TWI793233B - 多鏡頭攝像模組 - Google Patents
多鏡頭攝像模組 Download PDFInfo
- Publication number
- TWI793233B TWI793233B TW107146509A TW107146509A TWI793233B TW I793233 B TWI793233 B TW I793233B TW 107146509 A TW107146509 A TW 107146509A TW 107146509 A TW107146509 A TW 107146509A TW I793233 B TWI793233 B TW I793233B
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- magnet
- lens module
- module
- magnets
- Prior art date
Links
Images
Landscapes
- Lens Barrels (AREA)
- Adjustment Of Camera Lenses (AREA)
Abstract
一種多鏡頭攝像模組,包括有相鄰設置之至少兩鏡頭模組。各該鏡頭模組可以是具有自動對焦(Auto Focusing;簡稱AF)或/及光學穩定系統(Optical Image Stabilizer;簡稱OIS)之音圈馬達(Voice Coil Motor;簡稱VCM)的鏡頭模組,且相鄰兩鏡頭模組相鄰靠的那個面稱為相鄰面。各該鏡頭模組分別具有複數個驅動磁石,且定義有相互垂直之X、Y、Z軸方向;其中,鏡頭模組的一攝像光軸與該Z軸平行,且該相鄰面係與由Y與Z軸所定義的平面平行。位於該相鄰面兩側之複數副驅動磁石投影至相鄰面的投影圖,包含至少一副驅動磁石其於Y軸或Z軸方向上之相對之邊長不相同,且兩相對邊為至少一個斜線、弧或直線段連接而成的構形。複數副驅動磁石各自具有一個與攝像光軸平行的中心軸,由X軸方向觀察中心軸間有一距離W,複數副驅動磁石其彼此沿著Y軸方向隔著相鄰面交錯排列。
Description
本發明關於一種多鏡頭攝像模組,尤指一種具自動對焦(Auto Focusing;簡稱AF)音圈馬達(Voice Coil Motor;簡稱VCM)、或包含具光學穩定系統(Optical Image Stabilizer;簡稱OIS)之VCM且可用於電子裝置的多鏡頭攝像模組。
在智慧型手機輕薄化的設計中,其內部中央處理器(CPU)、記憶體和電池等模組等已占了大部分空間,因而限制了相機模組的體積大小。各家品牌廠競相推多攝相鏡頭模組的智慧型手機,尤其配置具OIS的相機模組儼然已成旗艦型智慧手機中的標準配備。
OIS(Optical Image Stabilizer)是光學圖像穩定系統的簡稱。它藉由一個可感測晃動方向的陀螺儀測出晃動數據,系統再根據該數值預測出圖像偏移量。然後,系統控制鏡頭相對於圖像傳感器作出相應軸向的位移,由此將偏移抵消掉,保證相機在手抖環境中依然可保持成像穩定。
在多攝相鏡頭模組發展及手機空間限制的基礎上,同時相鄰兩鏡頭模組需要解決磁干擾問題。具OIS鏡頭模組架構在傳統VCM AF的基礎下共用驅動磁石,驅動磁石除了與驅動線圈作用推動鏡頭於Z軸方向運動又與平移線圈作用產生平移X、Y軸的推力。若要降低磁干擾,因空間限制大多直觀的削減相鄰邊驅動磁石尺寸,此舉雖說磁場干擾降低但也削減推力(驅動力)尤其是平移推力,推力下降等同降低性能增加了功耗。小型化之多OIS鏡頭模組其具備足夠驅動力的需求是恆定的,因此具低磁干擾之多鏡頭攝像模組如何在最有限的空間內實踐便是各家廠商努力的目標。
本發明主要提供一種無須複雜結構設計即可簡易降低磁干擾之小型化多鏡頭攝像模組。無論傳統VCM AF或包含具OIS的鏡頭模組,利用鏡頭驅動裝置磁場本身的特性配置來降低磁場間的相互干擾,並降低相鄰鏡頭間受磁場干擾所衍伸出的不穩定偏移,提升鏡頭模組調校上穩定度,拉近相鄰鏡頭模組之間的距離,確保手機內部空間有效配置,在同樣的功耗下獲得較佳的磁干擾表現。
為達上述目的,本發明提供一種多鏡頭攝像模組,其至少包含相鄰配置的一第一鏡頭模組與一第二鏡頭模組,於該第一鏡頭模組與該第二鏡頭模組之間具有一間隔,此間隔之距離中心稱為相鄰面。該相鄰面兩側分別是該第一鏡頭模組與該第二鏡頭模組;該第一鏡頭模組與該第二鏡頭模組分別各定義有相互垂直之一X軸、一Y軸以及一Z軸方向;該第一鏡頭模組與該第二鏡頭模組各具有一攝像光軸平行於該Z軸;其中,該第一鏡頭模組及該第二鏡頭模組兩者各別包括有:一上蓋,係包括一穿孔;一框體,位於該上蓋內並於其內部形成一容置空間;一鏡頭,係設置於該框體內部之該容置空間內;至少一彈性元件,結合於該框體上,該至少一彈性元件可用於限制該鏡頭於該容置空間內沿該攝像光軸方向位移;一第一驅動系統,係包括:一驅動線圈、以及複數驅動磁石;其中,該驅動線圈係結合於該鏡頭之外圍,並與結合於該框體內之該複數驅動磁石相對應,提供該Z軸方向之推力;其中,該複數驅動磁石係包括:相互對應之兩主驅動磁石及至少一副驅動磁石;並且,該第一鏡頭模組與該第二鏡頭模組於該相鄰面處是設置該副驅動磁石。
於一實施例中:該第一鏡頭模組與該第二鏡頭模組於該相鄰面處是各自設置至少一個該副驅動磁石;各該副驅動磁石分別具有一個與該攝像光軸平行的中心軸,且各該中心軸間隔有一距離;
位於該相鄰面處之各該副驅動磁石其彼此沿著該相鄰面且隔著該相鄰面交錯排列;位於該相鄰面處之各該副驅動磁石投影至該相鄰面之投影,其中至少一副驅動磁石於該相鄰面上的投影是具有一相對邊之邊長不相同的構形。
於一實施例中,該第一鏡頭模組及該第二鏡頭模組兩者至少其中之一更包括一第二驅動系統,該第二驅動系統包括:一電路板,至少兩平移線圈設置於該電路板上且與該複數驅動磁石相對應,提供平移軸向之推力;複數條懸吊線,係分別具有彈力懸吊以及導電之特性,且該些懸吊線係分別將該框體、該鏡頭、該彈性元件一併彈性懸吊於該電路板之正上方;以及一外部電路,係結合於該框體下方,並與該電路板做電性連接,且該外部電路更包括有一影像感測元件;其中,該鏡頭更包括有:一透鏡組、以及一鏡頭承載座;其中,於該透鏡組係設置於該鏡頭承載座中央處,並與該鏡頭承載座呈同步位移。
於一實施例中,該外部電路更包括至少有一感測器;並且,該第一鏡頭模組及該第二鏡頭模組兩者至少其中之一更包括至少一感測磁石,其係設置於該鏡頭外,且對準該外部電路上之其中之一該感測器。
於一實施例中,位於該相鄰面處之該副驅動磁石之體積至少小於屬於同一鏡頭模組且位於較遠離該相鄰面且和該副驅動磁石相對應的另一副驅動磁石的體積,而位於較遠離該相鄰面且和該副驅動磁石相對應的該另一副驅動磁石的體積則可以是小於、等於或是大於該主驅動磁石的體積。
於一實施例中,位於該相鄰面處且具有不相同之相對邊邊長的該副驅動磁石,其該相對邊的線段兩端是由至少一個斜線段、弧線段或直角線段來加以延伸連接。
於一實施例中,位於該相鄰面處且具有不相同之相對邊邊長的該副驅動磁石,其該相對邊之線段長度差異大於20%。
於一實施例中,複數該副驅動磁石其彼此沿著該相鄰面且隔著相鄰面交錯排列的方式是部分重疊。
於一實施例中,位於該相鄰面兩側之複數該副驅動磁石,其磁化方向是相互不平行。
於一實施例中,該複數驅動磁石更包括至少一輔助磁石設置於該框體中;該輔助磁石是設置於該相鄰面處之該副驅動磁石及該主驅動磁石之間,且距離該主驅動磁石一預定寬度處。
於一實施例中,該輔助磁石位置配置超過該相鄰面處之該副驅動磁石的內側邊,並且,該輔助磁石與該主驅動磁石同極性朝向該鏡頭側。
於一實施例中,該輔助磁石是多極磁石。
於一實施例中,該輔助磁石具有一缺口,其磁化方向與該主驅動磁石相同。
於一實施例中,位於該相鄰面兩側之該第一鏡頭模組與該第二鏡頭模組,其兩者各自包含之該主驅動磁石與該相鄰面間的距離不同。
於一實施例中,位於該相鄰面之該副驅動磁石與主驅動磁石投影於相鄰面之投影是部分重疊。
於一實施例中,該副驅動磁石(或輔助磁石)與主驅動磁石投影於X-Z面之投影是部分重疊。
於一實施例中,該第一鏡頭模組與該第二鏡頭模組兩者其中之一所包含之該主驅動磁石,其於鄰近該相鄰面的末端是以下其中之一:細長條構形、高度或厚度漸變構形。
於一實施例中,該第一鏡頭模組與該第二鏡頭模組兩者其中之一所包含之該主驅動磁石,其投影至X-Z面之投影包含一相對邊長度不等長線段,依光軸一分為二該主驅動磁石所包含之該相對邊不等長的線段長度差異大於10%。
於一實施例中,該複數驅動磁石更包括至少一輔助磁石設置於該框體中;該輔助磁石是設置於主驅動磁石對稱中線上的相鄰面側。
於一實施例中,該相鄰面兩側之輔助磁石與副驅動磁石兩者與攝像光軸平行之中心軸投影於相鄰面可以是重疊。
於一實施例中,同屬一個鏡頭且位於較遠離該相鄰面和該相鄰面輔助磁石相對應的位置可以是同為設置輔助磁石於框架,或設置輔助磁石於鏡頭上與感測器相對應或為一缺口不設置輔助磁石。
10、10a、20、50、60、91、92、93、94、95、96、97‧‧‧鏡頭模組
100‧‧‧相鄰面
12‧‧‧角落型驅動磁石
11,121,122,21,22,653,912,913,922,923,924‧‧‧副驅動磁石
13、23、552、652、911、921、931‧‧‧主驅動磁石
231‧‧‧延伸部
2201、1213,1223、1213a‧‧‧上邊
2202、1214,1224、1214 a‧‧‧下邊
2203,2204、1212、1222‧‧‧斜線段
1211、1221、2200‧‧‧中心軸
1215、1225、2205、2206‧‧‧弧線段
1216、1226、2207、2208‧‧‧直角線段
24、553、932‧‧‧輔助磁石
12191、12192、12291、12292、2291、2292‧‧‧小磁石
31,41,51,61‧‧‧上蓋
311,411‧‧‧穿孔
32,42,52,62‧‧‧框體
321,421,521,621‧‧‧定位片
33,43,53,63‧‧‧鏡頭
331,431,531,631‧‧‧鏡頭承載座
34,44,341,441,54,541,64,641‧‧‧彈性元件
35,45,55,65‧‧‧第一驅動系統
351,451,551,651‧‧‧驅動線圈
36,46,66‧‧‧第二驅動系統
361,461,661‧‧‧電路板
362,363,364,365,462,463,464,465,662,663,664,665‧‧‧平移線圈
37,47,67‧‧‧懸吊線
38,48,68‧‧‧連接板
39‧‧‧感測器磁石
