TWI793893B - Material for anode of lithium-ion battery, method of making the same, and application of the same - Google Patents
Material for anode of lithium-ion battery, method of making the same, and application of the same Download PDFInfo
- Publication number
- TWI793893B TWI793893B TW110145320A TW110145320A TWI793893B TW I793893 B TWI793893 B TW I793893B TW 110145320 A TW110145320 A TW 110145320A TW 110145320 A TW110145320 A TW 110145320A TW I793893 B TWI793893 B TW I793893B
- Authority
- TW
- Taiwan
- Prior art keywords
- lithium
- ion battery
- positive electrode
- rich
- electrode material
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 127
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 90
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 90
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 4
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 81
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 79
- 229910052596 spinel Inorganic materials 0.000 claims abstract description 59
- 239000011029 spinel Substances 0.000 claims abstract description 59
- 229910013733 LiCo Inorganic materials 0.000 claims abstract description 8
- 150000002641 lithium Chemical class 0.000 claims abstract 2
- 239000007774 positive electrode material Substances 0.000 claims description 69
- 239000010406 cathode material Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 25
- 239000002243 precursor Substances 0.000 claims description 16
- 238000002360 preparation method Methods 0.000 claims description 12
- 239000011230 binding agent Substances 0.000 claims description 10
- 239000006258 conductive agent Substances 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 238000001354 calcination Methods 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 238000000975 co-precipitation Methods 0.000 claims description 4
- 238000005469 granulation Methods 0.000 claims description 4
- 230000003179 granulation Effects 0.000 claims description 4
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 4
- 229910003002 lithium salt Inorganic materials 0.000 claims description 4
- 159000000002 lithium salts Chemical class 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 238000003980 solgel method Methods 0.000 claims description 4
- 238000003836 solid-state method Methods 0.000 claims description 4
- 239000007921 spray Substances 0.000 claims description 4
- 230000002194 synthesizing effect Effects 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 238000001308 synthesis method Methods 0.000 claims description 3
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 2
- 229920000877 Melamine resin Polymers 0.000 claims description 2
- 239000004640 Melamine resin Substances 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims description 2
- 239000006230 acetylene black Substances 0.000 claims description 2
- 238000000231 atomic layer deposition Methods 0.000 claims description 2
- 239000004917 carbon fiber Substances 0.000 claims description 2
- 239000002041 carbon nanotube Substances 0.000 claims description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 2
- 229910021385 hard carbon Inorganic materials 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 230000006911 nucleation Effects 0.000 claims description 2
- 238000010899 nucleation Methods 0.000 claims description 2
- 238000007747 plating Methods 0.000 claims description 2
- 229920006122 polyamide resin Polymers 0.000 claims description 2
- 229910021384 soft carbon Inorganic materials 0.000 claims description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 2
- 238000001771 vacuum deposition Methods 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000003786 synthesis reaction Methods 0.000 claims 1
- 230000002427 irreversible effect Effects 0.000 abstract description 4
- 230000000087 stabilizing effect Effects 0.000 abstract description 3
- 239000011248 coating agent Substances 0.000 description 19
- 238000000576 coating method Methods 0.000 description 19
- 238000012360 testing method Methods 0.000 description 10
- 239000011572 manganese Substances 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000001994 activation Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910018068 Li 2 O Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical group CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 108010047956 Nucleosomes Proteins 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 210000001623 nucleosome Anatomy 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910001428 transition metal ion Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 1
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000002468 redox effect Effects 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本發明有關於鋰電池技術領域,特別是指涉及富鋰層狀材料的鋰離子電池正極材料及其製法與應用。 The invention relates to the technical field of lithium batteries, in particular to lithium-ion battery anode materials related to lithium-rich layered materials and their preparation methods and applications.
具有高能量密度的鋰離子電池一直是現階段研究學者們的重中之重。與此同時,汽車工業的不斷發展推動了對高能量密度鋰離子電池的市場需求。由於鋰離子電池的能量密度很大程度上受限於電池的正極材料。因此,探索具有高能量密度的鋰離子電池正極材料迫在眉睫。其中,富鋰層狀正極材料因其較高的能量密度、成本低廉、綠色環保且熱穩定性好而受到了廣泛的關注,被認為是下一代鋰離子電池正極材料的不二選擇。然而,富鋰層狀正極材料自身存在包括初始庫侖效率低、倍率性能差、放電電壓和容量衰減嚴重等缺點阻礙了它們的進一步商業化應用。 Lithium-ion batteries with high energy density have always been the top priority of researchers at this stage. At the same time, the continuous development of the automotive industry is driving the market demand for high energy density Li-ion batteries. The energy density of lithium-ion batteries is largely limited by the positive electrode material of the battery. Therefore, it is imminent to explore cathode materials for lithium-ion batteries with high energy density. Among them, lithium-rich layered cathode materials have attracted extensive attention due to their high energy density, low cost, environmental protection and good thermal stability, and are considered to be the best choice for the next generation of lithium-ion battery cathode materials. However, the shortcomings of lithium-rich layered cathode materials, including low initial Coulombic efficiency, poor rate performance, severe discharge voltage and capacity fading, hinder their further commercial application.
具體地,當電壓充至4.5~4.8V時,富鋰層狀材料中的Li2MnO3組分被活化,鋰離子(Li+)從Li2MnO3中脫出,伴隨部分氧釋出;放電過程中,Li2O釋出後在體相留下的空位被表面金屬離子占據,形成非活性的尖晶石結構,導致鋰離子(Li+)無法完全回嵌至晶格。因此富鋰層狀材料中Li2MnO3組分的活 化過程是提供高比容量的根本原因,也正是這個過程引發了一系列制約其進一步產業化發展的問題。此外,在高電壓下,過渡金屬離子易溶於電解液,同時電極表面易被電解液生成的HF腐蝕,生成不穩定的固體電解質界面(SEI)膜,造成界面阻抗增大並伴隨容量衰減;首周充電過程,氧流失使過渡金屬離子從表面向體相遷移占據鋰、氧空位,引發材料表面結構重組,晶體結構發生由層狀結構轉化成非活性尖晶石結構的不可逆反應,鋰離子(Li+)遷移阻力增大,使鋰離子(Li+)無法回到原始位置,造成電壓衰退以及電容量衰減;此外,因內外層結構改變,使結構內外張力不同,最終將會造成粉體表面出現裂縫使粉體碎裂。 Specifically, when the voltage is charged to 4.5~4.8V, the Li 2 MnO 3 component in the lithium-rich layered material is activated, and lithium ions (Li + ) are released from Li 2 MnO 3 , accompanied by partial oxygen release; During the discharge process, the vacancies left in the bulk phase after the release of Li 2 O are occupied by surface metal ions, forming an inactive spinel structure, resulting in the inability of lithium ions (Li + ) to be fully reintercalated into the lattice. Therefore, the activation process of Li 2 MnO 3 components in lithium-rich layered materials is the fundamental reason for providing high specific capacity, and it is this process that has caused a series of problems that restrict its further industrial development. In addition, under high voltage, the transition metal ions are easily soluble in the electrolyte, and the electrode surface is easily corroded by the HF generated by the electrolyte, forming an unstable solid electrolyte interface (SEI) film, resulting in an increase in interface impedance and accompanying capacity decay; During the first week of charging, the loss of oxygen causes the transition metal ions to migrate from the surface to the bulk phase to occupy lithium and oxygen vacancies, triggering the reorganization of the surface structure of the material, and an irreversible reaction in which the crystal structure changes from a layered structure to an inactive spinel structure. Lithium ions (Li + ) migration resistance increases, so that lithium ions (Li + ) cannot return to the original position, resulting in voltage decay and capacitance decay; in addition, due to the change of the inner and outer layer structure, the internal and external tension of the structure is different, which will eventually result in powder Cracks appear on the surface to break up the powder.
