[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI782943B - A virtual metrology method for esc temperature estimation using thermal control elements - Google Patents

A virtual metrology method for esc temperature estimation using thermal control elements Download PDF

Info

Publication number
TWI782943B
TWI782943B TW107101366A TW107101366A TWI782943B TW I782943 B TWI782943 B TW I782943B TW 107101366 A TW107101366 A TW 107101366A TW 107101366 A TW107101366 A TW 107101366A TW I782943 B TWI782943 B TW I782943B
Authority
TW
Taiwan
Prior art keywords
temperature
model
substrate support
tces
responses
Prior art date
Application number
TW107101366A
Other languages
Chinese (zh)
Other versions
TW201841091A (en
Inventor
張濤
豪爾赫 喬西 扎尼諾維奇
佛瑞德 依格萊
Original Assignee
美商蘭姆研究公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商蘭姆研究公司 filed Critical 美商蘭姆研究公司
Publication of TW201841091A publication Critical patent/TW201841091A/en
Application granted granted Critical
Publication of TWI782943B publication Critical patent/TWI782943B/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Control Of Resistance Heating (AREA)
  • Control Of Temperature (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

A temperature controller for a substrate support in a substrate processing system includes memory that stores a first model correlating temperatures of a plurality of first thermal control elements (TCEs) arranged in the substrate support and first temperature responses of the substrate support. The first temperature responses correspond to locations on a surface of the substrate support. A temperature estimation module calculates resistances of the first TCEs, determines, based on the calculated resistances, the temperatures of the first TCEs, and estimates, using the stored first model and the determined temperatures of the first TCEs, an actual temperature response of the substrate support. The temperature controller is configured to control the first TCEs based on the actual temperature response of the substrate support.

Description

使用熱控制元件之靜電夾頭溫度估計所用的虛擬量測方法Virtual metrology method for electrostatic chuck temperature estimation using thermal control elements

本揭露內容關於基板處理系統,且更具體而言關於用以估計在基板處理系統中的基板支撐件的溫度之系統與方法。 The present disclosure relates to substrate processing systems, and more particularly to systems and methods for estimating the temperature of a substrate support in a substrate processing system.

本文提供的背景描述係針對概括性地呈現本揭露內容之背景的目的。目前所列名之發明人的工作成果(就本先前技術章節中所描述之範圍而言)、以及不可以其他方式適格為申請時之習知技術的描述內容之實施態樣,均不明示或暗示地承認為是相對本揭露內容的習知技術。 The background description provided herein is for the purpose of presenting the context of the disclosure in general terms. The work products of the presently listed inventors (to the extent described in this prior art section), and implementations of the described content that would not otherwise qualify as prior art at the time of filing, are not expressly or It is implicitly admitted that it is prior art with respect to the present disclosure.

基板處理系統可用於執行蝕刻、沉積、及/或基板(例如半導體晶圓)的其他處理。可在基板上執行的例示性製程包括(但不限於):電漿增強化學氣相沉積(PECVD)製程、化學性增強電漿氣相沉積(CEPVD)製程、濺鍍物理氣相沉積(PVD)製程、離子佈植製程、及/或其他蝕刻(例如,化學蝕刻、電漿蝕刻、反應性離子蝕刻等等)、沉積、及清潔製程等。在基板處理系統的處理腔室中,可將基板設置在例如基座、靜電夾頭(ESC)等等之基板支撐件上。例如,在蝕刻期間,將包括一或更多前驅物的氣體混合物引進處理腔室中,並點燃電漿以蝕刻基板。 Substrate processing systems may be used to perform etching, deposition, and/or other processing of substrates such as semiconductor wafers. Exemplary processes that may be performed on the substrate include, but are not limited to: plasma enhanced chemical vapor deposition (PECVD) process, chemically enhanced plasma vapor deposition (CEPVD) process, sputtering physical vapor deposition (PVD) process, ion implantation process, and/or other etching (eg, chemical etching, plasma etching, reactive ion etching, etc.), deposition, and cleaning processes. In a processing chamber of a substrate processing system, a substrate may be disposed on a substrate support such as a pedestal, electrostatic chuck (ESC), or the like. For example, during etching, a gas mixture including one or more precursors is introduced into the processing chamber and the plasma is ignited to etch the substrate.

在製程步驟期間,系統的各種元件及基板本身的溫度可能有變化。這些溫度變化可能對所產生的基板產生不欲見的影響(例如,非均一的臨界尺寸)。溫度變化可在基板上產生期望的效果。例如,如果在蝕刻之前在基板中出現非均勻的情形,則溫度的空間控制及蝕刻製程可用以針對非均勻進行修正。據此,在處理期間,基板處理系統可實施用以估計各種元件及基板的溫度之各種系統與方法。 During the process steps, the temperature of various components of the system and the substrate itself may vary. These temperature variations may have undesired effects on the resulting substrate (eg, non-uniform CD). The temperature change can produce a desired effect on the substrate. For example, if non-uniformities occur in the substrate prior to etching, spatial control of the temperature and etch process can be used to correct for the non-uniformities. Accordingly, a substrate processing system may implement various systems and methods for estimating the temperature of various components and substrates during processing.

用於基板處理系統中的基板支撐件之溫度控制器包括儲存第一模型的記憶體,該第一模型係將設置在基板支撐件中之複數第一熱控制元件(TCE)的溫度與基板支撐件的第一溫度響應相關聯起來。第一溫度響應對應於基板支撐件的表面上的位置。溫度估計模組計算第一TCE的電阻,基於所計算的電阻判定第一TCE的溫度,以及使用儲存的第一模型與第一TCE的判定的溫度來估計基板支撐件的實際溫度響應。溫度控制器係配置成基於基板支撐件的實際溫度響應來控制第一TCE。 A temperature controller for a substrate support in a substrate processing system includes a memory storing a first model that correlates the temperature of a plurality of first thermal control elements (TCEs) disposed in the substrate support with the substrate support The first temperature response of the component is correlated. The first temperature response corresponds to a location on the surface of the substrate support. The temperature estimation module calculates a resistance of the first TCE, determines a temperature of the first TCE based on the calculated resistance, and estimates an actual temperature response of the substrate support using the stored first model and the determined temperature of the first TCE. The temperature controller is configured to control the first TCE based on the actual temperature response of the substrate support.

估計基板處理系統中的基板支撐件的溫度之方法包括儲存第一模型,該第一模型係將設置在基板支撐件中之複數第一熱控制元件(TCE)的溫度與基板支撐件的第一溫度響應相關聯起來。第一溫度響應對應於基板支撐件的表面上的位置。該方法進一步包括計算第一TCE的電阻,基於所計算的電阻判定第一TCE的溫度,使用儲存的第一模型與第一TCE的判定的溫度來估計基板支撐件的實際溫度響應,以及基於基板支撐件的實際溫度響應來控制第一TCE。 A method of estimating a temperature of a substrate support in a substrate processing system includes storing a first model that compares the temperature of a plurality of first thermal control elements (TCEs) disposed in the substrate support to a first temperature of the substrate support. correlated with the temperature response. The first temperature response corresponds to a location on the surface of the substrate support. The method further includes calculating a resistance of the first TCE, determining a temperature of the first TCE based on the calculated resistance, estimating an actual temperature response of the substrate support using the stored first model and the determined temperature of the first TCE, and The first TCE is controlled in response to the actual temperature of the support.

從詳細的實施方式、申請專利範圍,以及圖式,本揭露內容的實用性的進一步範圍將變得明顯。該詳細的實施方式與具體的例子僅是為了描述之目的,而非欲限制本揭露內容之範疇。 Further scope of applicability of the present disclosure will become apparent from the detailed description, claims, and drawings. The detailed implementations and specific examples are for the purpose of description only, and are not intended to limit the scope of the present disclosure.

100:系統 100: system

102:處理腔室 102: processing chamber

104:上電極 104: Upper electrode

106:靜電夾頭(ESC) 106: Electrostatic chuck (ESC)

108:基板 108: Substrate

109:噴淋頭 109: sprinkler head

110:底板 110: Bottom plate

112:加熱板 112: heating plate

114:熱阻層 114: thermal resistance layer

116:通道 116: channel

120:RF產生系統 120:RF generation system

122:RF電壓產生器 122: RF voltage generator

124:匹配及配送網路 124: Matching and distribution network

130:氣體輸送系統 130: Gas delivery system

132-1:氣體來源 132-1: Gas source

132-2:氣體來源 132-2: Gas source

132-N:氣體來源 132-N: Gas source

132:氣體來源 132: Gas source

134-1:閥 134-1: Valve

134-2:閥 134-2: valve

134-N:閥 134-N: valve

134:閥 134: valve

136-1:質流控制器 136-1: Mass Flow Controller

136-2:質流控制器 136-2: Mass Flow Controller

136-N:質流控制器 136-N: Mass Flow Controller

136:質流控制器 136: Mass flow controller

140:歧管 140: Manifold

142:溫度控制器 142: Temperature controller

144:熱控制元件(TCE) 144: Thermal Control Element (TCE)

