[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI774808B - Fet operational temperature determination by resistance thermometry - Google Patents

Fet operational temperature determination by resistance thermometry Download PDF

Info

Publication number
TWI774808B
TWI774808B TW107125300A TW107125300A TWI774808B TW I774808 B TWI774808 B TW I774808B TW 107125300 A TW107125300 A TW 107125300A TW 107125300 A TW107125300 A TW 107125300A TW I774808 B TWI774808 B TW I774808B
Authority
TW
Taiwan
Prior art keywords
field effect
effect transistor
gate
current
applying
Prior art date
Application number
TW107125300A
Other languages
Chinese (zh)
Other versions
TW201909423A (en
Inventor
賽門約翰 瑪宏
艾倫W 漢森
布萊恩 史維塔
傳昕 連
雷傑許 貝斯卡藍
法蘭克 高
Original Assignee
美商馬康科技解決方案控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/658,116 external-priority patent/US20190028065A1/en
Priority claimed from US15/658,155 external-priority patent/US20190028066A1/en
Application filed by 美商馬康科技解決方案控股有限公司 filed Critical 美商馬康科技解決方案控股有限公司
Publication of TW201909423A publication Critical patent/TW201909423A/en
Application granted granted Critical
Publication of TWI774808B publication Critical patent/TWI774808B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/186Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer using microstructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Networks Using Active Elements (AREA)

Abstract

Thermally-sensitive structures and methods for sensing the temperature in a region of a FET during device operation are described. The region may be at or near a region of highest temperature achieved in the FET. Metal resistance thermometry (MRT) can be implemented with gate or source structures to evaluate the temperature of the FET.

Description

利用電阻溫度量測術的FET操作溫度測定FET operating temperature measurement using resistance thermometry

本技術涉及具有內部溫度感應組件的場效電晶體。The present technology relates to field effect transistors with internal temperature sensing components.

在III-V半導體材料中,近年來由於氮化鎵(GaN)的理想電子以及電光特性而受到可觀的注意。氮化鎵(GaN)具有約3.4eV的寬且直接的能隙,更耐雪崩效應,並且比更常見的半導體材料(如矽)具有更高的固有場強度。因此,與其他半導體(例如矽或砷化鎵)相比,GaN能在更高的溫度下保持其電性能。與矽相比,GaN亦具有更高的載流飽和速度。此外,GaN具有纖維鋅礦晶體結構,為硬質材料,具有高導熱率,並且相比其他習用半導體(如矽、鍺以及砷化鎵)具有更高的熔點。Among III-V semiconductor materials, gallium nitride (GaN) has received considerable attention in recent years due to its ideal electronic as well as electro-optical properties. Gallium nitride (GaN) has a wide and direct energy gap of about 3.4 eV, is more resistant to avalanche effects, and has a higher intrinsic field strength than more common semiconductor materials such as silicon. As a result, GaN retains its electrical properties at higher temperatures than other semiconductors such as silicon or gallium arsenide. Compared to silicon, GaN also has a higher current-carrying saturation velocity. In addition, GaN has a wurtzite crystal structure, is a hard material, has high thermal conductivity, and has a higher melting point than other conventional semiconductors such as silicon, germanium, and gallium arsenide.

由於其理想的特性,GaN可用於高速、高電壓與高功率應用,暨光電應用。舉例而言,氮化鎵材料可用於無線電頻率(RF)通信、雷達與微波應用的半導體放大器(如Doherty放大器)中的主動電路組件。在高功率應用中,GaN電晶體可被驅動至接近其性能極限,並且會升溫至遠超過120ºC的溫度。過高的溫度會導致GaN電晶體的元件(device)提早劣化及/或故障,且在其他半導體電晶體中亦是如此。Due to its desirable properties, GaN can be used in high-speed, high-voltage and high-power applications, as well as optoelectronic applications. For example, gallium nitride materials can be used in active circuit components in semiconductor amplifiers such as Doherty amplifiers for radio frequency (RF) communications, radar and microwave applications. In high power applications, GaN transistors can be driven close to their performance limits and can heat up to temperatures well in excess of 120ºC. Excessive temperatures can lead to premature degradation and/or failure of GaN transistor devices, as is the case in other semiconductor transistors.

