[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI787784B - OPTICAL CALIBRATION TOOL FOR QPCR STYSTEM, FABRICATION METHOD OF OPTICAL CALIBRATION TOOL, AND CALIBRATION METHOD OF qPCR STYSTEM - Google Patents

OPTICAL CALIBRATION TOOL FOR QPCR STYSTEM, FABRICATION METHOD OF OPTICAL CALIBRATION TOOL, AND CALIBRATION METHOD OF qPCR STYSTEM Download PDF

Info

Publication number
TWI787784B
TWI787784B TW110113402A TW110113402A TWI787784B TW I787784 B TWI787784 B TW I787784B TW 110113402 A TW110113402 A TW 110113402A TW 110113402 A TW110113402 A TW 110113402A TW I787784 B TWI787784 B TW I787784B
Authority
TW
Taiwan
Prior art keywords
transparent substrate
fluorescent particles
real
chain reaction
polymerase chain
Prior art date
Application number
TW110113402A
Other languages
Chinese (zh)
Other versions
TW202240149A (en
Inventor
游杰穎
勃 馬
李浚榮
顏翊安
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW110113402A priority Critical patent/TWI787784B/en
Publication of TW202240149A publication Critical patent/TW202240149A/en
Application granted granted Critical
Publication of TWI787784B publication Critical patent/TWI787784B/en

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

An optical calibration tool for a qPCR system includes a transparent substrate and fluorescent particles. The transparent substrate is solid, and the fluorescent particles are uniformly distributed in the transparent substrate.

Description

即時定量聚合酶連鎖反應(qPCR)系統的光學校正工具及其製備方法、以及qPCR系統的校正方法Optical correction tool for real-time quantitative polymerase chain reaction (qPCR) system, preparation method thereof, and correction method for qPCR system

本揭露是有關於一種即時定量聚合酶連鎖反應(qPCR)系統的光學校正工具及其製備方法、以及qPCR系統的校正方法。The disclosure relates to an optical correction tool for a real-time quantitative polymerase chain reaction (qPCR) system, a preparation method thereof, and a correction method for the qPCR system.

在現有的即時定量聚合酶連鎖反應(qPCR)系統的光學校正工具中,常使用有機螢光染劑作為被激發的材料。然而,有機螢光染劑常發生螢光強度衰退過快、發光強度受環境光源及溫度等條件影響而不穩定的問題。因此,現有的qPCR系統的光學校正工具不易重複使用、製備方式複雜、且精確度難以提升。In the optical calibration tools of existing real-time quantitative polymerase chain reaction (qPCR) systems, organic fluorescent dyes are often used as excited materials. However, organic fluorescent dyes often suffer from the problems that the fluorescence intensity decays too quickly, and the luminous intensity is affected by environmental light source and temperature and is unstable. Therefore, the optical correction tool of the existing qPCR system is not easy to be reused, the preparation method is complicated, and the accuracy is difficult to improve.

有鑑於此,如何提供一種具有高精確度、可重複使用、且製備方式簡單的光學校正工具,仍是目前業界亟需研究的目標之一。In view of this, how to provide an optical correction tool with high precision, reusability, and simple preparation method is still one of the goals that the industry needs to study urgently.

本揭露之一技術態樣為一種即時定量聚合酶連鎖反應系統的光學校正工具。One technical aspect of the present disclosure is an optical calibration tool for a real-time quantitative polymerase chain reaction system.

在本揭露一實施例中,即時定量聚合酶連鎖反應系統的光學校正工具包含透明基材以及螢光粒子。透明基材為固體。螢光粒子均勻地散佈於透明基材中。In an embodiment of the present disclosure, the optical calibration tool of the RTQPCR system includes a transparent substrate and fluorescent particles. Transparent substrates are solid. Fluorescent particles are uniformly dispersed in the transparent substrate.

在本揭露一實施例中,即時定量聚合酶連鎖反應系統的光學校正工具還包含容器,配置以容納透明基材與螢光粒子。In an embodiment of the present disclosure, the optical calibration tool of the RTQPCR system further includes a container configured to accommodate the transparent substrate and the fluorescent particles.

在本揭露一實施例中,容器的折射率與透明基材的折射率之間的差值落在約0.2至0.3的範圍中。In an embodiment of the present disclosure, the difference between the refractive index of the container and the refractive index of the transparent substrate falls within a range of about 0.2 to 0.3.

在本揭露一實施例中,螢光粒子配置以由光源激發,且光源的波長落在約400奈米至800奈米的範圍中。In an embodiment of the present disclosure, the fluorescent particles are configured to be excited by a light source, and the wavelength of the light source falls within a range of about 400 nm to 800 nm.

在本揭露一實施例中,螢光粒子包含量子點、螢光微粒、奈米矽球、或奈米鑽石中的一者或上述之任意組合。In an embodiment of the present disclosure, the fluorescent particles include one or any combination of quantum dots, fluorescent particles, silicon nanospheres, or nanodiamonds.

在本揭露一實施例中,螢光粒子的平均直徑落在約1微米至10微米的範圍中。In an embodiment of the present disclosure, the average diameter of the fluorescent particles falls within a range of about 1 micron to 10 microns.

在本揭露一實施例中,螢光粒子的濃度落在約1ppm至10000 ppm的範圍中。In an embodiment of the present disclosure, the concentration of fluorescent particles falls within a range of about 1 ppm to 10000 ppm.

在本揭露一實施例中,透明基材的材料包含聚二甲基矽氧烷 (PDMS)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯或樹脂。In an embodiment of the present disclosure, the material of the transparent substrate includes polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA), polycarbonate or resin.

在本揭露一實施例中,透明基材為液態時的黏性小於5500釐泊(centipoise,cP)。In an embodiment of the present disclosure, the viscosity of the transparent substrate in a liquid state is less than 5500 centipoise (cP).

本揭露之另一技術態樣為一種即時定量聚合酶連鎖反應系統的光學校正工具的製備方法。Another technical aspect of the present disclosure is a preparation method of an optical calibration tool for a real-time quantitative polymerase chain reaction system.