146:冷卻劑組件 146:Coolant assembly

150:閥 150: valve

152:泵浦 152: pump

160:系統控制器 160: system controller

170:機器手臂 170:Robot Arm

172:負載鎖室 172: Load lock chamber

200:ESC 200:ESC

204:溫度控制器 204: Temperature controller

208:連接件 208: connector

212-1:巨觀TCE 212-1: Juguan TCE

212-2:巨觀TCE 212-2: Giant TCE

212-3:巨觀TCE 212-3: Juguan TCE

212-4:巨觀TCE 212-4: Giant TCE

212:巨觀TCE 212: Giant TCE

216:微觀TCE 216: Microscopic TCE

224:底板 224: bottom plate

228:RF電漿源 228:RF plasma source

232:偏壓RF源 232: Bias RF source

236-1:區 236-1: District

236-2:區 236-2: District

236-3:區 236-3: District

236-4:區 236-4: District

236:區 236: area

240:通道 240: channel

244:熱阻層 244: thermal resistance layer

248:陶瓷加熱板 248: ceramic heating plate

252:第一層 252: first floor

256:第二層 256: second layer

300:溫度控制器 300: temperature controller

304:巨觀TCE控制器 304: Giant TCE controller

308:微觀TCE控制器 308: Microscopic TCE Controller

312:記憶體 312: memory

316:介面 316: interface

320:溫度估計模組 320:Temperature Estimation Module

324:輸入 324: input

328:感測器 328: sensor

400:溫度估計模組 400:Temperature estimation module

404:模組 404:Module

408:輸入 408: input

412:底板溫度 412: base plate temperature

416:偏壓RF功率 416: Bias RF power

420:TCP RF功率 420:TCP RF Power

424:電壓與電流測量值 424: voltage and current measurement value

428:功率輸入 428: Power input

432:TCP RF模組 432:TCP RF module

436:偏壓RF模組 436: Bias RF module

440:底板溫度模組 440: base plate temperature module

444:微觀TCE溫度模組 444: Microscopic TCE temperature module

448:區溫度模組 448:Zone temperature module

452:電阻模組 452: Resistance module

456:電阻對溫度模組 456: resistance to temperature module

460:加總節點 460: sum node

464:ESC溫度估計值 464: Esc temperature estimate

700:溫度響應 700: Temperature response

704:溫度 704: temperature

900:方法 900: method

904:方塊 904: block

908:方塊 908: block

912:方塊 912: cube

916:方塊 916: cube

920:方塊 920: block

924:方塊 924: block

928:方塊 928: cube

932:方塊 932: cube

936:方塊 936: block

940:方塊 940: block

944:方塊 944: cube

從詳細的實施方式及隨附圖式,將能更完整地理解本揭露內容,其中:圖1為根據本揭露內容的原理之包括靜電夾頭之例示性基板處理系統的功能性方塊圖;圖2A為根據本揭露內容的原理之例示性靜電夾頭;圖2B說明根據本揭露內容的原理之例示性靜電夾頭的區與巨觀熱控制元件;圖2C說明根據本揭露內容的原理之例示性靜電夾頭的區與微觀熱控制元件;圖3為根據本揭露內容的原理之例示性溫度控制器;圖4為根據本揭露內容的原理之例示性溫度估計模組;圖5A說明根據本揭露內容的原理之針對在熱控制元件的複數溫度的各者測量的電壓與電流;圖5B說明根據本揭露內容的原理之針對在熱控制元件的複數溫度的各者而相對於測量的電壓之計算的電阻;圖6說明根據本揭露內容的原理之熱控制元件的電阻與溫度之間的關係; 圖7說明根據本揭露內容的原理之靜電夾頭的表面位置處的例示性溫度響應;圖8說明根據本揭露內容的原理之使用例示性模型來估計之靜電夾頭的溫度;及圖9說明根據本揭露內容的原理之例示性溫度估計方法的步驟。 A more complete understanding of the present disclosure will be obtained from the detailed description and accompanying drawings, in which: FIG. 1 is a functional block diagram of an exemplary substrate processing system including an electrostatic chuck according to the principles of the present disclosure; FIG. 2A is an exemplary electrostatic chuck in accordance with principles of the present disclosure; FIG. 2B illustrates regions and macroscopic thermal control elements of an exemplary electrostatic chuck in accordance with principles of the present disclosure; FIG. 2C illustrates an illustration in accordance with principles of the present disclosure 3 is an exemplary temperature controller according to the principles of the present disclosure; FIG. 4 is an exemplary temperature estimation module according to the principles of the present disclosure; FIG. 5A illustrates Measured voltage and current for each of multiple temperatures of the thermal control element in accordance with the principles of the disclosure; FIG. Calculated resistance; FIG. 6 illustrates the relationship between resistance and temperature of a thermal control element in accordance with principles of the present disclosure; 7 illustrates an exemplary temperature response at a surface location of an electrostatic chuck in accordance with principles of the present disclosure; FIG. 8 illustrates the temperature of an electrostatic chuck estimated using an exemplary model in accordance with principles of the present disclosure; and FIG. 9 illustrates Steps of an Exemplary Temperature Estimation Method According to the Principles of the Disclosure.

在該等圖式中,參考數字可重複使用來標示相似及/或相同的元件。 In the drawings, reference numbers may be reused to identify similar and/or identical elements.

在基板處理系統中,可在製程步驟期間控制例如靜電夾頭(ESC)之基板支撐件的溫度。例如,不同的製程及個別的步驟可能要求基板維持在不同的溫度下。ESC的接觸表面溫度可受到控制以將基板維持在期望溫度下。僅作為範例,ESC可包括加熱板(例如,陶瓷加熱板)。可將基板設置在加熱板上。據此,加熱板的溫度係受到控制以達成基板的期望溫度。 In a substrate processing system, the temperature of a substrate support, such as an electrostatic chuck (ESC), can be controlled during process steps. For example, different processes and individual steps may require substrates to be maintained at different temperatures. The contact surface temperature of the ESC can be controlled to maintain the substrate at a desired temperature. By way of example only, an ESC may include a heating plate (eg, a ceramic heating plate). The substrate may be placed on a hot plate. Accordingly, the temperature of the heating plate is controlled to achieve the desired temperature of the substrate.

在製造製程中的變化可能造成在加熱板的特性以及加熱板的溫度控制的效能上的對應變化。例如,變化(即,非均勻性)可能包括但不限於:在加熱板的結構中之層的厚度及/或導熱性的局部變化、加工表面的平坦度的變化、及/或在加熱板內的各個熱控制元件(TCE)的特性的變化。這些非均勻性可能導致傳熱方面的局部差異(即,局部的溫度非均勻性),並因此導致基板溫度的非均勻性。 Variations in the manufacturing process may cause corresponding changes in the characteristics of the heating plate and the effectiveness of the temperature control of the heating plate. For example, variations (i.e., non-uniformities) may include, but are not limited to, local variations in the thickness and/or thermal conductivity of layers in the structure of the heating plate, variations in the flatness of the machined surface, and/or variations within the heating plate. Variations in the characteristics of the individual thermal control elements (TCEs). These non-uniformities may lead to local differences in heat transfer (ie, local temperature non-uniformities), and thus to substrate temperature non-uniformities.

其他系統變化可能進一步影響溫度非均勻性。其他系統變化可能包括但不限於:在不同的基板處理腔室之間的變化、在製程步驟之間的變化(例 如,電漿步驟的出現、類型、量、持續時間等等)、腔室內部的溫度與ESC的溫度之間的差異、製程參數的變化(例如,功率、頻率等等)、個別晶圓之間的變化、及/或使用者輸入/限制的變化。 Other system changes may further affect temperature non-uniformity. Other system changes may include, but are not limited to: changes between different substrate processing chambers, changes between process steps (e.g. e.g. occurrence, type, amount, duration, etc. of plasma steps), difference between temperature inside chamber and ESC, variation of process parameters (e.g., power, frequency, etc.), differences between individual wafers, etc. , and/or changes in user input/restrictions.

要在操作期間準確地控制及/或測量在基板處理腔室內(即,原位)的一些狀態可能是困難的。據此,基板處理系統可實施虛擬量測以估計基板處理腔室內的狀態。例如,虛擬量測系統及方法可實施將實際測量的狀態(例如,使用各自的感測器進行原位測量)關聯至其他狀態與特性之數學模型。 It can be difficult to accurately control and/or measure some conditions within a substrate processing chamber (ie, in situ) during operation. Accordingly, the substrate processing system can perform virtual metrology to estimate conditions within the substrate processing chamber. For example, virtual metrology systems and methods can implement mathematical models that relate actual measured states (eg, in situ measurements using respective sensors) to other states and properties.

根據本揭露內容的原理之系統與方法實施虛擬量測以估計ESC的溫度(例如,ESC的表面溫度,其可對應於在ESC上處理的晶圓的溫度)。例如,一些基板處理系統可實施巨觀TCE與微觀TCE的組合,以補償ESC中的溫度非均勻性。在一例示性實施例中,包括一或複數區的ESC(例如,多區ESC)可包括針對加熱板之各個區之個別的巨觀TCE、以及分佈在整個加熱板中的複數微觀TCE。複數微觀TCE(其在此處可稱為「加熱器」)可個別地受到控制以補償在ESC的各個區中的溫度非均勻性。本揭露內容的系統與方法將ESC溫度模型化為微觀TCE的操作特性的函數。例如,根據本揭露內容的原理之微觀TCE可包含具有高熱靈敏度的材料(例如,鎢金屬合金)。 Systems and methods in accordance with principles of the present disclosure perform virtual metrology to estimate the temperature of the ESC (eg, the surface temperature of the ESC, which may correspond to the temperature of a wafer being processed on the ESC). For example, some substrate processing systems may implement a combination of macroscopic TCE and microscopic TCE to compensate for temperature non-uniformities in the ESC. In an exemplary embodiment, an ESC including one or multiple zones (eg, a multi-zone ESC) may include individual macroscopic TCEs for each zone of the heating plate, and a plurality of microscopic TCEs distributed throughout the heating plate. A plurality of microscopic TCEs (which may be referred to herein as "heaters") can be individually controlled to compensate for temperature non-uniformities in various regions of the ESC. The systems and methods of the present disclosure model ESC temperature as a function of the operating characteristics of the microscopic TCE. For example, microscopic TCEs in accordance with principles of the present disclosure may comprise materials with high thermal sensitivity (eg, tungsten metal alloys).

由於製程變化影響基板、ESC與基板處理系統的其他元件之間的關係(例如,底板溫度、供應至底板的功率等等),故以此方式,可更準確地估計在處理期間之基板的溫度。在一些範例中,可取消在ESC的各個區中之額外的溫度感測器。儘管就ESC溫度估計方面進行描述,但如此處所述之本揭露內容的原理亦可應用於估計其他基板處理變數,例如晶圓級偏壓RF電壓、蝕刻速率等等。 In this way, the temperature of the substrate during processing can be more accurately estimated since process variations affect the relationship between the substrate, the ESC, and other elements of the substrate processing system (e.g., substrate temperature, power supplied to the substrate, etc.) . In some examples, additional temperature sensors in various regions of the ESC may be eliminated. Although described in terms of ESC temperature estimation, the principles of the present disclosure as described herein can also be applied to estimate other substrate processing variables such as wafer level bias RF voltages, etch rates, and the like.

現參照圖1,顯示用以使用RF電漿執行蝕刻的例示性基板處理系統100。基板處理系統100包括處理腔室102,其圍繞基板處理腔室102的其他元件並容納RF電漿。基板處理腔室102包括上電極104及例如靜電夾頭(ESC)106之基板支撐件。在操作期間,基板108係設置在ESC 106上。 Referring now to FIG. 1 , an exemplary substrate processing system 100 for performing etching using RF plasma is shown. The substrate processing system 100 includes a processing chamber 102 that surrounds other components of the substrate processing chamber 102 and houses an RF plasma. The substrate processing chamber 102 includes a top electrode 104 and a substrate support such as an electrostatic chuck (ESC) 106 . During operation, substrate 108 is disposed on ESC 106 .

僅作為範例,上電極104可包括引導並配送製程氣體的噴淋頭109。噴淋頭109可包括一桿部,該桿部包括連接至處理腔室的頂部表面的一末端。在與該處理腔室的頂部表面隔開一位置之處,一基底部大致上為圓柱狀,並且從該桿部的相反末端徑向地朝外延伸。噴淋頭之基底部的面基板表面或面板包括複數孔洞,而製程氣體或沖洗氣體流動通過該複數孔洞。替代地,上電極104可包括傳導板,而製程氣體可以另一方式引導。 By way of example only, the upper electrode 104 may include a showerhead 109 that directs and distributes process gases. The showerhead 109 may include a stem including an end connected to the top surface of the processing chamber. At a location spaced from the top surface of the processing chamber, a base portion is generally cylindrical and extends radially outward from opposite ends of the stem portion. The face substrate surface or panel of the base portion of the showerhead includes a plurality of holes through which process gas or flushing gas flows. Alternatively, the upper electrode 104 may comprise a conductive plate, and the process gases may be directed in another manner.

