[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI786855B - Anti-fuse strucutre - Google Patents

Anti-fuse strucutre Download PDF

Info

Publication number
TWI786855B
TWI786855B TW110136168A TW110136168A TWI786855B TW I786855 B TWI786855 B TW I786855B TW 110136168 A TW110136168 A TW 110136168A TW 110136168 A TW110136168 A TW 110136168A TW I786855 B TWI786855 B TW I786855B
Authority
TW
Taiwan
Prior art keywords
antifuse
layer
conductive layer
antifuse structure
contact window
Prior art date
Application number
TW110136168A
Other languages
Chinese (zh)
Other versions
TW202315064A (en
Inventor
李世平
蔡博安
車行遠
黃彬傑
Original Assignee
力晶積成電子製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司 filed Critical 力晶積成電子製造股份有限公司
Priority to TW110136168A priority Critical patent/TWI786855B/en
Application granted granted Critical
Publication of TWI786855B publication Critical patent/TWI786855B/en
Publication of TW202315064A publication Critical patent/TW202315064A/en

Links

Images

Landscapes

  • Fuses (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

An anti-fuse structure including a substrate, a conductive layer, an anti-fuse material layer, a dielectric layer, and first contacts is provided. The conductive layer is disposed on the substrate. The anti-fuse material layer is disposed on the conductive layer. The dielectric layer is disposed on the anti-fuse material layer. The first contacts are disposed in the dielectric layer. The anti-fuse material layer is located between the first contacts the conductive layer.

Description

反熔絲結構antifuse structure

本發明實施例是有關於一種半導體結構,且特別是有關於一種反熔絲結構。Embodiments of the present invention relate to a semiconductor structure, and more particularly to an antifuse structure.

目前發展出一種反熔絲元件,其具有反熔絲材料層。在初始狀態,反熔絲材料層具有高阻值,且反熔絲元件處於斷路狀態。在對反熔絲元件進行操作時,反熔絲材料層會產生崩潰(breakdown)而形成導電路徑,且反熔絲元件處於短路狀態。然而,如何縮小反熔絲元件的面積以及提升反熔絲元件在設計與應用上的彈性為目前持續努力的目標。Currently, an antifuse element has been developed, which has an antifuse material layer. In an initial state, the anti-fuse material layer has a high resistance value, and the anti-fuse element is in an open state. When the anti-fuse element is operated, the anti-fuse material layer will break down to form a conductive path, and the anti-fuse element is in a short circuit state. However, how to reduce the area of the anti-fuse element and improve the flexibility of the design and application of the anti-fuse element is the goal of ongoing efforts.

本發明提供一種反熔絲結構,其可具有較小的元件面積且在設計與應用上可更具有彈性。The present invention provides an antifuse structure, which can have a smaller device area and be more flexible in design and application.

本發明提出一種反熔絲結構,包括基底、導電層、反熔絲材料層、介電層與多個第一接觸窗。導電層設置在基底上。反熔絲材料層設置在導電層上。介電層設置在反熔絲材料層上。多個第一接觸窗設置在介電層中。反熔絲材料層位在多個第一接觸窗與導電層之間。The invention provides an antifuse structure, which includes a substrate, a conductive layer, an antifuse material layer, a dielectric layer and a plurality of first contact windows. The conductive layer is disposed on the substrate. A layer of antifuse material is disposed on the conductive layer. A dielectric layer is disposed on the antifuse material layer. A plurality of first contact windows are disposed in the dielectric layer. The antifuse material layer is located between the plurality of first contact holes and the conductive layer.

依照本發明的一實施例所述,在上述反熔絲結構中,更可包括第二接觸窗。第二接觸窗設置在介電層中,且電性連接至導電層。According to an embodiment of the present invention, the above antifuse structure may further include a second contact window. The second contact window is disposed in the dielectric layer and electrically connected to the conductive layer.

依照本發明的一實施例所述,在上述反熔絲結構中,第二接觸窗可穿過反熔絲材料層。According to an embodiment of the present invention, in the above antifuse structure, the second contact window may pass through the antifuse material layer.

依照本發明的一實施例所述,在上述反熔絲結構中,更可包括導線。導線電性連接至第二接觸窗。According to an embodiment of the present invention, the antifuse structure may further include wires. The wire is electrically connected to the second contact window.

依照本發明的一實施例所述,在上述反熔絲結構中,導電層可為摻雜區、金屬矽化物層、虛擬閘極或導線。According to an embodiment of the present invention, in the above antifuse structure, the conductive layer can be a doped region, a metal silicide layer, a dummy gate or a wire.

依照本發明的一實施例所述,在上述反熔絲結構中,反熔絲結構可為一次可程式(one time programmable,OTP)記憶體或物理不可複製功能(physically unclonable function,PUF)產生器。According to an embodiment of the present invention, in the aforementioned antifuse structure, the antifuse structure may be a one-time programmable (OTP) memory or a physically unclonable function (PUF) generator .

依照本發明的一實施例所述,在上述反熔絲結構中,反熔絲結構可為物理不可複製功能產生器,且反熔絲結構可包括多個接觸窗組。每個接觸窗組可包括多個第一接觸窗中的任意兩個第一接觸窗。According to an embodiment of the present invention, in the above antifuse structure, the antifuse structure may be a physically non-replicable function generator, and the antifuse structure may include a plurality of contact window groups. Each contact group may include any two first contacts among the plurality of first contacts.

依照本發明的一實施例所述,在上述反熔絲結構中,多個接觸窗組不共用同一個第一接觸窗。According to an embodiment of the present invention, in the above antifuse structure, the plurality of contact window groups do not share the same first contact window.

依照本發明的一實施例所述,在上述反熔絲結構中,反熔絲材料層的材料例如是氮化矽(SiN)、氮氧化矽(SiON)或氮碳化矽(SiCN)。According to an embodiment of the present invention, in the above antifuse structure, the material of the antifuse material layer is, for example, silicon nitride (SiN), silicon oxynitride (SiON) or silicon carbide nitride (SiCN).

依照本發明的一實施例所述,在上述反熔絲結構中,更可包括多個導線。導線電性連接至第一接觸窗。According to an embodiment of the present invention, the antifuse structure may further include a plurality of wires. The wire is electrically connected to the first contact window.

基於上述,由於本發明所提出的反熔絲結構是藉由對第一接觸窗與導電層施加電壓來進行操作,因此反熔絲結構可具有較小的元件面積,進而可提升元件密度。此外,反熔絲材料層位在多個第一接觸窗與同一個導電層之間,藉此可形成多個OTP記憶胞,且在反熔絲結構的設計與應用上可更具有彈性。此外,反熔絲結構的製程可與其他半導體製程進行整合,因此可降低製程複雜度。Based on the above, since the antifuse structure proposed by the present invention is operated by applying a voltage to the first contact window and the conductive layer, the antifuse structure can have a smaller device area, thereby increasing the device density. In addition, the antifuse material layer is located between the plurality of first contact windows and the same conductive layer, so that a plurality of OTP memory cells can be formed, and the design and application of the antifuse structure can be more flexible. In addition, the manufacturing process of the antifuse structure can be integrated with other semiconductor manufacturing processes, thereby reducing the complexity of the manufacturing process.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.

圖1A至圖1F為根據本發明一實施例反熔絲結構的製造流程剖面圖。1A to 1F are cross-sectional views of the manufacturing process of the antifuse structure according to an embodiment of the present invention.

請參照圖1A,提供基底100。基底100可為半導體基底,如矽基底。在一些實施例中,基底100可具有第一導電型(如,P型)。在本文中,第一導電型與第二導電型為不同導電型。亦即,第一導電型與第二導電型可分別為P型導電型與N型導電型中的一者與另一者。在本實施例中,第一導電型是以P型導電型為例,且第二導電型是以N型導電型為例,但本發明並不以此為限。在另一些實施例中,第一導電型可為N型導電型,且第二導電型可為P型導電型。Referring to FIG. 1A , a substrate 100 is provided. The substrate 100 can be a semiconductor substrate, such as a silicon substrate. In some embodiments, the substrate 100 may have a first conductivity type (eg, P-type). Herein, the first conductivity type and the second conductivity type are different conductivity types. That is, the first conductivity type and the second conductivity type may be one and the other of the P-type conductivity and the N-type conductivity, respectively. In this embodiment, the first conductivity type is an example of a P-type conductivity type, and the second conductivity type is an example of an N-type conductivity type, but the invention is not limited thereto. In other embodiments, the first conductivity type may be N-type conductivity, and the second conductivity type may be P-type conductivity.