301,401‧‧‧外部電路
302,402‧‧‧影像感測元件
303,304,305,403,404‧‧‧感測器
300,400,611‧‧‧底板
425‧‧‧缺口空間
426‧‧‧減震介質
80‧‧‧減震介質塗佈設備
81‧‧‧探針
圖一為本案申請人自行開發的之多鏡頭攝像模組的其中一例,其揭示一多鏡頭攝像模組相鄰OIS驅動裝置的基本架構。
圖二為如圖一所示之本發明申請人自行開發的之多鏡頭攝像模組的驅動磁石與磁場一示意圖。
圖三A、圖三B及圖三C,分別為本發明多鏡頭攝像模組之鏡頭模組之第一較佳實施例(由雙鏡頭驅動裝置表示)的立體爆炸圖、組合上視圖以及組合剖面圖。
圖三D、及圖三E,分別為如圖三A所示之本發明多鏡頭攝像模組的第一較佳實施例中,其相鄰兩鏡頭模組之驅動磁石配置實施例的立體示意圖、及驅動磁石在該相鄰面上之投影的示意圖。
圖四A為本發明多鏡頭驅動模組之第二較佳實施例的驅動磁石配置方式的示意圖。
圖四B為如圖四A所示本發明多鏡頭驅動模組之第二較佳實施例與如圖一所示之實施例,其兩者進行因磁干擾造成光軸偏移之測試所得到的曲線示意圖。
圖五為如圖四A所示本發明多鏡頭驅動模組之第二較佳實施例與如圖三E所示之第一較佳實施例,其兩者進行因磁干擾造成光軸偏移之測試所得到的曲線示意圖。
圖六為本發明多鏡頭攝像模組的第三較佳實施例,其相鄰兩鏡頭模組之驅動磁石配置實施例的立體示意圖。
圖七為如圖四A所示之本發明多鏡頭攝像模組的第二較佳實施例,其相鄰兩鏡頭模組之驅動磁石配置實施例的立體示意圖。
圖八A至圖八F,分別為本發明多鏡頭攝像模組中,其相鄰兩鏡頭模組位於相鄰面側之副驅動磁石投影於該相鄰面上的數種不同實施例態樣的
示意圖。
圖九A為本發明多鏡頭攝像模組的一第四較佳實施例上視示意圖,其第一鏡頭模組是具有角落型磁石的鏡頭模組。
圖九B是如圖九A所示之多鏡頭攝像模組的第四較佳實施例,其位於該相鄰面處之複數副驅動磁石投影至相鄰面之投影的A-A視角示意圖。
圖九C至圖九G,分別為本發明多鏡頭攝像模組中,其第一鏡頭模組是具有角落型磁石的鏡頭模組,且相鄰兩鏡頭模組位於相鄰面側之副驅動磁石投影於該相鄰面上的數種不同實施例態樣的示意圖。
圖十A為本發明多鏡頭攝像模組的一第五較佳實施例的上視示意圖。
圖十B為如圖十A所示本發明多鏡頭驅動模組之第五較佳實施例,其在第二鏡頭模組有增設輔助磁石及沒輔助磁石,兩者進行因磁干擾造成光軸偏移之測試所得到的曲線示意圖。
圖十一為本發明多鏡頭攝像模組的一第六較佳實施例,其相鄰兩鏡頭模組之驅動磁石配置實施例的立體示意圖。
圖十二為本發明多鏡頭攝像模組的一第七較佳實施例的上視示意圖。
圖十三A至圖十三D,分別為本發明多鏡頭攝像模組中的第八至第十一較佳實施例,其相鄰兩鏡頭模組之驅動磁石配置實施例的立體示意圖。
圖十四為本發明多鏡頭攝像模組中的第十二較佳實施例,其相鄰兩鏡頭模組位於相鄰面側之副驅動磁石投影於該相鄰面上的實施例態樣的示意圖。
圖十五A至圖十五C,分別為本發明之多鏡頭攝像模組,其鏡頭模組的數量可為大於2個且以不同方式配置的數個實施例上視示意圖。
圖十六A及圖十六B分別為本發明多鏡頭攝像模組中的第十三較佳實施例,其相鄰兩鏡頭模組之的立體爆炸圖以及驅動磁石配置上視示意圖。
圖十七A、圖十七B及圖十七C分別為本發明多鏡頭攝像模組的第十四、第十五及第十六較佳實施例,其具有相鄰三鏡頭模組的驅動磁石配置實施例的上視示意圖。
圖十八A、圖十八B及圖十八C分別為本發明多鏡頭攝像模組的第十七較佳實施例的立體爆炸圖、部分元件側視圖以及E-E剖面圖。
圖十九A及圖十九B分別為本發明多鏡頭攝像模組的第十七較佳實施
例中,其第二鏡頭模組進行點膠製程的側視示意圖與立體示意圖。
為了能更清楚地描述本發明所提出之多鏡頭攝像模組的具體結構、作動方式及功效,以下將配合圖式詳細說明之。
具OIS光學影像穩定系統的鏡頭模組結構不外乎為四角落驅動磁石或四邊驅動磁石設於固定框架中藉由懸吊線懸吊於基座上。對於多鏡頭攝像模組來說,相鄰的兩鏡頭模組往往因相對距離近,兩鏡頭模組內驅動磁石相互產生磁場干擾,造成光軸偏位、光軸傾斜等問題。
圖一為本案申請人自行開發的之多鏡頭攝像模組的其中一例,其揭示一多鏡頭攝像模組相鄰OIS驅動裝置的基本架構,其相鄰兩鏡頭模組10、20之間具有一個間隔,此間隔之距離中心稱為相鄰面100。利用相鄰兩鏡頭模組10、20之相鄰面100的空間,經磁場總項配置設置體積較小的第二、第三副驅動磁石121、122、22提供X、Y軸磁場迴授及光軸方向(亦即Z軸方向)推力與平移推力並改善磁場干擾。其相鄰兩鏡頭模組10、20之相鄰面100一側設置屬於第一鏡頭模組10之體積較小的兩副驅動磁石(第二、第三副驅動磁石121、122);相鄰面100之另一側則為屬於第二鏡頭模組20之至少一個體積較小的副驅動磁石22。位於相鄰面100兩側的第二、第三副驅動磁石121、122、22是交錯排列;亦即,位於相鄰面100兩側且分別屬於兩鏡頭模組10、20的複數副驅動磁石121、122、22在該相鄰面100上的投影不完全重疊或甚至完全無重疊。
請參閱圖二,為如圖一所示本案申請人自行開發之多鏡頭驅動裝置的驅動磁石示意圖。同時參考圖一與圖二,由於磁石間距離越近相互作用力越大,相鄰面100兩側之副驅動磁石121、122、22之間具有一作用力;主驅動磁石13、23與相鄰面100另一側鏡頭模組之副驅動磁石121、122、22同樣具有一作用力。因此,相鄰兩鏡頭模組10、20距離越近,驅動磁石13、23、121、122、22間產生的作用力也越大。
具OIS鏡頭驅動裝置在傳統VCM AF的基礎下共用驅動磁石,除了與位於鏡頭上之Z軸驅動線圈作用推動鏡頭產生Z軸方向運動之外,又可與下方電路板上所設置的平移線圈作用產生於X、Y軸的平移推力,
推動鏡頭產生平移運動。OIS鏡頭驅動裝置藉由複數條懸吊線將VCM AF懸吊,也就是將框架、彈性元件及複數驅動磁石及鏡頭彈性懸吊於該電路板之正上方。因此,相鄰兩OIS鏡頭模組距離越近,驅動磁石間產生的作用力也越大。相鄰兩OIS鏡頭模組中之驅動磁石磁場的相互影響,使鏡頭模組內之VCM AF部分於懸吊線彈性範圍中位移,連帶影響攝像光軸產生偏移。
無論VCM AF或包含具OIS鏡頭模組磁場場形交錯複雜的關係,總項磁場為驅動磁石特性總合;一般來說,驅動磁石的特性會與驅動磁石之尺寸、距離、位置、磁極及磁力等等相關。一方面希望加大驅動磁石使其與線圈作用產生電磁力越大越好,另一方面又希望縮減驅動磁石尺寸使磁場干擾越小越好。若不改變鏡頭模組原有空間規劃,依照目前有限的手機內部空間,鏡頭模組內之驅動磁石的原始配置架構難以突破現況磁干擾,取得磁場干擾小且推力強的平衡設計。
本發明多鏡頭攝像模組在最佳磁場平衡規劃下,運用磁石間相互作用力的平衡方式降低磁場干擾。無論是AF或具OIS多鏡頭攝像模組的驅動裝置總項磁場即可獲得平衡。更使具OIS的多鏡頭攝像模組在原有設計規劃機構間距下的相鄰鏡頭模組間磁場相互干擾量降低、及穩定驅動磁石因距離過近導致光軸位移變異大的問題,更進一步獲得較佳的推力以降低功耗需求。
為達上述之目的,本發明之多鏡頭攝像模組的特徵在於:包括有相鄰設置之至少兩鏡頭模組,且相鄰兩鏡頭模組之間具有一個間隔,此間隔之距離中心稱為相鄰面。各該鏡頭模組分別具有複數個驅動磁石,且定義有相互垂直之X、Y、Z軸方向;其中,鏡頭模組的一攝像光軸與該Z軸平行,且該相鄰面係與由Y與Z軸所定義的平面平行。位於該相鄰面兩側之複數副驅動磁石投影至相鄰面的投影圖,包含至少一副驅動磁石其於Y軸或Z軸方向上之相對之邊長不相同,且兩相對邊為至少一個斜線、弧或直線段連接而成的構形。複數副驅動磁石各自具有一個與攝像光軸平行的中心軸,由X軸方向觀察中心軸間有一距離W,複數副驅動磁石其彼此沿著Y軸方向隔著相鄰面交錯排列。
參閱圖三A、圖三B及圖三C,分別為本發明多鏡頭攝像模
組之鏡頭模組之第一較佳實施例(由雙鏡頭驅動裝置表示)的立體爆炸圖、組合上視圖以及組合剖面圖。該多鏡頭攝像模組包括至少有一相鄰面100的一第一鏡頭模組10以及一第二鏡頭模組20。相鄰之第一鏡頭模組10以及第二鏡頭模組20兩者之間具有一個間隔,此間隔之距離中心就稱為該相鄰面100。該第一鏡頭模組10與該第二鏡頭模組20分別各具有一攝像光軸,且定義有相互垂直之一X軸、一Y軸以及一Z軸方向,其中Z軸與該攝像光軸平行,且該相鄰面100與由Y軸及Z軸所定義的平面兩者平行。於本實施例中,該第一鏡頭模組10與該第二鏡頭模組20係分別各包括有下列元件中的至少一部份元件:一上蓋31,41、一框體32,42、一鏡頭33,43設置於一鏡頭承載座331,431上、至少一彈性元件(包括上彈性元件34,44及下彈性元件341,441)、一第一驅動系統35,45、一第二驅動系統36,46、複數條懸吊線37,47、一連接板38,48、以及一感測器磁石39。
該上蓋31,41係包括一穿孔311,411。該框體32,42係位於該上蓋31,41內並於其內部形成一容置空間。該鏡頭33,43連同鏡頭承載座331,431係設置於該框體32,42內部之該容置空間內。該至少一彈性元件(包括上彈性元件34,44及下彈性元件341,441)係結合於該框體32,42的上、下端面上,並搭配位於該框體32,42下端面的定位片321,421將下彈性元件341,441夾合定位於該框體32,42,用於限制該鏡頭33,43(連同鏡頭承載座331,431)於該容置空間內沿該攝像光軸方向的位移。
該第一驅動系統35,45係包含:至少一驅動線圈351,451、一組對應之兩主驅動磁石13,23以及至少兩副驅動磁石11,121,122,21,22。其中,該驅動線圈351,451係結合於該鏡頭33,43之鏡頭承載座331,431的外圍,並與結合於該框體32,42內之該複數驅動磁石(包括主驅動磁石13,23及副驅動磁石11,121,122,21,22)相對應,提供Z軸方向的驅動力,以作為AF的驅動裝置。
該第二驅動系統36,46係至少包括了:一電路板361,461、至少兩平移線圈362,363,364,365,462,463,464,465。該至少兩平移線圈362,363,364,365,462,463,464,465是設置於該電路板361,461上且分別與該兩主驅動磁石13,23及該至少兩副驅動磁石11,121,122,21,22對應,提供X軸及Y軸之平移軸向的推力,以作為OIS的驅動裝置。
