TWI799327B - Establishing method and establishing system of personalized physiological status evaluation model, and physiological status evaluation method - Google Patents
Establishing method and establishing system of personalized physiological status evaluation model, and physiological status evaluation method Download PDFInfo
- Publication number
- TWI799327B TWI799327B TW111129684A TW111129684A TWI799327B TW I799327 B TWI799327 B TW I799327B TW 111129684 A TW111129684 A TW 111129684A TW 111129684 A TW111129684 A TW 111129684A TW I799327 B TWI799327 B TW I799327B
- Authority
- TW
- Taiwan
- Prior art keywords
- physiological state
- physiological
- index
- measured values
- user
- Prior art date
Links
Images
Landscapes
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Selective Calling Equipment (AREA)
- Electrotherapy Devices (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本發明涉及一種評估模型的建立方法和建立系統,特別涉及一種個人化生理狀態評估模型的建立方法和建立系統,以及應用此建立方法建立的個人化生理狀態評估模型的生理狀態評估方法。The present invention relates to a method and system for establishing an evaluation model, in particular to a method and system for establishing a personalized physiological state evaluation model, and a physiological state evaluation method using the personalized physiological state evaluation model established by the establishment method.
在傳統的生理狀態評估方法中,醫生可根據使用者的一生理指標(例如心跳、血壓或心率變異性等)的量測值落入在大數據資料庫定義的哪一個生理狀態指數級別的量測值範圍內來評估該使用者的生理狀態。然而,受到人種、職業、性別、年齡等因素的影響,大數據資料庫定義的量測值範圍並無法適用在所有人身上,例如亞洲人的血壓就可能普遍高於歐洲人的血壓,以至於容易評估錯誤造成延誤就醫或進行不當治療。另外,實務上往往沒有足夠的醫生可針對每個人定義其在多個生理狀態指數級別下分別對應的生理指標的多個量測值範圍。In the traditional physiological state assessment method, the doctor can according to the measurement value of a physiological index (such as heartbeat, blood pressure or heart rate variability, etc.) of the user falls into which physiological state index level defined in the big data database The user's physiological state is evaluated within the measured value range. However, affected by factors such as race, occupation, gender, age, etc., the range of measurement values defined by the big data database cannot be applied to everyone. For example, the blood pressure of Asians may generally be higher than that of Europeans, and As for easy assessment errors, delaying medical treatment or inappropriate treatment. In addition, in practice, there are often not enough doctors who can define multiple measurement value ranges of physiological indicators corresponding to multiple physiological state index levels for each individual.
本發明所要解決的技術問題在於,針對現有技術的不足提供一種個人化生理狀態評估模型的建立方法和建立系統,以及生理狀態評估方法,能夠針對每個人定義出其在多個生理狀態指數級別下分別對應的生理指標的多個量測值範圍。The technical problem to be solved by the present invention is to provide a method and a system for establishing a personalized physiological state assessment model and a physiological state assessment method for the deficiencies of the prior art, which can define a number of physiological state index levels for each individual. A plurality of measurement value ranges of corresponding physiological indexes respectively.
為了解決上述的技術問題,本發明所採用的其中一技術方案是提供一種個人化生理狀態評估模型的建立方法,其包括:收集使用者的一生理指標的多個量測值以及這些量測值分別對應的多個第一生理狀態指數,且這些第一生理狀態指數係由使用者從多個生理狀態指數級別中自我評估後得到;以及根據這些量測值以及這些第一生理狀態指數,建立個人化生理狀態評估模型。個人化生理狀態評估模型係用於定義使用者在這些生理狀態指數級別下分別對應的該生理指標的多個量測值範圍。個人化生理狀態評估模型還用於以該生理指標的一即時量測值作為輸入,並依據這些量測值範圍評估該即時量測值對應的第二生理狀態指數作為輸出。In order to solve the above-mentioned technical problems, one of the technical solutions adopted by the present invention is to provide a method for establishing a personalized physiological state assessment model, which includes: collecting multiple measurement values of a physiological index of the user and these measurement values Corresponding to multiple first physiological state indexes, and these first physiological state indexes are obtained by the user after self-assessment from multiple physiological state index levels; and based on these measured values and these first physiological state indexes, establish Personalized Physiological State Assessment Model. The individualized physiological state evaluation model is used to define multiple measurement value ranges of the physiological index respectively corresponding to the user's physiological state index levels. The personalized physiological state evaluation model is also used to take an instant measurement value of the physiological index as an input, and evaluate a second physiological state index corresponding to the instant measurement value according to the range of these measurement values as an output.