此外,可在基底100中形成隔離結構102。隔離結構102可為淺溝渠隔離(shallow trench isolation,STI)結構。隔離結構102的材料例如是氧化矽。在一些實施例中,可在基底100中形成井區104。井區104可具有第二導電型(如,N型)。接著,在基底100中形成導電層106。導電層106可位在井區104中。在本實施例中,導電層106可為摻雜區,且摻雜區可具有第二導電型(如,N型)。In addition, an isolation structure 102 may be formed in the substrate 100 . The isolation structure 102 may be a shallow trench isolation (STI) structure. The material of the isolation structure 102 is, for example, silicon oxide. In some embodiments, a well region 104 may be formed in the substrate 100 . The well region 104 may have a second conductivity type (eg, N type). Next, a conductive layer 106 is formed in the substrate 100 . Conductive layer 106 may be located in well region 104 . In this embodiment, the conductive layer 106 can be a doped region, and the doped region can have a second conductivity type (eg, N type).

另外,可在基底100上形成電晶體108。導電層106可位在隔離結構102的一側,且電晶體108可位在隔離結構102的另一側。在一些實施例中,電晶體108可為金屬氧化物半導體電晶體(metal oxide semiconductor (MOS) transistor)。舉例來說,電晶體108可包括閘極110、閘介電層112、摻雜區114與摻雜區116。閘極110位在基底100上。閘介電層112位在閘極110與基底100之間。摻雜區114與摻雜區116位在閘極110兩側的基底100中。摻雜區114與摻雜區116可具有第二導電型(如,N型)。此外,導電層106、摻雜區114與摻雜區116與可藉由相同製程(如,離子植入製程)同時形成。在一些實施例中,電晶體108更可包括間隙壁118。間隙壁118位在閘極110的側壁上。Additionally, a transistor 108 may be formed on the substrate 100 . The conductive layer 106 can be located on one side of the isolation structure 102 , and the transistor 108 can be located on the other side of the isolation structure 102 . In some embodiments, the transistor 108 may be a metal oxide semiconductor (MOS) transistor. For example, the transistor 108 may include a gate 110 , a gate dielectric layer 112 , a doped region 114 and a doped region 116 . The gate 110 is located on the substrate 100 . The gate dielectric layer 112 is located between the gate 110 and the substrate 100 . The doped region 114 and the doped region 116 are located in the substrate 100 on both sides of the gate 110 . The doped region 114 and the doped region 116 can have a second conductivity type (eg, N type). In addition, the conductive layer 106 , the doped region 114 and the doped region 116 can be formed simultaneously by the same process (eg, ion implantation process). In some embodiments, the transistor 108 may further include a spacer 118 . The spacer 118 is located on the sidewall of the gate 110 .

請參照圖1B,在導電層106上形成反熔絲材料層120。在一些實施例中,反熔絲材料層120可共形地形成在導電層106上。此外,反熔絲材料層120可覆蓋電晶體108。反熔絲材料層120可為蝕刻終止層。反熔絲材料層120的材料例如是氮化矽、氮氧化矽、氮碳化矽或其組合,但本發明並不以此為限。反熔絲材料層120的形成方法例如是化學氣相沉積法。Referring to FIG. 1B , an antifuse material layer 120 is formed on the conductive layer 106 . In some embodiments, the layer of antifuse material 120 may be conformally formed on the conductive layer 106 . Additionally, a layer of antifuse material 120 may cover the transistor 108 . The antifuse material layer 120 may be an etch stop layer. The material of the antifuse material layer 120 is, for example, silicon nitride, silicon oxynitride, silicon carbide nitride or a combination thereof, but the invention is not limited thereto. A method for forming the antifuse material layer 120 is, for example, chemical vapor deposition.

接著,在反熔絲材料層120上形成介電層122。介電層122的材料例如是氧化矽,但本發明並不以此為限。只要介電層122的材料與反熔絲材料層120的材料在蝕刻製程中具有高蝕刻選擇比,即屬於本發明所涵蓋的範圍。介電層122的形成方法例如是化學氣相沉積法、物理氣相沉積法或旋轉塗佈法等。Next, a dielectric layer 122 is formed on the antifuse material layer 120 . The material of the dielectric layer 122 is, for example, silicon oxide, but the invention is not limited thereto. As long as the material of the dielectric layer 122 and the material of the antifuse material layer 120 have a high etching selectivity in the etching process, it falls within the scope of the present invention. The dielectric layer 122 is formed by chemical vapor deposition, physical vapor deposition or spin coating, for example.

請參照圖1C,可在介電層122上形成圖案化光阻層124。圖案化光阻層124可藉由微影製程來形成。接著,可使用圖案化光阻層124作為罩幕,移除部分介電層122。藉此,可在介電層122中形成多個開口OP1。開口OP1可暴露出部分反熔絲材料層120。部分介電層122的移除方法例如是乾式蝕刻法。Referring to FIG. 1C , a patterned photoresist layer 124 may be formed on the dielectric layer 122 . The patterned photoresist layer 124 can be formed by a photolithography process. Next, a portion of the dielectric layer 122 can be removed by using the patterned photoresist layer 124 as a mask. Thereby, a plurality of openings OP1 can be formed in the dielectric layer 122 . The opening OP1 can expose a portion of the antifuse material layer 120 . A method for removing part of the dielectric layer 122 is, for example, a dry etching method.

請參照圖1D,可移除圖案化光阻層124。圖案化光阻層124的移除方法例如是乾式剝離法(dry stripping)或濕式剝離法(wet stripping)。Referring to FIG. 1D , the patterned photoresist layer 124 can be removed. The removal method of the patterned photoresist layer 124 is, for example, dry stripping or wet stripping.

接著,可在介電層122上形成圖案化光阻層126。圖案化光阻層126可填入開口OP1中。圖案化光阻層124可藉由微影製程來形成。然後,可使用圖案化光阻層126作為罩幕,移除部分介電層122與部分反熔絲材料層120。藉此,可在介電層122中形成開口OP2~開口OP5。開口OP2可暴露出部分導電層106。在本實施例中,開口OP2的數量是以一個為例,但本發明並不以此為限。在另一些實施例中,開口OP2的數量可為多個。開口OP3可暴露出部分閘極110。開口OP4可暴露出部分摻雜區114。開口OP4可暴露出部分摻雜區116。部分介電層122與部分反熔絲材料層120的移除方法例如是乾式蝕刻法。Next, a patterned photoresist layer 126 may be formed on the dielectric layer 122 . The patterned photoresist layer 126 can be filled into the opening OP1. The patterned photoresist layer 124 can be formed by a photolithography process. Then, a portion of the dielectric layer 122 and a portion of the antifuse material layer 120 can be removed by using the patterned photoresist layer 126 as a mask. Thereby, the openings OP2 - OP5 can be formed in the dielectric layer 122 . The opening OP2 can expose part of the conductive layer 106 . In this embodiment, one opening OP2 is taken as an example, but the present invention is not limited thereto. In other embodiments, the number of openings OP2 may be multiple. The opening OP3 can expose a part of the gate 110 . The opening OP4 can expose part of the doped region 114 . The opening OP4 can expose a portion of the doped region 116 . The removal method of a part of the dielectric layer 122 and a part of the antifuse material layer 120 is, for example, a dry etching method.

請參照圖1E,可移除圖案化光阻層126。圖案化光阻層126的移除方法例如是乾式剝離法或濕式剝離法。在本實施例中,先形成開口OP1,再形成開口OP2~開口OP5,但本發明並不以此為限。在另一些實施例中,可先形成開口OP2~開口OP5,再形成開口OP1。Referring to FIG. 1E , the patterned photoresist layer 126 can be removed. The removal method of the patterned photoresist layer 126 is, for example, a dry stripping method or a wet stripping method. In this embodiment, the opening OP1 is formed first, and then the openings OP2 - OP5 are formed, but the invention is not limited thereto. In other embodiments, the openings OP2 - OP5 may be formed first, and then the opening OP1 may be formed.

