TWI788026B - Environmental protection and energy saving recycling system from multiple acid solution and its method - Google Patents
Environmental protection and energy saving recycling system from multiple acid solution and its method Download PDFInfo
- Publication number
- TWI788026B TWI788026B TW110135725A TW110135725A TWI788026B TW I788026 B TWI788026 B TW I788026B TW 110135725 A TW110135725 A TW 110135725A TW 110135725 A TW110135725 A TW 110135725A TW I788026 B TWI788026 B TW I788026B
- Authority
- TW
- Taiwan
- Prior art keywords
- product
- filtrate
- distilled water
- tank
- multiple acid
- Prior art date
Links
Images
Landscapes
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
本發明有關於結晶製程,特別是指自多重酸溶液生成晶體之環保節能回收系統及其方法。The present invention relates to a crystallization process, in particular to an environment-friendly, energy-saving recovery system and method for generating crystals from multiple acid solutions.
高濃度氫氟酸(含HF達49%)或氫氟酸混酸,是半導體、液晶顯示面板、太陽能電池等科技產業大量應用於蝕刻技術中,因而產出濃度高達49%或低至0.5%的各種濃度且體積龐大的含氫氟酸廢酸溶液,需要進行廢液處理。High-concentration hydrofluoric acid (containing HF up to 49%) or hydrofluoric acid mixed acid is widely used in etching technology in semiconductor, liquid crystal display panel, solar cell and other technology industries, so the output concentration is as high as 49% or as low as 0.5%. Waste acid solutions containing hydrofluoric acid with various concentrations and large volumes require waste liquid treatment.
目前氫氟酸廢液處理方法,以加入如CaO、Ca(OH) 2、CaCl 2等含鈣化合物與廢液中氟離子反應生成氟化鈣(CaF 2)污泥餅,或者,如台灣發明專利第I233428號,使氫氟酸廢液中的氟離子與特定藥劑進行化學混凝作用,藉以去除廢液中氟離子。惟前述兩種方法,前者處理方法有操作困難度及成本較高的問題,且氟化鈣污泥餅不僅體積大,其中純度達回收標準的氟化鈣量更相當有限,未能產生經濟效益;後者專利雖可形成氟鋁酸鈉晶體(Na 3AlF 6,俗稱冰晶石)供回收使用,然而,在化學混凝過程中須使用含氯化合物PAC(Polyalumi-num Chloride;多元聚氯化鋁)作為助凝劑,進而影響冰晶石的結晶純度,尤其該專利前案的冰晶石未以適合結晶程度及環境制得,純度更難以達到回收使用的標準。 The current treatment method of hydrofluoric acid waste liquid is to add calcium-containing compounds such as CaO, Ca(OH) 2 , CaCl 2 to react with fluoride ions in waste liquid to form calcium fluoride (CaF 2 ) sludge cake, or, as invented in Taiwan Patent No. I233428, chemical coagulation of fluoride ions in hydrofluoric acid waste liquid with specific agents is used to remove fluoride ions in waste liquid. However, among the above two methods, the former treatment method has the problems of difficult operation and high cost, and the calcium fluoride sludge cake is not only large in size, but the amount of calcium fluoride whose purity reaches the recovery standard is quite limited, which fails to produce economic benefits ; Although the latter patent can form sodium fluoroaluminate crystals (Na 3 AlF 6 , commonly known as cryolite) for recycling, however, the chlorine-containing compound PAC (Polyalumi-num Chloride; polyaluminum chloride) must be used in the chemical coagulation process As a coagulation aid, it further affects the crystallization purity of cryolite. In particular, the cryolite in the prior patent is not produced in a suitable crystallization degree and environment, and the purity is more difficult to meet the standard for recycling.
另值得注意的是,氟化鈉(NaF)是一種離子化合物,其於室溫下為無色晶體或白色固體,無臭味;是一種重要的氟化物產品,廣泛用於木材防腐劑、釀酒殺菌劑、電解鋁調整劑、牙齒氟化劑等領域。目前,氫氟酸中和法是常用較成熟的氟化鈉生產工藝。氫氟酸中和法是用氫氧化鈉中和氫氟酸製得氟化鈉,其反應式如下:HF+NaOH→NaF+H 2O。習知氟化鈉的生產過程包括:向鉛製反應釜中加入濃度40wt%的氫氟酸,再慢慢加入氫氧化鈉中和,直到反應溶液呈中性為止;最後經結晶、離心脫水、烘乾,即得氟化鈉產品。該工藝具有流程簡單、產品質量穩定的優點,然而,該工藝存在設備腐蝕嚴重的問題,因此對設備材質的要求很高,且該中和法使用市售氫氟酸作為原料等因素,皆導致氟化鈉的生產成本較高,在現階段已缺乏市場競爭力,有待進一步改進。 It is also worth noting that sodium fluoride (NaF) is an ionic compound, which is a colorless crystal or white solid at room temperature and has no odor; it is an important fluoride product, widely used in wood preservatives, wine sterilization Agents, electrolytic aluminum regulators, dental fluorides and other fields. At present, the hydrofluoric acid neutralization method is a commonly used and mature sodium fluoride production process. The hydrofluoric acid neutralization method is to neutralize hydrofluoric acid with sodium hydroxide to obtain sodium fluoride. The reaction formula is as follows: HF+NaOH→NaF+H 2 O. The production process of conventional sodium fluoride comprises: adding the hydrofluoric acid of concentration 40wt% in the reaction kettle made of lead, then slowly adding sodium hydroxide to neutralize, until the reaction solution is neutral; finally through crystallization, centrifugal dehydration, Dry it to get the sodium fluoride product. This process has the advantages of simple process and stable product quality. However, this process has the problem of serious equipment corrosion, so the requirements for equipment materials are very high, and the neutralization method uses commercially available hydrofluoric acid as raw materials, etc., which lead to The production cost of sodium fluoride is relatively high, and it lacks market competitiveness at the present stage, and needs further improvement.
