TWI785760B - variable capacitor - Google Patents
variable capacitor Download PDFInfo
- Publication number
- TWI785760B TWI785760B TW110131651A TW110131651A TWI785760B TW I785760 B TWI785760 B TW I785760B TW 110131651 A TW110131651 A TW 110131651A TW 110131651 A TW110131651 A TW 110131651A TW I785760 B TWI785760 B TW I785760B
- Authority
- TW
- Taiwan
- Prior art keywords
- electrode
- semiconductor
- aforementioned
- variable capacitor
- semiconductor switches
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims description 100
- 239000004065 semiconductor Substances 0.000 claims abstract description 143
- 239000003989 dielectric material Substances 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 18
- 230000000694 effects Effects 0.000 description 14
- 230000008859 change Effects 0.000 description 11
- 230000003068 static effect Effects 0.000 description 9
- 239000004020 conductor Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 3
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/38—Multiple capacitors, i.e. structural combinations of fixed capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G7/00—Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Integrated Circuits (AREA)
- Oscillators With Electromechanical Resonators (AREA)
Abstract
具備位於相互隔開所定距離的位置的第1電極(1)及第2電極(2),與分別電性連接前述第1電極(1)及前述第2電極(2)的兩者間的複數個串聯電路(SC1~SC6)。又,於前述各串聯電路(SC1~SC6)中,介電體(3)與具備1個以上對向於其介電體(3)而設置之半導體晶片的半導體開關(SW1~SW6)分別串聯連接。然後,前述各半導體開關(SW1~SW6)的半導體晶片(4)係藉由分派連接於該各半導體開關(SW1~SW6)的驅動電路,以前述各串聯電路(SC1~SC6)的電流分別成為開路狀態或閉路狀態之方式切換控制。It has a first electrode (1) and a second electrode (2) located at a predetermined distance from each other, and a plurality of electrodes electrically connected between the first electrode (1) and the second electrode (2) respectively. A series circuit (SC1~SC6). Also, in each of the above-mentioned series circuits (SC1-SC6), the dielectric body (3) is connected in series with the semiconductor switches (SW1-SW6) having more than one semiconductor chip opposite to the dielectric body (3). connect. Then, the semiconductor chips (4) of the above-mentioned semiconductor switches (SW1-SW6) are connected to the driving circuits of the respective semiconductor switches (SW1-SW6) by distribution, so that the currents of the above-mentioned series circuits (SC1-SC6) become Open-circuit state or closed-circuit state switching control.
Description
本發明係關於可適用作為例如高電壓、高頻用的電容器的可變電容器。The present invention relates to a variable capacitor applicable as, for example, a capacitor for high voltage and high frequency.
作為可適用於高電壓、高頻用的電容器的可變電容器之一例,公知如專利文獻1所示之可變型的真空電容器(以下僅適當稱為先前的電容器)。As an example of a variable capacitor applicable to a capacitor for high-voltage and high-frequency use, a variable-type vacuum capacitor (hereinafter referred to as a conventional capacitor as appropriate) shown in
該專利文獻1之先前的電容器,係具備於真空容器(在專利文獻1中為符號10)內,將同心圓狀且直徑不同的複數圓筒狀電極板,同心狀地安裝於固定電極安裝導體所形成的固定電極(在專利文獻1中為符號15)、以能以非接觸狀態插入抽出於該固定電極的各圓筒狀電極板間之方式,將直徑不同的複數圓筒狀電極板,同心狀地安裝於可動電極安裝導體所形成的可動電極(在專利文獻1中為符號16)、及使該可動電極從前述真空容器的外部往圓筒狀電極板的軸線方向移動的可動導線(在專利文獻1中為符號10)。The previous capacitor of this
依據此種先前的電容器,藉由透過可動導線,適當移動操作(在專利文獻1中為手動或以馬達旋轉移動符號23的操作部)可動電極,讓固定電極與可動電極的兩者的對向面積變化。亦即,可將發生於該兩者間的靜電容(電容量)變更成各式各樣之值。
[先前技術文獻]
[專利文獻]
According to such a conventional capacitor, by passing through the movable wire, the movable electrode is appropriately moved (in
[專利文獻1]日本特開平8-008142號公報[Patent Document 1] Japanese Patent Application Laid-Open No. 8-008142
變更先前的電容器的靜電容時,機械性(物理性)移動可動電極等,故於該變更的操作中,會受到慣性所致之影響。前述靜電容的變更時,真空部分(真空容器)的體積會變化,故於該變更的操作中,也會受到大氣壓的影響。When changing the electrostatic capacity of the conventional capacitor, the movable electrodes etc. are moved mechanically (physically), so the changing operation is affected by inertia. When the electrostatic capacity is changed, the volume of the vacuum part (vacuum container) will change, so the change operation is also affected by the atmospheric pressure.
亦即,先前的電容器係機械性電更靜電容的構造,於該變更的操作中,需要所定轉矩及時間。據此,可推估例如於前述變更的操作中,謀求高速化及高回應化等比較困難。That is to say, the conventional capacitor has a mechanically more electrostatic capacitance structure, and a predetermined torque and time are required for the modified operation. From this, it can be estimated that, for example, it is difficult to achieve high speed and high response in the above-mentioned modified operation.
本發明係有鑒於前述課題所發明者,提供可對靜電容的變更之操作性有所貢獻的技術。The present invention is made in view of the aforementioned problems, and provides a technology that can contribute to the operability of changing the electrostatic capacity.