接著,可分別在開口OP1~開口OP5中形成接觸窗CT1~接觸窗CT5。藉此,可在介電層122中形成接觸窗CT1~接觸窗CT5。接觸窗CT1可直接接觸反熔絲材料層120。接觸窗CT1的數量為多個。此外,一個接觸窗CT1、反熔絲材料層120與導電層106可形成一個OTP記憶胞。接觸窗CT2可穿過反熔絲材料層120,且可電性連接至導電層106。接觸窗CT2可直接接觸導電層106。在本實施例中,接觸窗CT2的數量是以一個為例,但本發明並不以此為限。在另一些實施例中,接觸窗CT2的數量可為多個。接觸窗CT3可穿過反熔絲材料層120,且可電性連接至閘極110。接觸窗CT3可直接接觸閘極110。接觸窗CT4可穿過反熔絲材料層120,且可電性連接至摻雜區114。接觸窗CT4可直接接觸摻雜區114。接觸窗CT5可穿過反熔絲材料層120,且可電性連接至摻雜區116。接觸窗CT5可直接接觸摻雜區116。Next, the contact windows CT1 - CT5 may be formed in the openings OP1 - OP5 respectively. Thereby, the contact windows CT1 -CT5 can be formed in the dielectric layer 122 . The contact window CT1 may directly contact the antifuse material layer 120 . The number of contact windows CT1 is multiple. In addition, a contact window CT1, the antifuse material layer 120 and the conductive layer 106 can form an OTP memory cell. The contact window CT2 can pass through the antifuse material layer 120 and can be electrically connected to the conductive layer 106 . The contact window CT2 may directly contact the conductive layer 106 . In this embodiment, one contact window CT2 is taken as an example, but the present invention is not limited thereto. In other embodiments, the number of contact windows CT2 may be multiple. The contact window CT3 can pass through the antifuse material layer 120 and can be electrically connected to the gate 110 . The contact window CT3 can directly contact the gate 110 . The contact window CT4 can pass through the antifuse material layer 120 and can be electrically connected to the doped region 114 . The contact window CT4 can directly contact the doped region 114 . The contact window CT5 can pass through the antifuse material layer 120 and can be electrically connected to the doped region 116 . The contact window CT5 may directly contact the doped region 116 .

接觸窗CT1~接觸窗CT5可分別為單層結構或多層結構。在本實施例中,接觸窗CT1~接觸窗CT5是以多層結構為例。舉例來說,接觸窗CT1可包括導電層128a與阻障層130a。導電層128a位在介電層122中。阻障層130a位在導電層128a與反熔絲材料層120之間以及導電層128a與介電層122之間。接觸窗CT2可包括導電層128b與阻障層130b。導電層128b位在介電層122中。阻障層130b位在導電層128b與導電層106之間以及導電層128b與介電層122之間。接觸窗CT3可包括導電層128c與阻障層130c。導電層128c位在介電層122中。阻障層130c位在導電層128c與閘極110之間以及導電層128c與介電層122之間。接觸窗CT4可包括導電層128d與阻障層130d。導電層128d位在介電層122中。阻障層130d位在導電層128d與摻雜區114之間以及導電層128d與介電層122之間。接觸窗CT5可包括導電層128e與阻障層130e。導電層128e位在介電層122中。阻障層130e位在導電層128e與摻雜區116之間以及導電層128e與介電層122之間。導電層128a~導電層128e的材料例如是鎢等金屬。阻障層130a~阻障層130e的材料例如是鈦、氮化鈦或其組合。The contact windows CT1 -CT5 may respectively have a single-layer structure or a multi-layer structure. In this embodiment, the contact windows CT1 -CT5 are multi-layer structures as an example. For example, the contact window CT1 may include a conductive layer 128a and a barrier layer 130a. The conductive layer 128 a is located in the dielectric layer 122 . The barrier layer 130 a is located between the conductive layer 128 a and the antifuse material layer 120 and between the conductive layer 128 a and the dielectric layer 122 . The contact window CT2 may include a conductive layer 128b and a barrier layer 130b. The conductive layer 128b is located in the dielectric layer 122 . The barrier layer 130b is located between the conductive layer 128b and the conductive layer 106 and between the conductive layer 128b and the dielectric layer 122 . The contact window CT3 may include a conductive layer 128c and a barrier layer 130c. The conductive layer 128c is located in the dielectric layer 122 . The barrier layer 130c is located between the conductive layer 128c and the gate 110 and between the conductive layer 128c and the dielectric layer 122 . The contact window CT4 may include a conductive layer 128d and a barrier layer 130d. The conductive layer 128d is located in the dielectric layer 122 . The barrier layer 130d is located between the conductive layer 128d and the doped region 114 and between the conductive layer 128d and the dielectric layer 122 . The contact window CT5 may include a conductive layer 128e and a barrier layer 130e. The conductive layer 128e is located in the dielectric layer 122 . The barrier layer 130 e is located between the conductive layer 128 e and the doped region 116 and between the conductive layer 128 e and the dielectric layer 122 . The material of the conductive layer 128 a - the conductive layer 128 e is, for example, metal such as tungsten. Materials of the barrier layers 130 a - 130 e are, for example, titanium, titanium nitride or a combination thereof.

在本實施例中,接觸窗CT1~接觸窗CT5可藉由相同製程同時形成,但本發明並不以此為限。舉例來說,可在開口OP1~開口OP5中依序形成導電材料層(未示出)與阻障材料層(未示出),再藉由化學機械研磨製程移除位在開口OP1~開口OP5的外部的導電材料層與阻障材料層,而形成接觸窗CT1~接觸窗CT5。在另一些實施例中,可先形成開口OP1與接觸窗CT1,再形成開口OP2~開口OP5與接觸窗CT2~接觸窗CT5。在另一些實施例中,可先形成開口OP2~開口OP5與接觸窗CT2~接觸窗CT5,再形成開口OP1與接觸窗CT1。In this embodiment, the contact windows CT1 -CT5 can be formed simultaneously through the same manufacturing process, but the invention is not limited thereto. For example, a conductive material layer (not shown) and a barrier material layer (not shown) can be sequentially formed in the openings OP1-OP5, and then the positions in the openings OP1-OP5 are removed by a chemical mechanical polishing process. The outer conductive material layer and the barrier material layer form the contact windows CT1-CT5. In other embodiments, the opening OP1 and the contact window CT1 may be formed first, and then the openings OP2 - OP5 and the contact windows CT2 - CT5 are formed. In other embodiments, the openings OP2 - OP5 and the contact windows CT2 - CT5 may be formed first, and then the opening OP1 and the contact window CT1 are formed.

請參照圖1F,可形成導線L1~導線L5。導線L1~導線L5可分別電性連接至接觸窗CT1~接觸窗CT5。導線L1~導線L5的材料例如是鋁等金屬。導線L1~導線L5可藉由沉積製程與圖案化製程來形成。Referring to FIG. 1F , wires L1 ˜ L5 can be formed. The wires L1˜L5 can be electrically connected to the contact windows CT1˜CT5 respectively. The material of the wires L1 to L5 is, for example, metal such as aluminum. The wires L1 -L5 can be formed by a deposition process and a patterning process.

以下,藉由圖1F來說明本實施例的反熔絲結構10。此外,雖然反熔絲元件10的形成方法是以上述方法為例來進行說明,但本發明並不以此為限。Hereinafter, the antifuse structure 10 of this embodiment will be described with reference to FIG. 1F . In addition, although the method for forming the anti-fuse element 10 is described by taking the above method as an example, the present invention is not limited thereto.