在本揭露一實施例中,qPCR系統之光學校正工具的製備方法包含:準備液態透明基材;混合液態透明基材與螢光粒子以形成混合物;對混合物進行抽真空;以及固化混合物以形成固態透明基材,其中螢光粒子均勻地散佈於固態透明基材中。In an embodiment of the present disclosure, a method for preparing an optical calibration tool for a qPCR system includes: preparing a liquid transparent substrate; mixing the liquid transparent substrate and fluorescent particles to form a mixture; vacuumizing the mixture; and solidifying the mixture to form a solid state Transparent substrate, in which fluorescent particles are uniformly dispersed in a solid transparent substrate.

在本揭露一實施例中,混合液態透明基材與螢光粒子之步驟是藉由離心力攪拌,且離心力攪拌的轉速小於100 rpm。In an embodiment of the present disclosure, the step of mixing the liquid transparent substrate and the fluorescent particles is performed by centrifugal stirring, and the rotational speed of the centrifugal stirring is less than 100 rpm.

在本揭露一實施例中,qPCR系統之光學校正工具的製備方法還包含在固化混合物前,將混合物裝入容器。In an embodiment of the present disclosure, the preparation method of the optical calibration tool of the qPCR system further includes filling the mixture into a container before curing the mixture.

在本揭露一實施例中,qPCR系統之光學校正工具的製備方法還包含藉由鑽石雕刻方式對固態透明基材塑形。In an embodiment of the present disclosure, the preparation method of the optical calibration tool for the qPCR system further includes shaping the solid transparent substrate by diamond engraving.

在本揭露一實施例中,固態透明基材的蕭氏硬度落在約90D至100D的範圍中。In an embodiment of the present disclosure, the Shore hardness of the solid transparent substrate falls in the range of about 90D to 100D.

在本揭露一實施例中,固化混合物是藉由濕氣固化、熱固化或光固化而執行。In one embodiment of the present disclosure, curing the mixture is performed by moisture curing, heat curing or light curing.

本揭露之另一技術態樣為一種qPCR系統的校正方法。Another technical aspect of the present disclosure is a calibration method for a qPCR system.

在本揭露一實施例中,qPCR系統的校正方法包含放置光學校正工具於qPCR系統;開啟qPCR系統的光源,以激發光學校正工具中的螢光粒子;比對螢光粒子的發射光與內建資料並產生比對結果;以及根據比對結果調整qPCR系統的設定。In an embodiment of the present disclosure, the calibration method of the qPCR system includes placing an optical calibration tool in the qPCR system; turning on the light source of the qPCR system to excite the fluorescent particles in the optical calibration tool; comparing the emitted light of the fluorescent particles with the built-in data and generate comparison results; and adjust the settings of the qPCR system according to the comparison results.

在本揭露一實施例中,qPCR系統的設定包含該光源的光強度。 在本揭露一實施例中,qPCR系統的光源的波長對應螢光粒子的激發光波長。 In an embodiment of the present disclosure, the setting of the qPCR system includes the light intensity of the light source. In an embodiment of the present disclosure, the wavelength of the light source of the qPCR system corresponds to the wavelength of the excitation light of the fluorescent particles.

在上述實施例中,螢光粒子的發光強度具有高穩定性,因此本揭露的光學校正工具的可重複使用,不易產生光漂白現象,且具有高精確度。此外,螢光粒子的激發光強度皆可具有高訊噪比(signal-to-noise ratio,S/N Ratio),可增進qPCR系統的光學校正表現。In the above embodiments, the luminous intensity of the fluorescent particles has high stability, so the optical correction tool disclosed in the present disclosure is reusable, not prone to photobleaching, and has high accuracy. In addition, the excitation light intensity of the fluorescent particles can have a high signal-to-noise ratio (S/N Ratio), which can improve the optical calibration performance of the qPCR system.

以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。且為了清楚起見,圖式中之層和區域的厚度可能被誇大,並且在圖式的描述中相同的元件符號表示相同的元件。 Several embodiments of the present invention will be disclosed in the following figures. For the sake of clarity, many practical details will be described together in the following description. It should be understood, however, that these practical details should not be used to limit the invention. That is, in some embodiments of the present invention, these practical details are unnecessary. In addition, for the sake of simplifying the drawings, some well-known structures and components will be shown in a simple and schematic manner in the drawings. Also, the thicknesses of layers and regions in the drawings may be exaggerated for clarity, and the same reference numerals denote the same elements in the description of the drawings.

第1圖為根據本揭露一實施例之qPCR系統的光學校正工具100的示意圖。光學校正工具100包含透明基材110、多個螢光粒子120以及容器130。透明基材110為固體。螢光粒子120均勻地散佈於透明基材110中。容器130配置以容納透明基材110與螢光粒子120。光學校正工具100應用於校正qPCR系統的光學品質。螢光粒子120配置以由qPCR系統發出的光源激發。容器130為光學級的容器,例如可以是離心管。因此,qPCR系統的光源可穿透容器130以激發透明基材110中的螢光粒子120,使得螢光粒子120發出特定波長的光以用於執行qPCR系統的校正。 FIG. 1 is a schematic diagram of an optical calibration tool 100 of a qPCR system according to an embodiment of the present disclosure. The optical calibration tool 100 includes a transparent substrate 110 , a plurality of fluorescent particles 120 and a container 130 . The transparent substrate 110 is solid. The fluorescent particles 120 are uniformly dispersed in the transparent substrate 110 . The container 130 is configured to accommodate the transparent substrate 110 and the fluorescent particles 120 . The optical calibration tool 100 is used to calibrate the optical quality of a qPCR system. The fluorescent particles 120 are configured to be excited by the light source emitted by the qPCR system. The container 130 is an optical grade container, such as a centrifuge tube. Therefore, the light source of the qPCR system can penetrate the container 130 to excite the fluorescent particles 120 in the transparent substrate 110, so that the fluorescent particles 120 emit light of a specific wavelength for performing calibration of the qPCR system.