本發明的可變電容器,係有對解決前述課題有所貢獻者,其一樣態係具備:第1電極及第2電極,係位於相互隔開所定距離的位置;及複數個串聯電路,係分別電性連接前述第1電極及前述第2電極的兩者間,且於該兩者間並聯連接;前述各串聯電路,係介電體,與具備1個以上對向於前述介電體而設置之半導體晶片的半導體開關串聯連接;前述各半導體開關的半導體晶片,係藉由連接於該各半導體開關的驅動電路,以前述串聯電路的電流分別成為開路狀態或閉路狀態之方式切換控制。 The variable capacitor of the present invention contributes to solving the above-mentioned problems, and its one state is provided with: the first electrode and the second electrode are located at positions separated from each other by a predetermined distance; and a plurality of series circuits are respectively Electrically connecting the two of the first electrode and the second electrode, and connecting them in parallel; each of the above-mentioned series circuits is a dielectric body, and has one or more facing the dielectric body. The semiconductor switches of the semiconductor chips are connected in series; the semiconductor chips of the aforementioned semiconductor switches are switched and controlled in such a way that the current of the aforementioned series circuits becomes an open circuit state or a closed circuit state respectively by a driving circuit connected to the respective semiconductor switches.
又,於前述各串聯電路中至少2個,前述的各半導體開關為開路狀態時的靜電容,係為分別不同之值亦可。 In addition, in at least two of the above-mentioned series circuits, the electrostatic capacitances of the above-mentioned semiconductor switches in an open state may be different values respectively.
又,於前述各串聯電路中至少2個,半導體開關係分別具備不同個數的半導體晶片亦可。 In addition, at least two semiconductor switches may have different numbers of semiconductor chips in each of the aforementioned series circuits.
又,於前述各串聯電路中至少2個,半導體開關係半導體晶片之對向於介電體的面所致之面積分別不同亦可。 In addition, in at least two of the aforementioned series circuits, the semiconductor switches may have different areas due to the surface of the semiconductor chip facing the dielectric.
又,於前述各串聯電路中至少2個,分別具有不同之介電率的介電體亦可。 In addition, at least two of the aforementioned series circuits may have dielectrics having different dielectric constants.
又,於前述各串聯電路中至少2個,介電體係該介電體之對向於半導體晶片的方向的距離分別不同亦可。 In addition, in at least two of the above-mentioned series circuits, the distances of the dielectric bodies in the dielectric system to the direction of the semiconductor wafer may be different from each other.
又,具備2個前述第1電極,該各第1電極位於相互隔開所定距離的位置;前述第2電極中介於前述各第1電極之間亦可。 Moreover, two said 1st electrodes are provided, and said 1st electrodes are located in the position mutually spaced apart by predetermined distance, and said 2nd electrodes may be interposed between said 1st electrodes.
又,前述第1電極,係分離成複數個電極部的構造;前述各半導體開關,係連接於前述各電極部之任一亦可。 Also, the first electrode may be divided into a plurality of electrode parts, and each of the semiconductor switches may be connected to any one of the electrode parts.
依據以上所示的本發明,可對靜電容的變更之操作性有所貢獻。 According to the present invention described above, it is possible to contribute to the operability of changing the capacitance.
本發明的實施形態所致之可變電容器,係與如先前的電容器般機械性移動可動電極等來變更靜電容的構造完全不同者。The variable capacitor according to the embodiment of the present invention is completely different from the conventional capacitor in which the static capacitance is changed by mechanically moving the movable electrodes.
亦即,本實施形態的可變電容器係具備位於相互隔開所定距離的位置的第1電極及第2電極,與分別電性連接前述第1電極及前述第2電極的兩者間的複數個串聯電路。又,於前述各串聯電路中,介電體與具備1個以上對向於其介電體而設置之半導體晶片的半導體開關串聯連接。然後,於前述各半導體開關的半導體晶片中,作為藉由連接於該各半導體開關的驅動電路,以前述串聯電路的電流分別成為開路狀態或閉路狀態之方式切換控制(以下僅適當稱為開閉控制)的構造。That is, the variable capacitor of the present embodiment includes a first electrode and a second electrode positioned at a predetermined distance from each other, and a plurality of capacitors electrically connected between the first electrode and the second electrode, respectively. series circuit. Also, in each of the aforementioned series circuits, the dielectric body is connected in series to semiconductor switches including one or more semiconductor chips provided to face the dielectric body. Then, in the semiconductor chip of each of the aforementioned semiconductor switches, as a drive circuit connected to each of the semiconductor switches, the current of the aforementioned series circuit is switched and controlled in an open state or a closed state (hereinafter only appropriately referred to as switching control). ) structure.
依據此種構造,藉由連接於該各半導體開關的驅動電路,開閉控制該各半導體開關的半導體晶片,可將靜電容(電容量)變更為各式各樣之值。亦即,本實施形態的可變電容器係為可電性(數位性)變更靜電容的構造,不會像先前的電容器需要所定轉矩及時間。所以,與先前的電容器相較,有可對靜電容的變更之操作性(例如靜電容的變更操作的高速化及高回應化等)有所貢獻的可能性。According to such a structure, the capacitance (capacitance) can be changed to various values by switching and controlling the semiconductor chip of each semiconductor switch by the driving circuit connected to each semiconductor switch. That is to say, the variable capacitor of this embodiment has a structure in which the static capacitance can be changed electrically (digitally), and does not require a predetermined torque and time like previous capacitors. Therefore, compared with conventional capacitors, it is possible to contribute to the operability of changing the electrostatic capacity (for example, speeding up and improving the response of the changing operation of the electrostatic capacity, etc.).
