-05-16 | Advanced Tech Materials | 壓力調節式液體儲存室及輸送容器之反尖峰壓力管理 |
TW201621206A (zh) * | 2014-10-03 | 2016-06-16 | 安特格利斯公司 | 壓力調節氣體供給容器 |
TW201704918A (zh) * | 2015-07-09 | 2017-02-01 | 恩特葛瑞斯股份有限公司 | 流體供應組件 |
TW201733669A (zh) * | 2015-11-07 | 2017-10-01 | 恩特葛瑞斯股份有限公司 | 吸附劑與流體供應包裝及包含其之裝置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69718137T2 (de) * | 1996-05-20 | 2003-10-09 | Advanced Technology Materials, Inc. | Flüssigkeitsbehälter und -abgabesystem mit physikalischem sorptionsmittel mit hoher kapazität |
US6110257A (en) * | 1997-05-16 | 2000-08-29 | Advanced Technology Materials, Inc. | Low concentration gas delivery system utilizing sorbent-based gas storage and delivery system |
US6019823A (en) * | 1997-05-16 | 2000-02-01 | Advanced Technology Materials, Inc. | Sorbent-based fluid storage and dispensing vessel with replaceable sorbent cartridge members |
US6660063B2 (en) | 1998-03-27 | 2003-12-09 | Advanced Technology Materials, Inc | Sorbent-based gas storage and delivery system |
US6101816A (en) * | 1998-04-28 | 2000-08-15 | Advanced Technology Materials, Inc. | Fluid storage and dispensing system |
US6343476B1 (en) * | 1998-04-28 | 2002-02-05 | Advanced Technology Materials, Inc. | Gas storage and dispensing system comprising regulator interiorly disposed in fluid containment vessel and adjustable in situ therein |
PT1874459E (pt) * | 2005-04-07 | 2016-02-08 | Univ Michigan | Alta adsorção de gás numa estrutura microporosa organometálica com locais metálicos abertos |
CN101213008B (zh) * | 2005-05-03 | 2011-09-28 | 高级技术材料公司 | 流体储存和分配系统以及包含该系统的流体供应方法 |
US8119853B2 (en) * | 2008-01-10 | 2012-02-21 | L'Air Liquide SociétéAnonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Low pressure acetylene storage |
CN105387340B (zh) * | 2010-01-14 | 2018-09-18 | 恩特格里斯公司 | 适于容纳流体供应容器及与之耦接的流路的罩壳 |
US8454730B2 (en) * | 2010-04-20 | 2013-06-04 | GM Global Technology Operations LLC | Method of operating gas storage and supply system |
KR102179776B1 (ko) * | 2013-08-05 | 2020-11-18 | 누맷 테크놀로지스, 인코포레이티드 | 전자 가스 저장을 위한 금속 유기 프레임워크 |
KR20210126145A (ko) * | 2014-06-13 | 2021-10-19 | 엔테그리스, 아이엔씨. | 압력-조절형 유체 저장 및 분배 용기의 흡착제-기반의 압력 안정화 |
US10247363B2 (en) * | 2015-02-12 | 2019-04-02 | Entegris, Inc. | Smart package |
US20160356425A1 (en) * | 2015-03-13 | 2016-12-08 | Cenergy Solutions | Dielectric heating of adsorbents to increase desorption rates |
US10434870B2 (en) * | 2016-05-11 | 2019-10-08 | GM Global Technology Operations LLC | Adsorption storage tank for natural gas |
US10837603B2 (en) * | 2018-03-06 | 2020-11-17 | Entegris, Inc. | Gas supply vessel |
-
2019
- 2019-03-21 JP JP2021513202A patent/JP7324275B2/ja active Active
- 2019-03-21 EP EP19861064.4A patent/EP3850265A4/en active Pending
- 2019-03-21 CN CN201980060167.8A patent/CN112689728B/zh active Active
- 2019-03-21 WO PCT/US2019/023309 patent/WO2020055452A1/en unknown
- 2019-03-21 SG SG11202102146TA patent/SG11202102146TA/en unknown
- 2019-03-21 KR KR1020217010888A patent/KR102522934B1/ko active IP Right Grant
- 2019-04-04 US US16/375,000 patent/US11333302B2/en active Active
- 2019-04-12 TW TW108112960A patent/TWI700458B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201418141A (zh) * | 2012-09-21 | 2014-05-16 | Advanced Tech Materials | 壓力調節式液體儲存室及輸送容器之反尖峰壓力管理 |
TW201621206A (zh) * | 2014-10-03 | 2016-06-16 | 安特格利斯公司 | 壓力調節氣體供給容器 |
TW201704918A (zh) * | 2015-07-09 | 2017-02-01 | 恩特葛瑞斯股份有限公司 | 流體供應組件 |
TW201733669A (zh) * | 2015-11-07 | 2017-10-01 | 恩特葛瑞斯股份有限公司 | 吸附劑與流體供應包裝及包含其之裝置 |
Also Published As
Publication number | Publication date |
---|---|
SG11202102146TA (en) | 2021-04-29 |
CN112689728A (zh) | 2021-04-20 |
EP3850265A4 (en) | 2022-06-08 |
TW202010976A (zh) | 2020-03-16 |
JP2021535989A (ja) | 2021-12-23 |
WO2020055452A1 (en) | 2020-03-19 |
JP7324275B2 (ja) | 2023-08-09 |
CN112689728B (zh) | 2022-12-13 |
EP3850265A1 (en) | 2021-07-21 |
KR20210044902A (ko) | 2021-04-23 |
US20200088352A1 (en) | 2020-03-19 |
KR102522934B1 (ko) | 2023-04-17 |
US11333302B2 (en) | 2022-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI700458B (zh) | 基於吸附劑之機械調節式氣體儲存及輸送容器與容器供應試劑氣體之方法 | |
JP5015181B2 (ja) | 流体貯蔵およびガス供給のためのシステムおよび方法 | |
US9138720B2 (en) | Metal organic frameworks for electronic gas storage | |
US20170122496A1 (en) | Adsorbent-based pressure stabilization of pressure-regulated fluid storage and dispensing vessels | |
JPH11264500A (ja) | 気体化合物の貯蔵と送出のシステム | |
US11143329B2 (en) | Valve system with position indicator | |
TWI803024B (zh) | 具有高純度輸送氣體的吸附型儲運容器及相關方法 | |
CN114728264B (zh) | 利用高性能结构改性颗粒碳吸附剂的掺杂剂流体储存和分配系统 | |
US20220112986A1 (en) | Storage and Delivery Veseel for Storing GeH4, Using a Zeolitic Adsorbent | |
US20230227309A1 (en) | STORAGE AND DELIVERY VESSEL FOR STORING GeH4, USING A ZEOLITIC ADSORBENT | |
CN118265869A (zh) | 具有高纯度气体输送的吸附剂型储运容器及相关方法 |