有鑑於習知技術問題,本發明的第一目的在於提供一種自多重酸溶液生成晶體之環保節能回收系統及其方法,利用含氫氟酸廢酸溶液通常為多重酸溶液,即含有氫氟酸與一至三種酸混合的溶液,配合添加一至二種反應藥劑,以生成晶體狀的第一產品,並對與該第一產品固液分離後的濾液進行乾燥程序,以生成沉澱物狀的第二產品,達到對含氫氟酸的多重酸溶液進行有效處理並資源化之目的。In view of the conventional technical problems, the first object of the present invention is to provide an environmental protection and energy-saving recovery system and method thereof for generating crystals from multiple acid solutions. The spent acid solution containing hydrofluoric acid is usually a multiple acid solution, that is, contains hydrofluoric acid A solution mixed with one to three acids, and one to two reactive agents are added together to form a crystal-like first product, and the filtrate after solid-liquid separation from the first product is subjected to a drying procedure to form a precipitate-like second product The product achieves the purpose of effectively treating and recycling multiple acid solutions containing hydrofluoric acid.
本發明的第二目的在於,本發明系統依製程順序包括生成第一產品的第一產品生成段、固液分離段和第一產品處理段,以及與該固液分離段連接以輸入該濾液生成第二產品的第二產品生成段;本發明系統透過在該固液分離段、該第一產品處理段與該第二產品生成段之間設置能源回收段,以回收乾燥第二產品後形成的高溫蒸汽,令該蒸汽的熱能回收預熱該濾液,且令該蒸汽經冷凝及熱交換降溫形成低溫蒸餾水後作為第一產品的清洗水進行一次回收,再於清洗該第一產品後形成二次濾液回流至能源回收段進行二次回收使用;本發明系統透過前述技術方案達到在生成第一產品、第二產品的製程中,有效回收熱能及水資源,達到環保節能之目的。The second object of the present invention is that the system of the present invention includes a first product generation section, a solid-liquid separation section, and a first product treatment section that generate the first product according to the process sequence, and is connected with the solid-liquid separation section to input the filtrate generation section. The second product generation section of the second product; the system of the present invention sets an energy recovery section between the solid-liquid separation section, the first product treatment section, and the second product generation section to recycle the second product formed after drying High-temperature steam, the thermal energy of the steam is recovered to preheat the filtrate, and the steam is condensed and heat-exchanged to cool down to form low-temperature distilled water, which is used as the cleaning water of the first product for primary recovery, and then formed after cleaning the first product. The filtrate is returned to the energy recovery section for secondary recovery and use; the system of the present invention can effectively recover heat energy and water resources in the process of producing the first product and the second product through the above-mentioned technical solution, and achieve the purpose of environmental protection and energy saving.
緣是,為達上述目的,本發明所提供一種自多重酸溶液生成晶體之環保節能回收系統,其包括:控制處理器;第一產品生成段,受該控制處理器電性控制,以輸入多重酸溶液及反應藥劑至該第一產品生成段進行反應並生成第一產品及濾液;固液分離段,與該第一產品生成段連接並受該控制處理器電性控制,以接收並分離該第一產品及該濾液;第一產品處理段,與該固液分離段連接以接收並清洗該第一產品後輸出儲存;第二產品生成段,包括受該控制處理器電性控制的乾燥設備,令該濾液輸入該乾燥設備進行乾燥並生成第二產品及蒸汽;能源回收段,包括熱回收設備及蒸餾水收集槽,該熱回收設備分別與該固液分離段、該第一產品處理段及該乾燥設備連接;該熱回收設備受該控制處理器電性控制以將該濾液自該固液分離段輸送至該乾燥設備;該蒸餾水收集槽與該乾燥設備連接以接收並冷凝該蒸汽後形成高溫蒸餾水;藉此,該高溫蒸餾水回收輸出至該熱回收設備,該濾液與該高溫蒸餾水於該熱回收設備進行熱回收預熱,令該濾液升溫輸出至該乾燥設備,該高溫蒸餾水降溫冷卻形成低溫蒸餾水,該低溫蒸餾水回收輸出至該第一產品處理段清洗該第一產品。The reason is that, in order to achieve the above object, the present invention provides an environmental protection and energy-saving recovery system for generating crystals from multiple acid solutions, which includes: a control processor; the first product generation section is electrically controlled by the control processor to input multiple The acid solution and the reaction agent react to the first product generation section to generate the first product and filtrate; the solid-liquid separation section is connected to the first product generation section and is electrically controlled by the control processor to receive and separate the The first product and the filtrate; the first product processing section, which is connected to the solid-liquid separation section to receive and clean the first product for output and storage; the second product generation section, including the drying equipment electrically controlled by the control processor , so that the filtrate is input into the drying equipment for drying and generates the second product and steam; the energy recovery section includes heat recovery equipment and distilled water collection tank, and the heat recovery equipment is respectively connected with the solid-liquid separation section, the first product treatment section and The drying equipment is connected; the heat recovery equipment is electrically controlled by the control processor to transport the filtrate from the solid-liquid separation section to the drying equipment; the distilled water collection tank is connected to the drying equipment to receive and condense the steam to form High-temperature distilled water; thereby, the high-temperature distilled water is recovered and output to the heat recovery equipment, and the filtrate and the high-temperature distilled water are heat-recovered and preheated in the heat recovery equipment, so that the filtrate is heated and output to the drying equipment, and the high-temperature distilled water is cooled to form Low-temperature distilled water, the low-temperature distilled water is recovered and output to the first product processing section to clean the first product.