本實施形態的可變電容器,係如上所述般,只要可電性變更靜電容的構造即可,可適當適用各種領域(例如可變電容器領域、半導體開關領域、介電體領域、驅動電路領域等)的技術通常知識,可因應需要而適當參照先前技術文獻等,進行設計變形,作為其一例,可舉出以下的實施例1~6。再者,在以下的實施例1~6中,例如關於重複的內容,藉由適用相同符號,適當省略詳細的說明。又,於圖中的介電體中,為了方便說明,附加濃淡所致之色彩。The variable capacitor of this embodiment is suitable for various fields (for example, the field of variable capacitors, the field of semiconductor switches, the field of dielectrics, the field of drive circuits, etc.) etc.), design modifications can be made by appropriately referring to prior art documents, etc. as necessary, and the following Examples 1 to 6 can be cited as one example. In addition, in the following Examples 1 to 6, for example, the same symbols are used for overlapping contents, and detailed descriptions are appropriately omitted. In addition, in the dielectric body in the figure, for the sake of convenience of explanation, the color according to the shade is added.
《實施例1》
圖1~圖5係說明實施例1所致之可變電容器10A者。該可變電容器10A係具備分別為平板狀且位於相互隔開所定距離的位置的第1電極1及第2電極2、位於第1電極1及第2電極2兩者之間,層積設置於該第2電極2的一端面2a之平板狀的介電體3、於第1電極1及介電體3的兩者間,相互隔開距離設置於該介電體3的表面3a的複數個半導體開關SW(在圖1(A)中為6個半導體開關SW1~SW6)。
"Example 1"
1 to 5 illustrate the
<半導體開關SW的構造例>
然後,於各半導體開關SW中,成為具備例如具有反向阻斷IGBT及二極體等的半導體元件所成的半導體晶片4,藉由該半導體晶片4,以流通於半導體開關SW的電流成為開路狀態或閉路狀態之方式切換的構造。
<Structure example of semiconductor switch SW>
Then, each semiconductor switch SW is provided with a
該半導體晶片4係可適用各種樣態,並未特別限定。例如在可變電容器10A作為交流用途時,於半導體晶片4可於雙方向流通電流(流通於第1電極1側方向的電流、及流通於第2電極2側方向的電流)。此時,可舉出如圖2所示的半導體晶片4般,並聯連接例如由反向阻斷IGBT所成的元件4a、4b,前述雙方向的電流切換成開路狀態或閉路狀態的構造。Various aspects are applicable to this
元件4a、4b的並聯連接構造係可適用各種樣態,作為其一例,可舉出如圖3般構成半導體晶片4。於該圖3的半導體晶片4中,在元件4a、4b與介電體3之間,中介存在內藏(省略圖示)第1連接線及第2連接線的連接用基板41。然後,元件a的射極與元件b的集極藉由第1連接線連接,元件a的集極與元件b的射極藉由第2連接線連接。進而,於第2連接線中,以成為與第1電極1同電位之方式,藉由在第1電極1與連接用基板41之間延伸的連接配線(引線等)W連接。Various aspects can be applied to the parallel connection structure of the
半導體晶片4係以在與介電體3之間可形成後述的電容器c之方式,對於該介電體3對向設置。例如,可舉出於如圖3的半導體晶片4中,連接用基板41的底面40具有作為端子等的功能,在與介電體3之間可形成後述的電容器c時,使其底面40接觸設置於介電體3的表面3a。此時,底面40成為對向於介電體3之面(以下僅適當稱為對向面)。The
藉由如此設置半導體晶片4,於各半導體開關SW中,係對於介電體3串聯連接,如圖4(B)所示的等效電路般,在與第2電極2之間形成電容器c(在圖5中係各半導體開關SW1~SW4中形成電容器c1~c4),分別構成串聯電路SC(在圖1中係於半導體開關SW1~SW6中構成串聯電路SC1~SC6)。亦即,成為於第1電極1及第2電極2的兩者間,並聯連接複數個串聯電路SC。By disposing the
於各串聯電路SC的半導體開關SW,分別連接對應該各串聯電路SC分派的驅動電路D(在圖1(B)中為驅動電路D1~D3分別連接半導體開關SW1~SW3)。藉此,以對於該各半導體開關SW的半導體晶片4,可分別發送用以進行開閉控制的控制訊號之方式構成。The semiconductor switches SW of each series circuit SC are respectively connected to the drive circuits D assigned to the respective series circuits SC (in FIG. 1B , the drive circuits D1 to D3 are respectively connected to the semiconductor switches SW1 to SW3). Thereby, it is comprised so that the control signal for performing opening and closing control can be sent to each
依據此種構造,藉由分別適當驅動各串聯電路SC的驅動電路D,可對該各串聯電路SC的電流(圖2的交流用途時為雙方向的電流)分別進行開閉控制。According to such a structure, by appropriately driving the driving circuit D of each series circuit SC, the current of each series circuit SC (current in both directions in the case of an AC application in FIG. 2 ) can be individually controlled to be switched on and off.