ESC 106包括作為下電極的傳導性底板110。底板110可支撐加熱板112,加熱板112可對應陶瓷多區加熱板。加熱板112與底板110之間可設置熱阻層114。底板110可包括一或更多冷卻劑通道116,其用以使冷卻劑流動通過底板110。 The ESC 106 includes a conductive base plate 110 as a lower electrode. The bottom plate 110 may support a heating plate 112, which may correspond to a ceramic multi-zone heating plate. A thermal resistance layer 114 can be disposed between the heating plate 112 and the bottom plate 110 . The base plate 110 may include one or more coolant channels 116 for flowing coolant through the base plate 110 .

RF產生系統120產生並輸出RF電壓至上電極104及下電極(例如,ESC 106的底板110)中之一者。上電極104及底板110中之另一者可DC接地、AC接地、或浮接。僅作為範例,RF產生系統120可包括產生RF電壓的RF電壓產生器122,RF電壓透過匹配及配送網路124饋送至上電極104或底板110。在其他範例中,可感應地或遠端地產生電漿。 The RF generation system 120 generates and outputs an RF voltage to one of the upper electrode 104 and the lower electrode (eg, the bottom plate 110 of the ESC 106 ). The other of the upper electrode 104 and the bottom plate 110 may be DC grounded, AC grounded, or floating. For example only, the RF generation system 120 may include an RF voltage generator 122 that generates an RF voltage that is fed to the top electrode 104 or the bottom plate 110 through a matching and distribution network 124 . In other examples, plasma can be generated inductively or remotely.

氣體輸送系統130包括一或更多氣體來源132-1、132-2、…、及132-N(統稱為氣體來源132),其中N為大於零的整數。氣體來源供應一或更多前驅物及其混合物。氣體來源亦可供應沖洗氣體。亦可使用經汽化的前驅物。氣體來 源132透過閥134-1、134-2、…、及134-N(統稱為閥134)及質流控制器136-1、136-2、…、及136-N(統稱為質流控制器136)連接至歧管140。歧管140之輸出係饋送至處理腔室102。僅作為範例,歧管140之輸出係饋送至噴淋頭109。 The gas delivery system 130 includes one or more gas sources 132-1, 132-2, . . . , and 132-N (collectively referred to as gas sources 132), where N is an integer greater than zero. A gas source supplies one or more precursors and mixtures thereof. The gas source can also supply flushing gas. Vaporized precursors may also be used. gas comes Source 132 passes through valves 134-1, 134-2, . . . , and 134-N (collectively valves 134) and mass flow controllers 136-1, 136-2, . 136) to manifold 140. The output of manifold 140 is fed to processing chamber 102 . By way of example only, the output of manifold 140 is fed to showerhead 109 .

溫度控制器142可連接至設置在加熱板112中的複數熱控制元件(TCE)144。例如,TCE 144可包括(但不限於):個別的巨觀TCE,其對應到多區加熱板中之各個區;及/或微觀TCE之陣列,其設置在多區加熱板的複數區中,如圖2A及2B中進一步詳細描述。溫度控制器142可用於控制複數TCE 144,以控制ESC 106及基板108的溫度。 The temperature controller 142 may be connected to a plurality of thermal control elements (TCE) 144 disposed in the heating plate 112 . For example, TCEs 144 may include, but are not limited to: individual macroscopic TCEs corresponding to individual zones in a multi-zone heating plate; and/or arrays of microscopic TCEs disposed in multiple zones of a multi-zone heating plate, This is described in further detail in Figures 2A and 2B. A temperature controller 142 may be used to control a plurality of TCEs 144 to control the temperature of the ESC 106 and substrate 108 .

溫度控制器142可與冷卻劑組件146溝通,以控制通道116中的冷卻劑流量。例如,冷卻劑組件146可包括冷卻劑泵浦與貯存器。溫度控制器142操作冷卻劑組件146以選擇性地使冷卻劑流經通道116來冷卻ESC 106。 The temperature controller 142 can communicate with the coolant assembly 146 to control the flow of coolant in the channel 116 . For example, coolant assembly 146 may include a coolant pump and reservoir. The temperature controller 142 operates the coolant assembly 146 to selectively flow coolant through the passage 116 to cool the ESC 106 .

可使用閥150及泵浦152將反應物從處理腔室102中排空。可使用系統控制器160來控制基板處理系統100的元件。可使用機器手臂170將基板輸送至ESC 106上以及將基板從ESC 106上移開。例如,機器手臂170可在ESC 106與負載鎖室172之間傳送基板。儘管被顯示為單獨的控制器,溫度控制器142可實施於系統控制器160之內。溫度控制器142可進一步配置成實施一或更多模型以根據本揭露內容的原理來估計ESC 106的溫度。 The reactants may be evacuated from the processing chamber 102 using a valve 150 and a pump 152 . The elements of the substrate processing system 100 may be controlled using a system controller 160 . Robotic arm 170 may be used to transport substrates onto and remove substrates from ESC 106 . For example, robotic arm 170 may transfer substrates between ESC 106 and load lock chamber 172 . Although shown as a separate controller, temperature controller 142 may be implemented within system controller 160 . Temperature controller 142 may be further configured to implement one or more models to estimate the temperature of ESC 106 in accordance with the principles of the present disclosure.

現參照圖2A、2B、及2C,顯示例示性ESC 200。溫度控制器204經由一或更多電氣或通訊連接件208而與ESC 200溝通。例如,電氣連接件208可包括連接件,該等連接件係用於提供電壓/功率以控制巨觀TCE 212-1、212-2、212-3及212-4(統稱為巨觀TCE 212)及/或微觀TCE 216。連接件208可進一步包括用於接收反饋的連接件,例如:來自底板224(僅作為範例,來自底板感測器)的 溫度反饋、提供至微觀TCE 216之電壓及/或電流的測量值、指示自RF電漿源(例如,變壓耦合電漿源或TCP源)228提供之RF功率的反饋、指示從偏壓RF源232提供至ESC 200的偏壓RF功率之反饋,諸如此類。儘管如圖2B及2C中顯示的微觀TCE 216係與成圓形、同心配置的巨觀TCE 212對齊,可使用相對於巨觀TCE 212之微觀TCE 216的其他配置。 Referring now to Figures 2A, 2B, and 2C, an exemplary ESC 200 is shown. The temperature controller 204 communicates with the ESC 200 via one or more electrical or communication connections 208 . For example, electrical connections 208 may include connections for providing voltage/power to control Macro TCEs 212-1, 212-2, 212-3, and 212-4 (collectively Macro TCEs 212) And/or TCE 216 in Micro. Connector 208 may further include a connector for receiving feedback, such as: from backplane 224 (by way of example only, from a backplane sensor) Temperature feedback, measurements of voltage and/or current supplied to the microscopic TCE 216, feedback indicative of RF power supplied from an RF plasma source (e.g., a transformer coupled plasma source or TCP source) 228, indicative of RF power from a bias RF Source 232 provides feedback of bias RF power to ESC 200, and so on. Although microscopic TCEs 216 are shown in FIGS. 2B and 2C aligned with macroscopic TCEs 212 in a circular, concentric configuration, other configurations of microscopic TCEs 216 relative to macroscopic TCEs 212 may be used.

如所示,ESC 200為多區ESC,其包括區236-1、236-2、236-3、及236-4(通稱為區236)。雖然以四個同心的區236顯示,但在實施例中,ESC 200可包括一、二、三、或多於四個區236。可改變區236的形狀。例如,區236可設置為四象限或另一種網格狀配置。各個區236包括(僅作為範例)巨觀TCE 212中個別的一者。例如,底板224包括冷卻劑通道240、形成在底板224之上的熱阻層244、及形成在熱阻層244之上的多區陶瓷加熱板248。加熱板248可包括複數接合層,其包括如顯示於圖2B中之第一層252、及如顯示於圖2C中之第二層256。第一層252包括巨觀TCE 212,而第二層256包括複數微觀TCE 216。 As shown, ESC 200 is a multi-zone ESC that includes zones 236-1, 236-2, 236-3, and 236-4 (collectively, zones 236). Although shown as four concentric zones 236 , in embodiments, ESC 200 may include one, two, three, or more than four zones 236 . The shape of region 236 may vary. For example, zones 236 may be arranged in four quadrants or another grid-like configuration. Each zone 236 includes (by way of example only) a respective one of the macroscopic TCEs 212 . For example, the base plate 224 includes coolant channels 240 , a thermal resistance layer 244 formed over the base plate 224 , and a multi-zone ceramic heating plate 248 formed over the thermal resistance layer 244 . The heating plate 248 may include a plurality of bonding layers including a first layer 252 as shown in FIG. 2B, and a second layer 256 as shown in FIG. 2C. The first layer 252 includes macroscopic TCEs 212 , while the second layer 256 includes a plurality of microscopic TCEs 216 .

溫度控制器204根據期望的設定點溫度來控制巨觀TCE 212及微觀TCE 216。例如,溫度控制器204可接收(例如,從如圖1所示之系統控制器160接收)對於一或更多區236的設定點溫度。僅作為範例,溫度控制器204可接收對於全部或若干的區236的相同設定點溫度、及/或對於各個區236的不同的個別設定點溫度。對於各個區236的設定點溫度可跨越不同製程地、及跨越各製程的不同步驟地變化。 Temperature controller 204 controls macroscopic TCE 212 and microscopic TCE 216 according to a desired set point temperature. For example, temperature controller 204 may receive (eg, from system controller 160 as shown in FIG. 1 ) a setpoint temperature for one or more zones 236 . For example only, temperature controller 204 may receive the same setpoint temperature for all or several zones 236 , and/or different individual setpoint temperatures for each zone 236 . The setpoint temperature for each zone 236 may vary across different processes, and across different steps of each process.

溫度控制器204基於個別的設定點溫度及溫度反饋來控制針對各個區236的巨觀TCE 212。例如,溫度控制器204獨立地調整提供給巨觀TCE 212的各者的功率(例如,電流)以達到設定點溫度。巨觀TCE 212可各包括單一電 阻性線圈或其他結構,以圖2B之虛線示意地表現。據此,調整巨觀TCE 212中之一者影響整個個別的區236的溫度,且可能亦影響區236中之其他者。 The temperature controller 204 controls the macro TCE 212 for each zone 236 based on the individual set point temperature and temperature feedback. For example, the temperature controller 204 independently adjusts the power (eg, current) provided to each of the macroscopic TCEs 212 to achieve the set point temperature. Juguan TCE 212 can each include a single Resistive coils or other structures are schematically represented by dotted lines in FIG. 2B. Accordingly, adjusting one of the macroscopic TCEs 212 affects the temperature of the entire individual zone 236 and possibly other ones of the zones 236 as well.