透明基材110的材料包含聚二甲基矽氧烷(PDMS)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯或樹脂。舉例來說,透明基材110的折射率可以是1.40至1.7透明基材110為液態時的黏性小於5500釐泊(centipoise)。藉由此特性,可避免在混合螢光粒子120至液態的透明基材110中時產生氣泡。如此一來,可避免氣泡或雜質殘留於透明基材110中而降低qPCR系統的光學校正表現。 The material of the transparent substrate 110 includes polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA), polycarbonate or resin. For example, the refractive index of the transparent substrate 110 may be 1.40 to 1.7, and the viscosity of the transparent substrate 110 in a liquid state is less than 5500 centipoise. With this feature, bubbles can be avoided when the fluorescent particles 120 are mixed into the liquid transparent substrate 110 . In this way, air bubbles or impurities can be prevented from remaining in the transparent substrate 110 and reducing the optical calibration performance of the qPCR system.

容器130的折射率與透明基材110的折射率之間的差值落在約0.2至0.3的範圍中。如此一來,可降低因介質折射率差異導致的像差問題而降低qPCR系統的光學校正精確度。The difference between the refractive index of the container 130 and the refractive index of the transparent substrate 110 falls in the range of about 0.2 to 0.3. In this way, the aberration problem caused by the difference in the refractive index of the medium can reduce the optical correction accuracy of the qPCR system.

第2A圖至第2D圖為根據本揭露一實施例之qPCR系統的光學校正工具的螢光粒子120的激發光與發射光光譜示意圖。螢光粒子120配置以由qPCR系統發出的光源激發,且光源的波長落在約400奈米至800奈米的範圍中。換句話說,螢光粒子120配置以發出可見光,且螢光粒子120的激發光波長與qPCR系統的光源波長對應。2A to 2D are schematic diagrams of the excitation light and emission light spectra of the fluorescent particles 120 of the optical calibration tool of the qPCR system according to an embodiment of the present disclosure. The fluorescent particles 120 are configured to be excited by the light source emitted by the qPCR system, and the wavelength of the light source falls in the range of about 400 nm to 800 nm. In other words, the fluorescent particles 120 are configured to emit visible light, and the wavelength of the excitation light of the fluorescent particles 120 corresponds to the wavelength of the light source of the qPCR system.

舉例來說,一部分的螢光粒子120可藉由藍光激發並發出藍綠光。如第2A圖所示,當qPCR系統可配置以發出波長的波峰約為470奈米的光源EX1(藍光)時,螢光粒子120可被激發而發出波長的波峰約為520奈米的發射光EM1(藍綠光)。如第2B圖所示,另一部分的螢光粒子120可被波長的波峰約為520奈米的光源EX2(藍綠光)激發而發出波長的波峰約為570奈米的發射光EM2(綠光)。如第2C圖所示,另一部分的螢光粒子120可被波長的波峰約為590奈米的光源EX3(黃光)激發出波長的波峰約為590奈米的發射光EM3(黃光)。如第2D圖所示,另一部分的螢光粒子120可被波長的波峰約為630奈米的光源EX4(紅光)激發出波長的波峰約為640奈米的發射光EM4(紅光)。For example, a part of the fluorescent particles 120 can be excited by blue light and emit blue-green light. As shown in FIG. 2A, when the qPCR system can be configured to emit light source EX1 (blue light) with a peak wavelength of about 470 nm, the fluorescent particles 120 can be excited to emit light with a peak wavelength of about 520 nm. EM1 (blue-green light). As shown in Figure 2B, another part of the fluorescent particles 120 can be excited by the light source EX2 (blue-green light) with a peak wavelength of about 520 nm to emit light EM2 (green light) with a peak wavelength of about 570 nm. ). As shown in FIG. 2C , another part of the fluorescent particles 120 can be excited by the light source EX3 (yellow light) with a peak wavelength of about 590 nm to emit light EM3 (yellow light) with a peak wavelength of about 590 nm. As shown in FIG. 2D , another part of the fluorescent particles 120 can be excited by the light source EX4 (red light) with a peak wavelength of about 630 nm to emit light EM4 (red light) with a peak wavelength of about 640 nm.

根據上述可知,藉由使用可被qPCR系統的光源激發的螢光粒子120,則可接收螢光粒子120發出的光進行qPCR系統的光學校正,其詳細校正步驟將於後續詳述。應理解到,上述的光源波長僅為示例,本領域人士當可根據qPCR系統所具有的光源波長相應地選擇適當的螢光粒子120。 According to the above, by using the fluorescent particles 120 that can be excited by the light source of the qPCR system, the light emitted by the fluorescent particles 120 can be received for optical calibration of the qPCR system. The detailed calibration steps will be described in detail later. It should be understood that the above light source wavelengths are just examples, and those skilled in the art can select appropriate fluorescent particles 120 according to the light source wavelengths of the qPCR system.

螢光粒子120可包含量子點(Quantum Dot)、螢光微粒(Fluorescent Particles)、奈米矽球(Silica Nanoparticles)或奈米鑽石(Nanodiamonds)中的一者或上述之任意組合。螢光粒子120的平均直徑落在約1微米至10微米的範圍中。螢光粒子120的濃度落在約1百萬分點濃度(ppm)至10000ppm的範圍中。 The fluorescent particles 120 may include one of Quantum Dots, Fluorescent Particles, Silica Nanoparticles, or Nanodiamonds, or any combination thereof. The average diameter of the fluorescent particles 120 falls in the range of about 1 micron to 10 microns. The concentration of fluorescent particles 120 falls within a range of about 1 part per million (ppm) to 10000 ppm.