<介電體3的構造例>
於第1電極1及第2電極2的兩者間(在後述的實施例5中,進而在第2電極2及第3電極5的兩者間)的介電體3中,只要可絕緣該兩者間,形成圖4、圖5所示的電容器c的話,可適用各種樣態,作為其一例,可舉出使用陶瓷等的介電體材料等所成的介電體3。
<Structure example of
又,例如圖1所示的可變電容器10A之狀況中,成為於各串聯電路SC中共有1個介電體3(在後述的實施例3、4中為共有共通介電體30)的構造,但是,設為於該各串聯電路SC設置個別的介電體3的構造亦可。Also, for example, in the case of the
作為具體例,首先藉由將圖1所示之平板狀的介電體3,加工(切斷加工等)成配合各串聯電路SC的半導體開關SW之形狀,形成該各串聯電路SC的各介電體片(例如圖4(A)所示之形狀的介電體3)。然後,可舉出將前述各介電體片分散配置於第2電極2的一端面2a,於該各介電體片設置半導體開關SW的構造。As a specific example, first, by processing (cutting, etc.) the planar
此外,例如於各串聯電路SC中,在半導體開關SW與第2電極2的兩者間形成真空狀態的空隙部(省略圖示),可將該空隙部代用作為介電體3,或與介電體3一起並用。In addition, for example, in each series circuit SC, a space (not shown) in a vacuum state is formed between the semiconductor switch SW and the
<可變電容器10A的靜電容>
於可變電容器10A的靜電容中,可適用後述計算式(1)計算。再者,計算式(1)中的C係可變電容器10A的靜電容(單位F),ε係介電體3的介電率(F/m),S係開路狀態的半導體開關SW之半導體晶片4的對向面所致之面積(電性面積:以下僅適當稱為電性對向面積)的總計面積(單位m
2),d係介電體3之與半導體晶片4對向的方向(以下僅適當稱為對向方向)的距離(單位m)。
<Static Capacitance of
C=ε×S/d ……(1)
例如,假設各半導體開關SW之半導體晶片4的電性對向面積分別為Ssw(單位m)的話,3個半導體開關SW(例如半導體開關SW1~SW3)為開路狀態時,計算式(1)的總計面積S為3Ssw。
C=ε×S/d ……(1)
For example, assuming that the electrical opposing areas of the
所以,於可變電容器10A中,選擇性地對各串聯電路SC的半導體開關SW進行開閉控制的話,即可適當變更計算式(1)的總計面積S。亦即,可將可變電容器10A的靜電容C變更操作成各式各樣之值。Therefore, in the
例如,於各串聯電路SC的半導體開關SW中,電性對向面積為相同值(例如分別Ssw為相同值)時,可均等地分配各半導體開關SW的開閉控制所致之靜電容C的變更幅度(可變值)。For example, when the electrically opposed areas of the semiconductor switches SW of each series circuit SC have the same value (for example, each Ssw has the same value), the change in capacitance C caused by the switching control of each semiconductor switch SW can be evenly distributed. Amplitude (variable value).
又,依據此種構造,各半導體開關SW全部(在圖1中為半導體開關SW1~SW6全部)為開路狀態時,對於介電體3的電荷係透過該各半導體開關SW全部之半導體晶片4的對向面,均等地分配。藉由如此分配電荷,於可變電容器10A的使用時,變得容易抑制可能發生於介電體3的熱集中所致之溫度上升。Also, according to this structure, when all of the semiconductor switches SW (all of the semiconductor switches SW1 to SW6 in FIG. 1 ) are in an open state, the charge to the
<其他>
於各串聯電路SC中,對於第1電極1及第2電極2(在後述的實施例5中,進而對於第2電極2及第3電極5)的電性連接,係可適用各種樣態,但是,需要以減低漂浮電容之方式連接。作為具體例,如圖1等所示,可舉出將串聯電路SC的半導體開關SW側與第1電極1的兩者,充分隔開配置(例如以設置間隙之方式配置),藉由連接配線W連接該兩者。
<Other>
In each series circuit SC, various aspects can be applied to the electrical connection of the
再者,可舉出於半導體開關SW等中,也可能存在漂浮電容,但是,該漂浮電容是比較小者的話,可適當無視。Furthermore, there may be a floating capacitance in the semiconductor switch SW, etc., but if the floating capacitance is relatively small, it can be appropriately ignored.
以上,依據本本實施例1的可變電容器10A的構造,可將該可變電容器10A的靜電容電性變更為各式各樣之值,故不會像先前的電容器需要所定轉矩及時間。藉此,與先前的電容器相較,容易對靜電容的變更操作的高速化及高回應化等有所貢獻。As described above, according to the structure of the
《實施例2》
於實施例1的可變電容器10A中,各串聯電路SC之半導體開關SW所具備的半導體晶片4的種類及個數同等(電性對向面積同等)時,可成為以下所示內容。
"Example 2"
In the
亦即,於可變電容器10A中,各串聯電路SC個別的靜電容的變更幅度為一定(各半導體開關SW所致之靜電容的變更幅度為一定)。That is, in the
因此,可變電容器10A之可變更的靜電容的種類,係因應串聯電路SC的個數決定。例如,假設將圖5所示之4個串聯電路SC1~SC4的各半導體開關SW1~SW4之靜電容的變更幅度設為「1」的話,藉由各個驅動電路D對該各半導體開關SW1~SW4進行開閉控制時,可變更的靜電容的種類係為「0、1、2、3、4」的5種類。圖5之狀況中,以開路控制半導體開關SW3、SW4之方式描寫,靜電容為「2」。Therefore, the type of variable capacitance of the