本發明另提供一種自多重酸溶液生成晶體之環保節能回收方法,其中,該方法的步驟包括:The present invention also provides an environmental protection and energy-saving recovery method for crystals generated from multiple acid solutions, wherein the steps of the method include:
第一產品生成步驟:將多重酸溶液及反應藥劑輸入第一產品生成段進行結晶反應以生成第一產品;The first product generation step: input the multiple acid solution and the reaction agent into the first product generation section for crystallization reaction to generate the first product;
固液分離步驟:經固液分離獲得該第一產品及濾液;且該第一產品輸出至第一產品處理段;Solid-liquid separation step: obtain the first product and filtrate through solid-liquid separation; and output the first product to the first product processing section;
第二產品生成步驟:令該濾液流經熱回收設備後輸出至乾燥設備,該濾液經該乾燥設備加熱除水而結晶獲得第二產品輸出儲存,且去除的水分形成蒸汽輸出;The second product generation step: make the filtrate flow through the heat recovery equipment and then output to the drying equipment, the filtrate is heated by the drying equipment to remove water and crystallize to obtain the second product output storage, and the removed water forms steam output;
熱能回收預熱步驟:令該蒸汽冷卻形成高溫蒸餾水,該高溫蒸餾水回收輸出至該熱回收設備,使該濾液與該高溫蒸餾水於該熱回收設備進行熱交換以回收熱能並預熱該濾液;該高溫蒸餾水降溫冷卻形成低溫蒸餾水;Heat energy recovery and preheating step: cooling the steam to form high-temperature distilled water, which is recovered and output to the heat recovery equipment, and the filtrate and the high-temperature distilled water are heat-exchanged in the heat recovery equipment to recover heat energy and preheat the filtrate; High-temperature distilled water is cooled to form low-temperature distilled water;
第一產品清洗步驟:令該低溫蒸餾水回收作為清洗水輸出洗滌該第一產品,該第一產品清洗處理後輸出儲存。The first product cleaning step: recovering the low-temperature distilled water as cleaning water to output and wash the first product, and output and store the first product after cleaning.
有關於本發明為達成上述目的,所採用之技術、手段及其他功效,茲舉較佳可行實施例並配合圖式詳細說明如後。Regarding the technology, means and other effects adopted by the present invention to achieve the above-mentioned purpose, preferred feasible embodiments are given and described in detail in conjunction with the drawings as follows.
為利於對本發明的瞭解,以下結合圖1、圖2及實施例進行說明。In order to facilitate the understanding of the present invention, the following description will be made in conjunction with FIG. 1 , FIG. 2 and the embodiments.
如圖1所示,本發明提供的自多重酸溶液生成晶體之環保節能回收系統用以處理含氫氟酸(HF)及1至3種混合酸的廢液,本發明系統透過外加藥劑與該廢液混合反應,從而達到去除氫氟酸之目的。於本發明實施例中,定該廢液為多重酸溶液A,該外加藥劑為反應藥劑B,其中,該多重酸溶液A包含氫氟酸(HF)以及選自以下一至三種酸之組合:硝酸(HNO 3)、磷酸(H 3PO 4)、鹽酸(HCl)及硫酸(H 2SO 4),該反應藥劑B選自以下一至二種化合物之組合:氯化鈣(CaCl 2)、氧化鈣(CaO)、氫氧化鈣(Ca(OH) 2)、碳酸鈣(CaCO 3)、硫酸鈣(CaSO 4)、鋁酸鈉(NaAlO 2)、矽酸鈉(Na 2SiO 3)及氫氧化鈉(NaOH)。 As shown in Figure 1, the environmental protection and energy-saving recovery system for generating crystals from multiple acid solutions provided by the present invention is used to treat waste liquids containing hydrofluoric acid (HF) and 1 to 3 kinds of mixed acids. The waste liquid is mixed and reacted to achieve the purpose of removing hydrofluoric acid. In the embodiment of the present invention, the waste liquid is defined as multiple acid solution A, and the external agent is reaction agent B, wherein, the multiple acid solution A contains hydrofluoric acid (HF) and a combination of one to three acids selected from the following: nitric acid (HNO 3 ), phosphoric acid (H 3 PO 4 ), hydrochloric acid (HCl) and sulfuric acid (H 2 SO 4 ), the reagent B is selected from the following combination of one or two compounds: calcium chloride (CaCl 2 ), calcium oxide (CaO), calcium hydroxide (Ca(OH) 2 ), calcium carbonate (CaCO 3 ), calcium sulfate (CaSO 4 ), sodium aluminate (NaAlO 2 ), sodium silicate (Na 2 SiO 3 ) and sodium hydroxide (NaOH).