由上可知,富鋰材料面臨的主要問題是晶體結構穩定性差和粉體表面與電解液的副反應多,導致了電容量衰減和電壓衰退兩大難題。是以,為了解決前述問題,目前已知透過摻雜、表面包覆、材料微觀結構設計、晶面調控和新型活化技術對富鋰層狀材料進行改質,能夠改善富鋰層狀材料的電化學性能。 It can be seen from the above that the main problems faced by lithium-rich materials are poor crystal structure stability and many side reactions between the powder surface and the electrolyte, which lead to two major problems of capacitance decay and voltage decay. Therefore, in order to solve the aforementioned problems, it is known that the modification of lithium-rich layered materials through doping, surface coating, material microstructure design, crystal plane regulation and new activation technology can improve the electrochemical performance of lithium-rich layered materials. academic performance.
其中,相比於元素摻雜方法,表面包覆是提高富鋰材料性能更為有效的方法,表面包覆能夠有效保護電極材料,減少材料與電解液的副反應,防止錳離子溶解。同時,表面包覆能夠在一定程度上阻擋氧的釋出,保留鋰、氧空位,穩定材料層狀結構,提高首周可逆容量,改善循環性能以及抑制電壓衰退。包覆材料分為電化學活性物質和非活性物質,常見的活性物質為含鋰具氧化還原性能的氧化物或氟化物(Li3PO4、Li2O、LiF、AlF3、LiVO4),而非活性物質塗層材料主要包含金屬氧化物,這些材料能夠顯著的改善富鋰層狀材料的界面穩定性,提升材料的循環性能,常見的包覆材料主要有ZrO2、TiO2、SiO2、Al2O3等材料。 Among them, compared with the element doping method, surface coating is a more effective method to improve the performance of lithium-rich materials. Surface coating can effectively protect electrode materials, reduce side reactions between materials and electrolytes, and prevent manganese ion dissolution. At the same time, the surface coating can block the release of oxygen to a certain extent, retain lithium and oxygen vacancies, stabilize the layered structure of the material, increase the reversible capacity in the first week, improve cycle performance and suppress voltage decline. Coating materials are divided into electrochemical active substances and inactive substances. The common active substances are lithium-containing oxides or fluorides with redox properties (Li 3 PO 4 , Li 2 O, LiF, AlF 3 , LiVO 4 ), Inactive material coating materials mainly include metal oxides. These materials can significantly improve the interface stability of lithium-rich layered materials and improve the cycle performance of materials. Common coating materials mainly include ZrO 2 , TiO 2 , and SiO 2 , Al 2 O 3 and other materials.
值得注意的是,近年研究顯示尖晶石相異質結構表面包覆能夠顯著改善富鋰材料電化學性能。 It is worth noting that recent studies have shown that the surface coating of spinel phase heterostructure can significantly improve the electrochemical performance of lithium-rich materials.
為克服上述技術問題,本發明的第一目的在於提供一種鋰離子電池正極材料,該鋰離子電池正極材料是以富鋰層狀材料作為核體,透過在富鋰層狀材料(Li1+xM1+yO2+z)包覆一層活性尖晶石材料(LiCoaMn2-aAbO4)以形成殼層,使核體與殼層共同形成異質結構富鋰正極材料,以改善富鋰材料的電化學性能。 In order to overcome the above-mentioned technical problems, the first object of the present invention is to provide a lithium-ion battery positive electrode material, which uses a lithium-rich layered material as a nucleus, through which the lithium-rich layered material (Li 1+x M 1+y O 2+z ) coated with a layer of active spinel material (LiCo a Mn 2-a A b O 4 ) to form a shell, so that the core body and the shell together form a heterostructure lithium-rich cathode material to Improving the electrochemical performance of Li-rich materials.
為實現上述第一目的,本發明所提供一種鋰離子電池正極材料,包括:核體,為富鋰層狀材料,其組成如式(1):Li1+xM1+yO2+z,其中,M選自Ni、Co、Mn、Cr、Fe、Al、Mg或其組合,0.1≦x≦0.9,0≦y≦0.5,0≦z≦1;以及,殼層,為包覆於該核體表面的活性尖晶石材料,該殼層的組成如式(2):LiCoaMn2-aAbO4,其中,A選自Ni、Cr、Fe、Al、Mg或F,0.01<a<1.2,0.005<b<0.2;令該核體與該殼層共同形成異質結構富鋰正極材料。 In order to achieve the above-mentioned first purpose, the present invention provides a lithium-ion battery positive electrode material, including: a core body, which is a lithium-rich layered material, and its composition is as in formula (1): Li 1+x M 1+y O 2+z , wherein, M is selected from Ni, Co, Mn, Cr, Fe, Al, Mg or combinations thereof, 0.1≦x≦0.9, 0≦y≦0.5, 0≦z≦1; and, the shell layer is coated on The active spinel material on the surface of the core, the composition of the shell is as follows: LiCo a Mn 2-a A b O 4 , wherein A is selected from Ni, Cr, Fe, Al, Mg or F, 0.01<a<1.2, 0.005<b<0.2; make the core and the shell together form a heterostructure lithium-rich cathode material.
本發明的第二目的在於提供該鋰離子電池正極材料的製備方法。 The second object of the present invention is to provide a preparation method of the positive electrode material of the lithium ion battery.