藉此,於可變電容器10A中,例如以相對於最大電容大約3%的精度設定靜電容時,需要100/3≒32個的串聯電路SC(半導體開關SW)。又,對1個半導體開關SW分派1個驅動電路D的話,需要32個驅動電路D。Therefore, in the
因此,在本實施例2中,於各串聯電路SC的半導體開關SW中,適用具備分別不同個數的半導體晶片4者,將該各串聯電路SC所致之靜電容的變更幅度設為不同者。然後,可藉由於分派至各串聯電路SC的驅動電路D中,選擇性進行開閉控制,增加可變更之靜電容的種類。Therefore, in the second embodiment, semiconductor switches SW having different numbers of
圖6~圖8係用以說明本實施例2所致之可變電容器10B。於該可變電容器10B中,各串聯電路SC的半導體開關SW係分別具有不同個數的半導體晶片4。6 to 8 are used to illustrate the
各半導體開關SW所具備之半導體晶片4的個數可適當設定,作為其一例,可舉出如圖6、圖7所示般構成。The number of
圖6的可變電容器10B之狀況中,於半導體開關SW1、SW2、SW3中,分別具有1個、2個、4個的半導體晶片4。亦即,於圖6所致之可變電容器10B中,係成為相對於半導體開關SW為N個,具有2
N-1個半導體晶片4的構造(N為2以上的自然數,以下相同)。此時,假設各半導體晶片4的種類及電性對向面積同等的話,該各半導體開關SW之電性對向面積的大小的比例,係為1:2:4:……:(2
N-1-1):(2
N-1)。
In the case of the
圖7的可變電容器10B之狀況中,於半導體開關SW1、SW2、SW3中,分別具有1個、2個、3個的半導體晶片4。此時,假設各半導體晶片4的種類及電性對向面積同等的話,該各半導體開關SW1~SW3之電性對向面積的大小的比例,係為1:2:3。In the case of the
如上所述,於具備複數個半導體晶片4的半導體開關SW中,各半導體晶片4的元件4a、4b的並聯連接構造係可適用各種樣態,作為其一例,可舉出如圖8般構成。As described above, in the semiconductor switch SW including a plurality of
於圖8的半導體開關SW之狀況中,在各半導體晶片4的元件4a、4b與介電體3之間,與圖3同樣地中介存在內藏(省略圖示)第1連接線及第2連接線的連接用基板41。然後,於各半導體晶片4中,元件a的射極與元件b的集極藉由第1連接線連接,元件a的集極與元件b的射極藉由第2連接線連接。進而,於第2連接線中,以成為與第1電極1同電位之方式,藉由在第1電極1與連接用基板41之間延伸的連接配線W(引線等)連接。In the case of the semiconductor switch SW in FIG. 8, between the
在此,於圖6的可變電容器10B中,分派至各串聯電路SC1~SC3的驅動電路D1~D3,係如表1所示般可選擇性進行開閉控制。再者,將可變電容器10B的各半導體晶片4個別之靜電容的變更幅度設為「1」。
依據該表1,可藉由驅動電路D1~D3的開閉控制來變更之靜電容的種類,係可知有「0、1、2、3、4、5、6、7」的8種類。亦即,圖6的可變電容器10B係可說相對於串聯電路SC(半導體開關SW)為N個,可變更成2
N種類的靜電容者。
Here, in the
例如,設想以相對於最大電容大約3%的精度設定靜電容時,依據圖6的可變電容器10B,可藉由對5個半導體開關SW適當選擇性進行開閉控制(以5位元控制),變更成32種類的靜電容。亦即,可知相較於實施例1的可變電容器10A,可減少驅動電路D的個數(從32個減少成5個)。For example, when it is assumed that the static capacitance is set with an accuracy of about 3% relative to the maximum capacitance, according to the
以上,依據如本實施例2的可變電容器10B的構造,除了可發揮與實施例1相同的作用效果之外,還可有以下所述效果。亦即,相較於實施例1,可利用比較少的驅動電路D變更成多種類的靜電容,有可對可變電容器的小型化及高解析率化有所貢獻的可能性。As described above, according to the structure of the
再者,可變電容器10B並不需要於所有各串聯電路SC中,以讓半導體開關SW之半導體晶片4的個數分別不同之方式設定,適當設定亦可。例如,只要於各串聯電路SC中至少2個半導體開關SW中,分別具備不同個數的半導體晶片4的話,藉由利用驅動電路D適當選擇性進行開閉控制,可發揮與本實施例2相同的作用效果。Furthermore, the
《實施例3》
在本實施例3中,於各串聯電路SC的介電體3中,以成為分別不同的介電率之方式構成,將該各串聯電路SC所致之靜電容的變更幅度設為不同者。然後,可藉由於分派至各串聯電路SC的驅動電路D中,選擇性進行開閉控制,增加可變更之靜電容的種類。
"Example 3"
In the third embodiment, the
圖9係用以說明本實施例3所致之可變電容器10C。該可變電容器10C的各串聯電路SC(在圖9中描寫為3個串聯電路SC1、SC2、SC3)的介電體3中,係層積該各串聯電路SC所共有之共通介電體30,與分別不同之介電率的介電體31(在圖9中為分別不同之介電率的介電體31a、31b、31c)所構成。藉此,於各串聯電路SC中,係成為分別具備不同之介電率的介電體3的構造。FIG. 9 is used to illustrate the variable capacitor 10C according to the third embodiment. In the
於該圖9的可變電容器10C之狀況中,例如將串聯電路SC1、SC2、SC3個別之靜電容的變更幅度設為「α」、「β」、「γ」的話,可藉由驅動電路D1~D3的開閉控制來變更之靜電容的種類,係為「0、α、β、γ、α+β、α+γ、β+γ、α+β+γ」,與圖6的可變電容器10B同樣地為8種類。In the case of the variable capacitor 10C in FIG. 9 , for example, if the variation ranges of the individual capacitances of the series circuits SC1, SC2, and SC3 are set to "α", "β", and "γ", the drive circuit D1 can The type of static capacitance changed by the on-off control of D3 is "0, α, β, γ, α+β, α+γ, β+γ, α+β+γ", which is the same as the variable capacitor in Figure 6 10B is 8 types similarly.