具體地,本發明系統包括控制處理器60及受其電性控制並依製程設置的第一產品生成段10、固液分離段20、第一產品處理段30、第二產品生成段40及能源回收段50,其中,該固液分離段20連接於該第一產品生成段10與該第一產品處理段30之間,用以濾出第一產品P1,該固液分離段20另透過該能源回收段50與該第二產品生成段40連接,且該能源回收段50與該第一產品處理段30連接,形成熱能及水資源回收路徑。藉此,令多重酸溶液A、反應藥劑B透過控制處理器60控制輸入第一產品生成段10進行反應以生成第一產品P1及剩餘反應溶液,該第一產品P1及該剩餘反應溶液經該固液分離段20分離形成晶體化的第一產品P1以及濾液FL並分別輸送至該第一產品處理段30及該第二產品生成段40;該第一產品P1於該第一產品處理段30利用該能源回收段50回收的低溫蒸餾水LDW清洗;該濾液FL先流經該能源回收段50以被回收的高溫蒸餾水HDW預熱,再輸入該第二產品生成段40進行乾燥以生成第二產品P2,從而實現有效處理並資源化含氫氟酸的多重酸溶液A的功效,同時在廢液處理過程中有效回收熱能及水資源,達到環保節能的效果。Specifically, the system of the present invention includes a
於本發明的系統實施例中,該第一產品生成段10用以輸入多重酸溶液A及反應藥劑B至該第一產品生成段10;該固液分離段20用以接收並分離該第一產品P1及該濾液FL;該第一產品處理段30用以接收並清洗該第一產品P1後輸出儲存;該第二產品生成段40包括受該控制處理器60電性控制的乾燥設備41,以令該濾液FL輸入該乾燥設備41進行乾燥並生成第二產品P2及蒸汽VP;該能源回收段50包括熱回收設備51及蒸餾水收集槽52,該熱回收設備51分別與該固液分離段20、該第一產品處理段30及該乾燥設備41連接;該熱回收設備51受該控制處理器60電性控制以將該濾液FL自該固液分離段20輸送至該乾燥設備41;該蒸餾水收集槽52與該乾燥設備41連接以接收並冷凝該蒸汽VP後形成高溫蒸餾水HDW;藉此,該高溫蒸餾水HDW回收輸出至該熱回收設備51,該濾液FL與該高溫蒸餾水HDW於該熱回收設備51進行熱交換,從而使該濾液FL被該高溫蒸餾水HDW的預熱升溫後輸出至該乾燥設備41,該高溫蒸餾水HDW則降溫冷卻形成低溫蒸餾水LDW,該低溫蒸餾水LDW回收輸出至該第一產品處理段30清洗該第一產品P1。In the system embodiment of the present invention, the first
於本發明實施例中,該熱回收設備51為熱交換器,於構造上可選擇雙套管式、殼管式、盤管式或板式熱交換器。In the embodiment of the present invention, the
於本發明實施例中,該乾燥設備41與該蒸餾水收集槽52之間還設有冷凝器(圖未示),以將乾燥設備41加熱後產生的高溫蒸汽VP冷凝形成高溫蒸餾水HDW。In the embodiment of the present invention, a condenser (not shown) is provided between the
具體地,如圖1,該第一產品生成段10設有多重酸收集槽11及加藥反應槽12,該多重酸溶液A輸入至該多重酸收集槽11集中後輸出至該加藥反應槽12,該反應藥劑B輸入該加藥反應槽12中與該多重酸溶液A反應生成該第一產品P1。Specifically, as shown in Figure 1, the first
具體地,如圖1,該第一產品生成段10還設有緩衝水槽13,該緩衝水槽13連接於該加藥反應槽12及該固液分離段20之間,令該多重酸溶液A與該反應藥劑B輸送至該緩衝水槽13中充份混合以反應生成第一產品P1。Specifically, as shown in Figure 1, the first
具體地,如圖1,該固液分離段20設有第一脫水設備21及濾液收集槽22;該多重酸溶液A與該反應藥劑B反應生成該第一產品P1及初次濾液FL1;該第一脫水設備21與該第一產品生成段10連接以接收並分離輸送該第一產品P1至該第一產品處理段30,以及分離輸送該初次濾液FL1至該濾液收集槽22。Specifically, as shown in Figure 1, the solid-
於本發明實施例中,該第一產品生成段10還設有緩衝水槽13,該緩衝水槽13連接於該加藥反應槽12及該第一脫水設備21之間,令該多重酸溶液A與該反應藥劑B輸送至該緩衝水槽13中充份混合以反應生成第一產品P1。In the embodiment of the present invention, the first
具體地,如圖1,該第一產品處理段30包括第一產品收集槽31、第一產品清洗槽32及第一產品儲槽33;該第一產品收集槽31與該第一脫水設備21連接以集中該第一產品P1後輸出至該第一產品清洗槽32;該第一產品清洗槽32與該熱回收設備51連接,該熱回收設備51產生的該低溫蒸餾水LDW回收輸出至該第一產品清洗槽32作為清洗水洗滌該第一產品P1;該第一產品P1於該第一產品清洗槽32清洗處理後輸出至該第一產品儲槽33儲存;藉此,本發明系統形成該低溫蒸餾水LDW作為清洗水的一次回收使用路徑:熱回收設備51→低溫蒸餾水LDW→第一產品清洗槽32。Specifically, as shown in Figure 1, the first
具體地,如圖1,該第一產品清洗槽32與該濾液收集槽22連接,該低溫蒸餾水LDW於該第一產品清洗槽32清洗該第一產品P1後形成二次濾液FL2回收輸出至該濾液收集槽22,該二次濾液FL2與該初次濾液FL1混合形成該濾液FL後輸出至該熱回收設備51。藉此,本發明系統形成該低溫蒸餾水LDW形成二次濾液FL2後的二次回收使用路徑:第一產品清洗槽32→二次濾液FL2→濾液收集槽22。Specifically, as shown in Fig. 1, the first
具體地,如圖1,該能源回收段50還包括放流水槽53與該蒸餾水收集槽52連接,供集中排放該高溫蒸餾水HDW。Specifically, as shown in FIG. 1 , the
具體地,如圖1,該第二產品生成段40還包括第二產品儲槽42與該乾燥設備41連接,以集中儲存該第二產品P2。Specifically, as shown in FIG. 1 , the second
此外,如圖2所示,顯示本發明自多重酸溶液生成晶體之環保節能回收系統的另一製程架構實施態樣示意圖。圖2的系統製程架構與圖1的差別主要在於第一產品清洗槽32與第一產品儲槽33及濾液收集槽22之間增設有第二脫水設備321,具體地,該第一產品處理段30還包括第二脫水設備321連接設於該第一產品收集槽32與該濾液收集槽22及第一產品儲槽33之間,令該第一產品清洗槽32輸出該二次濾液FL2及清洗後的該第一產品P1至該第二脫水設備321,該第二脫水設備321分離輸送清洗後的該第一產品P1至第一產品儲槽33,以及分離輸送該二次濾液FL2至該濾液收集槽22,藉此,達到確實固液分離該第一產品P1及該二次濾液FL2。In addition, as shown in FIG. 2 , it shows a schematic diagram of another process architecture implementation of the environmental protection and energy saving recovery system for generating crystals from multiple acid solutions according to the present invention. The difference between the system process architecture of Fig. 2 and Fig. 1 is that a
以上說明本發明自多重酸溶液生成晶體之環保節能回收系統的具體實施方式,以下請配合圖1、圖2,說明本發明自多重酸溶液生成晶體之環保節能回收方法。The above describes the specific implementation of the environmental protection and energy saving recovery system of the present invention for generating crystals from multiple acid solutions. Please refer to Figure 1 and Figure 2 below to illustrate the environmental protection and energy saving recovery method of the present invention for generating crystals from multiple acid solutions.