該連接板38,48係分別與該電路板361,461以及一外部電路301,401做電性連接。該外部電路301,401係位於該框體32,42下方,其上設置包括有一影像感測元件302,402。至少一感測器303,304,305,403,404設置在連接板38,48或外部電路301,401上。複數條懸吊線37,47係分別具有彈力懸吊以及導電之特性,且該些懸吊線係分別將該框體32,42、該鏡頭承載座331,431(連同鏡頭33,43)、該彈性元件34,341,44,441一併彈性懸吊於該電路板361,461之正上方。該感測器磁石39係設置於該鏡頭33外圍一側邊,且對準該外部電路301上之其中之一該感測器304。
於本實施例中,該至少兩副驅動磁石包括:副驅動磁石11、121、122、21、22。該第一鏡頭模組10與該第二鏡頭模組20係相鄰且具有該相鄰面100於該兩鏡頭模組10、20之間。該第一鏡頭模組10鄰近該相鄰面100的兩副驅動磁石121、122與該第二鏡頭模組20鄰近該相鄰面100的該副驅動磁石22,其三者彼此沿著雙鏡頭驅動裝置Y軸方向上是隔著相鄰面100交錯排列。亦即,該三個副驅動磁石121、122、22雖然是分設於該相鄰面100的兩側,但是,該三個副驅動磁石121、122、22投影至相鄰面100的投影,其三者彼此沿著Y軸方向隔著相鄰面100是以副驅動磁石121、副驅動磁石22、副驅動磁石122的順序交錯排列,使得該三個副驅動磁石121、122、22投影至相鄰面100的投影是不完全重疊。該驅動線圈351,451係為一環型單極線圈也可以是一環型雙極線圈、或一平板雙極線圈、或是一具線圈電路之印刷電路板(PCB)其中之一。
請參閱圖三D、及圖三E,分別為如圖三A所示之本發明多鏡頭攝像模組的第一較佳實施例中,其相鄰兩鏡頭模組之驅動磁石配置實施例的立體示意圖、及驅動磁石在該相鄰面上之投影的示意圖。如圖三E所示,第二鏡頭模組20於相鄰面100所設置之至少一個副驅動磁石22,其投影至相鄰面100之投影圖包含至少一組相對邊(亦即,上邊2201與下邊2202)在Y軸方向上的邊長不等長。副驅動磁石22兩側構形由該組相對邊(上邊2201與下邊2202)於Y軸方向上的線段端點利用至少一個斜線段2203,2204(以下亦稱為斜邊)延伸連接而成,藉此可讓該副驅動磁石22成為於Y軸方向上之一中間部分較高、兩端高度較矮的類似梯形體的形狀。於本實施例中,相對邊(上邊2201與下邊2202)之兩者長度差異大於20%,
亦即,上邊2201的長度是小於下邊2202長度的80%。複數副驅動磁石121、122、22各自具有一個與攝像光軸(Z軸)平行的中心軸1211、1221、2200,由X方向觀察在該相鄰面100上的投影,位於中間之副驅動磁石22的中心軸2200和另兩副驅動磁石121、122之中心軸1211、1221之間分別有一距離W。複數副驅動磁石121、122、22其彼此沿著相鄰之鏡頭模組於Y軸方向上隔著相鄰面100交錯排列,複數交錯排列的副驅動磁石121、122、22在該相鄰面100上的投影可以是彼此部分重疊或不重疊、但肯定不會完全重疊。副驅動磁石22長度大於副驅動磁石121、122。於本實施例中,副驅動磁石22上、下邊2201、2202的邊長兩者長度不相同,上邊2201長度較短保留中心軸2200附近區域,使副驅動磁石22與驅動線圈451(另見圖三A)作用保有Z軸方向推力。並且,因讓開兩側長度空間設置由斜邊(亦即斜線段2203,2204)處所構成的斜角缺口,減少副驅動磁石22磁場,進而降低副驅動磁石22與第一鏡頭模組10相鄰面100端副驅動磁石121、122之間的作用力干擾;藉由調整相對邊(上邊2201與下邊2202)的邊長差異比例取得相互作用力的平衡。一旦磁干擾降低,便更有空間規畫來提升平移推動力,拉長延伸設計副驅動磁石22靠近下方所設之平移線圈462的磁石長度(亦即,下邊2202長度)及其與平移線圈462之間的作用長度,例如但不侷限於:趨近一個三角形體的構形,以獲得較佳的平移推動力及達到較低功耗的表現。
基本上,處於外磁場的磁石會感受到外磁場施加的力矩,促使磁石的磁矩與外磁場呈相同方向。兩個磁石的異性磁極相互吸引之間磁場與磁石的磁矩呈相同方向,且其磁場較強烈。驅動磁石間的磁場複雜,特別是在磁石近場附近。本案運用磁場間作用力分配磁場能量,獲取較佳的平衡作用力降低磁場間的相互干擾。
請參閱圖四A為本發明多鏡頭驅動模組之第二較佳實施例的驅動磁石配置方式的示意圖。基於上述說明,在第一鏡頭模組10鄰近相鄰面100之兩副驅動磁石121、122相對側分別各具有一斜線段(亦稱為斜邊)1212、1222構形條件下,藉由相鄰之第二鏡頭模組20鄰近相鄰面100之副驅動磁石22的相對邊(上邊2201與下邊2202)兩者線段a及a1等長度或不等長度,了解副驅動磁石22相對邊(上邊2201與下邊2202)長度不等
長的構形,其總項磁場作用力對於多鏡頭攝像模組磁干擾的影響。於本實施例中,不等長的相對邊(上邊2201與下邊2202)之線段a及a1兩者長度差異大於線段a的20%,線段兩端以斜線段2203,2204延伸連接形成缺角。並且,於本實施例中,該副驅動磁石22除了上邊2201與下邊2202之線段a及a1兩者長度差異大於20%之外,該副驅動磁石22的左、右兩旁側邊的高度與該副驅動磁石22中央最高處的高度差異也大於兩旁側邊高度的20%。
請參閱圖四B,為如圖四A所示本發明多鏡頭驅動模組之第二較佳實施例與如圖一所示之實施例,其兩者進行因磁干擾造成光軸偏移之測試所得到的曲線示意圖。由圖四B的測試曲線圖可知,如圖四A所示之副驅動磁石22構形之光軸位移量與兩鏡頭模組10、20間距離關係圖。以光軸位移0um為未受任何干擾狀態,可以看出曲線E1(副驅動磁石22相對邊如圖四A所示上、下邊2201、2202般不等長)的磁石構形與曲線E2(副驅動磁石22的相對邊如圖一所示般上、下邊等長)的構形,其光軸受磁場干擾影響的位移程度。曲線E1(相對邊不等長)明顯光軸受磁場干擾的位移量小於曲線E2(副驅動磁石22相對邊等長),也就是說曲線E1(相對邊不等長)的副驅動磁石22上邊2201邊長的縮減,保留中心軸2200附近體積有效降低兩端與相鄰之第一鏡頭模組10之副驅動磁石121、122對衝的磁場作用力,使其兩側投影重疊端產生的作用力得以藉由斜線段2203、2204構形漸進下降。由圖四B上相鄰鏡頭模組間距1.2mm觀察,如圖四A所示的配置,其光軸受磁場干擾的位移由81μm下降至26μm,光軸位移量降低55μm表示有著4倍改善。因此,兩相鄰鏡頭模組的驅動裝置相鄰面端之複數副驅動磁石中,若至少包含一個具有缺角的副驅動磁石構形時,即可降低磁干擾;並且,此缺角構形更降低兩相鄰鏡頭模組距離調校上的敏感度,缺角具斜線段構形使副驅動磁石22在中心軸2200附近的高度較高,能保有足夠的能量維持向上推力;且副驅動磁石22下邊2202的邊長較長更保有能量維持平移推力。
請參閱圖五,為如圖四A所示本發明多鏡頭驅動模組之第二較佳實施例與如圖三E所示之第一較佳實施例,其兩者進行因磁干擾造成光軸偏移之測試所得到的曲線示意圖。由圖五之曲線圖可瞭解,如圖四A
所示副驅動磁石121、122相對側設置之構形、以及如圖三E所示之副驅動磁石121、122相對側設置之構形,其兩者各自在其光軸位移量與兩鏡頭模組10、20之間距離的關係圖。於圖五中的曲線D1,其測試條件的磁場配置是如圖四A所示般,在第二鏡頭模組20之副驅動磁石22兩端具斜邊(斜線段2203、2204)構形的相同條件下,藉由改變第一鏡頭模組10之副驅動磁石121、122之相對邊(上、下邊1213,1214,1223,1224)線段長b1及b為等長(如圖三E所示)或不等長(如圖四A所示)的兩種構形,來了解副驅動磁石121、122相對邊(上、下邊1213,1214,1223,1224)構形其對於總項磁場作用力與多鏡頭攝像模組磁干擾的影響。副驅動磁石121、122之相對邊(上、下邊1213,1214,1223,1224)不等長的線段b1及b之長度差異大於20%,以斜線段1212、1222連接相對邊形成缺角。由圖五可以看出,曲線D1(如圖四A所示副驅動磁石121、122相對邊不等長)的磁石構形與曲線D2(如圖三E所示副驅動磁石121、122相對邊等長)其光軸受磁場干擾影響的位移程度。曲線D1(副驅動磁石121、122相對邊不等長)明顯光軸受磁場干擾的位移量小於曲線D2(相對邊等長)。由距離位置1.2μm觀察,光軸受磁場干擾的位移由44μm降至26μm有1.7倍的改善幅度,也就是說曲線D1所示,藉由第一鏡頭模組10之副驅動磁石121、122上邊1213、1223長度的縮減,可減少作用面積並有效降低與其相鄰之第二鏡頭模組20之副驅動磁石22兩端之間磁場的相互作用力。
請參閱圖六,為本發明多鏡頭攝像模組的第三較佳實施例,其相鄰兩鏡頭模組之驅動磁石配置實施例的立體示意圖。如圖六所示,相鄰之兩鏡頭模組10、20磁干擾最主要來自相鄰面100兩側的副驅動磁石121、122、22。複數個副驅動磁石121、122、22沿著Y軸方向隔著相鄰面100交錯排列,由X軸方向觀察其彼此中心軸隔著一距離W。本實施例與第一較佳實施例不同點在於,第二鏡頭模組20的副驅動磁石22為一長條柱體構形,而第一鏡頭模組10的副驅動磁石121、122則包含至少一缺角構形。各該副驅動磁石121、122投影至相鄰面100之投影會具有至少一相對邊(上、下邊1213、1214、1223、1224)的邊長不等長;並且,各該副驅動磁石121、122的具斜角構形是由相對邊(上、下邊1213、1214、1223、1224)的線段兩端利用至少一個斜線段1212、1222連接而成,相對邊(上、
下邊1213、1214、1223、1224)之線段長度差異大於20%。利用第一鏡頭模組10相鄰面100端之副驅動磁石121、122上、下邊1213、1214、1223、1224長度不相同的配置、再藉由一斜線段1212、1222連接之構形,可減少磁能及降低磁場間作用力。副驅動磁石121、122上邊1213、1223長度較短,讓開靠近副驅動磁石22的方向區域、並用一斜線段1212、1222連接形成一缺角,使靠近副驅動磁石22區域的面積縮減,可降低之間的磁場干擾;同時,副驅動磁石121、122並保留外側靠近主驅動磁石13的區域具有較高的高度,令其與驅動線圈作用保有Z軸方向推力強度;此外,副驅動磁石121、122下邊1214、1224保留長度較長更可加大與平移線圈作用產生的X-Y軸方向平移推動力。