請參照圖1F,反熔絲結構10包括基底100、導電層106、反熔絲材料層120、介電層122與多個接觸窗CT1。在一些實施例中,反熔絲結構可為OTP記憶體或PUF產生器。導電層106設置在基底100上。詳細而言,由於部分基底100位在導電層106下方,因此導電層106可視為設置在基底100上。反熔絲材料層120設置在導電層106上。介電層122設置在反熔絲材料層120上。多個接觸窗CT1設置在介電層122中。反熔絲材料層120位在多個接觸窗CT1與導電層106之間。此外,反熔絲結構10更可包括接觸窗CT2、導線L1、導線L2中的至少一者。接觸窗CT2設置在介電層122中,且電性連接至導電層106。接觸窗CT2可穿過反熔絲材料層120。導線L1電性連接至接觸窗CT1。導線L1的數量可為多個。導線L2電性連接至接觸窗CT2。Referring to FIG. 1F , the antifuse structure 10 includes a substrate 100 , a conductive layer 106 , an antifuse material layer 120 , a dielectric layer 122 and a plurality of contact windows CT1 . In some embodiments, the antifuse structure can be an OTP memory or a PUF generator. The conductive layer 106 is disposed on the substrate 100 . In detail, since part of the substrate 100 is located under the conductive layer 106 , the conductive layer 106 can be regarded as disposed on the substrate 100 . A layer 120 of antifuse material is disposed on the conductive layer 106 . A dielectric layer 122 is disposed on the antifuse material layer 120 . A plurality of contact windows CT1 are disposed in the dielectric layer 122 . The antifuse material layer 120 is located between the contact windows CT1 and the conductive layer 106 . In addition, the antifuse structure 10 may further include at least one of the contact window CT2 , the wire L1 , and the wire L2 . The contact window CT2 is disposed in the dielectric layer 122 and electrically connected to the conductive layer 106 . The contact window CT2 may pass through the antifuse material layer 120 . The wire L1 is electrically connected to the contact window CT1. The number of wires L1 can be multiple. The wire L2 is electrically connected to the contact window CT2.

此外,電晶體結構12可包括電晶體108、接觸窗CT3~接觸窗CT5與導線L3~導線L5。接觸窗CT3位在導線L3與閘極110之間。接觸窗CT4位在導線L4與摻雜區114之間。接觸窗CT5位在導線L5與摻雜區116之間。In addition, the transistor structure 12 may include a transistor 108 , contact windows CT3 ˜ CT5 , and wires L3 ˜ L5 . The contact window CT3 is located between the wire L3 and the gate 110 . The contact window CT4 is located between the wire L4 and the doped region 114 . The contact window CT5 is located between the wire L5 and the doped region 116 .

另外,反熔絲結構10與電晶體結構12中的各構件的材料、設置方式與形成方法等已於上述實施例進行詳盡地說明,於此不再說明。In addition, the materials, arrangement and formation methods of the components in the antifuse structure 10 and the transistor structure 12 have been described in detail in the above-mentioned embodiments, and will not be further described here.

在一些實施例中,反熔絲結構10可為OTP記憶體,且OTP記憶體的程式化方法說明如下。舉例來說,對選定的接觸窗CT1施加高電壓,且將導電層106接地,藉此所產生的電流可使得位在選定的接觸窗CT1與導電層106之間的反熔絲材料層120產生崩潰(breakdown)。如此一來,反熔絲材料層120的產生崩潰的部分可由高電阻狀態(視為資料“0”)變成低電阻狀態(視為資料“1”),藉此可對選定的OTP記憶胞進行程式化。在一些實施例中,可藉由選定的接觸窗CT1所對應的導線L1將高電壓施加至選定的接觸窗CT1。在一些實施例中,導電層106可藉由導線L2與接觸窗CT2進行接地。In some embodiments, the antifuse structure 10 can be an OTP memory, and the programming method of the OTP memory is described as follows. For example, a high voltage is applied to the selected contact window CT1 and the conductive layer 106 is grounded, whereby the generated current can cause the antifuse material layer 120 located between the selected contact window CT1 and the conductive layer 106 to generate Crash (breakdown). In this way, the collapsed portion of the antifuse material layer 120 can be changed from a high resistance state (considered as a data “0”) to a low resistance state (considered as a data “1”), whereby the selected OTP memory cell can be controlled. stylized. In some embodiments, a high voltage can be applied to the selected contact window CT1 through the wire L1 corresponding to the selected contact window CT1 . In some embodiments, the conductive layer 106 can be grounded through the wire L2 and the contact window CT2.

在一些實施例中,反熔絲結構10可為PUF產生器,且反熔絲結構10可包括多個接觸窗組CG。每個接觸窗組CG可包括多個接觸窗CT1中的任意兩個接觸窗CT1。在本實施例中,接觸窗組CG中的兩個接觸窗CT1為彼此相鄰的兩個CT1,但本發明並不以此為限。在另一些實施例中,接觸窗組CG中的兩個接觸窗CT1可為不相鄰的兩個接觸窗CT1,亦即在接觸窗組CG中的兩個接觸窗CT1之間存在其他接觸窗CT1。此外,多個接觸窗組CG不共用同一個接觸窗CT1。In some embodiments, the antifuse structure 10 may be a PUF generator, and the antifuse structure 10 may include a plurality of contact groups CG. Each contact group CG may include any two contacts CT1 among the plurality of contacts CT1. In this embodiment, the two contacts CT1 in the contact group CG are two adjacent CT1s, but the invention is not limited thereto. In some other embodiments, the two contacts CT1 in the contact group CG may be two non-adjacent contacts CT1, that is, there are other contacts between the two contacts CT1 in the contact group CG CT1. In addition, multiple contact groups CG do not share the same contact CT1.

在反熔絲結構10為PUF產生器的情況下,PUF產生器的操作方法說明如下。舉例來說,對選定的接觸窗組CG中的兩個接觸窗CT1電性相連地施加高電壓,且將導電層106接地,藉此所產生的電流可使得上述兩個接觸窗CT1中隨機的一者與導電層106之間的反熔絲材料層120產生崩潰。如此一來,反熔絲材料層120的產生崩潰的部分可由高電阻狀態(視為資料“0”)變成低電阻狀態(視為資料“1”),藉此可隨機地對上述兩個接觸窗CT1所對應的兩個OTP記憶胞中的一者進行程式化。亦即,在進行上述操作之後,上述兩個接觸窗CT1所對應的兩個OTP記憶胞中被程式化的一者可視為儲存資料“1”,且上述兩個接觸窗CT1所對應的兩個OTP記憶胞中未被程式化的一者可視為儲存資料“0”。在另一些實施例中,上述操作也可能同時對上述兩個接觸窗CT1所對應的兩個OTP記憶胞進行程式化。因此,在對全部的接觸窗組CG進行上述操作之後,可產生一組隨機的數位指紋(digital fingerprint)。在一些實施例中,可藉由上述兩個接觸窗CT1所對應的兩條導線L1將高電壓電性相連地施加至上述兩個接觸窗CT1。在一些實施例中,導電層106可藉由導線L2與接觸窗CT2進行接地。In the case that the antifuse structure 10 is a PUF generator, the operation method of the PUF generator is described as follows. For example, a high voltage is applied to the two contact windows CT1 in the selected contact window group CG to be electrically connected, and the conductive layer 106 is grounded, so that the generated current can make random ones of the two contact windows CT1 The antifuse material layer 120 between one and the conductive layer 106 collapses. In this way, the collapsed part of the antifuse material layer 120 can be changed from a high resistance state (as a data "0") to a low resistance state (as a data "1"), whereby the above two contacts can be randomly connected. One of the two OTP memory cells corresponding to window CT1 is programmed. That is, after the above operations are performed, the programmed one of the two OTP memory cells corresponding to the above two contact windows CT1 can be regarded as storing data "1", and the two corresponding to the above two contact windows CT1 The unprogrammed one of the OTP memory cells can be regarded as storing data "0". In some other embodiments, the above operation may also program the two OTP memory cells corresponding to the two contact windows CT1 at the same time. Therefore, after performing the above operations on all contact groups CG, a set of random digital fingerprints can be generated. In some embodiments, a high voltage can be electrically connected and applied to the two contact windows CT1 through the two wires L1 corresponding to the two contact windows CT1 . In some embodiments, the conductive layer 106 can be grounded through the wire L2 and the contact window CT2.

基於上述實施例可知,由於反熔絲結構10是藉由對接觸窗CT1與導電層106施加電壓來進行操作,因此反熔絲結構10可具有較小的元件面積,進而可提升元件密度。此外,反熔絲材料層120位在多個接觸窗CT1與同一個導電層106之間,藉此可形成多個OTP記憶胞,且在反熔絲結構10的設計與應用上可更具有彈性。此外,反熔絲結構10的製程可與電晶體結構12的製程進行整合,因此可降低製程複雜度。Based on the above embodiments, since the antifuse structure 10 is operated by applying a voltage to the contact window CT1 and the conductive layer 106 , the antifuse structure 10 can have a smaller device area, thereby increasing the device density. In addition, the antifuse material layer 120 is located between the plurality of contact windows CT1 and the same conductive layer 106, thereby forming a plurality of OTP memory cells, and the design and application of the antifuse structure 10 can be more flexible. . In addition, the manufacturing process of the antifuse structure 10 can be integrated with the manufacturing process of the transistor structure 12 , thus reducing the complexity of the manufacturing process.