第3A圖至第3C圖為根據本揭露另一實施例之qPCR系統的光學校正工具的螢光粒子的濃度與發射光強度關係圖。第3A圖為對應第2A圖所示以藍光激發的螢光粒子120的濃度與發射光強度關係圖。舉例來說,如第3A圖所示,螢光粒子120的濃度在0至1000ppm的範圍中所對應的螢光訊號強度成正比,其線性迴歸分析的相關係數R1大約為1。第3B圖為對應第2C圖所示以黃光激發的螢光粒子120的濃度與發射光強度(毫伏特,mV)關係圖。螢光粒子120的濃度在0至1000ppm的範圍中所對應的螢光訊號強度成正比,其線性迴歸分析的相關係數R2大約為0.9853。第3C圖為對應第2D圖所示以紅光激發的螢光粒子120的濃度與發射光強度關係圖。螢光粒子120的濃度在0至1000ppm的範圍中所對應的螢光訊號強度成正比,其線性迴歸分析的相關係數R3大約為0.997。因此,藉由 將螢光粒子120的濃度控制在0至1000ppm的範圍中,可精確地控制螢光粒子120激發光的光強度。 3A to 3C are graphs showing the relationship between the concentration of fluorescent particles and the emitted light intensity of the optical calibration tool of the qPCR system according to another embodiment of the present disclosure. FIG. 3A is a graph corresponding to the relationship between the concentration of fluorescent particles 120 excited by blue light and the intensity of emitted light shown in FIG. 2A. For example, as shown in FIG. 3A , the concentration of the fluorescent particles 120 in the range of 0 to 1000 ppm is proportional to the intensity of the fluorescent signal, and the correlation coefficient R1 of the linear regression analysis is about 1. FIG. 3B is a diagram corresponding to the relationship between the concentration of the fluorescent particles 120 excited by yellow light and the emitted light intensity (mV) shown in FIG. 2C. The concentration of the fluorescent particles 120 in the range of 0 to 1000 ppm is directly proportional to the intensity of the fluorescent signal, and the correlation coefficient R2 of the linear regression analysis is about 0.9853. FIG. 3C is a graph corresponding to the relationship between the concentration of fluorescent particles 120 excited by red light and the intensity of emitted light shown in FIG. 2D. The concentration of the fluorescent particles 120 in the range of 0 to 1000 ppm is directly proportional to the intensity of the fluorescent signal, and the correlation coefficient R3 of the linear regression analysis is about 0.997. Therefore, by Controlling the concentration of the fluorescent particles 120 in the range of 0 to 1000 ppm can precisely control the intensity of the excitation light of the fluorescent particles 120 .

第4圖為根據本揭露另一實施例之qPCR系統的光學校正工具的螢光粒子120的發射光強度及訊噪比。在第4圖中以濃度為1000ppm的不同螢光粒子120最為示例。在第4圖的範例中,可發出藍光、綠光、黃光及紅光的螢光粒子120的激發光強度皆可具有高訊噪比,以增進qPCR系統的光學校正表現。 FIG. 4 shows the emitted light intensity and signal-to-noise ratio of the fluorescent particles 120 of the optical calibration tool of the qPCR system according to another embodiment of the present disclosure. In FIG. 4 , different fluorescent particles 120 with a concentration of 1000 ppm are taken as an example. In the example shown in FIG. 4 , the excitation light intensity of the fluorescent particles 120 that can emit blue light, green light, yellow light and red light can all have a high signal-to-noise ratio, so as to improve the optical calibration performance of the qPCR system.

第5圖為根據本揭露另一實施例之qPCR系統的光學校正工具200的示意圖。光學校正工具200包含透明基材210與螢光粒子120。光學校正工具200不具有承裝透明基材210與螢光粒子120的容器。光學校正工具200的透明基材210可透過鑽石切割機等高精度機械加工而塑形,使得透明基材210的外表面可符合光學校正所需的品質。光學校正工具200的透明基材210可具有不同形狀,例如與第1圖所示的光學校正工具100相似的離心管外型、圓錐狀、圓柱狀、方塊、扁平型等。換句話說,只要光學校正工具200的形狀只要可與qPCR系統用以放置光學校正工具200的空間可相容即可。 FIG. 5 is a schematic diagram of an optical calibration tool 200 of a qPCR system according to another embodiment of the present disclosure. The optical calibration tool 200 includes a transparent substrate 210 and fluorescent particles 120 . The optical calibration tool 200 does not have a container for accommodating the transparent substrate 210 and the fluorescent particles 120 . The transparent substrate 210 of the optical calibration tool 200 can be shaped by high-precision machining such as a diamond cutting machine, so that the outer surface of the transparent substrate 210 can meet the quality required for optical calibration. The transparent substrate 210 of the optical calibration tool 200 can have different shapes, such as a centrifuge tube shape similar to the optical calibration tool 100 shown in FIG. 1 , conical shape, cylindrical shape, square shape, flat shape, etc. In other words, as long as the shape of the optical calibration tool 200 is compatible with the space where the optical calibration tool 200 is placed in the qPCR system.

第6圖為根據本揭露一實施例之qPCR系統的光學校正工具的熱測試數據。第6圖中的數據將第1圖所示的光學校正工具100放置於65度的環境中持續兩天後所取得的實驗數據。由第6圖的實驗數據可看出,在本實施例中,發出黃光及藍光的螢光粒子120的發射光強度的變化量皆小於10%,且濃度為1000ppm的螢光粒子120的發射光強度的變化量大致小於2%。因此,本揭露的光學校正工具的螢光粒子120可承受高溫影響而無發光強度衰退現象。FIG. 6 is the thermal test data of the optical calibration tool of the qPCR system according to an embodiment of the present disclosure. The data in FIG. 6 is the experimental data obtained after placing the optical calibration tool 100 shown in FIG. 1 in a 65-degree environment for two days. It can be seen from the experimental data in Fig. 6 that in this embodiment, the variation of the emitted light intensity of the fluorescent particles 120 that emit yellow light and blue light is less than 10%, and the emission of fluorescent particles 120 with a concentration of 1000ppm The variation in light intensity is approximately less than 2%. Therefore, the fluorescent particles 120 of the optical calibration tool of the present disclosure can withstand high temperature without fading phenomenon of luminous intensity.

第7圖為根據本揭露一實施例之qPCR系統的光學校正工具的光穩定度數據。第7圖中的數據將第1圖所示的光學校正工具100放置於環境光源照射狀況下持續約五個月的實驗數據。由第7圖的實驗數據可看出,發出紅光及黃光的螢光粒子120的發射光強度大致維持穩定。因此,本揭露的光學校正工具的螢光粒子120可長時間重複使用,達到減少資源浪費之功效。FIG. 7 is photostability data of an optical calibration tool of a qPCR system according to an embodiment of the present disclosure. The data in FIG. 7 are experimental data obtained by placing the optical calibration tool 100 shown in FIG. 1 under ambient light conditions for about five months. It can be seen from the experimental data in FIG. 7 that the emitted light intensity of the fluorescent particles 120 emitting red light and yellow light remains approximately stable. Therefore, the fluorescent particles 120 of the optical calibration tool of the present disclosure can be reused for a long time, so as to achieve the effect of reducing waste of resources.