本發明自多重酸溶液生成晶體之環保節能回收方法的步驟包括:The steps of the environmental protection and energy-saving recovery method of generating crystals from multiple acid solutions of the present invention include:
第一產品生成步驟:將多重酸溶液A及反應藥劑B輸入第一產品生成段10進行結晶反應以生成第一產品P1;The first product generation step: input the multiple acid solution A and the reaction reagent B into the first
固液分離步驟:經固液分離獲得該第一產品P1及濾液FL;且該第一產品P1輸出至第一產品處理段30;Solid-liquid separation step: obtain the first product P1 and filtrate FL through solid-liquid separation; and output the first product P1 to the first
第二產品生成步驟:令該濾液FL流經熱回收設備51後輸出至乾燥設備41,該濾液FL經該乾燥設備41加熱除水而結晶獲得第二產品P2輸出儲存,且去除的水分形成蒸汽VP輸出;The second product generation step: make the filtrate FL flow through the
熱能回收預熱步驟:令該蒸汽VP冷卻形成高溫蒸餾水HDW,該高溫蒸餾水HDW回收輸出至該熱回收設備51,使該濾液FL與該高溫蒸餾水HDW於該熱回收設備51進行熱交換以回收熱能並預熱該濾液FL;該高溫蒸餾水HDW降溫冷卻形成低溫蒸餾水LDW;Heat recovery and preheating step: cooling the steam VP to form high-temperature distilled water HDW, which is recovered and output to the
第一產品清洗步驟:令該低溫蒸餾水LDW回收作為清洗水輸出洗滌該第一產品P1,該第一產品P1清洗處理後輸出儲存。The first product cleaning step: recovering the low-temperature distilled water LDW as cleaning water to output and wash the first product P1, and the first product P1 is output and stored after cleaning.
於本發明的方法實施例中,該第一產品清洗步驟還包括,該低溫蒸餾水LDW清洗該第一產品P1後形成二次濾液FL2,該二次濾液FL2回收與該固液分離步驟產生的濾液FL混合,以輸出至該熱回收設備51再利用。In the method embodiment of the present invention, the first product cleaning step further includes, the low-temperature distilled water LDW washes the first product P1 to form a secondary filtrate FL2, and the secondary filtrate FL2 recovers the filtrate produced in the solid-liquid separation step FL is mixed to be output to the
以下請配合參閱表1,說明本發明系統輸入含有氫氟酸與一至三種酸混合的溶液(多重酸溶液A),配合添加一至二種反應藥劑B進行反應的實施例1至實施例6。Please refer to Table 1 below to illustrate the embodiment 1 to embodiment 6 in which the system of the present invention inputs a solution containing hydrofluoric acid mixed with one to three acids (multiple acid solution A) and adds one to two kinds of reagent B for reaction.
應被理解的是,本發明實施例1至6所列多重酸溶液A的組成中,以氫氟酸(HF)為主要處理目標,其他混合酸(例如:HNO 3、H 2SO 4、H 3PO 4)為少量混合在多重酸溶液A的酸,且具體應用於本發明系統及方法時,多重酸溶液A可為兩種酸的混合溶液(氫氟酸(HF)與另一種酸混合),或者三至四種酸的混合溶液(氫氟酸(HF)與另二至三種酸混合)。 It should be understood that, among the compositions of multiple acid solutions A listed in Examples 1 to 6 of the present invention, hydrofluoric acid (HF) is the main treatment target, and other mixed acids (for example: HNO 3 , H 2 SO 4 , H 3 PO 4 ) is a small amount of acid mixed in the multiple acid solution A, and when specifically applied to the system and method of the present invention, the multiple acid solution A can be a mixed solution of two acids (hydrofluoric acid (HF) mixed with another acid ), or a mixed solution of three to four acids (hydrofluoric acid (HF) mixed with another two to three acids).
表1:
實施例1:Example 1:
於實施例1中,多重酸溶液A包含HF、HNO 3、H 2SO 4、H 3PO 4;反應藥劑B包含CaCl 2、NaOH。多重酸溶液A與反應藥劑B的化學反應式如下: CaCl 2+ 2HF → CaF 2+ 2HCl ;HCl + NaOH → NaCl + H 2O; CaCl 2+ 2HNO 3→ Ca(NO 3) 2+ 2HCl ;HCl + NaOH → NaCl + H 2O; CaCl 2+ H 2SO 4→ CaSO 4+ 2HCl ;HCl + NaOH → NaCl + H 2O; 3CaCl 2+ 2H 3PO 4→ Ca 2(PO 4) 2+ 6HCl ;HCl + NaOH → NaCl + H 2O 。 In Example 1, the multiple acid solution A contains HF, HNO 3 , H 2 SO 4 , H 3 PO 4 ; the reagent B contains CaCl 2 , NaOH. The chemical reaction formula of multiple acid solution A and reagent B is as follows: CaCl 2 + 2HF → CaF 2 + 2HCl; HCl + NaOH → NaCl + H 2 O; CaCl 2 + 2HNO 3 → Ca(NO 3 ) 2 + 2HCl; HCl + NaOH → NaCl + H 2 O; CaCl 2 + H 2 SO 4 → CaSO 4 + 2HCl; HCl + NaOH → NaCl + H 2 O; 3CaCl 2 + 2H 3 PO 4 → Ca 2 (PO 4 ) 2 + 6HCl; HCl + NaOH → NaCl + H2O .
於本實施例中,該多重酸溶液A的組成酸(HF與其他混合酸)分別與反應藥劑B中的CaCl 2反應形成含鈣鹽類及HCl,HCl再與反應藥劑B中的NaOH反應形成NaCl及水,最終獲得第一產品P1:CaF 2晶體,與第二產品P2:包括Ca(NO 3) 2、CaSO 4、Ca 2(PO 4) 2、NaCl的沉澱物。 In this embodiment, the constituent acids (HF and other mixed acids) of the multiple acid solution A react with CaCl in the reagent B to form calcium-containing salts and HCl, and HCl reacts with NaOH in the reagent B to form NaCl and water to finally obtain the first product P1: CaF 2 crystals, and the second product P2: precipitates including Ca(NO 3 ) 2 , CaSO 4 , Ca 2 (PO 4 ) 2 , and NaCl.