圖2為根據本發明另一實施例反熔絲結構的剖面圖。FIG. 2 is a cross-sectional view of an antifuse structure according to another embodiment of the present invention.

請參照圖1F與圖2,圖2的反熔絲結構20與圖1F的反熔絲結構10的差異如下。反熔絲結構20更包括導電層200。導電層200設置在基底100上。在本實施例中,導電層200可設置在導電層106上。導電層200可為金屬矽化物層。導電層200的材料例如是矽化鎢、矽化鈷或矽化鎳。反熔絲材料層120設置在導電層200上。反熔絲材料層120位在多個接觸窗CT1與導電層200之間。接觸窗CT2電性連接至導電層200。Please refer to FIG. 1F and FIG. 2 , the differences between the antifuse structure 20 in FIG. 2 and the antifuse structure 10 in FIG. 1F are as follows. The antifuse structure 20 further includes a conductive layer 200 . The conductive layer 200 is disposed on the substrate 100 . In this embodiment, the conductive layer 200 can be disposed on the conductive layer 106 . The conductive layer 200 can be a metal silicide layer. The material of the conductive layer 200 is, for example, tungsten silicide, cobalt silicide or nickel silicide. The antifuse material layer 120 is disposed on the conductive layer 200 . The antifuse material layer 120 is located between the contact windows CT1 and the conductive layer 200 . The contact window CT2 is electrically connected to the conductive layer 200 .

此外,圖2的電晶體結構22與圖1F的電晶體結構12的差異如下。電晶體208更可包括金屬矽化物層202、金屬矽化物層204與金屬矽化物層206。金屬矽化物層202、金屬矽化物層204與金屬矽化物層206分別設置在閘極110、摻雜區114與摻雜區116上。金屬矽化物層202位在接觸窗CT3與閘極110之間。金屬矽化物層204位在接觸窗CT4與摻雜區114之間。金屬矽化物層206位在接觸窗CT5與摻雜區116之間。此外,導電層200、金屬矽化物層202、金屬矽化物層204與金屬矽化物層206可藉由相同製程同時形成。In addition, the differences between the transistor structure 22 of FIG. 2 and the transistor structure 12 of FIG. 1F are as follows. The transistor 208 may further include a metal silicide layer 202 , a metal silicide layer 204 and a metal silicide layer 206 . The metal silicide layer 202 , the metal silicide layer 204 and the metal silicide layer 206 are respectively disposed on the gate 110 , the doped region 114 and the doped region 116 . The metal silicide layer 202 is located between the contact window CT3 and the gate 110 . The metal silicide layer 204 is located between the contact window CT4 and the doped region 114 . The metal silicide layer 206 is located between the contact window CT5 and the doped region 116 . In addition, the conductive layer 200 , the metal silicide layer 202 , the metal silicide layer 204 and the metal silicide layer 206 can be formed simultaneously by the same process.

另外,圖2與圖1F中的相同或相似的構件使用相同或相似的符號表示,且圖2的反熔絲結構20與圖1F的反熔絲結構10中相似的內容可參考上述實施例對反熔絲結構10的說明,於此不再說明。In addition, the same or similar components in FIG. 2 and FIG. 1F are represented by the same or similar symbols, and the antifuse structure 20 in FIG. 2 is similar to the antifuse structure 10 in FIG. 1F . The description of the antifuse structure 10 is omitted here.

基於上述實施例可知,由於反熔絲結構20是藉由對接觸窗CT1與導電層200施加電壓來進行操作,因此反熔絲結構20可具有較小的元件面積,進而可提升元件密度。此外,反熔絲材料層120位在多個接觸窗CT1與同一個導電層200之間,藉此可形成多個OTP記憶胞,且在反熔絲結構20的設計與應用上可更具有彈性。此外,反熔絲結構20的製程可與電晶體結構22的製程進行整合,因此可降低製程複雜度。Based on the above embodiments, since the antifuse structure 20 is operated by applying a voltage to the contact window CT1 and the conductive layer 200 , the antifuse structure 20 can have a smaller device area, thereby increasing the device density. In addition, the antifuse material layer 120 is located between the plurality of contact windows CT1 and the same conductive layer 200, thereby forming a plurality of OTP memory cells, and the design and application of the antifuse structure 20 can be more flexible. . In addition, the manufacturing process of the antifuse structure 20 can be integrated with the manufacturing process of the transistor structure 22 , thus reducing the complexity of the manufacturing process.

圖3為根據本發明另一實施例反熔絲結構的剖面圖。FIG. 3 is a cross-sectional view of an antifuse structure according to another embodiment of the present invention.

請參照圖1F與圖3,圖3的反熔絲結構30與圖1F的反熔絲結構10的差異如下。在反熔絲結構30中,導電層306為虛擬閘極。亦即,在圖3中,以虛擬閘極型態的導電層306取代圖1F中的摻雜區型態的導電層106。虛擬閘極的材料例如是摻雜多晶矽。在本實施例中,導電層306可位在隔離結構102的正上方,但本發明並不以此為限。在另一些實施例中,導電層306可位在主動區的正上方。在一些實施例中,導電層306與閘極110可藉由相同製程同時形成。此外,反熔絲結構30更可包括閘介電層312與間隙壁318。閘介電層312位在導電層306與基底100之間。在本實施例中,閘介電層312可位在導電層306與隔離結構102之間。在一些實施例中,閘介電層312與閘介電層112可藉由相同製程同時形成。間隙壁318位在導電層306的側壁上。在一些實施例中,間隙壁318與間隙壁118可藉由相同製程同時形成。另外,在反熔絲結構30中,可省略圖1F中的井區104。Please refer to FIG. 1F and FIG. 3 , the differences between the antifuse structure 30 in FIG. 3 and the antifuse structure 10 in FIG. 1F are as follows. In the antifuse structure 30, the conductive layer 306 is a dummy gate. That is, in FIG. 3 , the conductive layer 306 of the dummy gate type replaces the conductive layer 106 of the doped region type in FIG. 1F . The material of the dummy gate is, for example, doped polysilicon. In this embodiment, the conductive layer 306 may be located directly above the isolation structure 102 , but the invention is not limited thereto. In other embodiments, the conductive layer 306 may be located directly above the active region. In some embodiments, the conductive layer 306 and the gate 110 can be formed simultaneously by the same process. In addition, the antifuse structure 30 may further include a gate dielectric layer 312 and a spacer 318 . The gate dielectric layer 312 is located between the conductive layer 306 and the substrate 100 . In this embodiment, the gate dielectric layer 312 may be located between the conductive layer 306 and the isolation structure 102 . In some embodiments, the gate dielectric layer 312 and the gate dielectric layer 112 can be formed simultaneously by the same process. The spacer 318 is located on the sidewall of the conductive layer 306 . In some embodiments, the spacer 318 and the spacer 118 can be formed simultaneously by the same process. In addition, in the antifuse structure 30, the well region 104 in FIG. 1F may be omitted.

此外,圖3與圖1F中的相同或相似的構件使用相同或相似的符號表示,且圖3的反熔絲結構30與圖1F的反熔絲結構10中相似的內容可參考上述實施例對反熔絲結構10的說明,於此不再說明。In addition, the same or similar components in FIG. 3 and FIG. 1F are represented by the same or similar symbols, and the similar content between the antifuse structure 30 in FIG. 3 and the antifuse structure 10 in FIG. The description of the antifuse structure 10 is omitted here.

基於上述實施例可知,由於反熔絲結構30是藉由對接觸窗CT1與導電層306施加電壓來進行操作,因此反熔絲結構30可具有較小的元件面積,進而可提升元件密度。此外,反熔絲材料層120位在多個接觸窗CT1與同一個導電層306之間,藉此可形成多個OTP記憶胞,且在反熔絲結構30的設計與應用上可更具有彈性。此外,反熔絲結構30的製程可與電晶體結構12的製程進行整合,因此可降低製程複雜度。Based on the above-mentioned embodiments, since the antifuse structure 30 is operated by applying a voltage to the contact window CT1 and the conductive layer 306 , the antifuse structure 30 can have a smaller device area, thereby increasing the device density. In addition, the antifuse material layer 120 is located between the plurality of contact windows CT1 and the same conductive layer 306, thereby forming a plurality of OTP memory cells, and the design and application of the antifuse structure 30 can be more flexible. . In addition, the manufacturing process of the antifuse structure 30 can be integrated with the manufacturing process of the transistor structure 12 , thus reducing the complexity of the manufacturing process.