為實現上述第二目的,本發明另提供一種鋰離子電池正極材料的製法,其中,該製備方法的步驟包括:先合成該富鋰層狀材料的前驅物,待烘乾後,再合成該活性尖晶石材料的前驅物使其成核成長於該富鋰層狀材料的前驅物表面,隨後與鋰鹽混合進行煅燒,以在該富鋰層狀材料表面形成該活性尖晶石材料,製得該異質結構富鋰正極材料。 In order to achieve the above-mentioned second purpose, the present invention further provides a method for preparing a lithium-ion battery positive electrode material, wherein the steps of the preparation method include: first synthesizing the precursor of the lithium-rich layered material, and then synthesizing the active The precursor of the spinel material is used to nucleate and grow on the surface of the precursor of the lithium-rich layered material, and then mixed with the lithium salt for calcination, so as to form the active spinel material on the surface of the lithium-rich layered material to produce The heterostructure lithium-rich cathode material was obtained.
本發明的第三目的在於提供該鋰離子電池正極材料在鋰離子電 池正極的應用。 The third object of the present invention is to provide the positive electrode material of the lithium ion battery in the lithium ion battery Positive application of the pool.
為實現上述第三目的,本發明另提供一種鋰離子電池正極,其包括如前所述的鋰離子電池正極材料、導電劑及黏結劑,其中,鋰離子電池正極材料:導電劑:黏結劑的重量比為5.9~9.9:4~0.1:4~0.1。 In order to achieve the above-mentioned third purpose, the present invention additionally provides a positive electrode of a lithium ion battery, which includes the positive electrode material of a lithium ion battery as described above, a conductive agent and a binder, wherein the positive electrode material of a lithium ion battery: conductive agent: binder The weight ratio is 5.9~9.9:4~0.1:4~0.1.
本發明的第四目的在於提供該鋰離子電池正極材料在鋰離子電池的應用。 The fourth object of the present invention is to provide the application of the positive electrode material of the lithium ion battery in the lithium ion battery.
為實現上述第四目的,本發明另提供一種鋰離子電池,其包括如前所述的鋰離子電池正極。 In order to achieve the above fourth objective, the present invention further provides a lithium ion battery, which comprises the aforementioned positive electrode of the lithium ion battery.
藉此,本發明利用預先形成在富鋰層狀材料表面的活性尖晶石結構,提供尖晶石相的3D通道以利鋰離子遷移,因此可提升倍率性能,且尖晶石相具有抑制材料結構塌陷,穩定異質結構富鋰正極材料的層狀表面結構的功能,因而降低不可逆電容量。此外,LiCoaMn2-aAbO4為一高電壓材料,可耐電壓為5.3V,因此也可增進異質結構富鋰正極材料的高電壓電容量特性。 Thus, the present invention utilizes the active spinel structure pre-formed on the surface of the lithium-rich layered material to provide a 3D channel for the spinel phase to facilitate the migration of lithium ions, thereby improving the rate performance, and the spinel phase has an inhibitory material Structural collapse, the function of stabilizing the layered surface structure of heterostructure Li-rich cathode materials, thus reducing the irreversible capacity. In addition, LiCo a Mn 2-a A b O 4 is a high-voltage material with a withstand voltage of 5.3V, so it can also improve the high-voltage capacitance characteristics of heterostructure lithium-rich cathode materials.
有關於本發明為達成上述目的,所採用之技術、手段及其他功效,茲舉較佳可行實施例並配合圖式詳細說明如後。 Regarding the technology, means and other effects adopted by the present invention to achieve the above-mentioned purpose, preferred feasible embodiments are given and described in detail in conjunction with the drawings as follows.
10:核體 10: Nucleosome
20:殼層 20: Shell
20a:薄膜殼層 20a: Thin film shell
20b:粗糙殼層 20b: Rough shell
圖1是本發明鋰離子電池正極材料的包覆結構示意圖;圖2是本發明鋰離子電池正極材料的薄膜狀包覆結構示意圖;圖3是本發明鋰離子電池正極材料的粗糙狀包覆結構示意圖;圖4、圖5、圖6、圖7依序是本發明正極材料實施例中,富鋰層狀材料表面包 覆0wt%、1wt%、2.5wt%、5wt%活性尖晶石材料時,電極對不同充放電電流密度的電壓-電容量充放電速率性能曲線圖;圖8是本發明正極材料實施例,在富鋰層狀材料表面包覆0wt%、1wt%、2.5wt%、5wt%活性尖晶石材料時的交流阻抗曲線圖;圖9、圖10、圖11、圖12依序是本發明正極材料實施例中,富鋰層狀材料表面包覆0wt%、1wt%、2.5wt%、5wt%活性尖晶石材料的5000倍率放大(左)及30000倍率放大(右)掃描電子顯微鏡(SEM)圖;圖13、圖14、圖15、圖16依序是本發明正極材料實施例中,富鋰層狀材料表面包覆0wt%、1wt%、2.5wt%、5wt%活性尖晶石材料的雷射粒徑分佈圖;圖17是本發明正極材料實施例,在富鋰層狀材料表面包覆0%、1%、2.5%、5%活性尖晶石材料時的充放電循環壽命曲線圖;圖18、圖19依序是本發明正極材料實施例中,富鋰層狀材料表面包覆0wt%、2.5wt%活性尖晶石材料並於電壓2-4.9V條件下,電極對不同充放電電流密度的電壓-電容量的充放電速率性能曲線圖;圖20、圖21依序是本發明正極材料實施例中,富鋰層狀材料表面包覆0wt%、2.5wt%活性尖晶石材料並於電壓2-5V條件下,電極對不同充放電電流密度的電壓-電容量的充放電速率性能曲線圖。 Fig. 1 is the coating structure schematic diagram of lithium-ion battery cathode material of the present invention; Fig. 2 is the film-shaped coating structure schematic diagram of lithium-ion battery cathode material of the present invention; Fig. 3 is the rough coating structure of lithium-ion battery cathode material of the present invention Schematic diagram; Fig. 4, Fig. 5, Fig. 6, and Fig. 7 are sequentially shown in the positive electrode material embodiment of the present invention, the surface of the lithium-rich layered material is covered When covering 0wt%, 1wt%, 2.5wt%, 5wt% active spinel material, the voltage-capacity charge-discharge rate performance curve of the electrode to different charge-discharge current densities; Figure 8 is an embodiment of the positive electrode material of the present invention, in AC impedance curves when the surface of the lithium-rich layered material is coated with 0wt%, 1wt%, 2.5wt%, and 5wt% active spinel materials; Figure 9, Figure 10, Figure 11, and Figure 12 are the positive electrode materials of the present invention in sequence In the example, 5000 times magnification (left) and 30000 times magnification (right) of scanning electron microscope (SEM) images of 0wt%, 1wt%, 2.5wt%, 5wt% active spinel materials coated on the surface of lithium-rich layered materials ; Fig. 13, Fig. 14, Fig. 15, and Fig. 16 are sequentially in the positive electrode material embodiment of the present invention, the lithium-rich layered material surface is coated with 0wt%, 1wt%, 2.5wt%, 5wt% active spinel materials. Shot particle size distribution diagram; Figure 17 is an embodiment of the positive electrode material of the present invention, the charge-discharge cycle life curve when the surface of the lithium-rich layered material is coated with 0%, 1%, 2.5%, and 5% active spinel materials; Figure 18 and Figure 19 are sequentially the positive electrode material examples of the present invention, the surface of the lithium-rich layered material is coated with 0wt%, 2.5wt% active spinel material, and the electrode is charged and discharged under the condition of a voltage of 2-4.9V. Current density voltage-capacity charge-discharge rate performance curve; Figure 20 and Figure 21 are sequentially shown in the embodiment of the positive electrode material of the present invention, the surface of the lithium-rich layered material is coated with 0wt%, 2.5wt% active spinel material And under the condition of a voltage of 2-5V, the electrode has a graph of the charge-discharge rate performance curve of the voltage-capacitance of different charge-discharge current densities.