另一方面,溫度控制器204可單獨地控制微觀TCE 216的各者,以局部地調整區236的溫度。例如,雖然各個微觀TCE 216可完全地位在其中一區236內,但調整微觀TCE 216之任一者的熱輸出,可對整個加熱板248的複數區236與地點產生熱影響。據此,可選擇性地將一或更多微觀TCE 216啟動及/或關閉,以進一步調整區236的溫度。如以下將進一步詳細描述,溫度控制器204實施根據本揭露內容之系統與方法以估計ESC 200的溫度。 On the other hand, temperature controller 204 may individually control each of microscopic TCEs 216 to locally adjust the temperature of region 236 . For example, while individual microscopic TCEs 216 may be located entirely within one of the zones 236 , adjusting the thermal output of any one of the microscopic TCEs 216 can have a thermal effect on multiple zones 236 and locations across the heating plate 248 . Accordingly, one or more microscopic TCEs 216 may be selectively activated and/or deactivated to further adjust the temperature of zone 236 . As will be described in further detail below, temperature controller 204 implements systems and methods in accordance with the present disclosure to estimate the temperature of ESC 200 .

現參照圖3,根據本揭露內容的原理之例示性溫度控制器300包括巨觀TCE控制器304與微觀TCE控制器308(其在實施例中可實施為單一控制器)、記憶體312、及介面316(用於與例如如顯示於圖1中之系統控制器160溝通、用於接收使用者輸入,諸如此類)、及ESC溫度估計模組320。僅作為範例,記憶體312可包括例如快閃記憶體之非揮發性記憶體。溫度控制器300經由介面316接收來自系統控制器160之製程設定點溫度(例如,針對個別製程步驟之期望的設定點溫度)及/或其他參數。介面316提供製程設定點溫度至巨觀TCE控制器304。製程設定點溫度可包括針對每個區236之單一設定點溫度及/或針對個別的區236的各者的不同製程設定點溫度。巨觀TCE控制器304根據所接收的製程設定點或複數製程設定點來控制巨觀TCE 212。微觀TCE 216可接著受到控制以在各個區236中達成製程設定點,從而補償區236中的溫度非均勻性。 Referring now to FIG. 3, an exemplary temperature controller 300 in accordance with the principles of the present disclosure includes a macroscopic TCE controller 304 and a microscopic TCE controller 308 (which in an embodiment may be implemented as a single controller), memory 312, and interface 316 (for communicating with system controller 160 such as shown in FIG. 1 , for receiving user input, and the like), and ESC temperature estimation module 320 . By way of example only, memory 312 may include non-volatile memory such as flash memory. Temperature controller 300 receives process setpoint temperatures (eg, desired setpoint temperatures for individual process steps) and/or other parameters from system controller 160 via interface 316 . Interface 316 provides process setpoint temperature to macro TCE controller 304 . The process setpoint temperatures may include a single setpoint temperature for each zone 236 and/or different process setpoint temperatures for each of the individual zones 236 . The macro TCE controller 304 controls the macro TCE 212 according to the received process setpoint or process setpoints. The microscopic TCEs 216 may then be controlled to achieve process setpoints in each zone 236 to compensate for temperature non-uniformities in the zones 236 .

ESC溫度估計模組320根據由巨觀TCE控制器304、微觀TCE控制器308及一或更多輸入324提供的回饋來估計ESC 200的溫度。所估計的ESC溫度可取決於例如區溫度(即,如藉由巨觀TCE控制器304控制的區236中的溫度)、 局部溫度(即,如藉由微觀TCE控制器308控制)、偏壓RF功率、TCP RF功率、及底板溫度。溫度估計模組320根據針對與ESC溫度相關的輸入的各者之個別模型(例如,儲存在記憶體312中)來估計ESC溫度。僅作為範例,模型的各者針對輸入的各者,將個別的溫度貢獻關聯至ESC溫度。 ESC temperature estimation module 320 estimates the temperature of ESC 200 based on feedback provided by macro TCE controller 304 , micro TCE controller 308 , and one or more inputs 324 . The estimated ESC temperature may depend on, for example, the zone temperature (i.e., the temperature in zone 236 as controlled by macro TCE controller 304), Local temperature (ie, as controlled by microscopic TCE controller 308), bias RF power, TCP RF power, and chassis temperature. The temperature estimation module 320 estimates the ESC temperature based on individual models (eg, stored in memory 312 ) for each of the inputs related to the ESC temperature. By way of example only, each of the models associates individual temperature contributions to the ESC temperature for each of the inputs.

在一範例中,溫度估計模組320接收與微觀TCE 216的各者相關的電壓與電流之讀數。例如,溫度估計模組320可接收從微觀TCE控制器308提供至微觀TCE 216之電壓的讀數,並可經由個別的電流感測器328(其與微觀TCE 216以串聯方式連接)接收流經微觀TCE 216之電流的測量值。然後可根據所接收的電壓與電流資訊來計算(例如,使用模型)微觀TCE 216的各者之個別的電阻。由於微觀TCE 216包含電阻加熱元件,微觀TCE 216的各者之電阻係代表在對應位置中ESC 200的溫度。換言之,微觀TCE 216的各者的電阻為溫度的函數,而因此,微觀TCE 216的各者之計算的電阻可映射至對應的溫度。根據如以下將進一步詳細描述,溫度估計模組320針對微觀TCE溫度的各者計算對於ESC溫度的溫度貢獻。 In one example, the temperature estimation module 320 receives readings of voltage and current associated with each of the microscopic TCEs 216 . For example, temperature estimation module 320 may receive readings of the voltage supplied from micro-TCE controller 308 to micro-TCE 216 and may receive a reading of the voltage flowing through the micro-TCE 216 via a respective current sensor 328 (which is connected in series with micro-TCE 216 ). A measurement of the current of the TCE 216 . The individual resistance of each of the microscopic TCEs 216 can then be calculated (eg, using a model) from the received voltage and current information. Since the microscopic TCEs 216 include resistive heating elements, the resistance of each of the microscopic TCEs 216 is representative of the temperature of the ESC 200 in the corresponding location. In other words, the resistance of each of the microscopic TCEs 216 is a function of temperature, and thus, the calculated resistance of each of the microscopic TCEs 216 can be mapped to the corresponding temperature. As will be described in further detail below, the temperature estimation module 320 calculates the temperature contribution to the ESC temperature for each of the microscopic TCE temperatures.

現參照圖4,例示性ESC溫度估計模組400包括一或更多模組404,該等模組404配置成接收輸入408的分別一者並據此產生對於ESC溫度的相應貢獻,其可稱為溫度響應。溫度響應可各對應至模型係數(例如,G1、G2、G3、G4及G5)與輸入408的分別一者之乘積。例如,輸入408可包括底板溫度412、偏壓RF功率416、TCP RF功率420、對於微觀TCE 216的各者之電壓與電流測量值424、及提供至巨觀TCE 212之功率輸入428。 Referring now to FIG. 4, an exemplary ESC temperature estimation module 400 includes one or more modules 404 configured to receive a respective one of inputs 408 and generate a corresponding contribution to the ESC temperature therefrom, which may be referred to as in response to temperature. The temperature responses may each correspond to a product of model coefficients (eg, G1 , G2 , G3 , G4 , and G5 ) and a respective one of the inputs 408 . For example, inputs 408 may include base plate temperature 412 , bias RF power 416 , TCP RF power 420 , voltage and current measurements 424 for each of microscopic TCEs 216 , and power input 428 to macroscopic TCE 212 .

模組404可包括TCP RF模組432、偏壓RF模組436、底板溫度模組440、微觀TCE溫度模組444及區溫度模組448。溫度估計模組400可進一步包括電 阻模組452及電阻對溫度模組456。例如,電阻模組452基於對應的電壓與電流測量值424來計算微觀TCE 216的各者之個別的電阻。電阻對溫度模組456基於由電阻模組452計算的電阻來計算溫度(例如,針對微觀TCE 216的各者使用將電阻相關聯至溫度的映射表)。電阻對溫度模組456提供計算的電阻至微觀TCE溫度模組444。 Modules 404 may include TCP RF module 432 , bias RF module 436 , base plate temperature module 440 , micro TCE temperature module 444 and zone temperature module 448 . The temperature estimation module 400 may further include electrical Resistance module 452 and resistance-to-temperature module 456 . For example, the resistance module 452 calculates the individual resistance of each of the microscopic TCEs 216 based on the corresponding voltage and current measurements 424 . The resistance-to-temperature module 456 calculates the temperature based on the resistance calculated by the resistance module 452 (eg, using a map relating resistance to temperature for each of the microscopic TCEs 216 ). Resistance versus temperature module 456 provides the calculated resistance to microscopic TCE temperature module 444 .

模組404的各者實施個別的模型以基於各自的輸入408產生並輸出溫度響應。僅作為範例,如以下將進一步詳細描述,由模組444、448、440、436及432實施的模型係分別由G1、G2、G3、G4及G5代表。該等模組404的輸出係在加總節點460處加總在一起,以產生ESC溫度估計值464。ESC 200的溫度可使用ESC溫度估計值464來進一步控制以達成期望的溫度。例如,可基於ESC溫度估計值464來調整提供至巨觀TCE 212與微觀TCE 216的電壓/功率,以更準確地達成期望溫度。 Each of modules 404 implements a separate model to generate and output a temperature response based on respective inputs 408 . As an example only, as will be described in further detail below, the models implemented by modules 444, 448, 440, 436, and 432 are represented by Gl, G2, G3, G4, and G5, respectively. The outputs of the modules 404 are summed together at a summing node 460 to generate an ESC temperature estimate 464 . The temperature of the ESC 200 may be further controlled using the ESC temperature estimate 464 to achieve a desired temperature. For example, the voltage/power provided to the macro-TCE 212 and the micro-TCE 216 may be adjusted based on the ESC temperature estimate 464 to more accurately achieve the desired temperature.

據此,溫度估計值464(「溫度」)對應於:溫度=G1 *微觀溫度+G2 *巨觀功率+G3 *底板溫度+G4 *偏壓功率+G5 * TCP功率,其中微觀溫度、巨觀功率、底板溫度、偏壓功率及TCP功率分別對應於至模組444、448、440、436及432的輸入408。據此,輸入408的各者係藉由模型G1、G2、G3、G4及G5的分別一者來修改。 Accordingly, the temperature estimate 464 ("temperature") corresponds to: temperature = G1 * micro temperature + G2 * macro power + G3 * base plate temperature + G4 * bias power + G5 * TCP power, where micro temperature, macro Power, chassis temperature, bias power, and TCP power correspond to inputs 408 to modules 444, 448, 440, 436, and 432, respectively. Accordingly, each of the inputs 408 is modified by a respective one of the models Gl, G2, G3, G4, and G5.