本文描述了用於感應電晶體的操作溫度的結構和方法。熱敏結構可在電晶體中形成並且藉由感應熱敏結構的電阻變化用以評估電晶體的操作溫度,例如,使用金屬電阻測溫(MRT)。在一些實施例中,場效電晶體(FET)的源極場板及/或閘極結構可用作熱敏結構並且被修改成在源極場板及/或閘極結構的區域中,施加探測電流或電流。由於施加的電流因而可能在整個區域產生電壓。可以監控電壓以感應與熱敏感結構相鄰的FET區域中的溫度變化。Structures and methods for sensing the operating temperature of a transistor are described herein. Thermal structures can be formed in the transistor and used to assess the operating temperature of the transistor by sensing changes in resistance of the thermal structure, eg, using metal resistance thermometry (MRT). In some embodiments, the source field plate and/or gate structure of a field effect transistor (FET) can be used as a thermally sensitive structure and is modified so that in the region of the source field plate and/or gate structure, applying Probe current or current. A voltage may be generated over the entire area due to the applied current. The voltage can be monitored to sense temperature changes in the FET region adjacent to the thermally sensitive structure.

一些實施例涉及一種具有溫度感應的場效電晶體,包括閘極、源極觸點、汲極觸點、耦合至源極觸點的源極場板、連接至源極場板並且以第一距離隔開的第一對接觸片,用於施加探測電流通過源極場板、以及連接至源極場板並且係以第二距離隔開的第二對接觸片,用於感應探測電流流過的源極場板的區域上的電壓。Some embodiments relate to a field effect transistor with temperature sensing, comprising a gate, a source contact, a drain contact, a source field plate coupled to the source contact, connected to the source field plate and with a first a first pair of contact pads spaced apart for applying a probe current through the source field plate and a second pair of contact pads connected to the source field plate and spaced a second distance for inducing a probe current to flow through voltage on the area of the source field plate.

在一些態樣,源極場板覆蓋閘極的至少一部分。在一些案例中,當源極場板的溫度變化不低於0.001歐姆/ºC時,源極場板表現出電阻的變化。根據一些實施方式,源極場板係交流耦合至源極觸點。In some aspects, the source field plate covers at least a portion of the gate. In some cases, the source field plate exhibits a change in resistance when the temperature of the source field plate changes by not less than 0.001 ohms/ºC. According to some embodiments, the source field plate is AC coupled to the source contact.

在一些實施方式中,第一對接觸片包括第一薄膜電阻器以及第二薄膜電阻器。第一薄膜電阻器以及第二薄膜電阻器的電阻可在300歐姆與5000歐姆之間。在一些實施方式中,第二對接觸片包括第三薄膜電阻器以及第四薄膜電阻器。第三薄膜電阻器以及第四薄膜電阻器的電阻可在300歐姆與5000歐姆之間。In some embodiments, the first pair of contact pads includes a first thin film resistor and a second thin film resistor. The resistance of the first thin film resistor and the second thin film resistor may be between 300 ohms and 5000 ohms. In some embodiments, the second pair of contact pads includes a third thin film resistor and a fourth thin film resistor. The resistance of the third thin film resistor and the fourth thin film resistor may be between 300 ohms and 5000 ohms.

根據一些態樣,具有溫度感應的場效電晶體亦可進一步包括連接至第一對接觸片的探測電流源。探測電流源可以配置為提供交流電流。在一些案例中,交流電流具有在在50千赫與5百萬赫之間的頻率。According to some aspects, the temperature-sensing field effect transistor may further include a probe current source connected to the first pair of contact pads. The probing current source can be configured to provide alternating current. In some cases, the alternating current has a frequency between 50 kHz and 5 megahertz.

根據一些實施方式,具有溫度感應的場效電晶體亦可進一步包括連接至第二對接觸片的電壓感應電路系統(circuitry)。電壓感應電路(circuit)可以向反饋電路提供輸出訊號,該反饋電路控制場效電晶體的功率位準。According to some embodiments, the FET with temperature sensing may further include voltage sensing circuitry connected to the second pair of contact pads. A voltage sensing circuit can provide an output signal to a feedback circuit that controls the power level of the field effect transistor.