為利於對本發明的瞭解,以下結合實施例進行說明。 In order to facilitate the understanding of the present invention, the following will be described in conjunction with the examples.
下列實施例中所述試驗方法,如無特殊說明,均為常規方法;所述試和材料,如無特殊說明,均可以從商業途徑獲得。 The test methods described in the following examples, unless otherwise specified, are conventional methods; the test and materials, unless otherwise specified, can be obtained from commercial sources.
如圖1所示,本發明鋰離子電池正極材料包括由富鋰層狀材料構成的核體10以及包覆於該核體10表面並由活性尖晶石材料構成的殼層20。其中,該富鋰層狀材料的組成如下列式(1),該活性尖晶石材料的組成如下列式(2):式(1):Li1+xM1+yO2+z;其中,M選自Ni、Co、Mn、Cr、Fe、Al、Mg或其組合;其中,0.1≦x≦0.9,0≦y≦0.5,0≦z≦1。較佳地,x=0.4,y=0.02,z=0.4。
As shown in FIG. 1 , the lithium-ion battery cathode material of the present invention includes a
具體地,式(1)中的M可選自前列單一元素或多元素的組合。例如,M=Ni、Co、Mn及Cr之組合,則式(1)可表示為:Li1.4Ni0.2Co0.2Mn0.6Cr0.02O2.4。 Specifically, M in formula (1) can be selected from the first single element or a combination of multiple elements. For example, M=the combination of Ni, Co, Mn and Cr, then formula (1) can be expressed as: Li 1.4 Ni 0.2 Co 0.2 Mn 0.6 Cr 0.02 O 2.4 .
式(2):LiCoaMn2-aAbO4;其中,A選自Ni、Cr、Fe、Al、Mg或F;其中,0.01<a<1.2,0.005<b<0.2。較佳地,a=1,b=0.01。 Formula (2): LiCo a Mn 2-a A b O 4 ; wherein, A is selected from Ni, Cr, Fe, Al, Mg or F; wherein, 0.01<a<1.2, 0.005<b<0.2. Preferably, a=1, b=0.01.
具體地,式(2)中的A可選自前列單一元素或多元素的組合。例如,A=F,則式(2)可表示為:LiCoMnF0.1O4;又例如,A=Mg,則式(2)可表示為LiCoMnMg0.01O4。 Specifically, A in formula (2) may be selected from the first single element or a combination of multiple elements. For example, if A=F, then formula (2) can be expressed as: LiCoMnF 0.1 O 4 ; for another example, if A=Mg, then formula (2) can be expressed as LiCoMnMg 0.01 O 4 .
於本發明鋰離子電池正極材料實施例中,以該鋰離子電池正極材料的總重量計,該鋰離子電池正極材料包括99.9至90wt%的核體10以及0.01至10wt%的殼層20。較佳地,該殼層20佔該鋰離子電池正極材料總量的1wt%、2.5wt%、5wt%。
In the embodiment of the lithium-ion battery cathode material of the present invention, based on the total weight of the lithium-ion battery cathode material, the lithium-ion battery cathode material includes 99.9 to 90 wt% of the
於本發明鋰離子電池正極材料實施例中,該鋰離子電池正極材料的使用電壓範圍為2.0-5.3V。較佳地,該鋰離子電池正極材料的使用電壓範圍為2.0-5.0V。 In the embodiment of the positive electrode material for lithium ion battery of the present invention, the working voltage range of the positive electrode material for lithium ion battery is 2.0-5.3V. Preferably, the operating voltage range of the lithium-ion battery cathode material is 2.0-5.0V.
如圖2、圖3所示,本發明鋰離子電池正極材料的殼層20另可成形
為如圖2的薄膜殼層20a形態,或者,如圖3的粗糙殼層20b。具體地,本發明依殼層的合成方法、濃度及鍛燒溫度的不同,可分別獲得厚膜殼層20形態、薄膜殼層20a形態及粗糙殼層20b形態。此三種殼層形態可為鋰離子提供長型連續性、短型連續性及段落型的3D尖晶石結構,皆可增進鋰離子電池正極材料性能。
As shown in Fig. 2 and Fig. 3, the
本發明鋰離子電池正極材料的製備方法,是先合成該富鋰層狀材料的前驅物,待烘乾後,再合成該活性尖晶石材料的前驅物使其成核成長於該富鋰層狀材料的前驅物表面,隨後與鋰鹽混合進行煅燒,以在該富鋰層狀材料表面形成該活性尖晶石材料,製得該異質結構富鋰正極材料。 The preparation method of the lithium-ion battery positive electrode material of the present invention is to first synthesize the precursor of the lithium-rich layered material, and then synthesize the precursor of the active spinel material to nucleate and grow on the lithium-rich layer after drying The surface of the precursor of the layered material is then mixed with lithium salt and calcined to form the active spinel material on the surface of the lithium-rich layered material to obtain the heterostructure lithium-rich positive electrode material.
其中,該富鋰層狀材料的前驅物可使用選自溼式化學法、溶膠凝膠法、水熱法、固態法、噴霧造粒法及共沉澱法的方法合成。 Wherein, the precursor of the lithium-rich layered material can be synthesized by a method selected from wet chemical method, sol-gel method, hydrothermal method, solid state method, spray granulation method and co-precipitation method.
其中,該活性尖晶石材料的前驅物作為表面包覆材料,可使用選自溼式化學法、溶膠凝膠法、水熱法、固態法、共沉澱法、原子層沉積法、物理式真空鍍膜、化學式真空鍍及噴霧造粒法的方法合成。 Wherein, the precursor of the active spinel material is used as a surface coating material, which can be selected from wet chemical method, sol-gel method, hydrothermal method, solid state method, co-precipitation method, atomic layer deposition method, physical vacuum Coating, chemical formula vacuum plating and spray granulation methods are synthesized.