請參閱圖七,為如圖四A所示之本發明多鏡頭攝像模組的第二較佳實施例,其相鄰兩鏡頭模組之驅動磁石配置實施例的立體示意圖。如圖七所示之本第二較佳實施例與第一較佳實施例不同點在於,兩鏡頭模組10、20的副驅動磁石121、122、22各自投影至相鄰面100之投影分別各具有至少一相對邊(上、下邊1213、1214、1223、1224、2201、2202)邊長不等長,副驅動磁石121、122及22的斜角構形分別都是藉由其相對邊(上、下邊1213、1214、1223、1224、2201、2202)的線段兩端利用至少一個斜線段1212、1222、2203、2204連接而成,且相對邊(上、下邊1213、1214、1223、1224、2201、2202)之線段長度差異大於20%。利用副驅動磁石121、122、22上下邊長度不相同的配置,副驅動磁石121、122及副驅動磁石22在相鄰面100上投影的重疊端各自藉由一斜線段1212、1222、2203、2204連接之缺角構形,降低副驅動磁石121、122、22磁場間作用力。上邊1213、1223、2201線段相對長度較短,可減少副驅動磁石121、122、22重疊區域的面積、降低作用力、進而改善相鄰鏡頭模組10、20間的磁場干擾。副驅動磁石121、122、22下邊1214、1224、2202長度較長,更可加大與下方電路板上所設置之平移線圈作用產生的推動力。本實施例之多鏡頭攝像模組在相同的功耗下磁干擾獲得顯著改善。
請參閱圖八A至圖八F所示,分別為本發明多鏡頭攝像模組中,其相鄰兩鏡頭模組位於相鄰面側之副驅動磁石投影於該相鄰面上的數種不同實施例態樣的示意圖。於不同這些實施例態樣中,位於相鄰面處之
副驅動磁石121、122、22其投影至相鄰面的投影,都會包括至少一個副驅動磁石121、122、22其具有至少一相對邊(上、下邊1213、1214、1223、1224、2201、2202)的邊長不等長的形狀,並由至少一個斜線段、弧線段1215、1225、2205、2206或直角線段1216、1226、2207、2208來連接不同長度之上、下邊1213、1214、1223、1224、2201、2202的兩末端,進而構成具缺角構形的副驅動磁石121、122、22,且其相對邊(上、下邊1213、1214、1223、1224、2201、2202)之線段長度差異大於20%。
請參閱圖九A及圖九B;其中,圖九A為本發明多鏡頭攝像模組的一第四較佳實施例上視示意圖,其第一鏡頭模組是具有角落型磁石的鏡頭模組。圖九B是如圖九A所示之多鏡頭攝像模組的第四較佳實施例,其位於該相鄰面處之複數副驅動磁石投影至相鄰面之投影的A-A視角示意圖。如圖九A及圖九B所示,本發明所揭露之具至少一相對邊(上下邊)邊長不等長之副驅動磁石的缺角架構,同樣可以運用於包含角落型驅動磁石12之鏡頭模組10a。本案多鏡頭攝像模組第四較佳實施例與第一較佳實施例不同在於,第一鏡頭模組10a於相鄰面100處包含角落型驅動磁石12配置,也就是說位於該相鄰面100兩側、且分別屬於兩不同鏡頭模組10a、20的至少一個副驅動磁石12、22,其磁化方向相互不平行。參閱圖九B,副驅動磁石22上邊2201長度a較短,讓開兩端靠近角落型驅動磁石12方向的邊長,保留靠近中心軸的區域長度,使其中央有較大高度,可保有與Z軸方向之驅動線圈作用較大面積,確保Z軸方向的推力。副驅動磁石22下邊2202長度a1保留長度較長,提高與下方電路板上的平移線圈作用所產生的推動力。也就是說,減少副驅動磁石22在Y軸方向上之兩末端的作用面積,有效降低磁石兩端與相鄰角落型驅動磁石12對衝的磁場作用力。
請參閱圖九C至圖九G,分別為本發明多鏡頭攝像模組中,其第一鏡頭模組是具有角落型磁石的鏡頭模組,且相鄰兩鏡頭模組位於相鄰面側之副驅動磁石投影於該相鄰面上的數種不同實施例態樣的示意圖。圖九C及圖九D和圖九B所示實施例的不同點在於,於圖九C及圖九D中,第二鏡頭模組20位於相鄰面處之副驅動磁石22為一個具相對邊(上、下邊2201、2202)長度相同的長矩形。而第一鏡頭模組10a位於相鄰面處之兩側為角落型驅動磁石12,其利用朝向該副驅動磁石22的那個面的上、
下邊1213a、1214a長度不相同的配置,於與第二副驅動磁石22鄰近的方向做一個缺角結構來降低磁場間作用力。也就是說,第一鏡頭模組10a位於相鄰面處之兩側為角落型驅動磁石12朝向該副驅動磁石22的那個面的上邊1213a的邊長b較短,取消靠近第二副驅動磁石22的方向區域、並保留外側靠近主驅動磁石的區域,且避開驅動磁石12及22邊界區域磁場較大位置;同時,角落型驅動磁石12下方保留長度b1較長,以維持其與平移線圈作用產生的推動力。
圖九E、圖九F、圖九G與圖九B所示實施例的不同點在於,於圖九E、圖九F及圖九G中,相鄰面上之第二鏡頭模組20的第二副驅動磁石22以及第一鏡頭模組10a之兩個角落型驅動磁石12,其三者皆利用相對邊(上、下邊)長度不相同的配置,分別於第二副驅動磁石22與角落型驅動磁石12鄰近端配置至少一缺角,以降低磁場間作用力干擾。也就是說,角落型驅動磁石12朝向第二副驅動磁石22之端是上邊的長度b較短,消減靠近第二副驅動磁石22的方向區域的體積,保留外側靠近主驅動磁石23的區域體積。同時,第二副驅動磁石22上邊長度a較短,讓開兩端靠近角落型驅動磁石12方向的邊長,保留靠近中心軸的區域長度,避開驅動磁石12及22邊界區域磁場較大位置。角落型驅動磁石12下邊保留長度b1較長,維持與平移線圈作用產生的推動力。換言之,副驅動磁石無論是長條形或角落型12或22,其投影至相鄰面之投影會具有至少一相對邊(上、下邊)邊長不等長,並藉由至少一個斜線段、弧線段或直角線段連接而成的缺角構形,都可以降低磁干擾。
圖十A為本發明多鏡頭攝像模組的一第五較佳實施例的上視示意圖,其相鄰兩鏡頭模組包含第一鏡頭模組10及第二鏡頭模組20。於兩鏡頭模組10、20、的相鄰面處,複數副驅動磁石121、122、22其彼此沿著Y軸方向隔著相鄰面交錯排列,且各自具有一個與攝像光軸平行的中心軸。由X軸方向觀察複數副驅動磁石121、122、22之中心軸間有一距離W(此圖未標示),且複數副驅動磁石121、122與副驅動磁石22在X軸方向上的投影可以是彼此部分重疊。第二鏡頭模組20的主驅動磁石23與副驅動磁石22間之距離W1大於第一鏡頭模組10的主驅動磁石13與副驅動磁石121、122之距離W3,使磁力線得以通過。本第五較佳實施例於具有較大
W1距離之第二鏡頭模組20,在其相鄰面之副驅動磁石22與主驅動磁石23間,也就是主驅動磁石23旁距離一寬度W2處額外加一個體積較小的輔助磁石24於固定框(框體)靠近相鄰面方向,位置配置超過副驅動磁石22內側邊緣。利用輔助磁石24的配置調整相鄰兩鏡頭模組10、20之間相互作用力。相鄰之兩鏡頭模組10、20之主驅動磁石13、23與副驅動磁石11、121、122、21、22及輔助磁石24的同極性朝向各自鏡頭側。當兩鏡頭模組10、20距離不變時,主驅動磁石23的部分磁場會通過寬度W2空間,降低與輔助磁石24之間作用力干擾,有利於產品組裝。輔助磁石24與副驅動磁石22有一距離W4其可以是等於主驅動磁石23與副驅動磁石22間之距離W1、或是其他較佳配置距離。由於第二鏡頭模組20之輔助磁石24與第一鏡頭模組10距離較近,磁場作用力較強,輔助磁石24的磁力線通過W4空間與第一鏡頭模組10之複數驅動磁石13、121、122磁場作用,兩者間產生一作用力使之與相鄰面之副驅動磁石121、122、22之間作用力做平衡配置。其中,輔助磁石24與主驅動磁石13、23及副驅動磁石121、122、22間所產生的相互作用力決定於兩鏡頭模組10、20磁場之間磁干擾取向。
本發明藉由增加輔助磁石與缺角構形配置平衡作用力,降低磁場間的相互干擾。
請參閱圖十B,為如圖十A所示本發明多鏡頭驅動模組之第五較佳實施例,其在第二鏡頭模組有增設輔助磁石及沒輔助磁石,兩者進行因磁干擾造成光軸偏移之測試所得到的曲線示意圖。於圖十B中,曲線C為未配置輔助磁石之曲線,曲線C1則於第二鏡頭模組20相鄰面端主驅動磁石23旁空間外加至少一個輔助磁石24之曲線。相鄰之兩鏡頭模組10、20之主驅動磁石13、23與副驅動磁石11、121、122、21、22及輔助磁石24同極性朝向各自鏡頭側。光軸位移0(um)為未受干擾的狀態,由兩鏡頭模組10、20配置距離範圍觀測光軸位移結果:加入輔助磁石24後所得到的曲線C1確實磁場干擾相對較小,於相鄰兩鏡頭模組10、20距離1.2mm處曲線C1位移量為0(um);曲線C則光軸位移值為-39(um)。兩鏡頭模組10、20配置距離較近的近場位置,受到作用力影響所推動的光軸位移數值往正方向變化顯著,因此,在不改變相鄰之鏡頭模組之驅動裝置的尺寸架構下,增設至少一輔助磁石24使作用力增加,有助於平衡磁場作用力分配
降低相鄰兩鏡頭模組10、20間的磁干擾。
本發明中所述的輔助磁石24僅提供磁場平衡的作用,其主要目的並非是為了與驅動線圈作用提供推力、亦不影響原設計的推力平衡;換言之,用於推動鏡頭承載座移動之推力,主要是由主驅動磁石和驅動線圈互動所產生,無須依賴輔助磁石24與驅動線圈之間互動產生的推力,所以於設計上不需考慮輔助磁石24對於前述用於推動鏡頭承載座移動之推力的貢獻度多寡。輔助磁石24於設置上具有尺寸及公差不受限的特點,無需與主驅動磁石23等高或相同厚度。在輔助磁石24尺寸製作工藝的限制下,更可選擇不同磁能積來平衡作用力,並降低磁場干擾。由於尺寸上無需等同於其他驅動磁石11、121、122、13、21、22、23規格,因此配置輔助磁石24為一不受限於模組精密製程之具設計彈性及簡易降低磁干擾架構。配置較小的輔助磁石24使相鄰之兩鏡頭模組10、20磁干擾降低,使得複數副驅動磁石121、122、22更能加大體積或磁能積以增加X軸方向平移推力,進而降低鏡頭模組功耗。
請參閱圖十一,為本發明多鏡頭攝像模組的一第六較佳實施例,其相鄰兩鏡頭模組之驅動磁石配置實施例的立體示意圖。圖十一所示本發明第六較佳實施例與圖十A所示第五較佳實施例的不同處在於,圖十一所示本發明第六較佳實施例中的輔助磁石24為一多極性磁石。相鄰之兩鏡頭模組10、20的各驅動磁石其相同極性朝鏡頭側。輔助磁石24之磁化方向平行相鄰面與主驅動磁石23相同,與光軸垂直朝向鏡頭側。輔助磁石24與主驅動磁石23異極性相鄰,使第二鏡頭模組20之輔助磁石24與第一鏡頭模組10之複數驅動磁石13、121、122產生一作用力。第二鏡頭模組20之輔助磁石24與第一鏡頭模組10之複數驅動磁石13、121、122距離較近之間的磁場作用力較強,與副驅動磁石121、122、22三磁石之間的磁場作用力產生平衡力,進而降低相鄰兩鏡頭模組10、20相鄰所產生的磁干擾量。多極輔助磁石24與主驅動磁石13、23及副驅動磁石121、122、22間所產生的作用力決定兩鏡頭模組10、20磁場之間磁干擾取向。