為了解決上述的技術問題,本發明所採用的另外一技術方案是提供一種個人化生理狀態評估模型的建立系統,其包括雲端裝置以及計算裝置。雲端裝置用於儲存使用者的一生理指標的多個量測值以及這些量測值分別對應的多個第一生理狀態指數,且這些第一生理狀態指數係由使用者從多個生理狀態指數級別中自我評估後得到。計算裝置包括記憶體、通訊電路以及處理電路。通訊電路用以與雲端裝置通訊連接,接收這些量測值以及這些第一生理狀態指數。處理電路經配置根據這些量測值以及這些第一生理狀態指數,建立個人化生理狀態評估模型。In order to solve the above technical problems, another technical solution adopted by the present invention is to provide a system for establishing a personalized physiological state assessment model, which includes a cloud device and a computing device. The cloud device is used to store a plurality of measured values of a physiological index of the user and a plurality of first physiological state indexes corresponding to these measured values, and these first physiological state indexes are determined by the user from the plurality of physiological state indexes obtained after a self-assessment at the level. Computing devices include memory, communication circuitry, and processing circuitry. The communication circuit is used for communicating with the cloud device to receive the measured values and the first physiological state indexes. The processing circuit is configured to establish a personalized physiological state assessment model according to the measured values and the first physiological state indices.
個人化生理狀態評估模型係用於定義使用者在這些生理狀態指數級別下分別對應的該生理指標的多個量測值範圍。個人化生理狀態評估模型還用於以該生理指標的一即時量測值作為輸入,並依據這些量測值範圍評估該即時量測值對應的第二生理狀態指數作為輸出。The individualized physiological state evaluation model is used to define multiple measurement value ranges of the physiological index respectively corresponding to the user's physiological state index levels. The personalized physiological state evaluation model is also used to take an instant measurement value of the physiological index as an input, and evaluate a second physiological state index corresponding to the instant measurement value according to the range of these measurement values as an output.
為了解決上述的技術問題,本發明所採用的另外再一技術方案是提供一種生理狀態評估方法,其包括:應用前述的建立方法,以建立個人化生理狀態評估模型,並且通過個人化生理狀態評估模型評估使用者的該生理指標的即時量測值對應的第二生理狀態指數;以及響應於判斷第二生理狀態指數到達一危險級別區段,發出一警告信號通知預設的醫療機構,以有助於使用者獲得即時的醫治。In order to solve the above-mentioned technical problems, another technical solution adopted by the present invention is to provide a physiological state assessment method, which includes: applying the aforementioned establishment method to establish a personalized physiological state assessment model, and through the personalized physiological state assessment model The model evaluates the second physiological state index corresponding to the real-time measurement value of the physiological index of the user; and in response to judging that the second physiological state index reaches a dangerous level zone, sends out a warning signal to notify the preset medical institution to effectively Help users get immediate medical treatment.
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。In order to further understand the features and technical content of the present invention, please refer to the following detailed description and drawings related to the present invention. However, the provided drawings are only for reference and description, and are not intended to limit the present invention.
以下是通過特定的具體實施例來說明本發明的實施方式,本領域技術人員可由本說明書所提供的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所提供的內容並非用以限制本發明的保護範圍。The implementation of the present invention is illustrated through specific specific examples below, and those skilled in the art can understand the advantages and effects of the present invention from the content provided in this specification. The present invention can be implemented or applied through other different specific embodiments, and various modifications and changes can be made to the details in this specification based on different viewpoints and applications without departing from the concept of the present invention. In addition, the drawings of the present invention are only for simple illustration, and are not drawn according to the actual size, which is stated in advance. The following embodiments will further describe the relevant technical content of the present invention in detail, but the provided content is not intended to limit the protection scope of the present invention.
請參閱圖1,圖1是本發明第一實施例提供的個人化生理狀態評估模型的建立方法的流程圖。如圖1所示,本發明實施例的個人化生理狀態評估模型的建立方法可包括下列步驟S110~S120。Please refer to FIG. 1 . FIG. 1 is a flowchart of a method for establishing a personalized physiological state assessment model provided by the first embodiment of the present invention. As shown in FIG. 1 , the method for establishing a personalized physiological state assessment model according to an embodiment of the present invention may include the following steps S110-S120.
步驟S110:收集使用者的一生理指標的多個量測值以及這些量測值分別對應的多個第一生理狀態指數,且這些第一生理狀態指數係由使用者從多個生理狀態指數級別中自我評估後得到。接著,步驟S120:根據這些量測值以及這些第一生理狀態指數,建立個人化生理狀態評估模型。Step S110: Collect a plurality of measured values of a physiological index of the user and a plurality of first physiological state indexes corresponding to these measured values, and these first physiological state indexes are determined by the user from a plurality of physiological state index levels obtained after self-assessment. Next, Step S120: Establish a personalized physiological state evaluation model according to the measured values and the first physiological state indices.
為了方便以下說明,在本實施例中,步驟S110提到的第一生理狀態指數可例如為壓力指數,而生理指標可例如是心率變異性(Heart Rate Variability,HRV),且HRV的量測值對應於壓力指數,但本發明皆不以此為限制。另外,在本實施例中,可假設收集使用者的HRV的十個量測值,且該十個量測值所分別對應的第一壓力指數可由使用者從五個壓力指數級別(例如,壓力指數:1~5)中自我評估後得到。For the convenience of the following description, in this embodiment, the first physiological state index mentioned in step S110 may be, for example, a pressure index, and the physiological index may be, for example, heart rate variability (Heart Rate Variability, HRV), and the measured value of HRV Corresponds to the pressure index, but the present invention is not limited thereto. In addition, in this embodiment, it may be assumed that ten measurement values of the user's HRV are collected, and the first pressure index corresponding to the ten measurement values can be selected by the user from five pressure index levels (for example, stress Index: 1 to 5) obtained after self-assessment.