例如,於本發明鋰離子電池正極材料製法的實施例中,可使用溼式化學法合成該富鋰層狀材料的前驅物,待烘乾後,再次使用溼式化學法合成該活性尖晶石材料的前驅物使其成核成長於該富鋰層狀材料的前驅物表面,隨後與鋰鹽混合進行煅燒,以在該富鋰層狀材料表面形成該活性尖晶石材料,製得該異質結構富鋰正極材料。 For example, in the embodiment of the lithium-ion battery cathode material manufacturing method of the present invention, the precursor of the lithium-rich layered material can be synthesized by a wet chemical method, and after drying, the active spinel can be synthesized by a wet chemical method again. The precursor of the material enables nucleation and growth on the surface of the precursor of the lithium-rich layered material, and then it is mixed with a lithium salt for calcination to form the active spinel material on the surface of the lithium-rich layered material to obtain the heterogeneous Structural lithium-rich cathode materials.
於本發明鋰離子電池正極材料的製備方法實施例中,其製法步驟還包括,透過調整合成方法、濃度及煅燒溫度以控制該活性尖晶石材料的成形厚度及形態如圖1、圖2或圖3。 In the embodiment of the preparation method of the positive electrode material of the lithium ion battery of the present invention, the preparation steps also include, by adjusting the synthesis method, concentration and calcination temperature to control the forming thickness and shape of the active spinel material as shown in Figure 1, Figure 2 or image 3.
本發明鋰離子電池正極材料及其製備方法獲得的異質結構富鋰 正極材料,另可作為正極材料應用於鋰離子電池或其正極的製備。 Lithium-rich heterostructure obtained by lithium-ion battery positive electrode material and preparation method thereof of the present invention The positive electrode material can also be used as a positive electrode material in the preparation of lithium-ion batteries or their positive electrodes.
於本發明異質結構富鋰正極材料應用於鋰離子電池正極的實施例中,該正極包括本發明的鋰離子電池正極材料、導電劑及黏結劑。較佳地,鋰離子電池正極材料:導電劑:黏結劑的重量比為5.9~9.9:4~0.1:4~0.1。更佳地,該鋰離子電池正極材料:導電劑:黏結劑的重量比為9.0:0.5:0.5或9.2:0.4:0.4。 In the embodiment in which the heterostructure lithium-rich positive electrode material of the present invention is applied to the positive electrode of a lithium ion battery, the positive electrode includes the positive electrode material of the lithium ion battery of the present invention, a conductive agent and a binder. Preferably, the weight ratio of lithium ion battery cathode material: conductive agent: binder is 5.9-9.9:4-0.1:4-0.1. More preferably, the weight ratio of positive electrode material: conductive agent: binder of the lithium ion battery is 9.0:0.5:0.5 or 9.2:0.4:0.4.
於本發明鋰離子電池正極實施例中,較佳地,該鋰離子電池正極使用的黏結劑選自聚二氟乙烯、苯乙烯丁二烯橡膠、聚醯胺、或三聚氰胺樹脂。 In the positive electrode embodiment of the lithium ion battery of the present invention, preferably, the binder used in the positive electrode of the lithium ion battery is selected from polyvinyl difluoride, styrene butadiene rubber, polyamide, or melamine resin.
於本發明鋰離子電池正極實施例中,較佳地,該鋰離子電池正極使用的導電劑選自碳粉體、石墨、硬碳、軟碳、碳纖維、奈米碳管、乙炔黑、或上述之組合。 In the positive electrode embodiment of the lithium ion battery of the present invention, preferably, the conductive agent used in the positive electrode of the lithium ion battery is selected from carbon powder, graphite, hard carbon, soft carbon, carbon fiber, carbon nanotubes, acetylene black, or the above-mentioned combination.
於本發明鋰離子電池正極實施例中,該鋰離子電池正極的製備方法步驟包括:將本發明鋰離子電池正極材料、以及任選的粘結劑和任選的導電劑溶於溶劑中,混合形成漿料,將漿料塗敷在鋁箔上,乾燥,取出壓片,得到所述的鋰離子電池正極。 In the positive electrode embodiment of the lithium ion battery of the present invention, the preparation method steps of the positive electrode of the lithium ion battery include: dissolving the positive electrode material of the lithium ion battery of the present invention, an optional binder and an optional conductive agent in a solvent, mixing A slurry is formed, the slurry is coated on an aluminum foil, dried, and the pressed sheet is taken out to obtain the positive electrode of the lithium ion battery.
其中,該溶劑為N-甲基吡咯烷酮(NMP)。 Wherein, the solvent is N-methylpyrrolidone (NMP).
其中,該鋰離子電池正極的製備方法是在烘箱中進行乾燥,操作條件為120~180℃,真空乾乾燥2~8小時。 Wherein, the preparation method of the positive electrode of the lithium ion battery is to dry in an oven, the operating condition is 120-180° C., and vacuum drying for 2-8 hours.
於本發明異質結構富鋰正極材料應用於鋰離子電池的實施例中,該鋰離子電池包括了前述鋰離子電池的正極。 In the embodiment in which the heterostructure lithium-rich positive electrode material of the present invention is applied to a lithium ion battery, the lithium ion battery includes the positive electrode of the aforementioned lithium ion battery.
其中,該鋰離子電池還包括負極以及介於正負極之間的電解液和隔膜。 Wherein, the lithium-ion battery also includes a negative electrode, an electrolyte solution and a separator interposed between the positive and negative electrodes.
其中,該負極為石墨負極、鋰鈦氧、矽碳負極或鋰片。 Wherein, the negative pole is graphite negative pole, lithium titania, silicon carbon negative pole or lithium sheet.
以上說明了本發明鋰離子電池正極材料及其製法與應用,以下請配合參閱圖4至圖21及表1至表3,說明本發明鋰離子電池正極材料的電化學性能表現。 The above describes the lithium ion battery positive electrode material of the present invention and its preparation method and application. Please refer to Figures 4 to 21 and Tables 1 to 3 below to illustrate the electrochemical performance of the lithium ion battery positive electrode material of the present invention.
如圖4、圖5、圖6、圖7、表1所示,顯示本發明鋰離子電池正極材料的充放電速率性能(C-rate)。於圖4至圖7及表1的實施例中,是將電池先以0.1C/0.1D電壓範圍2-4.8V進行活化後,再於2~4.6V電壓範圍以0.1C/0.1D、0.2C/0.2D、0.2C/0.2D、0.2C/0.5D、0.2C/1D、0.2C/2D、0.2C/3D、0.2C/4D、0.2C/5D進行充放電測試。 As shown in Fig. 4, Fig. 5, Fig. 6, Fig. 7 and Table 1, the charge and discharge rate performance (C-rate) of the lithium ion battery cathode material of the present invention is shown. In the embodiment shown in Figure 4 to Figure 7 and Table 1, the battery is first activated with a voltage range of 0.1C/0.1D of 2-4.8V, and then activated at a voltage range of 2~4.6V with 0.1C/0.1D, 0.2 C/0.2D, 0.2C/0.2D, 0.2C/0.5D, 0.2C/1D, 0.2C/2D, 0.2C/3D, 0.2C/4D, 0.2C/5D for charge and discharge test.