在一些態樣,具有溫度感應的場效電晶體被併入功率放大器,該功率放大器配置成將訊號放大至不低於0.25瓦的功率位準。在一些案例中,放大的功率位準可為0.25瓦特與150瓦特之間的值。In some aspects, the temperature-sensitive field effect transistor is incorporated into a power amplifier configured to amplify the signal to a power level of no less than 0.25 watts. In some cases, the amplified power level may be a value between 0.25 watts and 150 watts.

在一些案例中,具有溫度感應的場效電晶體進一步包括由閘極控制的主動區域,其中主動區域包括GaN、GaAs(砷化鎵)或InP(磷化銦)。根據一些實施方式,主動區域包括矽(Si)。在一些實施方式中,場效電晶體可為LDMOS FET、MOSFET、MISFET、或MODFET。在一些案例中,場效電晶體可為HEMT、HFET、或pHEMT。In some cases, the temperature-sensitive field effect transistor further includes an active region controlled by a gate, wherein the active region includes GaN, GaAs (gallium arsenide), or InP (indium phosphide). According to some embodiments, the active region includes silicon (Si). In some embodiments, the field effect transistor may be an LDMOS FET, MOSFET, MISFET, or MODFET. In some cases, the field effect transistor may be a HEMT, HFET, or pHEMT.

一些實施例涉及操作具有溫度感應的電晶體的方法。一種操作場效電晶體的方法可包括以下動作,將訊號施加至場效電晶體的閘極;以場效電晶體放大訊號;施加探測電流至場效電晶體的源極場板的區域,其中源極場板耦合至場效電晶體的源極觸點;以及感應藉由探測電流產生的電壓。Some embodiments relate to methods of operating transistors with temperature sensing. A method of operating a field effect transistor may include the actions of applying a signal to a gate of the field effect transistor; amplifying the signal with the field effect transistor; applying a probe current to a region of a source field plate of the field effect transistor, wherein The source field plate is coupled to the source contact of the field effect transistor; and senses a voltage generated by the probe current.

一種方法可進一步包括從所感應到的電壓評估場效電晶體的峰值溫度的動作。評估的動作可包括使用與場效電晶體相關的校準結果。A method may further include the act of evaluating the peak temperature of the field effect transistor from the sensed voltage. The act of evaluating may include using calibration results associated with the field effect transistor.

在一些態樣,一種方法可進一步包括以下動作,將感應到的電壓與參考值進行比較;以及基於該比較控制場效電晶體的功率位準。In some aspects, a method may further include the acts of comparing the sensed voltage to a reference value; and controlling the power level of the field effect transistor based on the comparison.

在一些實施方式中,施加探測電流的動作包括沿著源極場板的區域施加探測電流,該區域覆蓋閘極的至少一部分。In some embodiments, the act of applying the probe current includes applying the probe current along a region of the source field plate that covers at least a portion of the gate.

在一些案例中,施加探測電流的動作包括在該區域中施加交流電流。根據一些態樣,施加交流電流的動作可包括於第一頻率施加交流電流,該第一頻率與由場效電晶體放大的訊號頻率相差不小於10倍。In some cases, the act of applying the probe current includes applying an alternating current in the region. According to some aspects, the act of applying the alternating current may include applying the alternating current at a first frequency that is not less than 10 times different from the frequency of the signal amplified by the field effect transistor.

根據一些實施方式,施加探測電流的動作可包括在該區域中間歇地施加探測電流,使得探測電流以時間間隔方式被驅動,該等時間間隔被源極場板的區域中沒有探測電流被驅動的其他時間間隔隔開。According to some embodiments, the act of applying the probe current may include intermittently applying the probe current in the region such that the probe current is driven at time intervals that are not driven by the probe current in the region of the source field plate other time intervals.