可請一併參閱表1和表2,表1是大數據資料庫定義的五個壓力指數級別的HRV的量測值範圍,且表2是由使用者自我評估第一壓力指數以及通過大數據資料庫評估壓力指數的比較表。應當理解的是,壓力指數越高會容易導致神經衰弱。換句話說,壓力指數為1和2的生理狀態較為放鬆,且整體生理機能較為年輕,但壓力指數為4和5的生理狀態較為疲勞,且整體生理機能較為老化。另外,如表2所示,使用者可自我評估HRV的第一個量測值(即5.25)所對應的第一壓力指數為3,但通過大數據資料庫評估的壓力指數為2,以此類推,使用者可自我評估HRV的第十個量測值(即9.55)所對應的第一壓力指數為4,但通過大數據資料庫評估的壓力指數為3。
[表1]
因此,大數據資料庫定義的五個壓力指數級別的HRV的量測值範圍並無法適用在該使用者身上,且容易評估錯誤造成延誤就醫或進行不當治療。Therefore, the HRV measurement value range of the five stress index levels defined by the big data database cannot be applied to this user, and it is easy to make evaluation errors that cause delays in medical treatment or inappropriate treatment.
以表1的項目10為例,這時候使用者自我評估的第一壓力指數為4,代表使用者已有疲勞且無力的感受,因此應該需要盡快進行治療,以避免導致神經衰弱,但通過大數據資料庫評估的壓力指數為3,使得醫生會認為使用者的整體生理機能正常以造成延誤就醫。Take
另一方面,以表1的項目1為例,由於通過大數據資料庫評估的壓力指數為2,因此醫生會認為可以讓使用者服用一些哌甲酯來活化神經,但這時候使用者自我評估的第一壓力指數為3,代表使用者的整體生理機能正常,因此如果再服用哌甲酯(即進行不當治療)將可能導致使用者的自律神經系統失常。On the other hand, taking item 1 of Table 1 as an example, since the stress index evaluated by the big data database is 2, the doctor will think that the user can take some methylphenidate to activate the nerves, but at this time the user self-evaluates The first stress index of the drug is 3, which means that the overall physiological function of the user is normal. Therefore, taking methylphenidate again (that is, improper treatment) may cause the user's autonomic nervous system to become abnormal.
因此,為了解決上述問題,本實施例的個人化生理狀態評估模型係用於定義該使用者在多個生理狀態指數級別下分別對應的該生理指標的多個量測值範圍。另外,個人化生理狀態評估模型還可用於以該生理指標的一即時量測值作為輸入,並依據這些量測值範圍評估該即時量測值對應的第二生理狀態指數作為輸出。Therefore, in order to solve the above-mentioned problems, the personalized physiological state evaluation model of the present embodiment is used to define a plurality of measurement value ranges of the physiological index corresponding to the user at a plurality of physiological state index levels. In addition, the personalized physiological state evaluation model can also be used to take a real-time measured value of the physiological index as an input, and evaluate a second physiological state index corresponding to the real-time measured value according to the range of these measured values as an output.
具體而言,在步驟S120中,可使用這些量測值以及這些第一生理狀態指數訓練一機器學習模型,以建立個人化生理狀態評估模型。例如,在使用表1的HRV的十個量測值以及這十個量測值分別對應的第一壓力指數對機器學習模型進行訓練後,本實施例就能夠針對該使用者調整大數據資料庫定義的五個壓力指數級別的HRV的量測值範圍。Specifically, in step S120, the measured values and the first physiological state indices can be used to train a machine learning model to establish a personalized physiological state evaluation model. For example, after using the ten measured values of HRV in Table 1 and the first pressure indices corresponding to the ten measured values to train the machine learning model, this embodiment can adjust the big data database for the user The range of measured values of HRV for the five stress index levels defined.