圖4為根據本發明另一實施例反熔絲結構的剖面圖。FIG. 4 is a cross-sectional view of an antifuse structure according to another embodiment of the present invention.

請參照圖3與圖4,圖4的反熔絲結構40與圖3的反熔絲結構30的差異如下。反熔絲結構40更包括導電層400。導電層400可為金屬矽化物層。導電層400的材料例如是矽化鎢、矽化鈷或矽化鎳。導電層400設置在基底100上。在本實施例中,導電層400可設置在導電層306上。反熔絲材料層120設置在導電層400上。反熔絲材料層120位在多個接觸窗CT1與導電層400之間。接觸窗CT2電性連接至導電層400。Please refer to FIG. 3 and FIG. 4 , the differences between the antifuse structure 40 in FIG. 4 and the antifuse structure 30 in FIG. 3 are as follows. The antifuse structure 40 further includes a conductive layer 400 . The conductive layer 400 can be a metal silicide layer. The material of the conductive layer 400 is, for example, tungsten silicide, cobalt silicide or nickel silicide. The conductive layer 400 is disposed on the substrate 100 . In this embodiment, the conductive layer 400 may be disposed on the conductive layer 306 . The antifuse material layer 120 is disposed on the conductive layer 400 . The antifuse material layer 120 is located between the plurality of contact windows CT1 and the conductive layer 400 . The contact window CT2 is electrically connected to the conductive layer 400 .

此外,圖4的電晶體結構42與圖3的電晶體結構12的差異如下。電晶體408更可包括金屬矽化物層402、金屬矽化物層404與金屬矽化物層406。金屬矽化物層402、金屬矽化物層404與金屬矽化物層406分別設置在閘極110、摻雜區114與摻雜區116上。金屬矽化物層402位在接觸窗CT3與閘極110之間。金屬矽化物層404位在接觸窗CT4與摻雜區114之間。金屬矽化物層406位在接觸窗CT5與摻雜區116之間。此外,導電層400、金屬矽化物層402、金屬矽化物層404與金屬矽化物層406可藉由相同製程同時形成。In addition, the differences between the transistor structure 42 of FIG. 4 and the transistor structure 12 of FIG. 3 are as follows. The transistor 408 may further include a metal silicide layer 402 , a metal silicide layer 404 and a metal silicide layer 406 . The metal silicide layer 402 , the metal silicide layer 404 and the metal silicide layer 406 are respectively disposed on the gate 110 , the doped region 114 and the doped region 116 . The metal silicide layer 402 is located between the contact window CT3 and the gate 110 . The metal silicide layer 404 is located between the contact window CT4 and the doped region 114 . The metal silicide layer 406 is located between the contact window CT5 and the doped region 116 . In addition, the conductive layer 400 , the metal silicide layer 402 , the metal silicide layer 404 and the metal silicide layer 406 can be formed simultaneously through the same process.

另外,圖4與圖3中的相同或相似的構件使用相同或相似的符號表示,且圖4的反熔絲結構40與圖3的反熔絲結構30中相似的內容可參考上述實施例對反熔絲結構30的說明,於此不再說明。In addition, the same or similar components in FIG. 4 and FIG. 3 are represented by the same or similar symbols, and the antifuse structure 40 in FIG. 4 is similar to the antifuse structure 30 in FIG. 3 . The description of the antifuse structure 30 is omitted here.

基於上述實施例可知,由於反熔絲結構40是藉由對接觸窗CT1與導電層400施加電壓來進行操作,因此反熔絲結構40可具有較小的元件面積,進而可提升元件密度。此外,反熔絲材料層120位在多個接觸窗CT1與同一個導電層400之間,藉此可形成多個OTP記憶胞,且在反熔絲結構40的設計與應用上可更具有彈性。此外,反熔絲結構40的製程可與電晶體結構42的製程進行整合,因此可降低製程複雜度。Based on the above embodiments, since the antifuse structure 40 is operated by applying a voltage to the contact window CT1 and the conductive layer 400 , the antifuse structure 40 can have a smaller device area, thereby increasing the device density. In addition, the antifuse material layer 120 is located between the plurality of contact windows CT1 and the same conductive layer 400, thereby forming a plurality of OTP memory cells, and the design and application of the antifuse structure 40 can be more flexible. . In addition, the manufacturing process of the antifuse structure 40 can be integrated with the manufacturing process of the transistor structure 42 , thus reducing the complexity of the manufacturing process.

圖5為根據本發明另一實施例反熔絲結構的剖面圖。FIG. 5 is a cross-sectional view of an antifuse structure according to another embodiment of the present invention.

在圖5中雖未示出,但在基底500中可具有摻雜區及或隔離結構等所需的構件,且在基底500上可具有主動元件、被動元件、介電層與內連線結構等所需的構件,於此省略其說明。導電層506設置在基底500上。Although not shown in FIG. 5 , there may be required components such as doped regions and/or isolation structures in the substrate 500, and there may be active elements, passive elements, dielectric layers, and interconnection structures on the substrate 500. and other required components, and their descriptions are omitted here. The conductive layer 506 is disposed on the substrate 500 .

請參照圖1F與圖5,圖5的反熔絲結構50與圖1F的反熔絲結構10的差異如下。圖1的反熔絲結構10是與電晶體結構12進行整合,而圖5的反熔絲結構50是與內連線結構52進行整合。在反熔絲結構50中,導電層506為導線。亦即,在圖5中,以導線型態的導電層506取代圖1F中的摻雜區型態的導電層106。Please refer to FIG. 1F and FIG. 5 , the differences between the antifuse structure 50 in FIG. 5 and the antifuse structure 10 in FIG. 1F are as follows. The antifuse structure 10 of FIG. 1 is integrated with the transistor structure 12 , while the antifuse structure 50 of FIG. 5 is integrated with the interconnect structure 52 . In the antifuse structure 50, the conductive layer 506 is a wire. That is, in FIG. 5 , the conductive layer 506 in the form of wires replaces the conductive layer 106 in the form of doped regions in FIG. 1F .

在一些實施例中,在對反熔絲結構50進行操作時,除了可藉由導線L2與接觸窗CT2對導電層506施加電壓(如,接地)之外,更可藉由其他內連線結構(未示出)對導電層506施加電壓(如,接地)。在另一些實施例中,在對反熔絲結構50進行操作時,可藉由其他內連線結構(未示出)對導電層506施加電壓(如,接地),且反熔絲結構50可不包括接觸窗CT2與導線L2。In some embodiments, when the antifuse structure 50 is operated, in addition to applying a voltage (such as grounding) to the conductive layer 506 through the wire L2 and the contact window CT2, other interconnection structures can also be used. (not shown) A voltage (eg, ground) is applied to the conductive layer 506 . In some other embodiments, when the antifuse structure 50 is operated, a voltage (eg, ground) may be applied to the conductive layer 506 through other interconnection structures (not shown), and the antifuse structure 50 may not Including the contact window CT2 and the wire L2.

此外,內連線結構52可包括導線502、接觸窗CT6與導線L6。導線502可設置在基底500上。導電層506與導線502可藉由相同製程同時形成。在圖5中,位在導線502上的反熔絲材料層120與位在導電層506上的反熔絲材料層120可彼此分離。在本實施例中,導電層506與導線502可為鋁導線。接觸窗CT6位在導線L6與導線502之間,且可穿過反熔絲材料層120。舉例來說,接觸窗CT6可包括導電層128f與阻障層130f。導電層128f位在介電層122中。阻障層130f位在導電層128f與導線502之間以及導電層128f與介電層122之間。導線L6可電性連接至接觸窗CT6。In addition, the interconnection structure 52 may include a wire 502 , a contact window CT6 and a wire L6 . The wire 502 can be disposed on the substrate 500 . The conductive layer 506 and the wire 502 can be formed simultaneously by the same process. In FIG. 5 , the antifuse material layer 120 on the wire 502 and the antifuse material layer 120 on the conductive layer 506 can be separated from each other. In this embodiment, the conductive layer 506 and the wire 502 can be aluminum wires. The contact CT6 is located between the wire L6 and the wire 502 and can pass through the antifuse material layer 120 . For example, the contact window CT6 may include a conductive layer 128f and a barrier layer 130f. The conductive layer 128f is located in the dielectric layer 122 . The barrier layer 130f is located between the conductive layer 128f and the wire 502 and between the conductive layer 128f and the dielectric layer 122 . The wire L6 can be electrically connected to the contact window CT6.