其中,圖4、圖5、圖6、圖7依序提供了本發明在富鋰層狀材料表面包覆0wt%、1wt%、2.5wt%及5wt%的活性尖晶石材料時,電極對不同充放電電流密度的電壓-電容量的充放電速率性能曲線圖。 Among them, Fig. 4, Fig. 5, Fig. 6, and Fig. 7 sequentially provide the electrode pair when the surface of the lithium-rich layered material is coated with 0wt%, 1wt%, 2.5wt% and 5wt% of the active spinel material. Charge-discharge rate performance curves of voltage-capacity at different charge-discharge current densities.
其中,表1提供了本發明在富鋰層狀材料表面包覆0wt%、1wt%、2.5wt%及5wt%的活性尖晶石材料時,電極對不同充放電電流密度的電壓-電容量的充放電速率數據。 Among them, Table 1 provides the voltage-capacitance of the electrode for different charge and discharge current densities when the surface of the lithium-rich layered material is coated with 0wt%, 1wt%, 2.5wt% and 5wt% of the active spinel material. Charge and discharge rate data.
由圖4-圖7以及表1的結果可知,在正常充放電電壓條件2-4.8V活化後以2-4.6V充放電,經改質表面包覆活性尖晶石材料的正極材料(富鋰層狀材料表面包覆1wt%、2.5wt%、5wt%活性尖晶石材料的異質結構富鋰正極材料)與未改質的正極材料(富鋰層狀材料表面無包覆(0wt%)活性尖晶石材料的正極材料)相比,放電速率由低倍率至2D時,本發明表面改質的正極材料的充放電率(C-rate)較未改質的正極材料增加,在高倍率放電速率5D時,又以包覆2.5wt%活性尖晶石材料的正極材料(異質結構富鋰正極材料)性能效果最為優良。 From the results in Figure 4-Figure 7 and Table 1, it can be seen that the positive electrode material (lithium rich Layered material surface coated with 1wt%, 2.5wt%, 5wt% active spinel material heterostructure lithium-rich cathode material) and unmodified cathode material (lithium-rich layered material surface without coating (0wt%) active Compared with the positive electrode material of spinel material), when the discharge rate is from low rate to 2D, the charge-discharge rate (C-rate) of the surface modified positive electrode material of the present invention increases compared with the unmodified positive electrode material. When the rate is 5D, the positive electrode material (heterostructure lithium-rich positive electrode material) coated with 2.5wt% active spinel material has the best performance.
如圖8所示,由下而上依序顯示本發明鋰離子電池正極材料的交流阻抗測試(AC Impedance);該正極材料為表面包覆0wt%、1wt%、2.5wt%、5wt%活性尖晶石材料的異質結構富鋰正極材料。電池先以0.1C/0.1D電壓範圍2-4.8V進行活化後,再以0.1C/0.1D、0.2C/0.2D、0.2C/0.2D、0.2C/0.5D、0.2C/1D、0.2C/2D、0.2C/3D、0.2C/4D、0.2C/5D電壓範圍2~4.6V充放電後,將電壓充至4.2V進行測試。測試條件為振幅0.001V,頻率範圍100000Hz~0.001Hz進行掃描。
As shown in Figure 8, the AC impedance test (AC Impedance) of the positive electrode material of the lithium ion battery of the present invention is shown sequentially from bottom to top; Lithium-rich cathode materials with heterostructures of spar materials. After the battery is activated with 0.1C/0.1D voltage range 2-4.8V, then with 0.1C/0.1D, 0.2C/0.2D, 0.2C/0.2D, 0.2C/0.5D, 0.2C/1D, 0.2 C/2D, 0.2C/3D, 0.2C/4D, 0.2C/
由圖8可知,四組樣品皆出現了相似的圖形,包含了高頻區2個半圓及低頻區一條斜線,高頻區的第一個半圓包含了電池本身的內部阻抗Rs及SEI膜中Li+的擴散阻抗Rf,第二個半圓為電荷轉移阻抗Rct,低頻區的斜線為Warburg阻抗,此阻抗與電極中的Li+的擴散有關。由圖8可發現改質前(0wt%)材料具有最大的電荷轉移阻抗Rct,而改質後材料Rct皆比未改質前小,其中又以2.5wt%值最 小。可對應出具2.5wt%改質的材料具有較好的電化學特性。 It can be seen from Figure 8 that all four groups of samples have similar patterns, including two semicircles in the high frequency area and a slanted line in the low frequency area. The first semicircle in the high frequency area includes the internal impedance R s of the battery itself and the SEI film. The diffusion impedance R f of Li + , the second semicircle is the charge transfer impedance R ct , and the oblique line in the low frequency region is the Warburg impedance, which is related to the diffusion of Li + in the electrode. From Figure 8, it can be found that the material before modification (0wt%) has the largest charge transfer resistance R ct , and the R ct of the modified material is smaller than that before modification, and the value of 2.5wt% is the smallest. The corresponding 2.5wt% modified material has better electrochemical properties.
如圖9、圖10、圖11、圖12,顯示本發明鋰離子電池正極材料的SEM圖。由圖9至圖12可知,未改質的正極材料(表面包覆0wt%活性尖晶石材料的富鋰層狀材料)的一次粒子粒徑約為70nm,經改質後,表面被活性尖晶石材料所包覆的異質結構富鋰正極材料,其表面一次粒子粒徑約為100~200nm。 Fig. 9, Fig. 10, Fig. 11 and Fig. 12 show the SEM images of the lithium ion battery cathode material of the present invention. From Figure 9 to Figure 12, it can be seen that the primary particle size of the unmodified positive electrode material (lithium-rich layered material with 0wt% active spinel material on the surface) is about 70nm, after modification, the surface is covered with active spinel The heterostructure lithium-rich cathode material coated with spar material has a surface primary particle size of about 100-200nm.
如圖13、圖14、圖15、圖16,顯示本發明鋰離子電池正極材料的雷射粒徑分佈圖,其係由雷射粒徑分析儀測得。由圖13至圖16可知,正極材料表面包覆0wt%、1wt%、2.5wt%及5wt%的活性尖晶石材料的二次粒子粒徑隨著包覆濃度的增加而變大,分別為7.26μm、8.38μm、8.68μm、8.97μm。 Fig. 13, Fig. 14, Fig. 15 and Fig. 16 show the laser particle size distribution diagram of the positive electrode material of the lithium ion battery of the present invention, which is measured by a laser particle size analyzer. From Figure 13 to Figure 16, it can be seen that the secondary particle size of the active spinel material coated on the surface of the positive electrode material with 0wt%, 1wt%, 2.5wt% and 5wt% increases with the increase of the coating concentration, respectively 7.26 μm, 8.38 μm, 8.68 μm, 8.97 μm.