一些實施例涉及具有溫度感應的場效電晶體(FET),包括閘極、與閘極相鄰並且具有延伸長度的浮閘極板、源極觸點、汲極觸點、以及連接至浮閘極板並且以第一距離隔開的第一對接觸片,用於施加探測電流通過浮閘極板。FET亦可進一步包括連接至浮閘極板並且以第二距離隔開的第二對接觸片,以用於感應探測電流流過的浮閘極板的區域上的電壓。Some embodiments relate to a temperature-sensitive field effect transistor (FET) including a gate, a floating gate plate adjacent to the gate and having an extended length, a source contact, a drain contact, and a connection to the floating gate a first pair of contact pads and a first pair of contact pads separated by a first distance for applying a detection current through the floating gate plate. The FET may also further include a second pair of contact pads connected to the floating gate plate and separated by a second distance for sensing a voltage on the area of the floating gate plate through which the detection current flows.

在一些態樣,浮閘極板覆蓋閘極的至少一部分。當浮閘極板的溫度變化不低於0.001歐姆/ºC時,浮閘極板可表現出電阻的變化。In some aspects, the floating gate plate covers at least a portion of the gate. The floating gate plate can exhibit a change in resistance when the temperature of the floating gate plate changes by not less than 0.001 ohm/ºC.

在一些案例中,第一對接觸片包括第一薄膜電阻器以及第二薄膜電阻器。第一薄膜電阻器以及第二薄膜電阻器的電阻可能不低於300歐姆。在一些實施方式中,第二對接觸片包括第三薄膜電阻器以及第四薄膜電阻器。第三薄膜電阻器以及第四薄膜電阻器的電阻可能不低於300歐姆。In some cases, the first pair of contact pads includes a first thin film resistor and a second thin film resistor. The resistance of the first thin film resistor and the second thin film resistor may not be lower than 300 ohms. In some embodiments, the second pair of contact pads includes a third thin film resistor and a fourth thin film resistor. The resistance of the third thin film resistor and the fourth thin film resistor may not be lower than 300 ohms.

FET的一些實施方式可進一步包括連接至第一對接觸片的探測電流源。探測電流源可配置為提供交流電流。在一些案例中,交流電流的頻率可在50千赫與5百萬赫之間。Some embodiments of the FET may further include a probe current source connected to the first pair of contact pads. The probing current source can be configured to provide alternating current. In some cases, the frequency of the alternating current may be between 50 kHz and 5 megahertz.

根據一些態樣,FET可進一步包括連接至第二對接觸片的電壓感應電路系統。電壓感應電路可以向反饋電路提供輸出訊號,該反饋電路控制場效電晶體的功率位準。According to some aspects, the FET may further include voltage sensing circuitry connected to the second pair of contact pads. The voltage sensing circuit can provide an output signal to a feedback circuit that controls the power level of the field effect transistor.

在一些應用中,場效電晶體可被併入功率放大器中,該功率放大器配置成將訊號放大至不低於0.25瓦的功率位準。本實施例的FET可進一步包括由閘極控制的主動區域,其中主動區域包括GaN、GaAs或InP。本實施例的FET可進一步包括由閘極控制的主動區域,其中主動區域包括Si。在一些實施方式中,本實施例的FET可為LDMOS FET、MOSFET、MISFET、或MODFET。在一些案例中,本實施例的FET可為HEMT、HFET、或pHEMT。In some applications, the field effect transistor may be incorporated into a power amplifier configured to amplify a signal to a power level of no less than 0.25 watts. The FET of this embodiment may further include an active region controlled by a gate, wherein the active region includes GaN, GaAs, or InP. The FET of this embodiment may further include an active region controlled by a gate, wherein the active region includes Si. In some implementations, the FET of this embodiment may be an LDMOS FET, a MOSFET, a MISFET, or a MODFET. In some cases, the FETs of this embodiment may be HEMTs, HFETs, or pHEMTs.