此外,圖5與圖1F中的相同或相似的構件使用相同或相似的符號表示,且圖5的反熔絲結構50與圖1F的反熔絲結構10中相似的內容可參考上述實施例對反熔絲結構10的說明,於此不再說明。In addition, the same or similar components in FIG. 5 and FIG. 1F are represented by the same or similar symbols, and the similar content between the antifuse structure 50 in FIG. 5 and the antifuse structure 10 in FIG. 1F can be referred to the above-mentioned embodiment The description of the antifuse structure 10 is omitted here.

基於上述實施例可知,由於反熔絲結構50是藉由對接觸窗CT1與導電層506施加電壓來進行操作,因此反熔絲結構50可具有較小的元件面積,進而可提升元件密度。此外,反熔絲材料層120位在多個接觸窗CT1與同一個導電層506之間,藉此可形成多個OTP記憶胞,且在反熔絲結構50的設計與應用上可更具有彈性。此外,反熔絲結構50的製程可與內連線結構52的製程進行整合,因此可降低製程複雜度。Based on the above embodiments, since the antifuse structure 50 is operated by applying a voltage to the contact window CT1 and the conductive layer 506 , the antifuse structure 50 can have a smaller device area, thereby increasing the device density. In addition, the antifuse material layer 120 is located between the plurality of contact windows CT1 and the same conductive layer 506, thereby forming a plurality of OTP memory cells, and the design and application of the antifuse structure 50 can be more flexible. . In addition, the manufacturing process of the antifuse structure 50 can be integrated with the manufacturing process of the interconnection structure 52 , thus reducing the complexity of the manufacturing process.

圖6為根據本發明另一實施例反熔絲結構的剖面圖。FIG. 6 is a cross-sectional view of an antifuse structure according to another embodiment of the present invention.

請參照圖5與圖6,圖6的反熔絲結構60與圖5的反熔絲結構50的差異如下。反熔絲結構50中的導電層506為鋁導線,而反熔絲結構60中的導電層606為銅導線。圖6的內連線結構62與圖5的內連線結構52的差異如下。內連線結構52中的導線502為鋁導線,而內連線結構62中的導線602為銅導線。導線602與導電層606可為單鑲嵌(single damascene)結構或雙鑲嵌(dual damascene)結構。此外,在圖6中,位在導線602上的反熔絲材料層120與位在導電層606上的反熔絲材料層120可為一體成型。另外,在導線602與導電層606可形成在介電層604中。Please refer to FIG. 5 and FIG. 6 , the differences between the antifuse structure 60 in FIG. 6 and the antifuse structure 50 in FIG. 5 are as follows. The conductive layer 506 in the antifuse structure 50 is an aluminum wire, and the conductive layer 606 in the antifuse structure 60 is a copper wire. The differences between the interconnect structure 62 of FIG. 6 and the interconnect structure 52 of FIG. 5 are as follows. The wires 502 in the interconnection structure 52 are aluminum wires, and the wires 602 in the interconnection structure 62 are copper wires. The wire 602 and the conductive layer 606 can be a single damascene structure or a dual damascene structure. In addition, in FIG. 6 , the antifuse material layer 120 on the wire 602 and the antifuse material layer 120 on the conductive layer 606 can be integrally formed. In addition, the conductive layer 602 and the conductive layer 606 may be formed in the dielectric layer 604 .

此外,圖6與圖5中的相同或相似的構件使用相同或相似的符號表示,且圖6的反熔絲結構60與圖5的反熔絲結構50中相似的內容可參考上述實施例對反熔絲結構50的說明,於此不再說明。In addition, the same or similar components in FIG. 6 and FIG. 5 are represented by the same or similar symbols, and the content similar to the antifuse structure 60 in FIG. 6 and the antifuse structure 50 in FIG. The description of the antifuse structure 50 is omitted here.

基於上述實施例可知,由於反熔絲結構60是藉由對接觸窗CT1與導電層606施加電壓來進行操作,因此反熔絲結構60可具有較小的元件面積,進而可提升元件密度。此外,反熔絲材料層120位在多個接觸窗CT1與同一個導電層606之間,藉此可形成多個OTP記憶胞,且在反熔絲結構60的設計與應用上可更具有彈性。此外,反熔絲結構60的製程可與內連線結構62的製程進行整合,因此可降低製程複雜度。Based on the above embodiments, since the antifuse structure 60 is operated by applying a voltage to the contact window CT1 and the conductive layer 606 , the antifuse structure 60 can have a smaller device area, thereby increasing the device density. In addition, the antifuse material layer 120 is located between the plurality of contact windows CT1 and the same conductive layer 606, thereby forming a plurality of OTP memory cells, and the design and application of the antifuse structure 60 can be more flexible. . In addition, the manufacturing process of the antifuse structure 60 can be integrated with the manufacturing process of the interconnection structure 62 , thus reducing the complexity of the manufacturing process.

綜上所述,上述實施例的反熔絲結構可提升元件密度且在設計與應用上可更具有彈性。此外,上述實施例的反熔絲結構的製程可與其他半導體製程進行整合,因此可降低製程複雜度。In summary, the antifuse structure of the above embodiments can increase device density and be more flexible in design and application. In addition, the manufacturing process of the antifuse structure of the above embodiments can be integrated with other semiconductor manufacturing processes, thus reducing the complexity of the manufacturing process.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be defined by the scope of the appended patent application.

10,20,30,40,50,60:反熔絲結構 12,22,42:電晶體結構 52,62:內連線結構 100,500:基底 102:隔離結構 104:井區 106,128a~128f,200,306,400,506,606:導電層 108,208,408:電晶體 110:閘極 112,312:閘介電層 114,116:摻雜區 118,318:間隙壁 120:反熔絲材料層 122,604:介電層 124,126:圖案化光阻層 130a~130f:阻障層 202,204,206,402,404,406:金屬矽化物層 502,602,L1~L6:導線 CG:接觸窗組 CT1~CT6:接觸窗 OP1~OP5:開口10,20,30,40,50,60: antifuse structure 12,22,42: Transistor structure 52,62: Interconnect structure 100,500: Base 102: Isolation structure 104: well area 106, 128a~128f, 200, 306, 400, 506, 606: conductive layer 108,208,408: Transistor 110: Gate 112,312: gate dielectric layer 114,116: doped area 118,318: gap wall 120: Antifuse material layer 122,604: dielectric layer 124,126: Patterned photoresist layer 130a~130f: barrier layer 202, 204, 206, 402, 404, 406: metal silicide layers 502,602,L1~L6: Wire CG: Contact window group CT1~CT6: Contact window OP1~OP5: opening

圖1A至圖1F為根據本發明一實施例反熔絲結構的製造流程剖面圖。 圖2為根據本發明另一實施例反熔絲結構的剖面圖。 圖3為根據本發明另一實施例反熔絲結構的剖面圖。 圖4為根據本發明另一實施例反熔絲結構的剖面圖。 圖5為根據本發明另一實施例反熔絲結構的剖面圖。 圖6為根據本發明另一實施例反熔絲結構的剖面圖。 1A to 1F are cross-sectional views of the manufacturing process of the antifuse structure according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of an antifuse structure according to another embodiment of the present invention. FIG. 3 is a cross-sectional view of an antifuse structure according to another embodiment of the present invention. FIG. 4 is a cross-sectional view of an antifuse structure according to another embodiment of the present invention. FIG. 5 is a cross-sectional view of an antifuse structure according to another embodiment of the present invention. FIG. 6 is a cross-sectional view of an antifuse structure according to another embodiment of the present invention.