綜上所述,由於螢光粒子120的發光強度具有高穩定性,因此本揭露的光學校正工具的可重複使用,不易產生光漂白現象,且具有高精確度。此外,容器130或是塑形後的透明基材110之設計可讓使用者便利地使用,減少光學校正步驟的複雜度。To sum up, since the luminous intensity of the fluorescent particles 120 has high stability, the optical calibration tool of the present disclosure is reusable, less prone to photobleaching, and has high accuracy. In addition, the design of the container 130 or the shaped transparent substrate 110 allows users to use it conveniently and reduces the complexity of the optical calibration steps.

第8圖為根據本揭露一實施例之qPCR系統之光學校正工具的製備方法300的流程圖。方法300的步驟S11起始於準備液態透明基材。接著,步驟S12為混合液態透明基材與複數個螢光粒子以形成混合物。接著,步驟S13為對混合物進行抽真空。最後,步驟S14為固化混合物以形成固態透明基材,其中螢光粒子均勻地散佈於固態透明基材中。FIG. 8 is a flowchart of a method 300 for preparing an optical calibration tool of a qPCR system according to an embodiment of the present disclosure. Step S11 of the method 300 starts with preparing a liquid transparent substrate. Next, step S12 is to mix the liquid transparent substrate and a plurality of fluorescent particles to form a mixture. Next, step S13 is to vacuumize the mixture. Finally, step S14 is curing the mixture to form a solid transparent substrate, wherein the fluorescent particles are evenly dispersed in the solid transparent substrate.

第9圖至10圖為第8圖之qPCR系統之光學校正工具的製備方法300的中間步驟示意圖。如第9圖所示,在步驟S11至步驟S12中,準備液態的透明基材110L,並將螢光粒子120加入液態的透明基材110L中。接著,混合透明基材110L與螢光粒子120。在本實施例中,藉由離心機140提供離心力攪拌透明基材110L中的螢光粒子120以形成混合物。離心力攪拌的轉速小於100 rpm。在其他實施例中,也可藉由電動攪拌機攪拌透明基材110L中的螢光粒子120。9 to 10 are schematic diagrams of the intermediate steps of the method 300 for preparing the optical calibration tool of the qPCR system of FIG. 8 . As shown in FIG. 9 , in steps S11 to S12 , a liquid transparent substrate 110L is prepared, and fluorescent particles 120 are added into the liquid transparent substrate 110L. Next, the transparent substrate 110L and the fluorescent particles 120 are mixed. In this embodiment, the fluorescent particles 120 in the transparent substrate 110L are stirred by centrifugal force provided by the centrifuge 140 to form a mixture. The rotational speed of centrifugal stirring is less than 100 rpm. In other embodiments, the fluorescent particles 120 in the transparent substrate 110L may also be stirred by an electric mixer.

如第10圖所示,在步驟S13中,對混合物進行抽真空,以移除透明基材110L中的氣泡G。接著,在固化混合物前,將混合物裝入容器130中。最後,在步驟S14中,藉由光L固化混合物以形成光學校正工具100。在其他實施例中,固化混合物也可藉由濕氣固化或熱固化等方式執行。As shown in FIG. 10 , in step S13 , the mixture is vacuumed to remove air bubbles G in the transparent substrate 110L. Next, the mixture is filled into container 130 before curing the mixture. Finally, in step S14 , the mixture is cured by light L to form the optical calibration tool 100 . In other embodiments, curing the mixture can also be performed by moisture curing or thermal curing.

固態透明基材110的蕭氏硬度落在約90D至100D的範圍中。此外,在其他實施例中,以光學校正工具200為例,在固化混合物後,可藉由鑽石雕刻方式對該固態透明基材110塑形,而無需放置於容器中。The Shore hardness of the solid transparent substrate 110 falls in the range of about 90D to 100D. In addition, in other embodiments, taking the optical calibration tool 200 as an example, after the mixture is solidified, the solid transparent substrate 110 can be shaped by diamond engraving without being placed in a container.

第11圖為根據本揭露一實施例之qPCR系統之光學校正方法400的流程圖。方法400的步驟S21起始於放置光學校正工具於qPCR系統。接著,步驟S22為開啟qPCR系統的光源,以激發光學校正工具中的螢光粒子。接著,在步驟S23中,由qPCR系統接收螢光粒子的發射光訊號,並比對螢光粒子的發射光強度與內建資料並產生比對結果。例如,內建資料包含qPCR系統的各個波長光源所對應的螢光粒子發射光強度正常範圍。因此,在步驟S24中,可判斷光學校正工具中可被不同波長的激發光激發的螢光粒子所發出的發射光強度是否在正常範圍內。FIG. 11 is a flowchart of an optical calibration method 400 of a qPCR system according to an embodiment of the present disclosure. Step S21 of the method 400 starts with placing the optical calibration tool in the qPCR system. Next, step S22 is to turn on the light source of the qPCR system to excite the fluorescent particles in the optical calibration tool. Next, in step S23, the qPCR system receives the emitted light signal of the fluorescent particles, compares the emitted light intensity of the fluorescent particles with the built-in data, and generates a comparison result. For example, the built-in data includes the normal range of light intensity emitted by fluorescent particles corresponding to each wavelength light source of the qPCR system. Therefore, in step S24, it can be determined whether the intensity of the emitted light emitted by the fluorescent particles in the optical calibration tool that can be excited by excitation lights of different wavelengths is within a normal range.

如果步驟S24中得到的比對結果顯示發射光強度是在正常範圍內,則接續地進行至步驟S25,使qPCR系統回到預設模式。接著,進行至步驟S26,結束qPCR系統的校正程序。If the comparison result obtained in step S24 shows that the emitted light intensity is within the normal range, proceed to step S25 to return the qPCR system to the default mode. Next, proceed to step S26, and end the calibration procedure of the qPCR system.