僅作為範例,模型G2可對應於

Figure 107101366-A0305-02-0013-1
,其中k為與巨觀TCE 212相關的受控體增益(plant gain),L為與巨觀TCE 212相關的時間延遲,而T為與巨觀TCE 212相關的時間常數。例如,時間延遲可對應至溫度響應延遲。模型G3可對應於
Figure 107101366-A0305-02-0013-2
,其中kbase為與底板相關的受控體增益,Lbase為與底板相關的時間延遲,而Tbase為與底板相關的時間常數。模型G4可對應 於
Figure 107101366-A0305-02-0014-3
,其中kbias為與偏壓RF功率相關的受控體增益,Lbias為與偏壓RF功率相關的時間延遲,而Tbias為與偏壓RF功率相關的時間常數。模型G5可對應於
Figure 107101366-A0305-02-0014-4
,其中ktcp為與TCP RF功率相關的受控體增益,Ltcp為與TCP RF功率相關的時間延遲,而Ttcp為與TCP RF功率相關的時間常數。 As an example only, model G2 may correspond to
Figure 107101366-A0305-02-0013-1
, where k is the plant gain associated with the macroscopic TCE 212 , L is the time delay associated with the macroscopic TCE 212 , and T is the time constant associated with the macroscopic TCE 212 . For example, the time delay may correspond to a temperature response delay. Model G3 may correspond to
Figure 107101366-A0305-02-0013-2
, where k base is the controlled object gain related to the base plate, L base is the time delay related to the base plate, and T base is the time constant related to the base plate. Model G4 may correspond to
Figure 107101366-A0305-02-0014-3
, where k bias is the plant gain related to the bias RF power, L bias is the time delay related to the bias RF power, and T bias is the time constant related to the bias RF power. Model G5 may correspond to
Figure 107101366-A0305-02-0014-4
, where k tcp is the plant gain related to the TCP RF power, L tcp is the time delay related to the TCP RF power, and T tcp is the time constant related to the TCP RF power.

如顯示於圖5A中,模型G1可藉由在複數溫度下針對微觀TCE 216的各者測量電壓與電流來計算。在一範例中,微觀TCE 216的陣列(例如,如圖2A、2B及2C中所示,對應於嵌入ESC 200之內的微觀TCE 216)可設置在配置成維持期望溫度的烘箱或製程腔室之內。在烘箱處於複數溫度的各者(例如,在從-40至130℃的範圍中)的情況下,提供電壓至微觀TCE 216並測量相應的電流。以此方式,可判定在個別溫度的各者下針對微觀TCE 216的各者的相應電壓與電流。 As shown in FIG. 5A , model G1 can be calculated by measuring the voltage and current for each of the microscopic TCEs 216 at complex temperatures. In one example, an array of microscopic TCEs 216 (e.g., corresponding to microscopic TCEs 216 embedded within ESC 200, as shown in FIGS. 2A, 2B, and 2C) may be provided in an oven or process chamber configured to maintain a desired temperature. within. With the oven at each of a plurality of temperatures (eg, in the range from -40 to 130° C.), a voltage is applied to the microscopic TCE 216 and the corresponding current is measured. In this way, the respective voltage and current for each of the microscopic TCEs 216 at each of the individual temperatures may be determined.

然後可使用測量的電壓與電流來計算在各溫度下的電阻。圖5B說明針對複數溫度的各者所計算的電阻與電壓之間的關係。據此,可判定溫度敏感性(即,微觀TCE 216中之擇定者的電阻對於溫度改變之敏感性)。此判定可針對微觀TCE 216中的一者來執行、針對微觀TCE 216的預定部分來執行、針對所有微觀TCE 216來執行,諸如此類。如在圖6中所示,微觀TCE 216的電阻與對應溫度之間的關係大約為線性的。以此方式,電阻對溫度模組456可實施為一映射表或模型,該映射表或模型針對微觀TCE 216的各者將電阻(例如,基於電壓與電流測量值424計算)相關聯至估計的溫度。 The measured voltage and current can then be used to calculate the resistance at each temperature. 5B illustrates the relationship between resistance and voltage calculated for each of the complex temperatures. From this, temperature sensitivity (ie, the sensitivity of the resistance of selected ones of the microscopic TCEs 216 to temperature changes) can be determined. This determination may be performed for one of the micro-TCEs 216, for a predetermined portion of the micro-TCEs 216, for all micro-TCEs 216, and so forth. As shown in FIG. 6, the relationship between the resistance of the microscopic TCE 216 and the corresponding temperature is approximately linear. In this manner, resistance versus temperature module 456 may be implemented as a map or model that correlates resistance (e.g., calculated based on voltage and current measurements 424) to estimated temperature.

可針對微觀TCE 216的各者判定在ESC 200的個別位置的溫度響應。例如,熱電偶或其他溫度感測器可設置在ESC 200的上表面上對應於微觀TCE 216中之擇定者的一位置處。圖7說明相對於微觀TCE 216中之對應者的溫度704 之在ESC 200的表面位置處的溫度響應700。如所示,溫度704係偏移(即,大於)ESC 200的溫度響應700大約5-8℃。進一步地,微觀TCE 216的溫度響應係快過ESC 200的溫度響應700。例如,相對於溫度704的增加,溫度響應700可具有大約4秒的延遲。如所示,微觀TCE的溫度響應的時間常數大約為9秒,而溫度響應700的時間常數大約為14秒。 The temperature response at individual locations of the ESC 200 may be determined for each of the microscopic TCEs 216 . For example, a thermocouple or other temperature sensor may be disposed on the upper surface of the ESC 200 at a location corresponding to a selected one of the microscopic TCEs 216 . FIG. 7 illustrates temperature 704 relative to counterparts in microscopic TCEs 216 The temperature response 700 at the surface location of the ESC 200. As shown, the temperature 704 is offset (ie, greater than) the temperature response 700 of the ESC 200 by approximately 5-8°C. Further, the temperature response of the microscopic TCE 216 is faster than the temperature response 700 of the ESC 200 . For example, temperature response 700 may have a delay of approximately 4 seconds relative to an increase in temperature 704 . As shown, the time constant of the temperature response of the microscopic TCE is about 9 seconds, while the time constant of the temperature response 700 is about 14 seconds.

模型G1係根據在ESC 200的溫度響應700與對應的微觀TCE 216的估計溫度704之間所觀測到的關係(例如,如在圖7中所示)來計算。在一範例中,模型G1可對應於:G1=偏移量+增益量

Figure 107101366-A0305-02-0015-5
其中偏移、增益、延遲L對應於預定的常數,而s是單位為秒的時間。例如,偏移量可對應至溫度704與溫度響應700之間的偏移。圖8使用模型G1說明相對於ESC 200的實際測量溫度之ESC 200的估計溫度。儘管此處描述的是線性動態模型,但在一些範例中,一或更多模型G1、G2、G3、G4及G5可對應至其他模型類型,例如高階模型(higher order models)、非線性模型等等。 Model G1 is calculated from the observed relationship (eg, as shown in FIG. 7 ) between the temperature response 700 of the ESC 200 and the estimated temperature 704 of the corresponding microscopic TCE 216 . In one example, model G1 may correspond to: G 1 = offset + gain *
Figure 107101366-A0305-02-0015-5
where the offset, gain, and delay L correspond to predetermined constants, and s is the time in seconds. For example, an offset may correspond to an offset between temperature 704 and temperature response 700 . FIG. 8 illustrates the estimated temperature of the ESC 200 relative to the actual measured temperature of the ESC 200 using model G1. Although linear dynamic models are described here, in some examples, one or more models G1, G2, G3, G4, and G5 can be mapped to other model types, such as higher order models, nonlinear models, etc. Wait.

現參照圖9,例示性ESC溫度估計方法900開始於方塊904。在方塊908,方法900在複數溫度下判定ESC的複數加熱元件或複數加熱器(例如,微觀TCE 216)的電壓與電流。在方塊912,方法900在複數溫度的各者下使用判定的電壓與電流來計算微觀TCE 216的電阻。在方塊916,該方法儲存代表電壓與在複數溫度的各者下計算的電阻之間的關係之資料。例如,所儲存的資料可納入由電阻對溫度模組456實施之映射表或模型中。在方塊920,方法900判定及儲存一模型,該模型將微觀TCE 216的溫度相關聯至ESC 200上個別的表面位置處。 Referring now to FIG. 9 , the example ESC temperature estimation method 900 begins at block 904 . At block 908 , the method 900 determines the voltage and current of the plurality of heating elements or the plurality of heaters (eg, microscopic TCE 216 ) of the ESC at the plurality of temperatures. At block 912 , method 900 uses the determined voltage and current to calculate the resistance of microscopic TCE 216 at each of the complex temperatures. At block 916, the method stores data representing the relationship between the voltage and the calculated resistance at each of the complex temperatures. For example, the stored data may be incorporated into a map or model implemented by resistance versus temperature module 456 . At block 920 , the method 900 determines and stores a model that relates the temperature of the microscopic TCE 216 to individual surface locations on the ESC 200 .

在方塊924,在基板處理期間,方法900(例如,ESC溫度估計模組400)判定微觀TCE 216的電壓與電流。在方塊928,方法900(例如,電阻模組452)基於所判定的電壓與電流來判定微觀TCE 216的電阻。在方塊932,方法900(例如,電阻對溫度模組456)基於電阻判定微觀TCE 216的溫度。在方塊936,方法900(例如,實施所儲存模型之微觀TCE溫度模組444)基於微觀TCE 216的判定溫度來判定ESC 200的個別表面溫度響應。在方塊940,方法900(例如,溫度估計模組400)產生並輸出ESC 200的估計溫度。例如,可基於在方塊936判定的溫度響應,以及針對其他輸入使用個別模型G2、G3、G4及G5來計算的溫度響應(如以上描述於圖4中),來產生ESC 200的估計溫度。方法900終止於方塊944。 At block 924, the method 900 (eg, the ESC temperature estimation module 400) determines the voltage and current of the microscopic TCE 216 during substrate processing. At block 928, the method 900 (eg, the resistance module 452) determines the resistance of the microscopic TCE 216 based on the determined voltage and current. At block 932 , the method 900 (eg, the resistance versus temperature module 456 ) determines the temperature of the microscopic TCE 216 based on the resistance. At block 936 , the method 900 (eg, the micro-TCE temperature module 444 implementing the stored model) determines an individual surface temperature response of the ESC 200 based on the determined temperature of the micro-TCE 216 . At block 940 , method 900 (eg, temperature estimation module 400 ) generates and outputs an estimated temperature of ESC 200 . For example, an estimated temperature of the ESC 200 may be generated based on the temperature response determined at block 936, as well as temperature responses calculated for other inputs using individual models G2, G3, G4, and G5 (as described above in FIG. 4). Method 900 ends at block 944 .