請參閱圖十二為本發明多鏡頭攝像模組的一第七較佳實施例的上視示意圖。於第七較佳實施例中,相鄰之兩鏡頭模組10、20驅動磁石相同極性朝向各自鏡頭處,其與圖十A所示第五較佳實施例的不同處在
於,第二鏡頭模組20上之輔助磁石24為一具缺口的設計。為使相鄰之兩鏡頭模組10、20於有限的間距中能有更多的磁場作用力分配運用,本發明之輔助磁石24位置往相鄰面的方向移動靠近,使輔助磁石24超過副驅動磁石22內圍表面、並更靠近第一鏡頭模組10之複數驅動磁石13、121、122,令其之間產生的作用力更強。利用第二鏡頭模組20上懸吊線的空間,其中輔助磁石24上讓開一缺口使懸吊線通過,有效利用OIS鏡頭模組結構空間,取得較多磁場作用力,平衡磁場間的磁場干擾。輔助磁石24之磁化方向與主驅動磁石23相同,同極性朝向鏡頭處。此第二鏡頭模組20之輔助磁石24與副驅動磁石121、122、22間之磁場作用力平衡,進而改善磁干擾。
請參閱圖十三A至圖十三D,分別為本發明多鏡頭攝像模組中的第八至第十一較佳實施例,其相鄰兩鏡頭模組之驅動磁石配置實施例的立體示意圖。於這些第八至第十一較佳實施例中,各鏡頭模組之複數驅動磁石同極性都是朝向鏡頭側。圖十三A至圖十三D所示之第八至第十一較佳實施例與圖十A所示之第五較佳實施例的不同處在於,利用第二鏡頭模組20之主驅動磁石23往相鄰面方向的延伸設計成為一額外凸伸的延伸部231,使主驅動磁石23的磁場於固定鏡頭模組間距下,因延伸部231的距離更靠近第一鏡頭模組10,產生較強的磁場作用力。更因副驅動磁石22上、下邊不等長的獨創缺角構形,讓開空間令其磁力線更易通過到達第一鏡頭模組10,其與相鄰面兩側副驅動磁石121、122、22所產生的作用力平衡達到降低磁干擾。主驅動磁石23投影至X-Z表面之投影圖包含至少一相對邊(上、下邊)邊長不等長。相對邊(上、下邊)不等長的線段將其依光軸一分為二,投影圖中相對邊長(上、下邊)不等長的線段長度差異大於10%。其所延伸的部分體積可以較小或較薄,使之間產生一緩合且漸變的磁場作用力,如圖十三A長條形延伸,圖十三B漸變延伸,或如圖十三C投影於X-Y平面之兩線段不等長度之厚度漸變延伸,亦可為一主驅動磁石23尺寸的延伸(如圖十三D所示之等尺寸延伸)。
請參閱圖十四,為本發明多鏡頭攝像模組中的第十二較佳實施例,其相鄰兩鏡頭模組位於相鄰面側之副驅動磁石投影於該相鄰面上的實施例態樣的示意圖。如圖十四所示,相鄰面兩側之副驅動磁石121、122、
22投影至相鄰面之投影圖其至少一相對邊(上、下邊)的長度不相同,並且,各個具不同長度之相對邊(上、下邊)的副驅動磁石121、122、22可以是由數個獨立且具簡單構形(例如方塊狀)的小磁石12191、12192、12291、12292、2291、2292所組成。藉由將簡單構形的數個小磁石12191、12192、12291、12292、2291、2292來組合構形成為具不同長度之相對邊(上、下邊)的副驅動磁石121、122、22,不僅容易生產製作,更可降低不對稱外形生產損耗,也有利於組裝生產。
請參閱圖十五A至圖十五C,分別為本發明之多鏡頭攝像模組,其鏡頭模組的數量可為大於2個且以不同方式配置的數個實施例上視示意圖。如圖十五A至圖十五C所示可知,本發明之多鏡頭攝像模組的鏡頭模組數量並不侷限於2個,其也可以是由3個、4個、5個或更多個相同結構或不同結構之鏡頭模組91、92、94、95、96、97所排列組合而成的多鏡頭攝像模組。
本發明所述之多鏡頭攝像模組,其驅動裝置實施態樣,無論是由多顆具OIS的鏡頭模組結構相鄰組合、或由多AF鏡頭模組相鄰組合、或由AF鏡頭模組與具OIS功能之鏡頭模組相鄰組合,皆可經本發明所揭露之各種驅動磁石獨特的配置方式來獲得低磁干擾表現;且結構無論是彈性元件式(Spring Type)或滾珠式(Ball Type)的鏡頭模組皆在本發明可實施範圍內。
於本發明前述之實施例中,如圖十A所示相鄰面側距離主驅動磁石距離一預定寬度處增設輔助磁石、以及如圖十三A~圖十三D所示主驅動磁石朝相鄰面方向延伸的數個實施例,乃是藉由垂直於相鄰面之主驅動磁石(或輔助磁石)到相鄰面的最佳距離配置以產生適當的作用力來平衡相鄰模組間的磁干擾。由於磁石間距離越近相互作用力越大,相鄰面兩側之副驅動磁石之間有一作用力,主驅動磁石與相鄰面另一側鏡頭模組之複數驅動磁石同樣具有一作用力;如果主驅動磁石位置往相鄰面方向延伸配置,超過相鄰面之副驅動磁石靠近鏡頭的內側面會取得較強的相互作用力;路徑當中只要有足夠的間距W1則足以獲得主驅動磁石(或輔助磁石)與相鄰邊另一側鏡頭模組之複數驅動磁石間的作用力,以用來平衡相互作用力降低多鏡頭攝像模組之間的磁干擾。
綜合上述作用力說明的一實施例請參閱圖十六A、圖十六B,其分別為本發明多鏡頭攝像模組中的第十三較佳實施例,其相鄰兩鏡頭模組之的立體爆炸圖以及驅動磁石配置上視示意圖。圖十六A、圖十六B所示的第十三較佳實施例,特別是針對至少一具有AF功能的第一鏡頭模組50以及至少一個具兼具OIS與AF功能之第二鏡頭模組60所組成的多鏡頭攝像模組。相鄰之第一鏡頭模組50(僅具有AF)及第二鏡頭模組60(兼具OIS與AF)之間具有一個間隔,此間隔之距離中心稱為相鄰面100。
該第一鏡頭模組50與該第二鏡頭模組60分別各具有一攝像光軸,且定義有相互垂直之一X軸、一Y軸以及一Z軸方向,其中Z軸與該攝像光軸平行,且該相鄰面100與由Y軸及Z軸所定義的平面兩者平行。於本實施例中,該第一鏡頭模組50與該第二鏡頭模組60係分別各包括有下列元件:一上蓋51,61、一框體52,62、一鏡頭53,63設置於一鏡頭承載座531,631上、至少一彈性元件(包括上彈性元件54,64及下彈性元件541,641)、以及一第一驅動系統55,65。並且,第二鏡頭模組60除前述元件之外還更包括有:一第二驅動系統46、複數條懸吊線67、以及一連接板68。
該上蓋51,61係包括一穿孔。該框體52,62係位於該上蓋51,61內並於其內部形成一容置空間。該鏡頭53,63連同鏡頭承載座531,631係設置於該框體52,62內部之該容置空間內。該至少一彈性元件(包括上彈性元件54,64及下彈性元件541,641)的外端與內框係分別結合於該框體52,62與該鏡頭承載座531,631的上、下端面上,並搭配位於該框體52,62下端面的定位片521,621將下彈性元件541,641夾合定位於該框體52,62,用於限制該鏡頭53,63(連同鏡頭承載座531,631)於該容置空間內沿該攝像光軸方向的位移。
該第一驅動系統55,65係包含:至少一驅動線圈551,651、以及一組對應之兩主驅動磁石552,652。其中,該驅動線圈551,651係設置於該鏡頭53,63之鏡頭承載座531,631的外圍,並與結合於該框體52,62內之該複數驅動磁石(包括主驅動磁石552,652)相對應,提供Z軸方向的驅動力,以作為AF的驅動裝置。該驅動線圈551,651係為一環型單極線圈,但也可以是一環型雙極線圈、或一平板雙極線圈、或是一具線圈電路之印刷電路板(PCB)其中之一。於第一鏡頭模組50及第二鏡頭模組60的下方分
別各設置一外部電路301、401,於各外部電路301、401分別設有一影像感測元件302、402,用於接受來自第一、第二鏡頭模組50、60之鏡頭53、64所聚集成像的外部影像光,並加以轉換為可供電腦判讀的影像訊號。
於本實施例中,該第一鏡頭模組50因為不具有OIS功能,所以不需設置副驅動磁石;然而,該第一鏡頭模組50另設置了體積小於主驅動磁石552四分之一的兩輔助磁石553來降低磁干擾。相對地,第二鏡頭模組60因為具有OIS功能所以設置了至少兩副驅動磁石653,且副驅動磁石653的體積是小於或等於主驅動磁石652。其中,該第一鏡頭模組50於鄰近該相鄰面100之側是設置該輔助磁石553,且第二鏡頭模組60於鄰近該相鄰面100之側則是設置該副驅動磁石653。
第二鏡頭模組60所具有的該第二驅動系統66係至少包括了:一電路板661、至少兩平移線圈662,663,664,665。該至少兩平移線圈662,663,664,665是設置於該電路板661上且分別與第二鏡頭模組60的該兩主驅動磁石652及該至少兩副驅動磁石653對應,提供X軸及Y軸之平移軸向的推力,以作為OIS的驅動裝置。該連接板68係分別與該電路板661以及外部電路401做電性連接。該外部電路401係位於該框體62下方,其上設置包括影像感測元件402及其他相關電子元件。複數條懸吊線67係分別具有彈力懸吊以及導電之特性,且該些懸吊線67係分別將該框體62、該鏡頭承載座631(連同鏡頭63)、該彈性元件64,641等元件一併彈性懸吊於該電路板661之正上方。底板611則是與該上蓋61的底面結合。
於圖十六A及圖十六B所示的實施例中,第一鏡頭模組50包含至少一體積較小的輔助磁石553設置於相鄰面100側,其相鄰面100的另一側為第二鏡頭模組60之至少一副驅動磁石653。複數驅動磁石(包括主驅動磁石552、652及副驅動磁石653)及輔助磁石553為單極磁場方向朝向各自鏡頭53側。
相鄰兩鏡頭模組50、60各別之主驅動磁石552、652相對應設置於垂直相鄰面100之鏡頭兩側框體52、62上,輔助磁石553則設置主驅動磁石552對稱中線上的相鄰面100側,設置輔助磁石553之目的是為了提供平衡磁干擾作用力的配置運用,並非為了提供鏡頭驅動之推力;換言之,用於推動鏡頭承載座531移動之推力,主要是由主驅動磁石552和
驅動線圈551互動所產生,無須依賴輔助磁石553與驅動線圈551之間互動產生的推力,所以於設計上不需考慮輔助磁石553對於前述用於推動鏡頭承載座531移動之推力的貢獻度多寡。第一鏡頭模組50兩側之主驅動磁石552與鏡頭上驅動線圈551相對應產生電磁力推動鏡頭53沿光軸方向運動以做為AF驅動。第二鏡頭模組60複數驅動磁石(包括主驅動磁石652及副驅動磁石653)環繞設置於鏡頭外側框體62上,不僅可與驅動線圈651產生電磁力推動鏡頭63沿光軸方向運動,且更可與平移線圈662、663、664、665作用產生平移方向驅動力,推動鏡頭於X、Y方向運動,提供OIS功能。