如果步驟S24中得到的比對結果顯示發射光強度並非在正常範圍內,則根據比對結果調整qPCR系統的設定。qPCR系統的設定包含各個波長的光源的光強度。例如,步驟S24可接續地進行至步驟S27,調整qPCR系統的光源強度。接著,進行步驟S28,判斷qPCR系統的光源強度調整次數是否小於10。如果步驟S28的結果為是,則回到步驟S24,比對調整後的發射光強度與內建資料。如果步驟S28的結果為否,則進行至步驟S29,執行qPCR系統的維修程序。If the comparison result obtained in step S24 shows that the emitted light intensity is not within the normal range, adjust the settings of the qPCR system according to the comparison result. The settings of the qPCR system include the light intensity of the light source for each wavelength. For example, step S24 may proceed to step S27 to adjust the light source intensity of the qPCR system. Next, proceed to step S28 to determine whether the number of light source intensity adjustments of the qPCR system is less than 10. If the result of step S28 is yes, return to step S24 to compare the adjusted emitted light intensity with the built-in data. If the result of step S28 is negative, proceed to step S29 to execute the maintenance procedure of the qPCR system.

綜上所述,由於螢光粒子的發光強度具有高穩定性,因此本揭露的光學校正工具的可重複使用,且具有高精確度。容器或是塑形後的透明基材之設計可讓使用者便利地使用,減少光學校正步驟的複雜度。藉由將螢光粒子的濃度控制在0至1000ppm的範圍中,可精確地控制螢光粒子激發光的光強度。此外,螢光粒子的激發光強度皆可具有高訊噪比,可增進qPCR系統的光學校正表現。透明基材的黏性小於5500centipoise,可避免在混合螢光粒子至液態的透明基材中時產生氣泡。容器的折射率與透明基材的折射率之間的差值落在約0.2至0.3的範圍中,可降低因介質折射率差異導致的像差問題而降低qPCR系統的光學校正精確度。 In summary, due to the high stability of the luminous intensity of the fluorescent particles, the optical calibration tool of the present disclosure can be used repeatedly with high accuracy. The design of the container or the shaped transparent substrate allows the user to use it conveniently and reduces the complexity of the optical calibration steps. By controlling the concentration of fluorescent particles in the range of 0 to 1000 ppm, the light intensity of the fluorescent particle excitation light can be precisely controlled. In addition, the excitation light intensity of the fluorescent particles can have a high signal-to-noise ratio, which can improve the optical calibration performance of the qPCR system. The viscosity of the transparent base material is less than 5500 centipoise, which can avoid air bubbles when mixing the fluorescent particles into the liquid transparent base material. The difference between the refractive index of the container and the transparent substrate falls in the range of about 0.2 to 0.3, which can reduce the optical correction accuracy of the qPCR system due to the aberration problem caused by the difference in the refractive index of the medium.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed above in terms of implementation, it is not intended to limit the present invention. Anyone skilled in this art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be defined by the appended patent application scope.

100,200:光學校正工具 100,200: Optical correction tools

110,110L,210:透明基材 110, 110L, 210: transparent substrate

120:螢光粒子 120: fluorescent particles

130:容器 130: container

140:離心機 140: Centrifuge

300,400:方法 300,400: method

EX1,EX2,EX3,EX4:激發光 EX1, EX2, EX3, EX4: excitation light

EM1,EM2,EM3,EM4:發射光 EM1, EM2, EM3, EM4: emit light

R1,R2,R3:相關係數 R1, R2, R3: correlation coefficient

G:氣泡 G: Bubbles

S11~S14,S21~S29:步驟 S11~S14, S21~S29: steps

第1圖為根據本揭露一實施例之qPCR系統的光學校正工具的示意圖。 第2A圖至第2D圖為根據本揭露一實施例之qPCR系統的光學校正工具的螢光粒子的激發光與發射光光譜示意圖。 第3A圖至第3C圖為根據本揭露另一實施例之qPCR系統的光學校正工具的螢光粒子的濃度與發射光強度關係圖。 第4圖為根據本揭露另一實施例之qPCR系統的光學校正工具的螢光粒子的發射光強度及訊噪比。 第5圖為根據本揭露另一實施例之qPCR系統的光學校正工具的示意圖。 第6圖為根據本揭露一實施例之qPCR系統的光學校正工具的熱測試數據。 第7圖為根據本揭露一實施例之qPCR系統的光學校正工具的光穩定度數據。 第8圖為根據本揭露一實施例之qPCR系統之光學校正工具的製備方法的流程圖。 第9圖至10圖為第8圖之qPCR系統之光學校正工具的製備方法的中間步驟示意圖。 第11圖為根據本揭露一實施例之qPCR系統之光學校正方法的流程圖。 FIG. 1 is a schematic diagram of an optical calibration tool of a qPCR system according to an embodiment of the present disclosure. 2A to 2D are schematic diagrams of the excitation light and emission light spectra of the fluorescent particles of the optical calibration tool of the qPCR system according to an embodiment of the present disclosure. 3A to 3C are graphs showing the relationship between the concentration of fluorescent particles and the emitted light intensity of the optical calibration tool of the qPCR system according to another embodiment of the present disclosure. FIG. 4 shows the emitted light intensity and signal-to-noise ratio of the fluorescent particles of the optical calibration tool of the qPCR system according to another embodiment of the present disclosure. FIG. 5 is a schematic diagram of an optical calibration tool of a qPCR system according to another embodiment of the present disclosure. FIG. 6 is the thermal test data of the optical calibration tool of the qPCR system according to an embodiment of the present disclosure. FIG. 7 is photostability data of an optical calibration tool of a qPCR system according to an embodiment of the present disclosure. FIG. 8 is a flow chart of the preparation method of the optical calibration tool of the qPCR system according to an embodiment of the present disclosure. 9 to 10 are schematic diagrams of the intermediate steps of the preparation method of the optical calibration tool of the qPCR system in FIG. 8 . FIG. 11 is a flowchart of an optical calibration method of a qPCR system according to an embodiment of the present disclosure.