實施例2:Example 2:
於實施例2中,多重酸溶液A包含HF、HNO 3、H 2SO 4、H 3PO 4;反應藥劑B包含Ca(OH) 2。多重酸溶液A與反應藥劑B的化學反應式如下: Ca(OH) 2+ HF → CaF 2+ 2H 2O ; Ca(OH) 2+ HNO 3→ Ca(NO 3) 2+ 2H 2O ; Ca(OH) 2+ H 2SO 4→ CaSO 4+ 2H 2O ; 3Ca(OH) 2+ 2H 3PO 4→ Ca 2(PO 4) 2+ 6H 2O 。 In Example 2, the multiple acid solution A contains HF, HNO 3 , H 2 SO 4 , H 3 PO 4 ; the reagent B contains Ca(OH) 2 . The chemical reaction formula of multiple acid solution A and reagent B is as follows: Ca(OH) 2 + HF → CaF 2 + 2H 2 O ; Ca(OH) 2 + HNO 3 → Ca(NO 3 ) 2 + 2H 2 O ; (OH) 2 + H 2 SO 4 → CaSO 4 + 2H 2 O ; 3Ca(OH) 2 + 2H 3 PO 4 → Ca 2 (PO 4 ) 2 + 6H 2 O .
於本實施例中,該多重酸溶液A的組成酸(HF與其他混合酸)分別與反應藥劑B中的Ca(OH) 2反應形成含鈣鹽類及水,最終獲得第一產品P1:CaF 2晶體,與第二產品P2:包括Ca(NO 3) 2、CaSO 4、Ca 2(PO 4) 2的沉澱物。 In this embodiment, the constituent acids (HF and other mixed acids) of the multiple acid solution A respectively react with Ca(OH) in the reagent B to form calcium-containing salts and water, and finally obtain the first product P1: CaF 2 crystals, and the second product P2: precipitates including Ca(NO 3 ) 2 , CaSO 4 , Ca 2 (PO 4 ) 2 .
實施例3:Example 3:
於實施例3中,多重酸溶液A包含HF、HNO 3、H 2SO 4、H 3PO 4;反應藥劑B包含CaCO 3、NaOH。多重酸溶液A與反應藥劑B的化學反應式如下: CaCO 3+ 2HF → CaF 2+ H 2CO 3;H 2CO 3+ 2NaOH → Na 2CO 3+ 2H 2O; CaCO 3+ 2HNO 3→ Ca(NO 3) 2+ H 2CO 3;H 2CO 3+ 2NaOH → Na 2CO 3+ 2H 2O; CaCO 3+ H 2SO 4→ CaSO 4+ HCO 3;H 2CO 3+ 2NaOH → Na 2CO 3+ 2H 2O; 3CaCO 3+ 2H 3PO 4→ Ca 2(PO 4) 2+ 3HCO 3;H 2CO 3+ 2NaOH → Na 2CO 3+ 2H 2O 。 In Example 3, the multiple acid solution A contains HF, HNO 3 , H 2 SO 4 , H 3 PO 4 ; the reagent B contains CaCO 3 , NaOH. The chemical reaction formula of multiple acid solution A and reagent B is as follows: CaCO 3 + 2HF → CaF 2 + H 2 CO 3 ; H 2 CO 3 + 2NaOH → Na 2 CO 3 + 2H 2 O; CaCO 3 + 2HNO 3 → Ca (NO 3 ) 2 + H 2 CO 3 ; H 2 CO 3 + 2NaOH → Na 2 CO 3 + 2H 2 O; CaCO 3 + H 2 SO 4 → CaSO 4 + HCO 3 ; H 2 CO 3 + 2NaOH → Na 2 CO 3 + 2H 2 O; 3CaCO 3 + 2H 3 PO 4 → Ca 2 (PO 4 ) 2 + 3HCO 3 ; H 2 CO 3 + 2NaOH → Na 2 CO 3 + 2H 2 O.
於本實施例中,該多重酸溶液A的組成酸(HF與其他混合酸)分別與反應藥劑B中的CaCO 3反應形成含鈣鹽類及HCO 3,HCO 3再與反應藥劑B中的NaOH反應形成Na 2CO 3及水,最終獲得第一產品P1:CaF 2晶體,與第二產品P2:包括Ca(NO 3) 2、CaSO 4、Ca 2(PO 4) 2、Na 2CO 3的沉澱物。 In this embodiment, the constituent acids (HF and other mixed acids) of the multiple acid solution A react with CaCO 3 in the reagent B to form calcium-containing salts and HCO 3 , and HCO 3 reacts with NaOH in the reagent B The reaction forms Na 2 CO 3 and water, and finally obtains the first product P1: CaF 2 crystals, and the second product P2: including Ca(NO 3 ) 2 , CaSO 4 , Ca 2 (PO 4 ) 2 , Na 2 CO 3 Precipitate.
實施例4:Example 4:
於實施例4中,多重酸溶液A包含HF、HNO 3、H 2SO 4、H 3PO 4;反應藥劑B包含NaAlO 2、NaOH。多重酸溶液A與反應藥劑B的化學反應式如下: n Na 2O‧Al 2O 3+ 2(n+3)HF → 2(n NaF‧AlF 3) + (n+3)H 2O ; NaOH + HNO 3→ NaNO 3+ H 2O ; 2NaOH + H 2SO 4→ Na 2SO 4+ 2H 2O ; 3NaOH + 2H 3PO 4→ Na 3PO 4+ 3H 2O 。 In Example 4, the multiple acid solution A includes HF, HNO 3 , H 2 SO 4 , H 3 PO 4 ; the reagent B includes NaAlO 2 , NaOH. The chemical reaction formula of multiple acid solution A and reagent B is as follows: n Na 2 O‧Al 2 O 3 + 2(n+3)HF → 2(n NaF‧AlF 3 ) + (n+3)H 2 O ; NaOH + HNO 3 → NaNO 3 + H 2 O ; 2NaOH + H 2 SO 4 → Na 2 SO 4 + 2H 2 O ; 3NaOH + 2H 3 PO 4 → Na 3 PO 4 + 3H 2 O .
本實施例中,該多重酸溶液A的HF與反應藥劑B中的NaAlO 2反應形成Na 3AlF 6及水,該多重酸溶液A的HNO 3、H 2SO 4、H 3PO 4與反應藥劑B中的NaOH反應形成含鈉鹽類及水,最終獲得第一產品P1:Na 3AlF 6(冰晶石)晶體,與第二產品P2:包括NaNO 3、Na 2SO 4、Na 3PO 4的沉澱物。 In this embodiment, the HF in the multiple acid solution A reacts with the NaAlO 2 in the reagent B to form Na 3 AlF 6 and water, and the HNO 3 , H 2 SO 4 , H 3 PO 4 in the multiple acid solution A react with the reagent B NaOH in B reacts to form sodium-containing salts and water, and finally obtains the first product P1: Na 3 AlF 6 (cryolite) crystals, and the second product P2: NaNO 3 , Na 2 SO 4 , Na 3 PO 4 Precipitate.