可請一併參閱表3和表4,表3是本實施例的個人化生理狀態評估模型定義的五個壓力指數級別下的HRV的量測值範圍,且表4是由使用者自我評估第一壓力指數以及通過個人化生理狀態評估模型評估第二壓力指數的比較表。如表4所示,當HRV的一即時量測值(例如,項目11的6.27)被輸入到個人化生理狀態評估模型時,個人化生理狀態評估模型就可依據表3的量測值範圍評估該即時量測值對應的第二壓力指數為3。
[表3]
換句話說,使用這些量測值以及這些第一壓力指數來訓練機器學習模型,以使通過個人化生理狀態評估模型評估的第二壓力指數盡量趨近由使用者自我評估的第一壓力指數,進而能夠真實地反映使用者的生理狀態,且有助於醫生來精準地判斷使用者是否需要接受治療。另外,由於訓練機器學習模型建立個人化生理狀態評估模型需要大量的歷史資料(例如表2的項目1~10的該些量測值以及該些第一生理狀態指數)支持,因此本實施例可以是在歷史資料有增加後重新執行S120,以重新定義該使用者在多個生理狀態指數級別下分別對應的多個量測值範圍,即實現了個人化生理狀態評估模型的動態調整。In other words, using these measured values and these first stress indices to train the machine learning model, so that the second stress index assessed by the personalized physiological state assessment model is as close as possible to the first stress index self-assessed by the user, Furthermore, it can truly reflect the physiological state of the user, and help doctors accurately judge whether the user needs to receive treatment. In addition, since training a machine learning model to establish a personalized physiological state assessment model requires a large amount of historical data (such as the measured values of items 1-10 in Table 2 and the first physiological state indices), this embodiment can S120 is re-executed after the historical data is increased, so as to redefine the ranges of multiple measurement values corresponding to the user's multiple physiological state index levels, that is, to realize the dynamic adjustment of the personalized physiological state evaluation model.
需說明的是,本實施例可以是在多個情境、多個模式或多個時間點下取得該使用者的HRV的多個量測值,且所謂的由使用者自我評估後得到這些第一生理狀態指數可以是指該使用者對這些情境、這些模式或這些時間點下的多個生理狀態進行分類。因此,可請一併參閱圖2,圖2是本發明實施例的收集多個量測值以及多個第一生理狀態指數的流程圖。如圖2所示,步驟S110可包括步驟S111~S113。It should be noted that in this embodiment, multiple measurement values of the user's HRV can be obtained under multiple situations, multiple modes, or multiple time points, and the so-called self-evaluation by the user obtains these first The physiological state index may mean that the user classifies multiple physiological states under these situations, these modes, or these time points. Therefore, please refer to FIG. 2 together. FIG. 2 is a flow chart of collecting a plurality of measured values and a plurality of first physiological state indices according to an embodiment of the present invention. As shown in FIG. 2, step S110 may include steps S111-S113.
步驟S111:通過一生理指標量測裝置取得在多個情境、多個模式或多個時間點下的使用者的一生理指標量的多個量測值。其次,步驟S112:由使用者分別對這些情境、這些模式或這些時間點下的多個生理狀態進行分類,以得到這些量測值分別對應的這些第一生理狀態指數。舉例來說,使用者可以是在每日早晚進行HRV的量測,並且對每日早晚的生理狀態進行分類,即定期主動進行壓力量測與分類。接著,步驟S113:將這些量測值以及這些第一生理狀態指數儲存於一雲端裝置。Step S111 : Obtain a plurality of measurement values of a physiological index of the user under multiple situations, multiple modes or multiple time points through a physiological index measuring device. Next, step S112: the user classifies the multiple physiological states under these situations, these modes, or these time points, so as to obtain the first physiological state indices corresponding to the measurement values. For example, the user can measure HRV in the morning and evening every day, and classify the physiological state in the morning and evening every day, that is, take the initiative to measure and classify stress regularly. Next, step S113: storing the measured values and the first physiological state indices in a cloud device.
另一方面,除了使用這些量測值以及這些第一生理狀態指數訓練機器學習模型以建立個人化生理狀態評估模型外,可請參閱圖3,圖3是本發明實施例的根據這些量測值以及這些第一生理狀態指數建立個人化生理狀態評估模型的流程圖。如圖3所示,步驟S120可包括步驟S121~S125。步驟S121:根據這些量測值以及這些第一生理狀態指數,計算這些生理狀態指數級別分別對應的多個量測值平均值以及多個量測值標準差。其次,步驟S122:根據這些量測值平均值以及這些量測值標準差,得到該使用者在這些生理狀態指數級別下分別對應的生理指標的多個量測值範圍,以建立個人化生理狀態評估模型。On the other hand, in addition to using these measured values and these first physiological state indexes to train the machine learning model to establish a personalized physiological state assessment model, please refer to FIG. And a flow chart of establishing a personalized physiological state evaluation model with these first physiological state indexes. As shown in FIG. 3 , step S120 may include steps S121-S125. Step S121: According to the measured values and the first physiological state indices, calculate the average values of the measured values and the standard deviations of the measured values respectively corresponding to the levels of the physiological state indices. Next, step S122: According to the average value of these measured values and the standard deviation of these measured values, obtain the multiple measured value ranges of the physiological indicators corresponding to the user's physiological state index levels respectively, so as to establish a personalized physiological state Evaluate the model.