以上,依據如本實施例3的可變電容器10C的構造,除了可發揮與實施例2相同的作用效果之外,還可有以下所述效果。亦即,相較於實施例2,可抑制半導體開關SW的半導體晶片4的個數,故有可對可變電容器的進一步小型化及低成本化有所貢獻的可能性。As described above, according to the structure of the variable capacitor 10C of the third embodiment, in addition to the same effects as those of the second embodiment, the following effects can also be obtained. That is, compared with the second embodiment, the number of
再者,可變電容器10C並不需要於所有各串聯電路SC中,以讓介電體3的介電率分別不同之方式設定,適當設定亦可。例如,只要於各串聯電路SC中至少2個串聯電路SC的介電體3中,以成為分別不同的介電率之方式設定的話,藉由利用驅動電路D適當選擇性進行開閉控制,可發揮與本實施例3相同的作用效果。Furthermore, the variable capacitor 10C does not need to be set so that the dielectric constants of the
《實施例4》
在本實施例4中,於各串聯電路SC的介電體3中,與實施例3同樣地,以成為分別不同的介電率之方式構成,將各串聯電路SC所致之靜電容的變更幅度設為不同者。然後,可藉由於分派至各串聯電路SC的驅動電路D中,選擇性進行開閉控制,增加可變更之靜電容的種類。
"Example 4"
In Example 4, the
圖10係用以說明本實施例4所致之可變電容器10D。該可變電容器10D的各串聯電路SC(在圖10中描寫為3個串聯電路SC1、SC2、SC3)的介電體3中,係層積該各串聯電路SC所共有之共通介電體30,與第2電極2的一端面2a之面方向的大小不同的介電體32(在圖9中為分別一端面2a的面方向的大小不同的介電體32a、32b)而階梯狀地構成。FIG. 10 is used to illustrate the
於各串聯電路SC的半導體開關SW中,設置於介電體3的各層階的表面3a~3c之任一。藉此,於各串聯電路SC中,係成為分別介電體3的對向方向的距離(第2電極2與半導體開關SW(半導體晶片4)之間的距離)不同的構造。In the semiconductor switch SW of each series circuit SC, any one of the
於該圖10的可變電容器10D之狀況中,例如將串聯電路SC1、SC2、SC3個別之靜電容的變更幅度設為「α」、「β」、「γ」的話,依照計算式(1),成為α≠β≠γ。進而,可藉由驅動電路D1~D3的開閉控制來變更之靜電容的種類,係為「0、α、β、γ、α+β、α+γ、β+γ、α+β+γ」,與圖6的可變電容器10B同樣地為8種類。In the case of the
以上,依據如本實施例4的可變電容器10D的構造,除了可發揮與實施例3相同的作用效果之外,還可有以下所述效果。亦即,相較於實施例3,例如可減少或統一適用於介電體3之介電體材料的種類,有可對進一步低成本化有所貢獻的可能性。As described above, according to the structure of the
再者,可變電容器10D並不需要於各串聯電路SC的所有介電體3之對向方向的距離中,以分別不同之方式設定,適當設定亦可。例如,只要是各串聯電路SC中至少2個串聯電路SC的介電體3之對向方向的距離,以成為分別不同之方式設定的構造的話,藉由利用驅動電路D適當選擇性進行開閉控制,可發揮與本實施例4相同的作用效果。Furthermore, the
《實施例5》
圖11係揭示本實施例5所致之可變電容器10E者,藉由在位於相互隔開所定距離的位置之2個第1電極1之間中介存在第2電極2,可構成更多的串聯電路SC者。再者,在以下的說明中,為了方便說明,將2個第1電極1中一方作為「第1電極1」,將另一方作為「第3電極5」適當進行說明。
"Example 5"
Fig. 11 shows the
於該可變電容器10E中,係於挾持第2電極2的前述第1電極1的相反側中,於從該第2電極2隔開所定距離的位置,具備第3電極5。In this
於前述第2電極2及前述第3電極5兩者間,係與第1電極1及第2電極兩者間相同,於該第2電極2的另一端面2b層積設置平板狀的介電體3,對於該介電體3,複數個半導體開關SW(在圖11中描寫為3個半導體開關SW4~SW6)相互隔開距離設置。Between the above-mentioned
藉此,於第2電極2及第3電極5的兩者間,係與第1電極1及第2電極2兩者間相同,成為並聯連接複數個串聯電路SC(在圖11中為串聯電路SC4~SC6)的構造。又,於第1電極1及第3電極5的兩者間,係中介存在電性連接該兩者的導體51。Thereby, between the
以上,依據如本實施例5的可變電容器10E的構造,除了可發揮與實施例1~4相同的作用效果之外,還可有以下所述效果。亦即,相較於實施例1~4,例如可有效活用第2電極2(在圖11中例如活用第2電極2之一端面2a及另一端面2b)以構成複數個串聯電路SC,故有可對進一步低成本化及小型化有所貢獻的可能性。As described above, according to the structure of the
再者,在圖11的可變電容器10E中,第1電極1及第2電極2的兩者間與第2電極2及第3電極5的兩者間,分別構成相同個數(在圖11中分別為3個)的串聯電路SC,但是,該個數可分別適當設定,並不是特別限定者。例如,於第1電極1及第2電極2的兩者間與第2電極2及第3電極5的兩者間,分別具備1個以上的串聯電路SC即可。Furthermore, in the
《實施例6》
實施例1~5的可變電容器10A~10E的第1電極1(可變電容器10E之狀況係第1電極1及第3電極5)中,並不是限定於如各圖所描寫之一體構造者,例如圖12、圖13所示般,也可適用分離成複數個電極部1
SW的分離構造。
«Embodiment 6» In the
圖12、圖13係分別揭示本實施例6所致之可變電容器10F、10G者,於第1電極1中,具有複數個電極部1
SW(在圖12中為也對應串聯電路SC1~SC3的電極部1
SW1~1
SW3)的構造。
Fig. 12 and Fig. 13 respectively disclose the
可變電容器10F、10D的各電極部1
SW係分別分離於各串聯電路SC的排列方向而配置(在圖12、圖13中以與半導體開關SW對向之方式配置),該串聯電路SC的半導體開關SW側藉由連接配線W連接。
The
各電極部1
SW係例如透過配置於可變電容器10F(或10G)的外周側的導體(共通導體等,省略圖示)電性連接的構造亦可。
Each
又,對於各電極部1
SW之半導體開關SW的連接個數並未特別限定,可適當設定。例如,於圖12的可變電容器10F的電極部1
SW個別,僅連接1個半導體開關SW,但是,如圖13的可變電容器10G的電極部1
SW23般,連接複數個半導體開關SW(在圖13中為連接半導體開關SW2、SW3)亦可。亦即,各串聯電路SC的半導體開關SW側係只要連接於各電極部1
SW之任一即可。
Also, the number of semiconductor switches SW connected to each
以上,依據如本實施例6的可變電容器10F、10G的構造,除了可發揮與實施例1~5相同的作用效果之外,還可有以下所述效果。亦即,相較於實施例1~5,例如第1電極1的設計自由度變廣,可容易進行可變電容器10F、10G個別之構成要素的組裝,有可對進一步低成本化及小型化有所貢獻的可能性。As described above, according to the structure of the