先前敘述僅係本質上地說明,而非意欲限制本發明、其應用或使用。本發明廣泛的教示可以各式各樣的形式執行。因此,即使本發明包含具體的例子,本發明的真正範圍不應如此受限制,因為一旦研讀圖式、說明書與下列之申請專利範圍,其他修改將變得顯而易見。須了解在不改變本發明的原則之下,能依不同的順序(或同時)執行一方法中一或更多的步驟。再者,雖然前文中將每一實施例描述為具有某些特徵,但所述之關於本發明之任一實施例的該等特徵的任一或更多者可在任何其他實施例中實行、及/或可與任何其他實施例的特徵組合,即使未明確地描述該組合。換句話說,所描述的實施例並非係互相排斥的,且一或更多實施例之間互相的置換仍屬於本發明的範疇。 The foregoing description is merely illustrative in nature and is not intended to limit the invention, its application or uses. The broad teachings of the invention can be implemented in a wide variety of forms. Therefore, even though this disclosure contains particular examples, the true scope of the invention should not be so limited since other modifications will become apparent upon a study of the drawings, specification and following claims. It should be understood that one or more steps in a method can be performed in a different order (or simultaneously) without changing the principles of the present invention. Furthermore, while each embodiment has been described above as having certain features, any or more of those features described with respect to any embodiment of the invention may be practiced in any other embodiment, And/or can be combined with features of any other embodiment, even if the combination is not explicitly described. In other words, the described embodiments are not mutually exclusive, and substitutions of one or more embodiments for each other are still within the scope of the present invention.

元件之間(例如,模組、電路元件、半導體層…等之間)空間的、及功能的關係係使用各種用語而描述,包含「連接」、「嚙合」、「耦接」、「相鄰」、「接近」、「在頂部上」、「之上」、「之下」、以及「設置」。除非明確地描述成係「直接」的,否則當在以上揭露內容中描述第一及第二元件之間的 關係時,該關係可為在第一及第二元件之間沒有其他中間元件存在的直接關係,也可為在第一及第二元件之間存在一或更多中間元件(空間上、或功能上)的間接關係。如在此使用的文字「A、B和C其中至少一者」應解釋為使用非互斥邏輯符號OR的邏輯(A or B or C),且不應解釋為代表「A之至少一者、B之至少一者、及C之至少一者」。 Spatial and functional relationships between elements (eg, between modules, circuit elements, semiconductor layers, etc.) are described using various terms, including "connected," "engaged," "coupled," "adjacent" ”, “Close”, “On Top”, “Above”, “Below”, and “Settings”. Unless expressly described as "directly", when the above disclosure describes the relationship between the first and second elements When there is a relationship, the relationship may be a direct relationship with no other intermediate elements between the first and second elements, or there may be one or more intermediate elements (spatial or functional) between the first and second elements. above) indirect relationship. As used herein, the words "at least one of A, B, and C" should be interpreted as logic (A or B or C) using the non-exclusive logic symbols OR, and should not be construed to mean "at least one of A, At least one of B, and at least one of C."

在一些實施例中,控制器為系統的一部分,其可為前述範例之一部分。此種系統可包含半導體處理設備,其包括:處理工具(或複數處理工具)、腔室(或複數腔室)、用以處理的工作台(或複數工具台)、及/或特定處理元件(例如晶圓支座、氣流系統等)。這些系統可與電子設備結合,以在半導體晶圓或基板的處理之前、期間、與之後,控制系統的操作。該等電子設備可稱為「控制器」,其可控制系統(或複數系統)的各種元件或子部件。根據製程要求及/或系統的類型,可將控制器編程式,以控制本文中揭露之任何處理,包括處理氣體的輸送、溫度設定(例如加熱及/或冷卻)、壓力設定、真空設定、功率設定、射頻(RF)產生器設定、RF匹配電路設定、頻率設定、流率設定、流體輸送設定、定位與操作設定、進出工具及連接至特定系統或與特定系統介接的其他傳送工具及/或負載鎖室之晶圓傳送。 In some embodiments, the controller is part of a system, which may be part of one of the aforementioned examples. Such systems may include semiconductor processing equipment including: a processing tool (or processing tools), a chamber (or chambers), a bench (or tool tables) for processing, and/or specific processing elements ( such as wafer holders, airflow systems, etc.). These systems can be combined with electronics to control the operation of the system before, during, and after processing of semiconductor wafers or substrates. These electronic devices may be referred to as "controllers," which may control various elements or subcomponents of the system (or systems). Depending on the process requirements and/or type of system, the controller can be programmed to control any of the processes disclosed herein, including process gas delivery, temperature settings (e.g., heating and/or cooling), pressure settings, vacuum settings, power settings, radio frequency (RF) generator settings, RF matching circuit settings, frequency settings, flow rate settings, fluid delivery settings, positioning and operation settings, access tools and other delivery tools connected to or interfaced with a particular system and/or Or wafer transfer in load lock chamber.

廣泛而言,可將控制器定義為具有接收指令、發送指令、控制操作、允許清潔操作、允許終點量測等之各種積體電路、邏輯、記憶體、及/或軟體的電子設備。該積體電路可包含儲存程式指令的韌體形式之晶片、數位信號處理器(DSPs)、定義為特殊應用積體電路(ASICs)之晶片、及/或執行程式指令(例如軟體)之一或更多的微處理器或微控制器。程式指令可為以各種個別設定(或程式檔案)之形式與控制器通訊的指令,其定義用以在半導體晶圓上、或針 對半導體晶圓、或對系統執行特定製程的操作參數。在一些實施例中,該操作參數可為由製程工程師所定義之配方的部分,該配方係用以在一或更多的層、材料、金屬、氧化物、矽、二氧化矽、表面、電路、及/或晶圓之晶粒的製造期間,完成一或更多的處理步驟。 Broadly speaking, a controller can be defined as an electronic device having various integrated circuits, logic, memory, and/or software for receiving commands, sending commands, controlling operations, enabling cleaning operations, allowing endpoint measurements, and the like. The integrated circuits may include one of chips in the form of firmware storing program instructions, digital signal processors (DSPs), chips defined as application specific integrated circuits (ASICs), and/or executing program instructions (such as software) or More microprocessors or microcontrollers. Program instructions can be instructions to communicate with the controller in the form of various individual settings (or program files), which are defined to be used on the semiconductor wafer, or on the target Operating parameters for a specific process on a semiconductor wafer, or on a system. In some embodiments, the operating parameters may be part of a recipe defined by a process engineer for use in one or more layers, materials, metals, oxides, silicon, silicon dioxide, surfaces, circuits , and/or dies of a wafer, one or more processing steps are performed.

在一些實施例中,控制器可為電腦的部分或連接至電腦,該電腦係與系統整合、連接至系統、或透過網路連接至系統、或上述之組合。舉例而言,控制器係可位於「雲端」(in the“cloud”)、或為晶圓廠主機電腦系統的全部或部分,其可允許晶圓處理之遠端存取。該電腦能達成對該系統之遠端存取,以監視製造操作之目前製程、查看過去製造操作之歷史、查看來自多個製造操作之趨勢或性能指標,來改變目前處理之參數,以設定處理步驟來接續目前的處理、或開始新的製程。在一些範例中,遠端電腦(例如伺服器)可透過網路提供製程配方至系統,該網路可包含區域網路或網際網路。該遠端電腦可包含可達成參數及/或設定之輸入或編程的使用者介面,該等參數或設定接著自該遠端電腦傳送至該系統。在一些範例中,控制器接收資料形式之指令,在一或更多的操作期間,其針對待執行的處理步驟之每一者而指定參數。應瞭解,該等參數可特定於待執行之製程的類型、及工具(控制器係配置成透過介面與該工具接合或控制該工具)的類型。因此,如上所述,控制器可分散,例如藉由包含一或更多的分離的控制器,其透過網路連接在一起並朝共同的目標而作業,例如本文所述之製程及控制。用於此類用途的分開之控制器的範例可為腔室上之一或更多的積體電路,其與位於遠端(例如為平台等級、或為遠端電腦的部分)之一或更多的積體電路連通,其結合以控制該腔室上的製程。 In some embodiments, the controller can be part of or connected to a computer that is integrated with the system, connected to the system, or connected to the system through a network, or a combination thereof. For example, the controller can be located "in the "cloud", or be all or part of the fab's mainframe computer system, which allows remote access for wafer processing. The computer can achieve remote access to the system to monitor the current process of manufacturing operations, view the history of past manufacturing operations, view trends or performance indicators from multiple manufacturing operations, to change the parameters of the current process, to set the process Step to continue the current process, or start a new process. In some examples, a remote computer (eg, a server) can provide the process recipe to the system through a network, which can include a local area network or the Internet. The remote computer may include a user interface that enables input or programming of parameters and/or settings that are then transmitted from the remote computer to the system. In some examples, the controller receives instructions in the form of data specifying parameters for each of the processing steps to be performed during one or more operations. It should be appreciated that these parameters may be specific to the type of process to be performed, and the type of tool with which the controller is configured to interface with or control the tool. Thus, as noted above, the controller can be decentralized, eg, by including one or more separate controllers that are networked together and work toward a common goal, such as the process and control described herein. An example of a separate controller for such purposes could be one or more integrated circuits on the chamber, which are connected to one or more remote (eg, at platform level, or part of a remote computer) location. Multiple integrated circuits are connected, which combine to control the processes on the chamber.

例示性系統可包含電漿蝕刻腔室或模組、沉積腔室或模組、旋轉沖洗腔室或模組、金屬電鍍腔室或模組、潔淨腔室或模組、斜邊蝕刻腔室或模組、物理氣相沉積(PVD)腔室或模組、化學氣相沉積(CVD)腔室或模組、原子層沉積(ALD)腔室或模組、原子層蝕刻(ALE)腔室或模組、離子植入腔室或模組、徑跡腔室或模組、及可與半導體晶圓之製造及/或生產有關或用於其中的任何其他半導體處理系統,但不限於此。 Exemplary systems may include a plasma etch chamber or module, a deposition chamber or module, a spin rinse chamber or module, a metal plating chamber or module, a clean chamber or module, a bevel etch chamber or Module, Physical Vapor Deposition (PVD) Chamber or Module, Chemical Vapor Deposition (CVD) Chamber or Module, Atomic Layer Deposition (ALD) Chamber or Module, Atomic Layer Etching (ALE) Chamber or Modules, ion implantation chambers or modules, track chambers or modules, and any other semiconductor processing system that may be used in connection with or in the fabrication and/or production of semiconductor wafers, without limitation.