由垂直相鄰面100的排列方向觀察,輔助磁石553與相鄰面100另一側副驅動磁石653投影於相鄰面100上有相互重疊之處,其各自包含一個與攝像光軸平行的中心軸投影於相鄰面100可以是重疊。運用相鄰面100一側一較小的輔助磁石553以及另一側至少一副驅動磁石653配置獲得一作用力。輔助磁石553長度L1小於相鄰面100一側至少一副驅動磁石653的配置範圍L2;輔助磁石553兩端至主驅動磁石552的距離W1大於相鄰面100另一側至少一副驅動磁石653至主驅動磁石652的距離W3。具輔助磁石553之第一鏡頭模組50主驅動磁石552長度範圍配置超過或等於輔助磁石533靠近鏡頭的內側面。第一鏡頭模組50之主驅動磁石552到相鄰面100的距離W5小於第二鏡頭模組60主驅動磁石652到相鄰面100的距離W6。第一鏡頭模組50之主驅動磁石552與輔助磁石553投影到X-Z面的投影圖部分相互重疊。利用各磁石552、553、652、653間磁作用力之間的平衡獲得一低磁干擾之多鏡頭攝像模組。
於第一鏡頭模組50中,同屬一個鏡頭且位於較遠離該相鄰面100和該輔助磁石553相對應的位置可以是同為設置輔助磁石553於框架、或設置輔助磁石533於鏡頭上與感測器相對應、或為一缺口不設置輔助磁石。
如圖十七A、圖十七B、圖十七C所示,分別為本發明多鏡頭攝像模組的第十四、第十五及第十六較佳實施例,其具有相鄰三鏡頭模組的驅動磁石配置實施例的上視示意圖。
如圖十七A所示的第十四較佳實施例中,排成一排的三鏡頭模組91、92包含了位於中央的第一鏡頭模組91以及分別位於第一鏡頭模
組91左右兩側的兩第二鏡頭模組92;位於中央的第一鏡頭模組91和位於其兩側的該兩第二鏡頭模組92之間分別具有一相鄰面100。本發明多鏡頭攝像模組的各鏡頭模組91、92,其位於該相鄰面100處之各該副驅動磁石912、922、923其彼此沿著該相鄰面100且隔著該相鄰面100交錯排列,第一鏡頭模組91副驅動磁石912長度設置範圍L1小於相鄰面100另一側兩副驅動磁石922、923的長度設置範圍L2。第一鏡頭模組91副驅動磁石912兩端與主驅動磁石911具有一間隔W1。第一鏡頭模組91之主驅動磁石911的長度大於第二鏡頭模組92之主驅動磁石921。並且,第二鏡頭模組92之兩副驅動磁石922、923的長度設置範圍L2也大於第二鏡頭模組92之主驅動磁石921的長度。於第二鏡頭模組92較遠離相鄰面100之側還設有另一副驅動磁石924,其體積或長度可以大略等於兩副驅動磁石922、923的體積或長度總和、或是大略等於主驅動磁石921的體積或長度。
本實施例藉由第一鏡頭模組91主驅動磁石911配置長度增加、以及第二鏡頭模組92於相鄰面100側之副驅動磁石922、923配置的長度範圍增加,來獲取多鏡頭攝像模組間的磁作用力抵銷效果。本實施例特徵是,第一鏡頭模組91之主驅動磁石911於X軸方向上的長度延伸配置超出相鄰面100側副驅動磁石912內徑側,第一鏡頭模組91主驅動磁石911到相鄰面100於X軸方向上的距離W5小於相鄰之第二鏡頭模組92主驅動磁石921到相鄰面100於X軸方向上的距離W6;由投影於X-Z平面投影圖觀察,第一鏡頭模組91之主驅動磁石911的左右兩端分別與同屬第一鏡頭模組91於該相鄰面100側所設置的副驅動磁石912部分重疊。
第二鏡頭模組92於相鄰面100側之兩副驅動磁石922、923設置的Y軸方向長度範圍L2大於其兩相對應主驅動磁石921內側面之Y軸方向距離L3。也就是說,第二鏡頭模組92之兩副驅動磁石922、923位置於Y軸方向上的設置範圍超過主驅動磁石921靠近鏡頭的內側面,其投影到相鄰面100的投影圖可見主驅動磁石921與副驅動磁石922、923是部分重疊。由多鏡頭攝像模組與相鄰面垂直排列的方向觀察,各該副驅動磁石912、922、923投影於相鄰面上為部分相互重疊,運用各驅動磁石911、912、921、922、923之間作用力平衡配置獲得多鏡頭攝像模組低磁干擾的表現。
如圖十七B所示的第十五較佳實施例中,排成一排的三鏡頭模組91、92包含了位於中央的第二鏡頭模組92以及分別位於第二鏡頭模組92左右兩側的兩第二鏡頭模組91;位於中央的第二鏡頭模組92和位於其兩側的該兩第一鏡頭模組91之間分別具有一相鄰面100。本發明多鏡頭攝像模組的各鏡頭模組91、92,其位於該相鄰面100處之各該副驅動磁石912、922、923其彼此沿著該相鄰面100且隔著該相鄰面100交錯排列,第一鏡頭模組91副驅動磁石912長度設置範圍L1小於相鄰面100另一側兩副驅動磁石922、923的長度設置範圍L2。第一鏡頭模組91副驅動磁石912兩端與主驅動磁石911具有一間隔W1。第一鏡頭模組91之主驅動磁石911的長度大於第二鏡頭模組92之主驅動磁石921。並且,第二鏡頭模組92之兩副驅動磁石922、923的長度設置範圍L2也大於第二鏡頭模組92之主驅動磁石921的長度。於第一鏡頭模組91較遠離相鄰面100之側還設有另一副驅動磁石913,其體積或長度可以等於或大於副驅動磁石912的體積或長度。
本實施例藉由第一鏡頭模組91主驅動磁石911配置長度增加、以及第二鏡頭模組92於相鄰面100側之副驅動磁石922、923配置的長度範圍增加,來獲取多鏡頭攝像模組間的磁作用力抵銷效果。本實施例特徵是,第一鏡頭模組91之主驅動磁石911於X軸方向上的長度延伸配置超出相鄰面100側副驅動磁石912內徑側,第一鏡頭模組91主驅動磁石911到相鄰面100於X軸方向上的距離W5小於相鄰之第二鏡頭模組92主驅動磁石921到相鄰面100於X軸方向上的距離W6;由投影於X-Z平面投影圖觀察,第一鏡頭模組91之主驅動磁石921的兩端分別與同屬第一鏡頭模組91於該相鄰面100側所設置的副驅動磁石912及另一副驅動磁石913部分重疊。
第二鏡頭模組92於相鄰面100側之兩副驅動磁石922、923設置的Y軸方向長度範圍L2大於其兩相對應主驅動磁石921內側面之Y軸方向距離L3。也就是說,第二鏡頭模組92之兩副驅動磁石922、923位置於Y軸方向上的設置範圍超過主驅動磁石921靠近鏡頭的內側面,其投影到相鄰面100的投影圖可見主驅動磁石921與副驅動磁石922、923是部分重疊。由多鏡頭攝像模組與相鄰面垂直排列的方向觀察,各該副驅動磁
石912、922、923投影於相鄰面上為部分相互重疊,運用各驅動磁石911、912、921、922、923之間作用力平衡配置獲得多鏡頭攝像模組低磁干擾的表現。
如圖十七C所示的第十六較佳實施例中,多鏡頭攝像模組是包含不同結構之一第一鏡頭模組91、一第二鏡頭模組92及一第三鏡頭模組93排成一排所構成。位於中央之第二鏡頭模組92與位於其兩側之該第一鏡頭模組91及該第三鏡頭模組93之間分別各有一相鄰面100。其中,第一鏡頭模組91及第二鏡頭模組92是兼具有AF及OIS功能的鏡頭模組,所以包括有主驅動磁石911、921與副驅動磁石912、913、922、923、924的配置。第三鏡頭模組93則僅具AF功能但不具有OIS功能,所以不具有副驅動磁石,而是具有可提供AF驅動力的主驅動磁石931、及設置目的並非是為了提供驅動力的輔助磁石932。
於第十六較佳實施例中,第一鏡頭模組91之副驅動磁石912於Y軸方向上的長度設置範圍L1是小於相鄰面100另一側所設置之該第二鏡頭模組92之兩副驅動磁石922、923的於Y軸方向上的長度設置範圍L2;同時,第三鏡頭模組93之輔助磁石932於Y軸方向上的長度設置範圍L1a也是小於相鄰面100另一側所設置之該第二鏡頭模組92的副驅動磁石924於Y軸方向上的長度設置範圍L2a。
第一鏡頭模組91之副驅動磁石912兩端與主驅動磁石911於Y軸方向上具有一間隔W1,而第三鏡頭模組93之輔助磁石932兩端與主驅動磁石931於Y軸方向上則具有另一間隔W1a。第一鏡頭模組91主驅動磁石911到相鄰面100於X軸方向上的距離W5小於相鄰之第二鏡頭模組92主驅動磁石921到相鄰面100於X軸方向上的距離W6。並且,第三鏡頭模組93主驅動磁石931到相鄰面100於X軸方向上的距離W5a也是小於相鄰之第二鏡頭模組92主驅動磁石921到相鄰面100於X軸方向上的距離W6。於圖十七C所示之第十六較佳實施例與圖十七A及圖十七B所示實施例的不同點在於,第十六較佳實施例中之一相鄰面100之兩側為第三鏡頭模組93之輔助磁石932與第二鏡頭模組92之副驅動磁石924相對應,其平行光軸的中心線投影於相鄰面100上是重疊。具輔助磁石932的第三鏡頭模組93為一僅具有AF的鏡頭模組。
請參閱圖十八A、圖十八B及圖十八C所示,分別為本發明多鏡頭攝像模組的第十七較佳實施例的立體爆炸圖、部分元件側視圖以及E-E剖面圖。
由於圖十八A所示的本發明多鏡頭攝像模組的第十七較佳實施例,與圖三A所示的多鏡頭攝像模組第一較佳實施例的基本架構大致相同,所以,在以下的說明中,相同或類似的元件將給予相同的元件名稱與編號且不再贅述其結構細節,而將僅針對本發明多鏡頭攝像模組的第十七較佳實施例在結構或功能上的不同部分加以詳述。也就是說,圖十八A、圖十八B及圖十八C所示之本發明之多鏡頭攝像模組的第十七較佳實施例的基本架構,也是如同圖三A所示般包括至少有一相鄰面的一第一鏡頭模組10以及一第二鏡頭模組20。相鄰之第一鏡頭模組10以及第二鏡頭模組20兩者之間具有一個間隔,此間隔之距離中心就稱為該相鄰面100。該第一鏡頭模組10與該第二鏡頭模組20分別各具有一攝像光軸,且定義有相互垂直之一X軸、一Y軸以及一Z軸方向,其中Z軸與該攝像光軸平行,且該相鄰面100與由Y軸及Z軸所定義的平面兩者平行。於本實施例中,該第一鏡頭模組10與該第二鏡頭模組20係分別各包括有下列元件中的至少一部份元件:一上蓋31,41、一框體32,42、一鏡頭33,43設置於一鏡頭承載座331,431上、至少一彈性元件(包括上彈性元件34,44及下彈性元件341,441)、一第一驅動系統、一第二驅動系統、複數條懸吊線37,47、以及一連接板38,48。
該上蓋31,41係包括一穿孔311,411。該框體32,42係位於該上蓋31,41內並於其內部形成一容置空間。該鏡頭33,43連同鏡頭承載座331,431係設置於該框體32,42內部之該容置空間內。該至少一彈性元件(包括上彈性元件34,44及下彈性元件341,441)係結合於該框體32,42的上、下端面上,用於限制該鏡頭33,43(連同鏡頭承載座331,431)於該容置空間內沿該攝像光軸方向的位移。
該第一驅動系統係包含:至少一驅動線圈351,451、一組對應之兩主驅動磁石13,23以及至少兩副驅動磁石11,121,122,21,22。其中,該驅動線圈351,451係結合於該鏡頭33,43之鏡頭承載座331,431的外圍,並與結合於該框體32,42內之該複數驅動磁石(包括主驅動磁石13,23及副驅
動磁石11,121,122,21,22)相對應,提供Z軸方向的驅動力,以作為AF的驅動裝置。