如圖17所示,顯示本發明鋰離子電池正極材料的充放電循環壽命測試。由圖17可知,表面包覆0wt%、1wt%、2.5wt%及5wt%活性尖晶石材料的正極材料以0.2C充電速率及0.5C放電速率在2-4.6V電壓範圍下進行循環壽命測試95圈後,其放電容量保持率分別為75.5%、91.8%、84.2%、85.8%。包覆活性尖晶石材料可有效改善循環壽命。 As shown in FIG. 17 , it shows the charge-discharge cycle life test of the lithium-ion battery cathode material of the present invention. It can be seen from Figure 17 that the positive electrode materials coated with 0wt%, 1wt%, 2.5wt% and 5wt% active spinel materials were tested for cycle life at a charge rate of 0.2C and a discharge rate of 0.5C at a voltage range of 2-4.6V After 95 laps, the discharge capacity retention rates were 75.5%, 91.8%, 84.2%, and 85.8%, respectively. Coating the active spinel material can effectively improve the cycle life.
如圖18、圖19、表2,顯示本發明鋰離子電池正極材料的高電壓範圍(2-4.9V)放電電容量測試。於圖18至圖19及表2的實施例中,是將電池於2~4.9V電壓範圍以0.1C/0.1D、0.2C/0.2D、0.2C/0.5D、0.2C/1D、0.2C/2D、0.2C/3D、0.2C/4D、0.2C/5D進行充放電測試。 As shown in Fig. 18, Fig. 19 and Table 2, the high voltage range (2-4.9V) discharge capacity test of the positive electrode material of the lithium ion battery of the present invention is shown. In the embodiment shown in Figure 18 to Figure 19 and Table 2, the battery is set at 0.1C/0.1D, 0.2C/0.2D, 0.2C/0.5D, 0.2C/1D, 0.2C in the voltage range of 2~4.9V /2D, 0.2C/3D, 0.2C/4D, 0.2C/5D for charge and discharge test.
圖18、圖19依序提供了本發明在富鋰層狀材料表面包覆0wt%及2.5wt%的活性尖晶石材料時,電極在高電壓範圍為2-4.9V條件下,對不同充放電電流密度的電壓-電容量的充放電速率性能曲線圖。 Figure 18 and Figure 19 sequentially provide the present invention when the surface of the lithium-rich layered material is coated with 0wt% and 2.5wt% active spinel materials, and the electrode is under the condition of a high voltage range of 2-4.9V. The discharge current density voltage-capacity charge-discharge rate performance curve.
表2提供了本發明在富鋰層狀材料表面包覆0wt%及2.5wt%的活 性尖晶石材料時,電極在高電壓範圍為2-4.9V條件下,對不同充放電電流密度的電壓-電容量的充放電速率數據。 Table 2 provides the present invention coating 0wt% and 2.5wt% activity on the surface of lithium-rich layered material When using a permanent spinel material, the electrode is charged and discharged at a high voltage range of 2-4.9V, and the voltage-capacity charge and discharge rate data of different charge and discharge current densities.
由圖18、圖19以及表2的結果可知,在充放電電壓條件為2-4.9V情況下,經改質表面包覆活性尖晶石的正極材料(富鋰層狀材料表面包覆2.5wt%活性尖晶石材料的異質結構富鋰正極材料)與未改質的正極材料(富鋰層狀材料表面無包覆(0wt%)活性尖晶石材料的正極材料)相比,本發明改質表面包覆活性尖晶石的正極材料的充放電效能較未改質的正極材料增加。 From the results in Figure 18, Figure 19 and Table 2, it can be seen that under the condition of charge and discharge voltage of 2-4.9V, the positive electrode material (lithium-rich layered material surface coated with 2.5wt % active spinel material heterogeneous structure lithium-rich positive electrode material) compared with unmodified positive electrode material (lithium-rich layered material surface without coating (0wt%) active spinel material positive electrode material), the present invention improves The charge and discharge performance of the positive electrode material coated with active spinel is higher than that of the unmodified positive electrode material.
如圖20、圖21、表3所示,顯示本發明鋰離子電池正極材料的高電壓範圍(2-5V)放電電容量測試。於圖20至圖21及表3的實施例中,是將電池於2~5V電壓範圍以0.1C/0.1D、0.2C/0.2D、0.2C/0.5D、0.2C/1D、0.2C/2D、0.2C/3D、0.2C/4D、0.2C/5D進行充放電測試。 As shown in Fig. 20, Fig. 21 and Table 3, it shows the high voltage range (2-5V) discharge capacity test of the positive electrode material of the lithium ion battery of the present invention. In the embodiment shown in Figure 20 to Figure 21 and Table 3, the battery is set at 0.1C/0.1D, 0.2C/0.2D, 0.2C/0.5D, 0.2C/1D, 0.2C/ 2D, 0.2C/3D, 0.2C/4D, 0.2C/5D for charge and discharge test.
圖20、圖21依序提供了本發明在富鋰層狀材料表面包覆0wt%及 2.5wt%的活性尖晶石材料時,電極在高電壓範圍為2-5V條件下,對不同充放電電流密度的電壓-電容量充放電速率性能曲線圖。 Figure 20 and Figure 21 sequentially provide the present invention to coat 0wt% and When the active spinel material is 2.5wt%, the electrode is in the high voltage range of 2-5V, and the voltage-capacity charge-discharge rate performance curve for different charge-discharge current densities.
表3提供了本發明在富鋰層狀材料表面包覆0wt%及2.5wt%的活性尖晶石材料時,電極在高電壓範圍為2-5V條件下,對不同充放電電流密度的電壓-電容量的充放電速率數據。 Table 3 provides the present invention when the surface of the lithium-rich layered material is coated with 0wt% and 2.5wt% active spinel materials, and the voltage of the electrode for different charge and discharge current densities under the condition of a high voltage range of 2-5V- Capacitance charge and discharge rate data.
由圖20、圖21以及表3的結果可知,在充放電電壓條件為2-5V情況下,經改質表面包覆活性尖晶石的正極材料(富鋰層狀材料表面包覆2.5wt%活性尖晶石材料的異質結構富鋰正極材料)與未改質的正極材料(富鋰層狀材料表面無包覆(0wt%)活性尖晶石材料的正極材料)相比,本發明改質表面包覆活性尖晶石的正極材料的充放電效能較未改質的正極材料增加。 From the results in Figure 20, Figure 21 and Table 3, it can be seen that under the condition of charge and discharge voltage of 2-5V, the positive electrode material with modified surface coated active spinel (lithium-rich layered material surface coated with 2.5wt% The heterogeneous structure lithium-rich positive electrode material of active spinel material) is compared with the unmodified positive electrode material (the positive electrode material of the lithium-rich layered material surface without coating (0wt%) active spinel material), the present invention modified The charge and discharge performance of the positive electrode material coated with active spinel is higher than that of the unmodified positive electrode material.