以表2為例,對應第一壓力指數為2的量測值有2.51、1.24及1.96,則壓力指數級別為2對應的量測值平均值以及量測值標準差就是2.51、1.24及1.96的平均值以及標準差,且對應第一壓力指數為3對應的量測值有5.25、6.35、4.78及7.46,則壓力指數級別為3的量測值平均值以及量測值標準差就是5.25、6.35、4.78及7.46的平均值以及標準差。因此,本實施例可計算每一壓力指數級別對應的量測值平均值以及量測值標準差。Taking Table 2 as an example, the measured values corresponding to the first pressure index of 2 are 2.51, 1.24 and 1.96, then the average value and standard deviation of the measured values corresponding to the pressure index level of 2 are 2.51, 1.24 and 1.96 The average value and standard deviation, and the measured values corresponding to the first pressure index of 3 are 5.25, 6.35, 4.78 and 7.46, then the average value and standard deviation of the measured values of the pressure index level 3 are 5.25, 6.35 , mean and standard deviation of 4.78 and 7.46. Therefore, in this embodiment, the average value of the measured value and the standard deviation of the measured value corresponding to each pressure index level can be calculated.
其次,在本實施例中,可設定第i個壓力指數級別對應的HRV的量測值(m)範圍為Xi_1<m≤Xi_2,即介於大於Xi_1到小於等於Xi_2之間,其中X i_1為第i個壓力指數級別對應的量測值平均值減去對應的量測值標準差的結果,且Xi_2為第i個壓力指數級別對應的量測值平均值加上對應的量測值標準差的結果。i為1到N的整數,N為壓力指數級別的總數,如本實施例的五個壓力指數級別則代表N為5。Secondly, in this embodiment, the HRV measurement value (m) range corresponding to the i-th pressure index level can be set as Xi_1<m≤Xi_2, that is, between greater than Xi_1 and less than or equal to Xi_2, where Xi_1 is The result of the average value of the measured value corresponding to the i-th pressure index level minus the standard deviation of the corresponding measured value, and Xi_2 is the average value of the measured value corresponding to the i-th pressure index level plus the corresponding standard deviation of the measured value the result of. i is an integer from 1 to N, and N is the total number of pressure index levels. For example, five pressure index levels in this embodiment mean that N is 5.
應當理解的是,若前一個壓力指數級別對應的量測值平均值加上對應的量測值標準差的結果不等於後一個壓力指數級別對應的量測值平均值減去對應的量測值標準差的結果,則會造成在這兩個壓力指數級別對應的量測值範圍之間出現一個無法評估壓力指數的數值範圍。因此, 在步驟S122中,還可以調整這些量測值標準差,使得前一個壓力指數級別對應的量測值平均值加上對應的量測值標準差的結果等於後一個壓力指數級別對應的量測值平均值減去對應的量測值標準差的結果。It should be understood that if the result of the average value of the measurement value corresponding to the previous pressure index level plus the standard deviation of the corresponding measurement value is not equal to the average value of the measurement value corresponding to the next pressure index level minus the corresponding measurement value As a result of the standard deviation, there will be a value range where the pressure index cannot be evaluated between the measurement value ranges corresponding to the two pressure index levels. Therefore, in step S122, the standard deviation of these measured values can also be adjusted so that the result of adding the average value of the measured value corresponding to the previous pressure index level to the corresponding standard deviation of the measured value is equal to the amount corresponding to the latter pressure index level The result of subtracting the corresponding standard deviation of the measured value from the mean value of the measured value.
應當也理解的是,量測值平均值以及量測值標準差會受到歷史資料的影響,並可能得到不適合的量測值範圍,即造成個人化生理狀態評估模型評估的第二壓力指數也有可能不等於由使用者自我評估的第一壓力指數。因此,為了提升個人化生理狀態評估模型的評估準確率,在步驟S122後,步驟S123:判斷個人化生理狀態評估模型的評估準確率是否達到一準確率標準。若是,代表目前建立的個人化生理狀態評估模型具有高的評估精準度,因此可進入步驟S124:將個人化生理狀態評估模型儲存於雲端裝置。如果否,代表目前建立的個人化生理狀態評估模型不具有高的評估精準度,因此進入步驟S125:調整這些量測值標準差。接著,在步驟S125後,可返回進入步驟S122。It should also be understood that the average value and standard deviation of the measured value will be affected by historical data, and may obtain an unsuitable range of measured values, that is, the second stress index evaluated by the personalized physiological state assessment model may also be Not equal to the first stress index self-assessed by the user. Therefore, in order to improve the evaluation accuracy of the personalized physiological state evaluation model, after step S122, step S123: determine whether the evaluation accuracy of the personalized physiological state evaluation model reaches an accuracy standard. If yes, it means that the currently established personalized physiological state evaluation model has high evaluation accuracy, so it can go to step S124: store the personalized physiological state evaluation model in the cloud device. If not, it means that the currently established personalized physiological state evaluation model does not have high evaluation accuracy, so go to step S125: adjust the standard deviation of these measurement values. Then, after step S125, it may return to step S122.