該第二驅動系統係至少包括了:一電路板361,461、至少兩平移線圈362,363,364,365,462,463,464,465。該至少兩平移線圈362,363,364,365,462,463,464,465是設置於該電路板361,461上且分別與該兩主驅動磁石13,23及該至少兩副驅動磁石11,121,122,21,22對應,提供X軸及Y軸之平移軸向的推力,以作為OIS的驅動裝置。
該連接板38,48係分別與該電路板361,461以及一外部電路301,401做電性連接。該外部電路301,401係位於該框體32,42下方,其上設置包括有一影像感測元件302,402。複數條懸吊線37,47係分別具有彈力懸吊以及導電之特性,且該些懸吊線係分別將該框體32,42、該鏡頭承載座331,431(連同鏡頭33,43)、該彈性元件34,341,44,441一併彈性懸吊於該電路板361,461之正上方。底板300,400是設置於電路板361,461下方並固定於上蓋31,41的底部,以便將前述各元件容納於上蓋31,41與底板300,400之間。
於第十七較佳實施例中,在電路板361,461或是連接板38,48上可選擇性地增設一或數個位置感測器例如霍爾元件(Hall),分別用以偵測鏡頭承載座331,431連同其上之鏡頭33,43相對於框體32,42於光軸(Z軸)方向上的位置、或/及偵測框體32,42連同其內的鏡頭33,43對於電路板361,461於水平方向(X軸與Y軸)方向上的位置,提供AF或/及OIS之閉廻路控制(closed-loop control)的功能。
於本第十七較佳實施例中,該至少兩副驅動磁石包括:副驅動磁石11、121、122、21、22。該第一鏡頭模組10與該第二鏡頭模組20係相鄰且具有該相鄰面100於該兩鏡頭模組10、20之間。該第一鏡頭模組10鄰近該相鄰面100的兩副驅動磁石121、122與該第二鏡頭模組20鄰近該相鄰面100的該副驅動磁石22,其三者彼此沿著雙鏡頭驅動裝置Y軸方向上是隔著相鄰面100交錯排列。亦即,該三個副驅動磁石121、122、22雖然是分設於該相鄰面100的兩側,但是,該三個副驅動磁石121、122、22投影至相鄰面100的投影,其三者彼此沿著Y軸方向隔著相鄰面100是以副驅動磁石121、副驅動磁石22、副驅動磁石122的順序交錯排列,使
得該三個副驅動磁石121、122、22投影至相鄰面100的投影是不完全重疊。
於本第十七較佳實施例中,該兩鏡頭模組10、20的副驅動磁石121、122、22的結構與圖四A與圖七所示之第二較佳實施例相似。亦即,兩鏡頭模組10、20的副驅動磁石121、122、22各自投影至相鄰面100之投影分別各具有至少一相對邊(上、下邊)邊長不等長,副驅動磁石121、122及22的斜角構形分別都是藉由其相對邊(上、下邊)的線段兩端利用至少一個斜線段連接而成,且相對邊(上、下邊)之線段長度差異大於20%。利用副驅動磁石121、122、22上下邊長度不相同的配置,副驅動磁石121、122及副驅動磁石22在相鄰面100上投影的重疊端各自藉由一斜線段連接之缺角構形,降低副驅動磁石121、122、22磁場間作用力。上邊線段相對長度較短,可減少副驅動磁石121、122、22重疊區域的面積、降低作用力、進而改善相鄰鏡頭模組10、20間的磁場干擾。副驅動磁石121、122、22下邊長度較長,更可加大與下方電路板上所設置之平移線圈作用產生的推動力。
於本第十七較佳實施例中,該第二鏡頭模組20的主驅動磁石23的結構是類似於圖十三A所示第八較佳實施例的結構。亦即,利用第二鏡頭模組20之主驅動磁石23往相鄰面方向的延伸設計成為一額外凸伸的長條形延伸部,使主驅動磁石23的磁場於固定鏡頭模組間距下,因延伸部的距離更靠近第一鏡頭模組10,產生較強的磁場作用力。更因副驅動磁石22上、下邊不等長的獨創缺角構形,讓開空間令其磁力線更易通過到達第一鏡頭模組10,其與相鄰面兩側副驅動磁石121、122、22所產生的作用力平衡達到降低磁干擾。主驅動磁石23投影至X-Z表面之投影圖包含至少一相對邊(上、下邊)邊長不等長。相對邊(上、下邊)不等長的線段將其依光軸一分為二,投影圖中相對邊長(上、下邊)不等長的線段長度差異大於10%。其所延伸的部分體積可以較小或較薄,使之間產生一緩合且漸變的磁場作用力。
另外,由圖十八A及圖十八C可知,第二鏡頭模組20的四條懸吊線47還有一特徵。由於第二鏡頭模組20的兩主驅動磁石23往相鄰面100方向是具有一額外凸伸的長條形延伸部,會影響到原應設置在框體42角落的懸吊線47;所以,設於相鄰面100處之副驅動磁石22上下兩側的懸
吊線47(亦即位於第二鏡頭模組20左側的兩懸吊線47)的設置位置並非是位於角落,而是朝向副驅動磁石22之兩端稍為偏移一點,以避開兩主驅動磁石23額外凸伸的長條形延伸部。換言之,由於在第二鏡頭模組20左側鄰近相鄰面100之副驅動磁石22的長度較短,所以在其上下兩側各具有一空間可供設置懸吊線47,使第二鏡頭模組20左側鄰近相鄰面100之兩懸吊線47並非位於角落。因此,第二鏡頭模組20的四條懸吊線47的設置位置不完全對稱(鄰近相鄰面100側之兩懸吊線47的位置較接近副驅動磁石22的上下兩端,並非位於框體42角落;而遠離相鄰面100側之兩懸吊線47則是位於框體42角落),滿足主驅動磁石23延伸結構設計使兩鏡頭模組10、20相互作用力平衡。
請參閱圖十九A及圖十九B,分別為如圖十八A至十八C所示之本發明多鏡頭攝像模組的第十七較佳實施例中,其第二鏡頭模組進行點膠製程的側視示意圖與立體示意圖。
由於適用於智慧手機的具光學穩定系統鏡頭驅動裝置,於結構設計上有微小化的趨勢,其在X軸與Y軸水平方向上的最大寬度通常僅有6-12mm左右,而在Z軸方向上的最大高度也僅介於2-5mm之間,所以,鏡頭驅動裝置的內部諸多微型化零件不僅尺寸小、且各零件之間的距離更為微小,導致如圖1a所示之典型具光學穩定系統之鏡頭驅動裝置10在進行施加減震介質(例如但不侷限於阻尼(damping)軟膠)的製程時非常困難。
為了解決上述困難,本發明之多鏡頭攝像模組,特別在第一與第二鏡頭模組(以第二鏡頭模組20為例)的框體42上增加設置數個由框體42上表面向下(沿Z軸方向)延伸的缺口空間425,各個缺口空間425的底部就是預計將施加減震介質426的位置點。由垂直於光軸之視圖觀察,如圖十八C所示,第二鏡頭模組20之驅動磁石21、23間具有一相對較大間隔。框體42至少包含一穿透的缺口空間425,設置對應於相鄰驅動磁石21、23間之相對較大間隔處。藉此,於第二鏡頭模組20製造過程中,減震介質塗佈設備80的探針81可以很方便地從上往下(也就是沿Z軸方向)穿入這些設置於框體42上的缺口空間425、並將減震介質426施加在各個缺口空間425的底部位置處,使減震介質426有一部份接觸(連結於)框
體42的底面、另一部份則接觸(連結於)電路板461的上表面。並且,介質光固化設備(圖中未示)也可以直接從鏡頭模組20的上方向下照射用來將稀釋流體狀之減震介質426以達到將減震介質426濃稠化的目的,以提供減震功能。不僅可提供單一軸向(Z軸方向)操作沿著平行於光軸之直上直下施加及固化減震介質426以節省生產工時,同時縮小量產盤間的擺設間距增加批量,改善鏡頭驅動裝置空間結構小,光固化製程進光面積受阻擋而衍伸的減震介質固化不充分、固化工時長以及功耗特性控制不穩定的問題。
唯以上所述之實施例不應用於限制本發明之可應用範圍,本發明之保護範圍應以本發明之申請專利範圍內容所界定技術精神及其均等變化所含括之範圍為主者。即大凡依本發明申請專利範圍所做之均等變化及修飾,仍將不失本發明之要義所在,亦不脫離本發明之精神和範圍,故都應視為本發明的進一步實施狀況。
10、20‧‧‧鏡頭模組
100‧‧‧相鄰面
11,121,122,21,22‧‧‧副驅動磁石
13、23‧‧‧主驅動磁石
31,41‧‧‧上蓋
311,411‧‧‧穿孔
32,42‧‧‧框體
321,421‧‧‧定位片
33,43‧‧‧鏡頭
331,431‧‧‧鏡頭承載座
34,44、341,441‧‧‧彈性元件
35,45‧‧‧第一驅動系統
351,451‧‧‧驅動線圈
36,46‧‧‧第二驅動系統
361,461‧‧‧電路板
362,363,364,365,462,463,464,465‧‧‧平移線圈
37,47‧‧‧懸吊線
38,48‧‧‧連接板
39‧‧‧感測器磁石
301,401‧‧‧外部電路
302,402‧‧‧影像感測元件
303,304,305,403,404‧‧‧感測器
Claims (20)
- 一多鏡頭攝像模組,至少包含相鄰配置的一第一鏡頭模組與一第二鏡頭模組;於該第一鏡頭模組與該第二鏡頭模組之間具有一個間隔,此間隔之距離中心稱為相鄰面;該相鄰面兩側分別是該第一鏡頭模組與該第二鏡頭模組;該第一鏡頭模組與該第二鏡頭模組分別各定義有相互垂直之一X軸、一Y軸以及一Z軸方向;該第一鏡頭模組與該第二鏡頭模組各具有一攝像光軸平行於該Z軸;其中,該第一鏡頭模組及該第二鏡頭模組兩者各別包括有:一上蓋;一框體,位於該上蓋內並於其內部形成一容置空間;一鏡頭,係設置於該框體內部之該容置空間內;一第一驅動系統,係包括:一驅動線圈、以及複數驅動磁石;其中,該驅動線圈係結合於該鏡頭之外圍,並與結合於該框體內之該複數驅動磁石相對應,提供沿該Z軸方向之推力;其特徵在於,該第一鏡頭模組的該複數驅動磁石係包括相互對應之兩主驅動磁石;該第二鏡頭模組的該複數驅動磁石係包括:相互對應之兩主驅動磁石及至少一副驅動磁石;該第二鏡頭模組的該副驅動磁石的體積是小於該第二鏡頭模組的該主驅動磁石;並且,該第二鏡頭模組於該相鄰面處是設置該副驅動磁石,且該第一鏡頭模組於該相鄰面處並未設置該主驅動磁石;其中:該第一鏡頭模組的該複數驅動磁石更包括至少一副驅動磁石;並且,該第一鏡頭模組與該第二鏡頭模組於該相鄰面處是各自設置至少一個該副驅動磁石;各該副驅動磁石分別具有一個與該攝像光軸平行的中心軸,且各該中心軸間隔有一距離;位於該相鄰面處之各該副驅動磁石其彼此沿著該相鄰面且隔著該相鄰面交錯排列;位於該相鄰面處之各該副驅動磁石投影至該相鄰面之投影,其中至少一副驅動磁石於該相鄰面上的投影是具有一相對邊之邊長不相同的構形。