如上所述,依據待由工具執行之製程步驟(或複數製程步驟),控制器可與下列一或多者通訊:其他工具電路或模組、其他工具元件、叢集工具、其他工具介面、牽引工具、鄰近工具、遍及工廠的工具、主要電腦、另一控制器、或將晶圓之容器帶往或帶離半導體製造廠中的工具位置及/或載入埠的用於材料傳送之工具。 As noted above, depending on the process step (or process steps) to be performed by the tool, the controller may communicate with one or more of: other tool circuits or modules, other tool components, cluster tools, other tool interfaces, pulling tools , an adjacent tool, a tool throughout the fab, a main computer, another controller, or a tool for material transfer that brings containers of wafers to or from tool locations and/or load ports in a semiconductor fab.

200‧‧‧靜電夾頭(ESC) 200‧‧‧Electrostatic chuck (ESC)

204‧‧‧溫度控制器 204‧‧‧temperature controller

208‧‧‧連接件 208‧‧‧connector

212‧‧‧巨觀TCE 212‧‧‧Juguan TCE

216‧‧‧微觀TCE 216‧‧‧Microscopic TCE

224‧‧‧底板 224‧‧‧Bottom

228‧‧‧RF電漿源 228‧‧‧RF plasma source

232‧‧‧偏壓RF源 232‧‧‧bias RF source

240‧‧‧通道 240‧‧‧channels

244‧‧‧熱阻層 244‧‧‧thermal resistance layer

248‧‧‧陶瓷加熱板 248‧‧‧Ceramic heating plate

Claims (16)

一種溫度控制器,用於一基板處理系統中的一基板支撐件,該溫度控制器包含:儲存一第一模型的記憶體,該第一模型係將(i)設置在該基板支撐件中之複數第一熱控制元件(TCE)的溫度與(ii)該基板支撐件的複數第一溫度響應相關聯起來,其中該等第一溫度響應對應於該基板支撐件的一表面上的複數位置,且其中該等第一TCE係配置成對該基板支撐件進行加熱;及一溫度估計模組,其(i)計算該等第一TCE的電阻,(ii)基於該等計算的電阻判定該等第一TCE的溫度,及(iii)使用該儲存的第一模型、與基於該等計算的電阻所判定之該等第一TCE的該等溫度來估計該基板支撐件的一實際溫度響應,其中該溫度控制器係配置成基於該基板支撐件的該實際溫度響應來控制該等第一TCE以加熱該基板支撐件。 A temperature controller for a substrate support in a substrate processing system, the temperature controller comprising: a memory for storing a first model of (i) disposed in the substrate support temperatures of a plurality of first thermal control elements (TCEs) are correlated with (ii) a plurality of first temperature responses of the substrate support, wherein the first temperature responses correspond to a plurality of locations on a surface of the substrate support, and wherein the first TCEs are configured to heat the substrate support; and a temperature estimation module that (i) calculates the resistance of the first TCEs, (ii) determines the the temperature of the first TCE, and (iii) using the stored first model and the temperatures of the first TCEs determined based on the calculated resistances to estimate an actual temperature response of the substrate support, wherein The temperature controller is configured to control the first TCEs to heat the substrate support based on the actual temperature response of the substrate support. 如申請專利範圍第1項之溫度控制器,其中:該記憶體進一步儲存下列者其中至少一者:一第二模型,其將(i)提供至設置在該基板支撐件中的複數第二TCE之功率與(ii)該基板支撐件的複數第二溫度響應相關聯起來,一第三模型,其將(i)該基板支撐件的一底板的溫度與(ii)該基板支撐件的複數第三溫度響應相關聯起來,一第四模型,其將(i)提供至該基板支撐件的一偏壓射頻(RF)功率與(ii)該基板支撐件的複數第四溫度響應相關聯起來,及 一第五模型,其將(i)提供至該基板處理系統的電漿RF功率與(ii)該基板支撐件的複數第五溫度響應相關聯起來。 The temperature controller according to claim 1, wherein: the memory further stores at least one of the following: a second model, which provides (i) to a plurality of second TCEs disposed in the substrate support and (ii) the plurality of second temperature responses of the substrate support, a third model that combines (i) the temperature of a bottom plate of the substrate support with (ii) the plurality of second temperature responses of the substrate support Three temperature responses are correlated, a fourth model that relates (i) a bias radio frequency (RF) power supplied to the substrate support to (ii) a plurality of fourth temperature responses of the substrate support, and A fifth model that relates (i) plasma RF power supplied to the substrate processing system to (ii) a plurality of fifth temperature responses of the substrate support. 如申請專利範圍第2項之溫度控制器,其中,為估計該基板支撐件的該實際溫度響應,該溫度估計模組進一步基於該第二模型、該第三模型、該第四模型及該第五模型其中被儲存的該至少一者來估計該實際溫度響應。 For the temperature controller of claim 2, wherein, in order to estimate the actual temperature response of the substrate support, the temperature estimation module is further based on the second model, the third model, the fourth model and the first model At least one of five models is stored to estimate the actual temperature response. 如申請專利範圍第2項之溫度控制器,其中該溫度估計模組基於該第二模型、該第三模型、該第四模型及該第五模型其中該至少一者的輸出值與該第一模型的輸出值的總和來估計該實際溫度響應。 The temperature controller of claim 2, wherein the temperature estimation module is based on the output value of at least one of the second model, the third model, the fourth model and the fifth model and the first The output values of the model are summed to estimate the actual temperature response. 如申請專利範圍第2項之溫度控制器,其中該第二模型、該第三模型、該第四模型及該第五模型其中該至少一者對應於
Figure 107101366-A0305-02-0025-6
,其中k為受控體增益(plant gain),L為時間延遲,而T為時間常數。
Such as the temperature controller of claim 2, wherein at least one of the second model, the third model, the fourth model and the fifth model corresponds to
Figure 107101366-A0305-02-0025-6
, where k is the plant gain, L is the time delay, and T is the time constant.
如申請專利範圍第5項之溫度控制器,其中該第二模型、該第三模型、該第四模型及該第五模型其中該至少一者的輸出值對應於
Figure 107101366-A0305-02-0025-7
與各自的輸入值的乘積。
Such as the temperature controller of item 5 of the scope of the patent application, wherein the output value of at least one of the second model, the third model, the fourth model and the fifth model corresponds to
Figure 107101366-A0305-02-0025-7
Multiplied with the respective input values.
如申請專利範圍第1項之溫度控制器,其中該第一模型對應於偏移量+增益量
Figure 107101366-A0305-02-0025-8
,其中偏移對應於該等第一TCE的溫度與該等第一溫度響應之間的一偏移,增益量對應於該第一模型的一增益,L對應於一時間延遲,而s對應於單位為秒的時間。
Such as the temperature controller of item 1 of the scope of the patent application, wherein the first model corresponds to the offset + gain *
Figure 107101366-A0305-02-0025-8
, where the offset corresponds to an offset between the temperatures of the first TCEs and the first temperature responses, the gain amount corresponds to a gain of the first model, L corresponds to a time delay, and s corresponds to The time in seconds.
如申請專利範圍第1項之溫度控制器,其中該記憶體儲存一第二模型,該第二模型係將(i)該等計算的電阻與(ii)該等第一TCE的該等溫度相關聯起來,且其中該溫度估計模組使用該第二模型與該等計算的電阻來判定該等第一TCE的該等溫度。 A temperature controller as claimed in claim 1, wherein the memory stores a second model that relates (i) the calculated resistances to (ii) the temperatures of the first TCEs connected, and wherein the temperature estimation module uses the second model and the calculated resistances to determine the temperatures of the first TCEs. 一種估計溫度的方法,用於估計一基板處理系統中的一基板支撐件的溫度,該方法包含:儲存一第一模型,該第一模型係將(i)設置在該基板支撐件中之複數第一熱控制元件(TCE)的溫度與(ii)該基板支撐件的複數第一溫度響應相關聯起來,其中該等第一溫度響應對應於該基板支撐件的一表面上的複數位置,其中該等第一TCE係配置成對該基板支撐件進行加熱;計算該等第一TCE的電阻;基於該等計算的電阻判定該等第一TCE的溫度;使用該儲存的第一模型、與基於該等計算的電阻所判定之該等第一TCE的該等溫度來估計該基板支撐件的一實際溫度響應;及基於該基板支撐件的該實際溫度響應來控制該等第一TCE以加熱該基板支撐件。 A method of estimating temperature for estimating the temperature of a substrate support in a substrate processing system, the method comprising: storing a first model of (i) a plurality of numbers disposed in the substrate support The temperature of a first thermal control element (TCE) is correlated with (ii) a plurality of first temperature responses of the substrate support, wherein the first temperature responses correspond to a plurality of locations on a surface of the substrate support, wherein The first TCEs are configured to heat the substrate support; calculating the resistance of the first TCEs; determining the temperature of the first TCEs based on the calculated resistance; using the stored first model, and based on estimating an actual temperature response of the substrate support for the temperatures of the first TCEs determined by the calculated resistances; and controlling the first TCEs to heat the substrate support based on the actual temperature response of the substrate support Substrate support. 如申請專利範圍第9項之估計溫度的方法,更包含:儲存下列者其中至少一者:一第二模型,其將(i)提供至設置在該基板支撐件中的複數第二TCE之功率與(ii)該基板支撐件的複數第二溫度響應相關聯起來,一第三模型,其將(i)該基板支撐件的一底板的溫度與(ii)該基板支撐件的複數第三溫度響應相關聯起來,一第四模型,其將(i)提供至該基板支撐件的一偏壓射頻(RF)功率與(ii)該基板支撐件的複數第四溫度響應相關聯起來,及一第五模型,其將(i)提供至該基板處理系統的電漿RF功率與(ii)該基板支撐件的複數第五溫度響應相關聯起來。 The method for estimating temperature according to claim 9, further comprising: storing at least one of the following: a second model, which will (i) provide power to a plurality of second TCEs disposed in the substrate support In association with (ii) the plurality of second temperature responses of the substrate support, a third model that combines (i) the temperature of a base plate of the substrate support with (ii) the plurality of third temperatures of the substrate support Responses are correlated, a fourth model that relates (i) a bias radio frequency (RF) power supplied to the substrate support to (ii) a plurality of fourth temperature responses of the substrate support, and a A fifth model that relates (i) plasma RF power supplied to the substrate processing system to (ii) a plurality of fifth temperature responses of the substrate support. 如申請專利範圍第10項之估計溫度的方法,其中估計該基板支撐件的該實際溫度響應的步驟包括:進一步基於該第二模型、該第三模型、該第四模型及該第五模型其中被儲存的該至少一者來估計該實際溫度響應。 The method for estimating temperature as claimed in claim 10, wherein the step of estimating the actual temperature response of the substrate support includes: further based on the second model, the third model, the fourth model and the fifth model wherein The at least one stored is used to estimate the actual temperature response. 如申請專利範圍第10項之估計溫度的方法,其中估計該實際溫度響應的步驟包括:基於該第二模型、該第三模型、該第四模型及該第五模型其中該至少一者的輸出值與該第一模型的輸出值的總和來估計該實際溫度響應。 The method for estimating temperature as claimed in claim 10, wherein the step of estimating the actual temperature response includes: based on the output of at least one of the second model, the third model, the fourth model and the fifth model value and the output value of the first model to estimate the actual temperature response. 如申請專利範圍第10項之估計溫度的方法,其中該第二模型、該第三模型、該第四模型及該第五模型其中該至少一者對應於
Figure 107101366-A0305-02-0027-9
,其中k為受控體增益,L為時間延遲,而T為時間常數。
The method for estimating temperature according to claim 10, wherein at least one of the second model, the third model, the fourth model and the fifth model corresponds to
Figure 107101366-A0305-02-0027-9
, where k is the controlled body gain, L is the time delay, and T is the time constant.
如申請專利範圍第13項之估計溫度的方法,其中該第二模型、該第三模型、該第四模型及該第五模型其中該至少一者的輸出值對應於
Figure 107101366-A0305-02-0027-10
與各自的輸入值的乘積。
The method for estimating temperature as claimed in claim 13, wherein the output value of at least one of the second model, the third model, the fourth model and the fifth model corresponds to
Figure 107101366-A0305-02-0027-10
Multiplied with the respective input values.
如申請專利範圍第9項之估計溫度的方法,其中該第一模型對應於偏移量+增益量
Figure 107101366-A0305-02-0027-11
,其中偏移量對應於該等第一TCE的溫度與該等第一溫度響應之間的一偏移,增益量對應於該第一模型的一增益,L對應於一時間延遲,而s對應於單位為秒的時間。
A method for estimating temperature as claimed in claim 9, wherein the first model corresponds to offset + gain *
Figure 107101366-A0305-02-0027-11
, where the offset corresponds to an offset between the temperatures of the first TCEs and the first temperature responses, the gain corresponds to a gain of the first model, L corresponds to a time delay, and s corresponds to The time in seconds.
如申請專利範圍第9項之估計溫度的方法,更包含儲存一第二模型,該第二模型係將(i)該等計算的電阻與(ii)該等第一TCE的該等溫度相關聯起來,且進一步包含使用該第二模型與該等計算的電阻來判定該等第一TCE的該等溫度。The method of estimating temperature as claimed in claim 9, further comprising storing a second model that relates (i) the calculated resistances to (ii) the temperatures of the first TCEs and further comprising determining the temperatures of the first TCEs using the second model and the calculated resistances.
TW107101366A 2017-01-20 2018-01-15 A virtual metrology method for esc temperature estimation using thermal control elements TWI782943B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/411,389 US10509425B2 (en) 2017-01-20 2017-01-20 Virtual metrology method for ESC temperature estimation using thermal control elements
US15/411,389 2017-01-20