10:反熔絲結構 10: Antifuse structure

12:電晶體結構 12: Transistor structure

100:基底 100: base

102:隔離結構 102: Isolation structure

104:井區 104: well area

106,128a~128e:導電層 106, 128a~128e: conductive layer

108:電晶體 108: Transistor

110:閘極 110: Gate

112:閘介電層 112: gate dielectric layer

114,116:摻雜區 114,116: doped area

118:間隙壁 118: gap wall

120:反熔絲材料層 120: Antifuse material layer

122:介電層 122: dielectric layer

130a~130e:阻障層 130a~130e: barrier layer

CG:接觸窗組 CG: Contact window group

CT1~CT5:接觸窗 CT1~CT5: Contact window

L1~L5:導線 L1~L5: wire

Claims (10)

一種反熔絲結構,包括: 基底; 導電層,設置在所述基底上; 反熔絲材料層,設置在所述導電層上; 介電層,設置在所述反熔絲材料層上;以及 多個第一接觸窗,設置在所述介電層中,其中所述反熔絲材料層位在多個所述第一接觸窗與所述導電層之間。 An antifuse structure comprising: base; a conductive layer disposed on the substrate; an antifuse material layer disposed on the conductive layer; a dielectric layer disposed on the layer of antifuse material; and A plurality of first contact windows are disposed in the dielectric layer, wherein the antifuse material layer is located between the plurality of first contact windows and the conductive layer. 如請求項1所述的反熔絲結構,更包括: 第二接觸窗,設置在所述介電層中,且電性連接至所述導電層。 The antifuse structure as described in Claim 1 further includes: The second contact window is disposed in the dielectric layer and electrically connected to the conductive layer. 如請求項2所述的反熔絲結構,其中所述第二接觸窗穿過所述反熔絲材料層。The antifuse structure according to claim 2, wherein the second contact window passes through the antifuse material layer. 如請求項2所述的反熔絲結構,更包括: 導線,電性連接至所述第二接觸窗。 The antifuse structure as described in claim item 2 further includes: The wire is electrically connected to the second contact window. 如請求項1所述的反熔絲結構,其中所述導電層包括摻雜區、金屬矽化物層、虛擬閘極或導線。The antifuse structure according to claim 1, wherein the conductive layer includes a doped region, a metal silicide layer, a dummy gate or a wire. 如請求項1所述的反熔絲結構,其中所述反熔絲結構包括一次可程式記憶體或物理不可複製功能產生器。The antifuse structure according to claim 1, wherein the antifuse structure comprises a one-time programmable memory or a physically non-replicable function generator. 如請求項6所述的反熔絲結構,其中所述反熔絲結構為所述物理不可複製功能產生器,所述反熔絲結構包括多個接觸窗組,且每個所述接觸窗組包括多個所述第一接觸窗中的任意兩個所述第一接觸窗。The antifuse structure according to claim 6, wherein the antifuse structure is the physical non-replicable function generator, the antifuse structure includes a plurality of contact window groups, and each of the contact window groups Any two first contact windows among the plurality of first contact windows are included. 如請求項7所述的反熔絲結構,其中多個所述接觸窗組不共用同一個所述第一接觸窗。The antifuse structure according to claim 7, wherein the plurality of contact window groups do not share the same first contact window. 如請求項1所述的反熔絲結構,其中所述反熔絲材料層的材料包括氮化矽、氮氧化矽或氮碳化矽。The antifuse structure according to claim 1, wherein the material of the antifuse material layer includes silicon nitride, silicon oxynitride or silicon carbide nitride. 如請求項1所述的反熔絲結構,更包括: 多個導線,電性連接至多個所述第一接觸窗。 The antifuse structure as described in Claim 1 further includes: A plurality of wires are electrically connected to the plurality of first contact windows.
TW110136168A 2021-09-29 2021-09-29 Anti-fuse strucutre TWI786855B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110136168A TWI786855B (en) 2021-09-29 2021-09-29 Anti-fuse strucutre

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110136168A TWI786855B (en) 2021-09-29 2021-09-29 Anti-fuse strucutre

Publications (2)

Publication Number Publication Date
TWI786855B true TWI786855B (en) 2022-12-11
TW202315064A TW202315064A (en) 2023-04-01

Family

ID=85794920

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110136168A TWI786855B (en) 2021-09-29 2021-09-29 Anti-fuse strucutre

Country Status (1)

Country Link
TW (1) TWI786855B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200501401A (en) * 2003-06-24 2005-01-01 Macronix Int Co Ltd Three-dimensional memory structure and manufacturing method thereof
TW200634989A (en) * 2005-03-21 2006-10-01 Macronix Int Co Ltd One-time programmable read only memory and manufacturing method thereof
TW200901393A (en) * 2007-04-12 2009-01-01 Sandisk 3D Llc Method of fabricating a self-aligning damascene memory structure
TW200915495A (en) * 2007-06-27 2009-04-01 Sandisk Corp Method for fabricating a 3-D integrated circuit using a hard mask of silicon-oxynitride on amorphous carbon
TW201312703A (en) * 2011-09-14 2013-03-16 Semiconductor Components Ind Electronic device including a nonvolatile memory structure having an antifuse component and a process of forming the same
TW201320310A (en) * 2011-11-01 2013-05-16 Macronix Int Co Ltd Memory device and method for manufacturing the same
TW201505152A (en) * 2013-07-24 2015-02-01 Ememory Technology Inc Antifuse OTP memory cell with performance improvement and operating method of memory

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200501401A (en) * 2003-06-24 2005-01-01 Macronix Int Co Ltd Three-dimensional memory structure and manufacturing method thereof
TW200634989A (en) * 2005-03-21 2006-10-01 Macronix Int Co Ltd One-time programmable read only memory and manufacturing method thereof
TW200901393A (en) * 2007-04-12 2009-01-01 Sandisk 3D Llc Method of fabricating a self-aligning damascene memory structure
TW200915495A (en) * 2007-06-27 2009-04-01 Sandisk Corp Method for fabricating a 3-D integrated circuit using a hard mask of silicon-oxynitride on amorphous carbon
TW201312703A (en) * 2011-09-14 2013-03-16 Semiconductor Components Ind Electronic device including a nonvolatile memory structure having an antifuse component and a process of forming the same
TW201320310A (en) * 2011-11-01 2013-05-16 Macronix Int Co Ltd Memory device and method for manufacturing the same
TW201505152A (en) * 2013-07-24 2015-02-01 Ememory Technology Inc Antifuse OTP memory cell with performance improvement and operating method of memory

Also Published As

Publication number Publication date
TW202315064A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
US7656005B2 (en) Electrically programmable π-shaped fuse structures and methods of fabrication thereof
TWI677922B (en) Methods of forming gate contact structures and cross-coupled contact structures for transistor devices
US9917009B2 (en) Methods of forming a through-substrate-via (TSV) and a metallization layer after formation of a semiconductor device
KR100514673B1 (en) Method of manufacturing NAND flash memory device
KR101244456B1 (en) Method of forming a contact structure with a contact spacer and method of fabricating a semiconductor device using the same
US6001726A (en) Method for using a conductive tungsten nitride etch stop layer to form conductive interconnects and tungsten nitride contact structure
KR20000053397A (en) A semiconductor integrated circuit device and process for manufacturing the same
KR100481870B1 (en) Semiconductor Device Having One-Time Programmable ROM And Method Of Fabricating The Same
KR100466298B1 (en) Semiconductor device and manufacturing method thereof
US7416973B2 (en) Method of increasing the etch selectivity in a contact structure of semiconductor devices
US6465282B1 (en) Method of forming a self-aligned antifuse link
US7784009B2 (en) Electrically programmable π-shaped fuse structures and design process therefore
TWI786855B (en) Anti-fuse strucutre
US20220246625A1 (en) Memory device and method for manufacturing the same
US6030860A (en) Elevated substrate formation and local interconnect integrated fabrication
US7888255B2 (en) Method of forming an antifuse and a conductive interconnect, and methods of forming DRAM circuitry
US11107730B1 (en) Method of manufacturing semiconductor device with anti-fuse structures
CN116093068A (en) One-time programmable memory capacitor structure and manufacturing method thereof
CN109585450B (en) Memory and forming method thereof
US6406993B1 (en) Method of defining small openings in dielectric layers
CN113611703A (en) Method for fabricating semiconductor structure
KR100734251B1 (en) Method for forming fuse line opening portion of semiconductor device
TWI848388B (en) Physically unclonable function generator structure and operation method thereof
US20240244822A1 (en) Semiconductor structure and manufacturing method thereof
US20230180470A1 (en) Memory device having merged active area