- 如申請專利範圍第1項所述之多鏡頭攝像模組,其中,該第一鏡頭模組及該第二鏡頭模組兩者至少其中之一更包括一第二驅動系統,該第二驅動系統包括:一電路板,至少兩平移線圈設置於該電路板上且與該複數驅動磁石相對應,提供平移軸向之推力;一彈性元件,結合於該框體;複數條懸吊線,係分別具有彈力懸吊以及導電之特性,且該些懸吊線係分別將該框體、該鏡頭、該彈性元件一併彈性懸吊於該電路板之正上方;至少一感測器,設置於複數驅動磁石下方與連接板連接;以及一外部電路,係結合於該框體下方,並與該電路板做電性連接,且該外部電路更包括有一影像感測元件;其中,該鏡頭更包括有:一透鏡組、以及一鏡頭承載座;其中,於該透鏡組係設置於該鏡頭承載座中央處,並與該鏡頭承載座呈同步位移。
- 如申請專利範圍第2項所述之多鏡頭攝像模組,其中,該外部電路更包括至少有一感測器;並且,該第一鏡頭模組及該第二鏡頭模組兩者至少其中之一更包括至少一感測磁石,其係設置於該鏡頭外,且對準該外部電路上之其中之一該感測器。
- 如申請專利範圍第1項所述之多鏡頭攝像模組,其中,位於該相鄰面處之該副驅動磁石之體積至少小於屬於同一鏡頭模組且位於較遠離該相鄰面且和該副驅動磁石相對應的另一副驅動磁石的體積。
- 如申請專利範圍第1項所述之多鏡頭攝像模組,其中,位於該相鄰面處且具有不相同之相對邊邊長的該副驅動磁石,其該相對邊的線段兩端是由至少一個斜線段、弧線段或直角線段來加以延伸連接。
- 如申請專利範圍第5項所述之多鏡頭攝像模組,其中,位於該相鄰面處且具有不相同之相對邊邊長的該副驅動磁石,其該相對邊之線段長度差異大於20%。
- 如申請專利範圍第1項所述之多鏡頭攝像模組,其中,複數該副驅動磁石其彼此沿著該相鄰面且隔著相鄰面交錯排列的方式是部分重疊。
- 如申請專利範圍第1項所述之多鏡頭攝像模組,其中,位於該相鄰面兩側之複數該副驅動磁石,其磁化方向是相互不平行。
- 如申請專利範圍第1項所述之多鏡頭攝像模組,其中,該第一鏡頭模組及該第二鏡頭模組兩者至少其中之一所具有的該複數驅動磁石更包括至少一輔助磁石設置於該框體中;該輔助磁石是設置於該相鄰面處。
- 如申請專利範圍第9項所述之多鏡頭攝像模組,其中,該輔助磁石是設置於該副驅動磁石及該主驅動磁石之間,且距離該主驅動磁石一預定寬度處;該輔助磁石位置配置超過該相鄰面處之該副驅動磁石的內側邊,並且,該輔助磁石與該主驅動磁石同極性朝向該鏡頭側。
- 如申請專利範圍第10項所述之多鏡頭攝像模組,其中,該輔助磁石是多極磁石。
- 如申請專利範圍第10項所述之多鏡頭攝像模組,其中,該輔助磁石具有一缺口,其磁化方向與該主驅動磁石相同。
- 如申請專利範圍第1項所述之多鏡頭攝像模組,其中,位於該相鄰面兩側之該第一鏡頭模組與該第二鏡頭模組,其兩者各自包含之該主驅動磁石與該相鄰面間的距離不同。
- 如申請專利範圍第13項所述之多鏡頭攝像模組,其中,該第一鏡頭模組與該第二鏡頭模組兩者其中之一所包含之該主驅動磁石,其於鄰近該相鄰面的末端是以下其中之一:細長條構形、高度或厚度漸變構形。
- 如申請專利範圍第13項所述之多鏡頭攝像模組,其中,該第一鏡頭模組與該第二鏡頭模組兩者其中之一所包含之該主驅動磁石,其投影至X-Z面之投影包含一相對邊長度不等長線段,依光軸一分為二該主驅動磁石所包含之該相對邊不等長的線段長度差異大於10%。
- 如申請專利範圍第13項所述之多鏡頭攝像模組,其中,該第一鏡頭模組與該第二鏡頭模組兩者其中之一所包含之該主驅動磁石,其投影至X-Y面之投影包含一相對邊長度不等長線段,依光軸一分為二該主驅動磁石所包含之該相對邊不等長的線段長度差異大於10%。
- 如申請專利範圍第13項所述之多鏡頭攝像模組,該第一鏡頭模組之該主驅動磁石到該相鄰面於X軸方向上的距離W5小於相鄰之該第二鏡頭模組之該主驅動磁石到該相鄰面於X軸方向上的距離W6;由投影於X-Z平面投影圖觀察,該第一鏡頭模組之該主驅動磁石的末端與同屬該第一鏡頭模組於該相鄰面側所設置的一磁石部分重疊。
- 如申請專利範圍第13項所述之多鏡頭攝像模組,該第二鏡頭模組於該相鄰面處是設置兩副驅動磁石;該兩副驅動磁石的位置於Y軸方向上的設置範圍超過該第二鏡頭模組之該主驅動磁石靠近該鏡頭的內側面,其由投影於該相鄰面的投影圖觀察,該第二鏡頭模組之該主驅動磁石與該兩副驅動磁石是部分重疊。
- 如申請專利範圍第1項所述之多鏡頭攝像模組,其中,該多鏡頭攝像模組是以下其中之一:由多顆具光學穩定系統(OIS)的鏡頭模組結構相鄰組合、由多顆具自動對焦(AF)的鏡頭模組相鄰組合、或由具AF鏡頭模組與具OIS功能之鏡頭模組相鄰組合;並且,該第一鏡頭模組及該第二鏡頭模組是以下其中之一:彈性元件式(Spring Type)鏡頭模組或滾珠式(Ball Type)鏡頭模組。
- 如申請專利範圍第1項所述之多鏡頭攝像模組,其中,於該框架上設置有至少一缺口空間,該缺口空間是由框架上表面沿該攝像光軸方向向下延伸,且該缺口空間的底部施加有一減震介質。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910005248.XA CN110312059A (zh) | 2018-03-20 | 2019-01-03 | 多镜头摄像模块 |
US16/358,108 US10827104B2 (en) | 2018-03-20 | 2019-03-19 | Multi-lens camera module |
US17/033,856 US20210014395A1 (en) | 2018-03-20 | 2020-09-27 | Multi-Lens Camera Module |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107109462 | 2018-03-20 | ||
TW107109462 | 2018-03-20 | ||
CN107109462 | 2018-03-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201940954A TW201940954A (zh) | 2019-10-16 |
TWI793233B true TWI793233B (zh) | 2023-02-21 |
Family
ID=69023390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107146509A TWI793233B (zh) | 2018-03-20 | 2018-12-21 | 多鏡頭攝像模組 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI793233B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI751786B (zh) * | 2020-11-13 | 2022-01-01 | 大陽科技股份有限公司 | 用以驅動成像鏡頭的驅動器和包含其的取像裝置與電子裝置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201736894A (zh) * | 2016-04-08 | 2017-10-16 | Alps Electric Co Ltd | 透鏡驅動裝置 |
US20180003920A1 (en) * | 2016-07-01 | 2018-01-04 | Tdk Taiwan Corp. | Lens driving mechanism |
-
2018
- 2018-12-21 TW TW107146509A patent/TWI793233B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201736894A (zh) * | 2016-04-08 | 2017-10-16 | Alps Electric Co Ltd | 透鏡驅動裝置 |
US20180003920A1 (en) * | 2016-07-01 | 2018-01-04 | Tdk Taiwan Corp. | Lens driving mechanism |
Also Published As
Publication number | Publication date |
---|---|
TW201940954A (zh) | 2019-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI765947B (zh) | 多鏡頭攝像模組 | |
CN211698335U (zh) | 光学组件驱动机构 | |
US10827104B2 (en) | Multi-lens camera module | |
US9377632B2 (en) | Lens driving device with 3D elastic support structure | |
CN107404607B (zh) | 摄像模块及其影像撷取单元 | |
WO2014029296A1 (zh) | 一种可实现镜头可控倾斜的音圈马达结构 | |
CN104428711B (zh) | 相机模块 | |
CN209765132U (zh) | 光学组件驱动机构 | |
US11894728B2 (en) | Multi-lens camera system and driving mechanism thereof | |
TWM558922U (zh) | 動圈式避磁閉迴路自動對焦攝像模組 | |
CN107561825B (zh) | 镜头驱动机构 | |
TWI559654B (zh) | 音圈馬達 | |
US10359597B2 (en) | Optical system | |
TW202020543A (zh) | 具光學穩定系統鏡頭驅動裝置 | |
WO2016206077A1 (zh) | 一种抗磁干扰光学防抖音圈马达 | |
CN104133282A (zh) | 自动对焦致动器驱动结构 | |
US11243370B2 (en) | Optical system | |
US20220357554A1 (en) | Driving mechanism | |
CN107783352B (zh) | 光学系统 | |
CN209373236U (zh) | 多镜头摄像系统及其驱动机构 | |
CN215340478U (zh) | 光学系统 | |
TWI793233B (zh) | 多鏡頭攝像模組 | |
CN217425802U (zh) | 光学元件驱动机构 | |
CN216718788U (zh) | 光学元件驱动机构 | |
CN214474349U (zh) | 光学系统 |