100:光學校正工具 110:透明基材 120:螢光粒子 130:容器 100: Optical Correction Tools 110: transparent substrate 120: fluorescent particles 130: container

Claims (18)

一種即時定量聚合酶連鎖反應系統的光學校正工具,包含:一透明基材,其中該透明基材為固體;以及複數個螢光粒子,均勻地散佈於該透明基材中。 An optical correction tool for real-time quantitative polymerase chain reaction system, comprising: a transparent substrate, wherein the transparent substrate is solid; and a plurality of fluorescent particles uniformly dispersed in the transparent substrate. 如請求項1所述之即時定量聚合酶連鎖反應系統的光學校正工具,還包含:一容器,配置以容納該透明基材與該些螢光粒子。 The optical calibration tool of the real-time quantitative polymerase chain reaction system according to Claim 1 further comprises: a container configured to accommodate the transparent substrate and the fluorescent particles. 如請求項2所述之即時定量聚合酶連鎖反應系統的光學校正工具,其中該容器的一折射率與該透明基材的一折射率之間的差值落在約0.2至0.3的範圍中。 The optical calibration tool of the real-time quantitative polymerase chain reaction system according to claim 2, wherein the difference between a refractive index of the container and a refractive index of the transparent substrate falls in the range of about 0.2 to 0.3. 如請求項1所述之即時定量聚合酶連鎖反應系統的光學校正工具,其中該些螢光粒子配置以由一光源激發,且該光源的波長落在約400奈米至800奈米的範圍中。 The optical calibration tool of the real-time quantitative polymerase chain reaction system as described in claim 1, wherein the fluorescent particles are configured to be excited by a light source, and the wavelength of the light source falls in the range of about 400 nm to 800 nm . 如請求項1所述之即時定量聚合酶連鎖反應系統的光學校正工具,其中該些螢光粒子包含量子點、螢光微粒、奈米矽球或奈米鑽石中的一者或上述之任意組合。 The optical calibration tool of the real-time quantitative polymerase chain reaction system as described in claim 1, wherein the fluorescent particles include one of quantum dots, fluorescent particles, nano silicon spheres or nano diamonds or any combination of the above . 如請求項1所述之即時定量聚合酶連鎖反應 系統的光學校正工具,其中該些螢光粒子的平均直徑落在約1微米至10微米的範圍中。 Real-time quantitative polymerase chain reaction as described in claim item 1 The optical correction tool of the system, wherein the average diameter of the fluorescent particles falls in the range of about 1 micron to 10 microns. 如請求項1所述之即時定量聚合酶連鎖反應系統的光學校正工具,其中該些螢光粒子的濃度落在約1ppm至10000ppm的範圍中。 The optical calibration tool of the real-time quantitative polymerase chain reaction system according to claim 1, wherein the concentration of the fluorescent particles falls in the range of about 1 ppm to 10000 ppm. 如請求項1所述之即時定量聚合酶連鎖反應系統的光學校正工具,其中該透明基材的材料包含聚二甲基矽氧烷(PDMS)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯或樹脂。 The optical calibration tool of the real-time quantitative polymerase chain reaction system as described in claim 1, wherein the material of the transparent substrate comprises polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA), polycarbonate ester or resin. 如請求項1所述之即時定量聚合酶連鎖反應系統的光學校正工具,其中該透明基材為液態時的黏性小於5500釐泊(centipoise)。 The optical calibration tool of the real-time quantitative polymerase chain reaction system according to claim 1, wherein the viscosity of the transparent substrate in liquid state is less than 5500 centipoise. 一種即時定量聚合酶連鎖反應(qPCR)系統之光學校正工具的製備方法,包含:準備一液態透明基材;混合該液態透明基材與複數個螢光粒子以形成一混合物;對該混合物進行抽真空;以及固化該混合物以形成一固態透明基材,其中該些螢光粒子均勻地散佈於該固態透明基材中。 A method for preparing an optical correction tool for a real-time quantitative polymerase chain reaction (qPCR) system, comprising: preparing a liquid transparent substrate; mixing the liquid transparent substrate and a plurality of fluorescent particles to form a mixture; pumping the mixture vacuum; and solidifying the mixture to form a solid transparent substrate, wherein the fluorescent particles are uniformly dispersed in the solid transparent substrate. 如請求項10所述之即時定量聚合酶連鎖反應系統之光學校正工具的製備方法,其中混合該液態透明基材與該些螢光粒子之步驟是藉由離心力攪拌,且該離心力攪拌的一轉速小於100rpm。 The preparation method of the optical calibration tool of the real-time quantitative polymerase chain reaction system as described in claim 10, wherein the step of mixing the liquid transparent substrate and the fluorescent particles is stirred by centrifugal force, and a rotational speed of the centrifugal force is stirred Less than 100rpm. 如請求項10所述之即時定量聚合酶連鎖反應系統之光學校正工具的製備方法,還包含:在固化該混合物前,將該混合物裝入一容器。 The preparation method of the optical calibration tool of the real-time quantitative polymerase chain reaction system according to claim 10 further comprises: before solidifying the mixture, putting the mixture into a container. 如請求項10所述之即時定量聚合酶連鎖反應系統之光學校正工具的製備方法,還包含:藉由鑽石雕刻方式對該固態透明基材塑形。 The preparation method of the optical correction tool of the real-time quantitative polymerase chain reaction system as described in Claim 10 further comprises: shaping the solid transparent substrate by diamond engraving. 如請求項10所述之即時定量聚合酶連鎖反應系統之光學校正工具的製備方法,其中該固態透明基材的一蕭氏硬度落在約90D至100D的範圍中。 The preparation method of the optical calibration tool of the real-time quantitative polymerase chain reaction system according to claim 10, wherein the Shore hardness of the solid transparent substrate falls in the range of about 90D to 100D. 如請求項10所述之即時定量聚合酶連鎖反應系統之光學校正工具的製備方法,其中固化該混合物是藉由濕氣固化、熱固化或光固化而執行。 The preparation method of the optical calibration tool of the real-time quantitative polymerase chain reaction system as described in claim 10, wherein curing the mixture is performed by moisture curing, heat curing or light curing. 一種即時定量聚合酶連鎖反應(qPCR)系統的校正方法,包含: 放置一光學校正工具於該qPCR系統,其中該光學校正工具包含:一透明基材,其中該透明基材為固體;以及複數個螢光粒子,均勻地散佈於該透明基材中;開啟該qPCR系統的一光源,以激發該光學校正工具中的該些螢光粒子;比對該些螢光粒子的發射光與一內建資料並產生一比對結果;以及根據該比對結果調整該qPCR系統的設定。 A calibration method for a real-time quantitative polymerase chain reaction (qPCR) system, comprising: placing an optical calibration tool in the qPCR system, wherein the optical calibration tool includes: a transparent substrate, wherein the transparent substrate is solid; and a plurality of fluorescent particles uniformly dispersed in the transparent substrate; opening the qPCR A light source of the system to excite the fluorescent particles in the optical calibration tool; compare the emitted light of the fluorescent particles with a built-in data and generate a comparison result; and adjust the qPCR according to the comparison result System settings. 如請求項16所述之即時定量聚合酶連鎖反應系統的校正方法,其中該qPCR系統的設定包含該光源的一光強度。 The calibration method of the real-time quantitative polymerase chain reaction system according to claim 16, wherein the setting of the qPCR system includes a light intensity of the light source. 如請求項16所述之即時定量聚合酶連鎖反應系統的校正方法,其中該qPCR系統的該光源的波長對應該些螢光粒子的激發光波長。 The calibration method of the real-time quantitative polymerase chain reaction system according to claim 16, wherein the wavelength of the light source of the qPCR system corresponds to the excitation light wavelength of the fluorescent particles.
TW110113402A 2021-04-14 2021-04-14 OPTICAL CALIBRATION TOOL FOR QPCR STYSTEM, FABRICATION METHOD OF OPTICAL CALIBRATION TOOL, AND CALIBRATION METHOD OF qPCR STYSTEM TWI787784B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110113402A TWI787784B (en) 2021-04-14 2021-04-14 OPTICAL CALIBRATION TOOL FOR QPCR STYSTEM, FABRICATION METHOD OF OPTICAL CALIBRATION TOOL, AND CALIBRATION METHOD OF qPCR STYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110113402A TWI787784B (en) 2021-04-14 2021-04-14 OPTICAL CALIBRATION TOOL FOR QPCR STYSTEM, FABRICATION METHOD OF OPTICAL CALIBRATION TOOL, AND CALIBRATION METHOD OF qPCR STYSTEM