實施例5:Example 5:
於實施例5中,多重酸溶液A包含HF、HNO 3、H 2SO 4、H 3PO 4;反應藥劑B包含Na 2SiO 3、NaOH。多重酸溶液A與反應藥劑B的化學反應式如下: Na 2SiO 3+ HF → Na 2SiF 6+ H 2SiF 6+ H 2O;H 2SiF 6+ 2NaOH → Na 2SiF 6+ 2H 2O; NaOH + HNO 3→ NaNO 3+ H 2O; 2NaOH + H 2SO 4→ Na 2SO 4+ 2H 2O ; 3NaOH + 2H 3PO 4→ Na 3PO 4+ 3H 2O 。 In Example 5, the multiple acid solution A includes HF, HNO 3 , H 2 SO 4 , H 3 PO 4 ; the reagent B includes Na 2 SiO 3 , NaOH. The chemical reaction formula of multiple acid solution A and reagent B is as follows: Na 2 SiO 3 + HF → Na 2 SiF 6 + H 2 SiF 6 + H 2 O; H 2 SiF 6 + 2NaOH → Na 2 SiF 6 + 2H 2 O ; NaOH + HNO 3 → NaNO 3 + H 2 O; 2NaOH + H 2 SO 4 → Na 2 SO 4 + 2H 2 O ; 3NaOH + 2H 3 PO 4 → Na 3 PO 4 + 3H 2 O.
本實施例中,該多重酸溶液A的HF與反應藥劑B中的Na 2SiO 3反應形成Na 2SiF 6及水,該多重酸溶液A的HNO 3、H 2SO 4、H 3PO 4與反應藥劑B中的NaOH反應形成含鈉鹽類及水,最終獲得第一產品P1:Na 2SiF 6晶體,與第二產品P2:包括NaNO 3、Na 2SO 4、Na 3PO 4的沉澱物。 In this embodiment, the HF in the multiple acid solution A reacts with the Na 2 SiO 3 in the reagent B to form Na 2 SiF 6 and water, and the HNO 3 , H 2 SO 4 , H 3 PO 4 in the multiple acid solution A and The NaOH in the reaction agent B reacts to form sodium-containing salts and water, and finally obtains the first product P1: Na 2 SiF 6 crystals, and the second product P2: precipitates including NaNO 3 , Na 2 SO 4 , and Na 3 PO 4 .
實施例6:Embodiment 6:
於實施例5中,多重酸溶液A包含HF、HNO 3、H 2SO 4、H 3PO 4;反應藥劑B包含NaOH。多重酸溶液A與反應藥劑B的化學反應式如下: NaOH + HF → NaF + H 2O ; NaOH + HNO 3→ NaNO 3+ H 2O ; 2NaOH + H 2SO 4→ Na 2SO 4+ 2H 2O ; 3NaOH + 2H 3PO 4→ Na 3PO 4+ 3H 2O 。 In Example 5, the multiple acid solution A contains HF, HNO 3 , H 2 SO 4 , H 3 PO 4 ; the reagent B contains NaOH. The chemical reaction formula of multiple acid solution A and reagent B is as follows: NaOH + HF → NaF + H 2 O ; NaOH + HNO 3 → NaNO 3 + H 2 O ; 2NaOH + H 2 SO 4 → Na 2 SO 4 + 2H 2 O ; 3NaOH + 2H 3 PO 4 → Na 3 PO 4 + 3H 2 O .
本實施例中,該多重酸溶液A的組成酸(HF與其他混合酸)與反應藥劑B中的NaOH反應形成含鈉鹽類及水,最終獲得第一產品P1:NaF晶體,與第二產品P2:包括NaNO 3、Na 2SO 4、Na 3PO 4的沉澱物。 In this embodiment, the constituent acids (HF and other mixed acids) of the multiple acid solution A react with NaOH in the reagent B to form sodium-containing salts and water, and finally obtain the first product P1: NaF crystals, and the second product P2: Precipitates including NaNO 3 , Na 2 SO 4 , Na 3 PO 4 .
A:多重酸溶液 B:反應藥劑 10:第一產品生成段 11:多重酸收集槽 12:加藥反應槽 13:緩衝水槽 FL:濾液 FL1:初次濾液 P1:第一產品 20:固液分離段 21:第一脫水設備 22:濾液收集槽 30:第一產品處理段 31:第一產品收集槽 32:第一產品清洗槽 321:第二脫水設備 33:第一產品儲槽 40:第二產品生成段 41:乾燥設備 42:第二產品儲槽 VP:蒸汽 P2:第二產品 50:能源回收段 51:熱回收設備 52:蒸餾水收集槽 53:放流水槽 DW:蒸餾水DW HDW:高溫蒸餾水 LDW:低溫蒸餾水 FL2:二次濾液 60:控制處理器 A: Multiple acid solution B: Reactive Potion 10: The first product generation segment 11: Multiple acid collection tank 12: Dosing reaction tank 13: buffer tank FL: filtrate FL1: primary filtrate P1: first product 20: Solid-liquid separation section 21: The first dehydration equipment 22: Filtrate collection tank 30: The first product processing section 31: The first product collection tank 32: The first product cleaning tank 321: The second dehydration equipment 33: First product storage tank 40: The second product generation segment 41: Drying equipment 42: Second product storage tank VP: Steam P2: Second product 50: Energy recovery section 51:Heat recovery equipment 52: Distilled water collection tank 53: Release sink DW: distilled water DW HDW: high temperature distilled water LDW: low temperature distilled water FL2: secondary filtrate 60: Control Processor
圖1是本發明自多重酸溶液生成晶體之環保節能回收系統的製程架構示意圖; 圖2是本發明系統的製程架構另一實施態樣示意圖。 Fig. 1 is the schematic diagram of the process structure of the environmental protection and energy saving recycling system of the present invention to generate crystals from multiple acid solutions; FIG. 2 is a schematic diagram of another implementation of the process architecture of the system of the present invention.