換句話說,響應於判斷個人化生理狀態評估模型的評估準確率未達到一準確率標準,本實施例則調整這些量測值標準差,並返回根據這些量測值平均值以及這些量測值標準差,得到該使用者在這些生理狀態指數級別下分別對應的生理指標的多個量測值範圍的步驟。實務上,本實施例可從歷史資料中形成一測試集,並且使用該測試集以得到個人化生理狀態評估模型的評估準確率。由於利用測試集得到評估模型的準確率已為本領域技術人員所習知的技術手段,因此有關其細節就不再多加贅述。In other words, in response to judging that the assessment accuracy of the personalized physiological state assessment model does not meet an accuracy standard, this embodiment adjusts the standard deviation of these measurement values, and returns the average value of these measurement values and the The standard deviation is a step of obtaining multiple measurement value ranges of physiological indicators corresponding to the user's physiological state index levels respectively. In practice, this embodiment can form a test set from historical data, and use the test set to obtain the assessment accuracy of the personalized physiological state assessment model. Since the accuracy rate of the evaluation model is obtained by using the test set is a technical means known to those skilled in the art, the details thereof will not be repeated here.
類似地,本實施例也可以是在歷史資料有增加後重新執行步驟S121~S125。另外,當收集到的量測值都沒有對應某一壓力指數級別時,本實施例則可以根據其他壓力指數級別對應的量測值範圍,使用插值或擬合等方式找出該壓力指數級別對應的量測值範圍。總而言之,圖3也只是根據這些量測值以及這些第一生理狀態指數建立個人化生理狀態評估模型的一種實現方式,但本發明不以此為限制。Similarly, in this embodiment, steps S121-S125 may be re-executed after the historical data is added. In addition, when the collected measurement values do not correspond to a certain pressure index level, this embodiment can use interpolation or fitting to find out the corresponding pressure index level according to the range of measurement values corresponding to other pressure index levels. range of measured values. In a word, FIG. 3 is only an implementation manner of establishing a personalized physiological state assessment model based on these measured values and these first physiological state indexes, but the present invention is not limited thereto.
附帶一提的是,HRV還可以與平均心跳數、心率變異總能量、心臟功能指數、心臟負荷指數、長期交感神經活性指數、長期副交感神經活性指數、交感與副交感神經平衡指數、情緒指數等相關聯,因此上述這些生理指標可組成關聯於HRV的一生理指標集合,且本實施例的個人化生理狀態評估模型更可用於形成使用者在該些生理狀態指數級別下的該生理指標集合的雷達圖。Incidentally, HRV can also be correlated with average heart rate, heart rate variability total energy, cardiac function index, cardiac load index, long-term sympathetic nerve activity index, long-term parasympathetic nerve activity index, sympathetic and parasympathetic nerve balance index, mood index, etc. Therefore, these physiological indicators mentioned above can form a set of physiological indicators related to HRV, and the personalized physiological state assessment model of this embodiment can be used to form a radar of the set of physiological indicators of the user at these physiological state index levels. picture.
另一方面,請參閱圖4,圖4是本發明實施例提供的個人化生理狀態評估模型的建立系統的功能方塊圖。如圖4所示,個人化生理狀態評估模型146的建立系統1可包括雲端裝置12以及計算裝置14。雲端裝置12用於儲存使用者的一生理指標(例如HRV)的多個量測值以及這些量測值分別對應的多個第一生理狀態指數。On the other hand, please refer to FIG. 4 , which is a functional block diagram of a system for establishing a personalized physiological state assessment model provided by an embodiment of the present invention. As shown in FIG. 4 , the system 1 for establishing a personalized physiological
計算裝置14包括記憶體140、通訊電路142以及處理電路144。通訊電路142用以與雲端裝置12通訊連接,接收這些量測值以及這些第一生理狀態指數,並且可以將這些量測值以及這些第一生理狀態指數儲存於記憶體140。另外,處理電路144經配置根據這些量測值以及這些第一生理狀態指數,建立個人化生理狀態評估模型146。The
通訊電路142和處理電路144可以是由硬體搭配軟體與/或韌體來實現,但本發明不限制通訊電路142和處理電路144的具體實現方式。另外,雲端裝置12和計算裝置14可以是整合或分開設置,但本發明亦不以此為限制。如圖4所示,建立系統1還可包括生理指標量測裝置10。生理指標量測裝置10用於取得在多個情境、多個模式或多個時間點下的使用者的生理指標的多個量測值,並且由使用者分別對這些情境、這些模式或這些時間點下的多個生理狀態進行分類,以得到這些量測值分別對應的這些第一生理狀態指數,然後將這些量測值以及這些第一生理狀態指數儲存於雲端裝置12。The
需說明的是,計算裝置14也可通過通訊電路142與生理指標量測裝置10通訊連接,以直接從生理指標量測裝置10收到這些量測值以及這些第一生理狀態指數。另外,在一實施例中,處理電路144經配置可使用這些量測值以及這些第一生理狀態指數訓練一機器學習模型,以建立個人化生理狀態評估模型146。It should be noted that the
在另一實施例中,處理電路144經配置可根據這些量測值以及這些第一生理狀態指數,計算這些生理狀態指數級別分別對應的多個量測值平均值以及多個量測值標準差,並且根據這些量測值平均值以及這些量測值標準差,得到該使用者在這些生理狀態指數級別下分別對應的生理指標的多個量測值範圍,以建立個人化生理狀態評估模型146。另外,處理電路144經配置還能夠響應於收集到的量測值以及第一生理狀態指數的數量增加而重新根據這些量測值以及這些第一生理狀態指數建立個人化生理狀態評估模型146,以重新得到該使用者在多個生理狀態指數級別下分別對應的多個量測值範圍,且計算裝置14還可將個人化生理狀態評估模型146儲存於雲端裝置12。由於相關細節已如同前述實施例,故於此就不再多加贅述。In another embodiment, the