Publications (2)

Publication Number Publication Date
TW202240149A TW202240149A (en) 2022-10-16
TWI787784B true TWI787784B (en) 2022-12-21

Family

ID=85460419

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110113402A TWI787784B (en) 2021-04-14 2021-04-14 OPTICAL CALIBRATION TOOL FOR QPCR STYSTEM, FABRICATION METHOD OF OPTICAL CALIBRATION TOOL, AND CALIBRATION METHOD OF qPCR STYSTEM

Country Status (1)

Country Link
TW (1) TWI787784B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2506375A (en) * 2012-09-27 2014-04-02 Epistem Ltd Operation of a quantitative polymerase chain reaction instrument and method of dissociation and association curve analysis
TWM519237U (en) * 2015-07-17 2016-03-21 Genpronex Inc Nucleic acid molecule amplification product detecting device
CN111593098A (en) * 2020-05-29 2020-08-28 成都瀚辰光翼科技有限责任公司 QPCR real-time fluorescence data quantitative analysis method
TW202109010A (en) * 2015-02-09 2021-03-01 美商史林夏特生化公司 Hydrogel particles with tunable optical properties and methods for using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2506375A (en) * 2012-09-27 2014-04-02 Epistem Ltd Operation of a quantitative polymerase chain reaction instrument and method of dissociation and association curve analysis
TW202109010A (en) * 2015-02-09 2021-03-01 美商史林夏特生化公司 Hydrogel particles with tunable optical properties and methods for using the same
TWM519237U (en) * 2015-07-17 2016-03-21 Genpronex Inc Nucleic acid molecule amplification product detecting device
CN111593098A (en) * 2020-05-29 2020-08-28 成都瀚辰光翼科技有限责任公司 QPCR real-time fluorescence data quantitative analysis method

Also Published As

Publication number Publication date
TW202240149A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
CN1288498C (en) Multiphoton photosensitization system
JP5332673B2 (en) Semiconductor light emitting device, backlight and color image display device
US20080277606A1 (en) Microfluidic Device
CN1692313A (en) Multiphoton photosensitization method
CN109085716A (en) It is a kind of based on micro-fluidic and technology of quantum dots colorized optical filtering membrane preparation method
TWI787784B (en) OPTICAL CALIBRATION TOOL FOR QPCR STYSTEM, FABRICATION METHOD OF OPTICAL CALIBRATION TOOL, AND CALIBRATION METHOD OF qPCR STYSTEM
WO2015037255A1 (en) Thermal convection generating chip, thermal convection generating device, and thermal convection generating method
JP2011090333A (en) Blue composition for color filter, color filter, and color image display device
CN86108826A (en) Contain the photochromics<del/ of ionic dye compounds〉as initiating agent
JP2013508895A (en) Optical component, product including the same, and method for producing the same
CN1720145A (en) Security device and its production method
CN107544178A (en) Light conversion element and the display device for including it
JP2006047975A (en) Blue composition for color filter, color filter, and color image display device
JP2007311663A (en) Manufacturing method for light emitting device, light emitting device, and manufacturing apparatus for light emitting device
CN1070920C (en) Method for calibrating chemical analysis
WO2014087308A1 (en) Light conversion materials based on luminescent metal atomic nanoclusters
TW200947740A (en) Process for encapsulating LED chip by fluorescent material
CN111952827B (en) Bottle-shaped polymer microcavity laser based on aggregation-induced emission dye gain and preparation method thereof
JP2011218384A (en) Laser processing method for transparent material
CN115216522A (en) Optical correction tool of real-time quantitative polymerase chain reaction system and preparation method thereof
CN107093661A (en) A kind of new optical lens of full-inorganic perovskite quanta point material thin film coated and preparation method thereof
Steudel et al. Pixelated phosphors for high-resolution and high-contrast white light sources
CN110873921A (en) Quantum dot mesh point light guide plate and preparation method thereof
JP2010090205A (en) Process for producing fluorescent microparticle dispersion, fluorescent microparticle dispersion, process for producing composite material, and composite material
JP2011165827A (en) Method of manufacturing light emitting apparatus