以上,於本發明中,僅對於所記載之具體例詳細說明,但是,該發明所屬技術領域中具有通常知識者當然可理解在本發明的技術思想的範圍中可進行各式各樣的變更,此種變更等當然屬於申請專利範圍。例如,實施例1~6適當組合亦可。In the above, in the present invention, only the described specific examples have been described in detail, but those skilled in the art to which this invention pertains will naturally understand that various changes can be made within the scope of the technical idea of the present invention. Such changes and the like certainly belong to the scope of the patent application. For example, Examples 1 to 6 may be combined appropriately.
1:第1電極
1
SW,1
SW1~1
SW3,1
SW23:電極部
2:第2電極
2a:一端面
2b:另一端面
3:介電體
3a~3c:表面
4:半導體晶片
4a,4b:元件
5:第3電極
10A~10G:可變電容器
30:共通介電體
31,31a~31c,32,32a,32b:介電體
40:底面
41:連接用基板
51:導體
C:靜電容
c,c1~c4:電容器
D,D1~D3:驅動電路
SC,SC1~SC6:串聯電路
SW,SW1~SW6:半導體開關
IGBT:反向阻斷
W:連接配線
1:
[圖1]說明實施例1所致之可變電容器10A的概略構造圖((A)係分離立體圖,(B)係從(A)的側面面向第1電極1及第2電極2的兩者間的概略圖)。
[FIG. 1] Schematic diagram illustrating the structure of a
[圖2]用以說明半導體開關SW所具備的半導體晶片4之一例的概略構造圖((A)係半導體開關SW的電路圖,(B)係說明由反向阻斷IGBT所成的元件4a、4b的並聯連接之一例電路圖)。
[FIG. 2] A schematic structural diagram illustrating an example of a
[圖3]說明元件4a、4b的並聯連接之一例的概略構造圖。
[FIG. 3] A schematic structural diagram illustrating an example of parallel connection of
[圖4]說明串聯電路SC之一例的概略構造圖((A)係相當於從圖1(A)的側面面向第1電極1及第2電極2的兩者間的概略圖,(B)係(A)的等效電路圖)。
[FIG. 4] A schematic structural diagram illustrating an example of the series circuit SC ((A) is a schematic diagram corresponding to the space between the
[圖5]可變電容器10A之一部分的串聯電路SC(4個串聯電路SC1~SC4)的等效電路圖。
[ FIG. 5 ] An equivalent circuit diagram of a part of the
[圖6]說明實施例2所致之可變電容器10B的概略構造圖(相當於從圖1(A)的側面面向第1電極1及第2電極2的兩者間的概略圖)。
[FIG. 6] A schematic structural diagram illustrating a
[圖7]說明實施例2所致之可變電容器10B的其他例的概略構造圖(相當於從圖1(A)的側面面向第1電極1及第2電極2的兩者間的概略圖)。
[圖8]說明元件4a、4b的並聯連接之一例的概略構造圖。
[圖9]說明實施例3所致之可變電容器10C的概略構造圖(相當於從圖1(A)的側面面向第1電極1及第2電極2的兩者間的概略圖)。
[圖10]說明實施例4所致之可變電容器10D的概略構造圖(相當於從圖1(A)的側面面向第1電極1及第2電極2的兩者間的概略圖)。
[圖11]說明實施例5所致之可變電容器10E的概略構造圖(相當於從圖1(A)的側面面向第1電極1及第2電極2的兩者間的概略圖)。
[圖12]說明實施例6所致之可變電容器10F的概略構造圖(相當於從圖1(A)的側面面向第1電極1及第2電極2的兩者間的概略圖)。
[圖13]說明實施例6所致之可變電容器10G的概略構造圖(相當於從圖1(A)的側面面向第1電極1及第2電極2的兩者間的概略圖)。
[FIG. 7] A schematic structural diagram illustrating another example of the
1:第1電極 1: 1st electrode
2:第2電極 2: 2nd electrode
2a:一端面 2a: One end face
2b:另一端面 2b: The other end
3:介電體 3: Dielectric body
3a:表面 3a: Surface
4:半導體晶片 4: Semiconductor wafer
10A:可變電容器 10A: variable capacitor
D1~D3:驅動電路 D1~D3: drive circuit
SC1~SC6:串聯電路 SC1~SC6: series circuit
SW1~SW6:半導體開關 SW1~SW6: semiconductor switch
W:連接配線 W: Connection wiring
Claims (5)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020182041 | 2020-10-30 | ||
JP2020-182041 | 2020-10-30 | ||
JP2021-084295 | 2021-05-19 | ||
JP2021084295A JP7031779B1 (en) | 2020-10-30 | 2021-05-19 | Variable capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202219998A TW202219998A (en) | 2022-05-16 |
TWI785760B true TWI785760B (en) | 2022-12-01 |
Family
ID=81212874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110131651A TWI785760B (en) | 2020-10-30 | 2021-08-26 | variable capacitor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7031779B1 (en) |
TW (1) | TWI785760B (en) |
WO (1) | WO2022091511A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003068571A (en) * | 2001-08-27 | 2003-03-07 | Nec Corp | Variable capacitor, variable inductor, and high frequency circuit module provided therewith |