最後,請參閱圖5,圖5是本發明實施例提供的生理狀態評估方法的流程圖。如圖5所示,本實施例的生理狀態評估方法可包括步驟S510~S550。步驟S510:建立個人化生理狀態評估模型,即應用前述實施例的建立方法來建立個人化生理狀態評估模型。其次,步驟S520:通過個人化生理狀態評估模型評估使用者的生理指標的即時量測值對應的第二生理狀態指數。接著,步驟S530:判斷該第二生理狀態指數是否到達一危險級別區段(例如前述實施例的壓力指數:4~5)。若是,生理狀態評估方法可進入步驟S540:發出一警告信號通知預設的醫療機構,以有助於使用者獲得即時的醫治。若否,生理狀態評估方法可進入結束的步驟S550。Finally, please refer to FIG. 5 , which is a flowchart of a physiological state assessment method provided by an embodiment of the present invention. As shown in FIG. 5 , the physiological state assessment method of this embodiment may include steps S510-S550. Step S510: Establish a personalized physiological state assessment model, that is, apply the establishment method of the foregoing embodiment to establish a personalized physiological state assessment model. Next, step S520: Evaluate the second physiological state index corresponding to the real-time measurement value of the user's physiological index through the personalized physiological state evaluation model. Next, step S530: determine whether the second physiological state index reaches a dangerous level range (eg, the stress index in the foregoing embodiment: 4-5). If yes, the physiological state assessment method may enter step S540: send out a warning signal to notify the preset medical institution, so as to help the user obtain immediate treatment. If not, the physiological state assessment method may enter step S550 to end.
綜上所述,本發明的其中一有益效果在於,能夠針對每個人定義其在多個生理狀態指數級別下分別對應的生理指標的多個量測值範圍。另外,能夠讓通過個人化生理狀態評估模型評估的第二生理狀態指數盡量等於由使用者自我評估的第一生理狀態指數,以更能夠真實地反映使用者的生理狀態,且有助於醫生來精準地判斷使用者是否需要接受治療,以避免評估錯誤而造成延誤就醫或進行不當治療。且,使用者可依據長期所記錄的生理狀態指數來了解自身生理狀態是否有改善或惡化,而調整其生活作息、飲食習慣與睡眠規律等。To sum up, one of the beneficial effects of the present invention is that multiple measurement value ranges of physiological indicators corresponding to multiple physiological state index levels can be defined for each person. In addition, the second physiological state index evaluated by the personalized physiological state evaluation model can be equal to the first physiological state index self-assessed by the user as far as possible, so as to more truly reflect the physiological state of the user and help doctors to Accurately determine whether the user needs to receive treatment, so as to avoid delays in medical treatment or inappropriate treatment due to evaluation errors. Moreover, users can know whether their physiological state has improved or deteriorated based on the long-term recorded physiological state index, and adjust their daily routine, eating habits, and sleep patterns.
以上所提供的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。The content provided above is only a preferred feasible embodiment of the present invention, and does not therefore limit the scope of the patent application of the present invention, so all equivalent technical changes made by using the description and drawings of the present invention are included in the application of the present invention within the scope of the patent.
S110~S120, S111~S113, S121~S125, S510~S550:步驟 1:建立系統 10:生理指標量測裝置 12:雲端裝置 14:計算裝置 140:記憶體 142:通訊電路 144:處理電路 146:個人化生理狀態評估模型 S110~S120, S111~S113, S121~S125, S510~S550: steps 1: Build a system 10: Physiological index measurement device 12: Cloud device 14: Computing device 140: Memory 142: Communication circuit 144: Processing circuit 146: Personalized Physiological State Assessment Model
圖1是本發明第一實施例提供的個人化生理狀態評估模型的建立方法的流程圖。Fig. 1 is a flowchart of a method for establishing a personalized physiological state assessment model provided by the first embodiment of the present invention.
圖2是本發明實施例的收集多個量測值以及多個第一生理狀態指數的流程圖。FIG. 2 is a flow chart of collecting a plurality of measured values and a plurality of first physiological state indices according to an embodiment of the present invention.
圖3是本發明實施例的根據這些量測值以及這些第一生理狀態指數建立個人化生理狀態評估模型的流程圖。FIG. 3 is a flow chart of establishing a personalized physiological state assessment model according to the measured values and the first physiological state indexes according to an embodiment of the present invention.
圖4是本發明實施例提供的個人化生理狀態評估模型的建立系統的功能方塊圖。Fig. 4 is a functional block diagram of a system for establishing a personalized physiological state assessment model provided by an embodiment of the present invention.