A:多重酸溶液 A: Multiple acid solution
B:反應藥劑 B: Reactive Potion
10:第一產品生成段 10: The first product generation segment
11:多重酸收集槽 11: Multiple acid collection tank
12:加藥反應槽 12: Dosing reaction tank
13:緩衝水槽 13: buffer tank
FL:濾液 FL: filtrate
FL1:初次濾液 FL1: primary filtrate
P1:第一產品 P1: first product
20:固液分離段 20: Solid-liquid separation section
21:第一脫水設備 21: The first dehydration equipment
22:濾液收集槽 22: Filtrate collection tank
30:第一產品處理段 30: The first product processing section
31:第一產品收集槽 31: The first product collection tank
32:第一產品清洗槽 32: The first product cleaning tank
33:第一產品儲槽 33: First product storage tank
40:第二產品生成段 40: The second product generation segment
41:乾燥設備 41: Drying equipment
42:第二產品儲槽 42: Second product storage tank
VP:蒸汽 VP: Steam
P2:第二產品 P2: Second product
50:能源回收段 50: Energy recovery section
51:熱回收設備 51:Heat recovery equipment
52:蒸餾水收集槽 52: Distilled water collection tank
53:放流水槽 53: Release sink
DW:蒸餾水DW DW: distilled water DW
HDW:高溫蒸餾水 HDW: high temperature distilled water
LDW:低溫蒸餾水 LDW: low temperature distilled water
FL2:二次濾液 FL2: secondary filtrate
60:控制處理器 60: Control Processor
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110135725A TWI788026B (en) | 2021-09-27 | 2021-09-27 | Environmental protection and energy saving recycling system from multiple acid solution and its method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110135725A TWI788026B (en) | 2021-09-27 | 2021-09-27 | Environmental protection and energy saving recycling system from multiple acid solution and its method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI788026B true TWI788026B (en) | 2022-12-21 |
TW202313489A TW202313489A (en) | 2023-04-01 |
Family
ID=85795160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110135725A TWI788026B (en) | 2021-09-27 | 2021-09-27 | Environmental protection and energy saving recycling system from multiple acid solution and its method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI788026B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1868914A (en) * | 2002-11-28 | 2006-11-29 | 笹仓机械工程有限公司 | Method and apparatus for treating hydrofluoric acid waste water |
CN101439898A (en) * | 2007-09-21 | 2009-05-27 | 三洋电机株式会社 | Hydrofluoric acid treatment apparatus |
TW201311574A (en) * | 2011-09-01 | 2013-03-16 | Cheng-Lung Hsieh | Treatment method for recycling and reusing hydrofluoric acid waste liquid (I) |
CN111003869A (en) * | 2019-12-26 | 2020-04-14 | 安徽工业大学 | Hydrofluoric acid wastewater resource utilization method |
-
2021
- 2021-09-27 TW TW110135725A patent/TWI788026B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1868914A (en) * | 2002-11-28 | 2006-11-29 | 笹仓机械工程有限公司 | Method and apparatus for treating hydrofluoric acid waste water |
CN101439898A (en) * | 2007-09-21 | 2009-05-27 | 三洋电机株式会社 | Hydrofluoric acid treatment apparatus |
TW201311574A (en) * | 2011-09-01 | 2013-03-16 | Cheng-Lung Hsieh | Treatment method for recycling and reusing hydrofluoric acid waste liquid (I) |
CN111003869A (en) * | 2019-12-26 | 2020-04-14 | 安徽工业大学 | Hydrofluoric acid wastewater resource utilization method |
Also Published As
Publication number | Publication date |
---|---|
TW202313489A (en) | 2023-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104787784B (en) | It is a kind of to reclaim the method that waste material containing lithium fluoride prepares lithium salts | |
US9663375B2 (en) | Processes for the recovery of fluoride and silica products and phosphoric acid from wet-process phosphoric acid facilities and contaminated waste waters | |
TWI529141B (en) | Recovery and treatment of hydrofluoric acid and fluorosilicic acid waste | |
CN104843712B (en) | A kind of method of the purification co-producing white carbon black of industrial fluosilicic acid | |
WO2002053500A2 (en) | Production of aluminum compounds and silica from ores | |
CN109019984A (en) | A kind of method and system recycling efficient resource from glass thinning acid pickle | |
US5362461A (en) | Method for recovering calcium fluoride from fluoroetchant | |
CN108190945B (en) | Resource utilization process of waste acid | |
TWI788026B (en) | Environmental protection and energy saving recycling system from multiple acid solution and its method | |
CN108163812A (en) | A kind of preparation method of hydrogen fluoride, the preparation method of hydrofluoric acid | |
CN103011278A (en) | Process for hydrothermally preparing zirconium oxychloride with low alkali consumption | |
CN113461017B (en) | Resource utilization method for fluorine-containing waste acid applied to photovoltaic industry | |
US3000702A (en) | Manufacture of sodium fluoride | |
CN101993100B (en) | Method for separating silicon tetrafluoride by-product | |
CN105984887A (en) | Melamine-tail-gas utilization technology | |
CN118419960A (en) | Method for preparing aluminum fluoride by using waste liquid of lithium precipitation concentrated mother solution | |
CN117125733B (en) | Method for removing phosphogypsum impurities | |
CN221693647U (en) | Device for producing sodium fluoride and sodium fluosilicate by utilizing waste hydrofluoric acid | |
CN208995272U (en) | A kind of system recycling efficient resource from glass thinning acid pickle | |
JP7479780B1 (en) | Method for producing lithium aluminum fluoride solution | |
CN109761255A (en) | A method of ice crystal, nitric acid and sodium sulphate are prepared using fluorine-containing nitric acid waste | |
KR20100092556A (en) | Method and system for separating hydrofluoric acid from mixed wasted acid solution using preferential precipitaion | |
CN115321854B (en) | Method for preparing building gypsum by purifying and calcining phosphogypsum | |
TWI733103B (en) | Low-temperature wet process for manufacturing hydrofluoric acid | |
TWI797542B (en) | Method of recycling ammonia from wasting buffered oxide etchants and preparing fluoro-salt crystals and solid silicon dioxide |