US20150194538A1 (en) * | 2011-05-05 | 2015-07-09 | Eta Semiconductor Inc. | Multiple Control Transcap Variable Capacitor |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5915182B2 (en) * | 1976-07-27 | 1984-04-07 | 日本電気株式会社 | transistor |
JPS53112075A (en) * | 1977-10-18 | 1978-09-30 | Sanyo Electric Co Ltd | Digital capacitor |
JPH02296360A (en) * | 1989-05-10 | 1990-12-06 | Ricoh Co Ltd | Semiconductor device having capacitor on the rear |
JP3063412B2 (en) * | 1992-08-21 | 2000-07-12 | 富士電機株式会社 | Variable capacitor |
JPH0846133A (en) * | 1994-07-29 | 1996-02-16 | Sharp Corp | Semiconductor device incorporating capacitor |
US6414543B1 (en) * | 2000-11-28 | 2002-07-02 | Precision Dynamics Corporation | Rectifying charge storage element |
US6689643B2 (en) * | 2002-04-25 | 2004-02-10 | Chartered Semiconductor Manufacturing Ltd. | Adjustable 3D capacitor |
JP4855690B2 (en) * | 2005-02-15 | 2012-01-18 | セイコーNpc株式会社 | Semiconductor device having a capacitor |
US20090128991A1 (en) * | 2007-11-21 | 2009-05-21 | Micron Technology, Inc. | Methods and apparatuses for stacked capacitors for image sensors |
JP5527251B2 (en) * | 2011-02-24 | 2014-06-18 | 富士通セミコンダクター株式会社 | Variable capacitance circuit |
US9576737B2 (en) * | 2014-04-14 | 2017-02-21 | Kabushiki Kaisha Toshiba | Parallel capacitor and high frequency semiconductor device |
-
2021
- 2021-05-19 JP JP2021084295A patent/JP7031779B1/en active Active
- 2021-08-02 WO PCT/JP2021/028528 patent/WO2022091511A1/en active Application Filing
- 2021-08-26 TW TW110131651A patent/TWI785760B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003068571A (en) * | 2001-08-27 | 2003-03-07 | Nec Corp | Variable capacitor, variable inductor, and high frequency circuit module provided therewith |
US20150194538A1 (en) * | 2011-05-05 | 2015-07-09 | Eta Semiconductor Inc. | Multiple Control Transcap Variable Capacitor |
Also Published As
Publication number | Publication date |
---|---|
JP7031779B1 (en) | 2022-03-08 |
WO2022091511A1 (en) | 2022-05-05 |
TW202219998A (en) | 2022-05-16 |
JP2022073915A (en) | 2022-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4814940A (en) | Low inductance capacitor | |
CN103730254B (en) | Multilayer ceramic capacitor | |
US6661640B2 (en) | Multilayer ceramic electronic device | |
US7046500B2 (en) | Laminated ceramic capacitor | |
US6760215B2 (en) | Capacitor with high voltage breakdown threshold | |
US6563691B2 (en) | Mounting structure for capacitors | |
US7558049B1 (en) | Multilayer capacitor array | |
JP6053668B2 (en) | Semiconductor module and power conversion device | |
CN101110295B (en) | Feedthrough multilayer capacitor | |
US20020101702A1 (en) | Low inductance chip with center via contact | |
TWI785760B (en) | variable capacitor | |
KR101700461B1 (en) | Electrical multi-layered component and circuit arrangement comprising the same | |
US7948737B2 (en) | Multilayer capacitor array | |
WO2022124011A1 (en) | Laminate capacitor and semiconductor device | |
US20090161292A1 (en) | Laminated ceramic capacitor | |
US8174169B2 (en) | Piezoelectric transformer | |
JP2004530298A (en) | Offset path configuration for energy adjustment | |
JP3063412B2 (en) | Variable capacitor | |
JP2758531B2 (en) | Semiconductor device | |
JP2020102611A (en) | High efficiency capacitor structure | |
JP2010068012A (en) | Multilayer capacitor array | |
KR20180074317A (en) | MIS capacitor | |
JPH08288178A (en) | Ceramic capacitor | |
JPH07106184A (en) | Laminated capacitor |