綜上所述,本發明透過在富鋰層狀材料(Li1+xM1+yO2+z)表面包覆活性尖晶石材料(LiCoaMn2-aAbO4)所形成的鋰離子電池正極材料(異質結構富鋰正 極材料),經充放電後,因表面尖晶石相可提供3D通道以利鋰離子遷移,因此可提升倍率性能,且尖晶石相具有抑制材料結構塌陷,穩定異質結構富鋰正極材料的層狀表面結構的功能,因而降低不可逆電容量。此外,本發明鋰離子電池正極材料的充放電速率效能,在正常充放電電壓條件2-4.8V活化後以2-4.6V充放電的表現,以及,在提高充放電電壓至4.9V及5V時的表現,相較於未改質的鋰離子電池正極材料的表現皆更為優異;同時,本發明鋰離子電池正極材料的充放電循環壽命亦較未改質前良好。 In summary, the present invention is formed by coating an active spinel material (LiCo a Mn 2-a A b O 4 ) on the surface of a lithium-rich layered material (Li 1+x M 1+y O 2+z ). Lithium-ion battery cathode material (heterostructure lithium-rich cathode material), after charge and discharge, because the surface spinel phase can provide 3D channels to facilitate lithium ion migration, so the rate performance can be improved, and the spinel phase has an inhibitory material Structural collapse, the function of stabilizing the layered surface structure of heterostructure Li-rich cathode materials, thus reducing the irreversible capacity. In addition, the charge and discharge rate performance of the positive electrode material of the lithium ion battery of the present invention is the performance of charging and discharging at 2-4.6V after activation at the normal charging and discharging voltage condition of 2-4.8V, and when the charging and discharging voltage is increased to 4.9V and 5V Compared with the performance of the unmodified lithium-ion battery positive electrode material, the performance is more excellent; at the same time, the charge-discharge cycle life of the lithium-ion battery positive electrode material of the present invention is also better than that before the unmodified one.
10:核體 10: Nucleosome
20:殼層 20: Shell
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110145320A TWI793893B (en) | 2021-12-03 | 2021-12-03 | Material for anode of lithium-ion battery, method of making the same, and application of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110145320A TWI793893B (en) | 2021-12-03 | 2021-12-03 | Material for anode of lithium-ion battery, method of making the same, and application of the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI793893B true TWI793893B (en) | 2023-02-21 |
TW202324810A TW202324810A (en) | 2023-06-16 |
Family
ID=86689331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110145320A TWI793893B (en) | 2021-12-03 | 2021-12-03 | Material for anode of lithium-ion battery, method of making the same, and application of the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI793893B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117080535A (en) * | 2023-10-19 | 2023-11-17 | 中创新航科技集团股份有限公司 | Cylindrical battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103762353A (en) * | 2014-01-18 | 2014-04-30 | 天津理工大学 | High-capacity lithium ion battery positive material with core-shell heterostructure and preparation method of material |
CN108550791A (en) * | 2018-04-20 | 2018-09-18 | 中国科学院化学研究所 | A kind of layered cathode material and its preparation method and application of spinelle cladding |
CN109904402A (en) * | 2017-12-11 | 2019-06-18 | 中国科学院大连化学物理研究所 | A kind of lithium-rich manganese base material and its preparation and application |
-
2021
- 2021-12-03 TW TW110145320A patent/TWI793893B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103762353A (en) * | 2014-01-18 | 2014-04-30 | 天津理工大学 | High-capacity lithium ion battery positive material with core-shell heterostructure and preparation method of material |
CN109904402A (en) * | 2017-12-11 | 2019-06-18 | 中国科学院大连化学物理研究所 | A kind of lithium-rich manganese base material and its preparation and application |
CN108550791A (en) * | 2018-04-20 | 2018-09-18 | 中国科学院化学研究所 | A kind of layered cathode material and its preparation method and application of spinelle cladding |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117080535A (en) * | 2023-10-19 | 2023-11-17 | 中创新航科技集团股份有限公司 | Cylindrical battery |
CN117080535B (en) * | 2023-10-19 | 2023-12-22 | 中创新航科技集团股份有限公司 | Cylindrical battery |
Also Published As
Publication number | Publication date |
---|---|
TW202324810A (en) | 2023-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7426414B2 (en) | Cathode materials for composite lithium-ion batteries, lithium-ion batteries and cars | |
JP7198736B2 (en) | Positive electrode active material for lithium secondary battery and lithium secondary battery containing the same | |
CN110168785A (en) | Ni-based active material presoma and preparation method thereof, Ni-based active material and lithium secondary battery | |
JP6524610B2 (en) | Positive electrode active material for non-aqueous secondary battery and method for producing the same | |
JP2000277116A (en) | Lithium secondary battery | |
WO2014063407A1 (en) | Modified lithium ion battery anode material having high energy density, and manufacturing method thereof | |
JP2012190580A (en) | Positive electrode active material for lithium ion secondary battery | |
JP2000113889A (en) | Lithium secondary battery | |
CN112054193B (en) | Positive electrode material for secondary battery and secondary battery using same | |
KR20200066246A (en) | Positive active material for rechargebale lithium battery and rechargeable lithium battery | |
JP7432732B2 (en) | Positive electrode active material, manufacturing method thereof, and lithium secondary battery containing the same | |
CN112242505B (en) | Nonaqueous electrolyte secondary battery | |
CN112054190B (en) | Positive electrode material for lithium secondary battery and lithium secondary battery using same | |
WO2024087568A1 (en) | Manganese-based solid solution positive electrode material, preparation method therefor and use thereof | |
WO2020090678A1 (en) | Rechargeable battery with nonaqueous electrolyte, method for producing rechargeable battery with nonaqueous electrolyte, and method for using rechargeable battery with nonaqueous electrolyte | |
CN112054163A (en) | Positive electrode for secondary battery and secondary battery using the same | |
KR20200107856A (en) | Lithium secondary battery | |
TWI793893B (en) | Material for anode of lithium-ion battery, method of making the same, and application of the same | |
JP7292661B2 (en) | Positive electrode material, positive electrode for lithium secondary battery and lithium secondary battery containing the same | |
WO2024146611A1 (en) | Lithium ion battery | |
JP2023508024A (en) | Positive electrode active material and lithium secondary battery containing the same | |
CN112242509A (en) | Nonaqueous electrolyte secondary battery | |
KR20200107843A (en) | Lithium secondary battery | |
CN116247297A (en) | Battery cell | |
JP2023021107A (en) | Positive active material, method for preparing the same, and lithium secondary battery comprising the same |