Publications (2)

Publication Number Publication Date
TW201841091A TW201841091A (en) 2018-11-16
TWI782943B true TWI782943B (en) 2022-11-11

Family

ID=62905828

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107101366A TWI782943B (en) 2017-01-20 2018-01-15 A virtual metrology method for esc temperature estimation using thermal control elements

Country Status (6)

Country Link
US (1) US10509425B2 (en)
JP (1) JP7191832B2 (en)
KR (1) KR102533847B1 (en)
CN (1) CN110199383B (en)
TW (1) TWI782943B (en)
WO (1) WO2018136608A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220172925A1 (en) * 2019-03-13 2022-06-02 Lam Research Corporation Electrostatic chuck heater resistance measurement to approximate temperature
CN118588527A (en) * 2019-07-25 2024-09-03 朗姆研究公司 In-situ real-time sensing and compensation of non-uniformities in a substrate processing system
KR20230043971A (en) * 2020-07-27 2023-03-31 와틀로 일렉트릭 매뉴팩츄어링 컴파니 Systems and methods for using intermediate data to improve system control and diagnostics
JP7467274B2 (en) * 2020-08-07 2024-04-15 東京エレクトロン株式会社 Temperature estimation method and film forming apparatus
JP7494946B2 (en) 2021-01-29 2024-06-04 住友電気工業株式会社 Heater Control Device
WO2024219305A1 (en) * 2023-04-17 2024-10-24 東京エレクトロン株式会社 Computer program, information processing device, and information processing method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116885A (en) * 1996-10-08 1998-05-06 Anelva Corp Substrate temperature controlling mechanism
US20020183977A1 (en) * 1998-07-10 2002-12-05 Applied Materials, Inc. Endpoint detection in substrate fabrication processes
US6605955B1 (en) * 1999-01-26 2003-08-12 Trio-Tech International Temperature controlled wafer chuck system with low thermal resistance
US20060291132A1 (en) * 2005-06-28 2006-12-28 Seiichiro Kanno Electrostatic chuck, wafer processing apparatus and plasma processing method
TW200807203A (en) * 2006-03-31 2008-02-01 Tokyo Electron Ltd Monitoring a system during low-pressure processes
CN101165617A (en) * 2006-10-05 2008-04-23 东京毅力科创株式会社 Method of optimizing process recipe of substrate processing system
TW200842938A (en) * 2007-02-09 2008-11-01 Tokyo Electron Ltd Temperature control method, temperature regulator, and heating treatment apparatus
TW200849443A (en) * 2007-04-02 2008-12-16 Hitachi Int Electric Inc Substrate processing apparatus and method for manufacturing semiconductor device
TW200925317A (en) * 2007-08-24 2009-06-16 Asm Inc Thermocouple
US20130270252A1 (en) * 2011-05-20 2013-10-17 Applied Materials, Inc. Methods and apparatus for controlling temperature of a multi-zone heater in a process chamber
US20150132863A1 (en) * 2012-01-13 2015-05-14 Tokyo Electron Limited Plasma processing apparatus and heater temperature control method
TW201606470A (en) * 2014-07-02 2016-02-16 應用材料股份有限公司 Temperature control apparatus including groove-routed optical fiber heating, substrate temperature control systems, electronic device processing systems, and processing methods
US20160202618A1 (en) * 2010-07-16 2016-07-14 Asml Netherlands B.V. Lithographic apparatus and method
US20160372355A1 (en) * 2015-06-22 2016-12-22 Lam Research Corporation System and method for reducing temperature transition in an electrostatic chuck

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000339039A (en) 1999-05-25 2000-12-08 Tokyo Electron Ltd Method and device for controlling temperature of heating means and heat processor
JP2006114580A (en) * 2004-10-13 2006-04-27 Canon Inc Temperature measuring apparatus and plasma processing apparatus
JP2008177185A (en) * 2007-01-16 2008-07-31 Powertech Technology Inc Package structure
JP5203612B2 (en) 2007-01-17 2013-06-05 株式会社日立ハイテクノロジーズ Plasma processing equipment
JP2010219462A (en) * 2009-03-19 2010-09-30 Renesas Electronics Corp Device, method and program for simulating wafer temperature
US8633423B2 (en) 2010-10-14 2014-01-21 Applied Materials, Inc. Methods and apparatus for controlling substrate temperature in a process chamber
US9543171B2 (en) * 2014-06-17 2017-01-10 Lam Research Corporation Auto-correction of malfunctioning thermal control element in a temperature control plate of a semiconductor substrate support assembly that includes deactivating the malfunctioning thermal control element and modifying a power level of at least one functioning thermal control element

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116885A (en) * 1996-10-08 1998-05-06 Anelva Corp Substrate temperature controlling mechanism
US20020183977A1 (en) * 1998-07-10 2002-12-05 Applied Materials, Inc. Endpoint detection in substrate fabrication processes
US6605955B1 (en) * 1999-01-26 2003-08-12 Trio-Tech International Temperature controlled wafer chuck system with low thermal resistance
US20060291132A1 (en) * 2005-06-28 2006-12-28 Seiichiro Kanno Electrostatic chuck, wafer processing apparatus and plasma processing method
TW200807203A (en) * 2006-03-31 2008-02-01 Tokyo Electron Ltd Monitoring a system during low-pressure processes
CN101165617A (en) * 2006-10-05 2008-04-23 东京毅力科创株式会社 Method of optimizing process recipe of substrate processing system
TW200842938A (en) * 2007-02-09 2008-11-01 Tokyo Electron Ltd Temperature control method, temperature regulator, and heating treatment apparatus
TW200849443A (en) * 2007-04-02 2008-12-16 Hitachi Int Electric Inc Substrate processing apparatus and method for manufacturing semiconductor device
TW200925317A (en) * 2007-08-24 2009-06-16 Asm Inc Thermocouple
US20160202618A1 (en) * 2010-07-16 2016-07-14 Asml Netherlands B.V. Lithographic apparatus and method
US20130270252A1 (en) * 2011-05-20 2013-10-17 Applied Materials, Inc. Methods and apparatus for controlling temperature of a multi-zone heater in a process chamber
US20150132863A1 (en) * 2012-01-13 2015-05-14 Tokyo Electron Limited Plasma processing apparatus and heater temperature control method
TW201606470A (en) * 2014-07-02 2016-02-16 應用材料股份有限公司 Temperature control apparatus including groove-routed optical fiber heating, substrate temperature control systems, electronic device processing systems, and processing methods
US20160372355A1 (en) * 2015-06-22 2016-12-22 Lam Research Corporation System and method for reducing temperature transition in an electrostatic chuck

Also Published As

Publication number Publication date
JP7191832B2 (en) 2022-12-19
CN110199383B (en) 2023-10-27
KR20190100972A (en) 2019-08-29
KR102533847B1 (en) 2023-05-17
CN110199383A (en) 2019-09-03
WO2018136608A1 (en) 2018-07-26
JP2020506539A (en) 2020-02-27
US20180210473A1 (en) 2018-07-26
TW201841091A (en) 2018-11-16
US10509425B2 (en) 2019-12-17

Similar Documents

Publication Publication Date Title
TWI782943B (en) A virtual metrology method for esc temperature estimation using thermal control elements
US11029668B2 (en) Systems and methods for calibrating scalar field contribution values for a limited number of sensors including a temperature value of an electrostatic chuck and estimating temperature distribution profiles based on calibrated values
US10096506B2 (en) Reducing temperature transition in a substrate support
US11028482B2 (en) Use of voltage and current measurements to control dual zone ceramic pedestals
US10381248B2 (en) Auto-correction of electrostatic chuck temperature non-uniformity
US20240194506A1 (en) Dual zone heaters for metallic pedestals
US10763142B2 (en) System and method for determining field non-uniformities of a wafer processing chamber using a wafer processing parameter
TWI750303B (en) Virtual metrology systems and methods for using feedforward critical dimension data to predict other critical dimensions of a wafer
JP7454504B2 (en) Determination and control of substrate temperature during substrate processing
TWI847982B (en) Substrate processing system and controller therefor, and method for controlling temperature of a substrate support therein