圖5是本發明實施例提供的生理狀態評估方法的流程圖。Fig. 5 is a flowchart of a physiological state assessment method provided by an embodiment of the present invention.
S110~S120:步驟 S110~S120: steps
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111129684A TWI799327B (en) | 2022-08-08 | 2022-08-08 | Establishing method and establishing system of personalized physiological status evaluation model, and physiological status evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111129684A TWI799327B (en) | 2022-08-08 | 2022-08-08 | Establishing method and establishing system of personalized physiological status evaluation model, and physiological status evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI799327B true TWI799327B (en) | 2023-04-11 |
TW202406500A TW202406500A (en) | 2024-02-16 |
Family
ID=86948744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111129684A TWI799327B (en) | 2022-08-08 | 2022-08-08 | Establishing method and establishing system of personalized physiological status evaluation model, and physiological status evaluation method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI799327B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201012432A (en) * | 2008-09-19 | 2010-04-01 | Inventec Appliances Corp | Physiology monitoring apparatus and physiology monitoring method |
WO2015070634A1 (en) * | 2013-11-15 | 2015-05-21 | 吴一兵 | Life maintenance mode, brain inhibition method and personal health information platform |
US20200196865A1 (en) * | 2018-12-19 | 2020-06-25 | Dexcom, Inc. | Intermittent monitoring |
CN111527552A (en) * | 2017-12-28 | 2020-08-11 | 爱惜康有限责任公司 | Cloud-based medical analysis for linking local usage trends to resource acquisition behavior for larger data sets |
CN114305443A (en) * | 2022-01-25 | 2022-04-12 | 英华达(上海)科技有限公司 | Physiological characteristic detection device, physiological characteristic detection system and care system |
-
2022
- 2022-08-08 TW TW111129684A patent/TWI799327B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201012432A (en) * | 2008-09-19 | 2010-04-01 | Inventec Appliances Corp | Physiology monitoring apparatus and physiology monitoring method |
WO2015070634A1 (en) * | 2013-11-15 | 2015-05-21 | 吴一兵 | Life maintenance mode, brain inhibition method and personal health information platform |
CN111527552A (en) * | 2017-12-28 | 2020-08-11 | 爱惜康有限责任公司 | Cloud-based medical analysis for linking local usage trends to resource acquisition behavior for larger data sets |
US20200196865A1 (en) * | 2018-12-19 | 2020-06-25 | Dexcom, Inc. | Intermittent monitoring |
CN114305443A (en) * | 2022-01-25 | 2022-04-12 | 英华达(上海)科技有限公司 | Physiological characteristic detection device, physiological characteristic detection system and care system |
Also Published As
Publication number | Publication date |
---|---|
TW202406500A (en) | 2024-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI768216B (en) | Dehydration amount prediction method for hemodialysis and electronic device using the same | |
Stone et al. | Evaluations of commercial sleep technologies for objective monitoring during routine sleeping conditions | |
Muraru et al. | Family-of-origin, romantic attachment, and marital adjustment: a path analysis model | |
WO2018014506A1 (en) | Health evaluation method and system, and server | |
CN108877954B (en) | Medication compliance assessment method | |
TWI502537B (en) | Management systems and methods for managing physiology data measurement | |
WO2023115751A1 (en) | Blood glucose prediction method and apparatus, and blood glucose level measurement system | |
CN107863152A (en) | Cerebral apoplexy early warning system and method | |
Chen et al. | Models of glaucomatous visual field loss | |
WO2021135592A1 (en) | Health data-based health report generation method and related device | |
Rodriguez et al. | Perceived discrimination and nocturnal blood pressure dipping among Hispanics: the influence of social support and race | |
US20170084195A1 (en) | Method and System for Improving Weight Management Interventions by Assessing Variability in Serial Weight Measurements | |
WO2022095331A1 (en) | Stress assessment method and apparatus, computer device and storage medium | |
CN101204320A (en) | System for cross-acquisition of physiological and psychological information | |
CN110337699A (en) | A kind of psychological pressure appraisal procedure and equipment | |
CN111009303A (en) | Method and device for automatically adjusting amount of exercise, computer equipment and storage medium | |
Mathew et al. | Outpatient monitoring and self-care | |
Hunt et al. | The association between maternal pre‐pregnancy BMI, gestational weight gain and child adiposity: a racial‐ethnically diverse cohort of children | |
Kristiani et al. | The measuring of vital signs using Internet of Things technology (heart rate and respiration) | |
CN113436738A (en) | Method, device, equipment and storage medium for managing risk users | |
TWI799327B (en) | Establishing method and establishing system of personalized physiological status evaluation model, and physiological status evaluation method | |
Larburu et al. | Quality-of-data management for telemedicine systems | |
CN115312194A (en) | Physiological data analysis system, method, device and storage medium | |
US10276062B2 (en) | Calorie optimization respiratory exchange fat macro utilization metabolic profile and method | |
Zhang et al. | The role of ensemble average differs in working memory for depth and planar information |