一些實施例涉及操作場效電晶體的方法,該場效晶體使用浮閘極板感應電晶體溫度。一種方法可包括以下動作,將訊號施加至場效電晶體的閘極;以場效電晶體放大訊號;沿著場效電晶體的浮閘極板的區域施加探測電流,其中浮閘極板覆蓋閘極的至少一部分;以及感應藉由探測電流產生的電壓。Some embodiments relate to methods of operating field effect transistors that use floating gate plates to sense transistor temperature. A method may include the actions of applying a signal to a gate of a field effect transistor; amplifying the signal with the field effect transistor; applying a probe current along an area of a floating gate plate of the field effect transistor, wherein the floating gate plate covers at least a portion of the gate; and sensing a voltage generated by the detection current.

在一些實施方式中,一種方法可進一步包括從所感應到的電壓評估場效電晶體的峰值溫度的動作。評估的動作可包括使用與場效電晶體相關的校準結果。一種方法亦可包含以下動作,將所感應到的電壓與參考值比較以及基於該比較結果控制場效電晶體的功率位準。In some embodiments, a method may further include the act of evaluating the peak temperature of the field effect transistor from the sensed voltage. The act of evaluating may include using calibration results associated with the field effect transistor. A method may also include the act of comparing the sensed voltage with a reference value and controlling the power level of the field effect transistor based on the result of the comparison.

在一些態樣中,施加探測電流的動作可包括沿著浮閘極板的區域施加探測電流,該區域覆蓋閘極的至少一部分。在一些案例中,施加探測電流的動作可包括施加交流電流至該區域。施加交流電流的動作可包括於第一頻率施加交流電流,該第一頻率與由場效電晶體放大的訊號之載波頻率相差不小於10倍。在一些實施方式中,施加探測電流的動作可包括間歇地施加探測電流至該區域,使得探測電流以時間間隔方式被驅動,該等時間間隔被浮閘極板的區域中沒有探測電流被驅動的其他時間間隔隔開。In some aspects, the act of applying the probe current can include applying the probe current along a region of the floating gate plate that covers at least a portion of the gate. In some cases, the act of applying the probe current may include applying an alternating current to the region. The action of applying the alternating current may include applying the alternating current at a first frequency, and the first frequency is not less than 10 times different from the carrier frequency of the signal amplified by the field effect transistor. In some embodiments, the act of applying the probe current may include intermittently applying the probe current to the region such that the probe current is driven at time intervals that are not driven by the probe current in the region of the floating gate plate other time intervals.

一些實施例涉及具有溫度感應的場效電晶體,其包括具有延伸長度的閘極金屬,閘極金屬帶有第一端和相對的第二端、源極觸點、汲極觸點、在靠近第一端處連接至閘極金屬的第一接觸片以用於施加交流探測電流至閘極金屬,在參考電位與遠離第一端的閘極金屬的端部區域之間串聯連接的電容器與電阻器,以及連接至閘極金屬的分離區域的一對接觸片,用以響應交流探測電流而感應沿著閘極金屬的電壓下降。Some embodiments relate to a temperature-sensitive field effect transistor including a gate metal having an extended length, the gate metal having a first end and an opposing second end, a source contact, a drain contact, a A first contact pad connected to the gate metal at the first end for applying an AC probe current to the gate metal, a capacitor and a resistor connected in series between the reference potential and the end region of the gate metal remote from the first end A device, and a pair of contact pads connected to separate regions of the gate metal to induce a voltage drop along the gate metal in response to the AC probe current.

在一些實施方式中,當閘極金屬的溫度變化不低於0.001歐姆/ºC時,閘極金屬可表現出電阻的變化。In some embodiments, the gate metal may exhibit a change in resistance when the temperature of the gate metal changes by no less than 0.001 ohms/°C.

一些實施方式可進一步包括連接至第一接觸片的探測電流源。交流探測電流的頻率可在50千赫與5百萬赫之間。Some embodiments may further include a probe current source connected to the first contact pad. The frequency of the AC probe current may be between 50 kHz and 5 megahertz.

在一些案例中,FET可包括連接至一對接觸片的電壓感應電路系統。電壓感應電路(circuit)可以向反饋電路提供輸出訊號,該反饋電路控制場效電晶體的功率位準。In some cases, the FET may include voltage sensing circuitry connected to a pair of contact pads. A voltage sensing circuit can provide an output signal to a feedback circuit that controls the power level of the field effect transistor.

根據一些態樣,本實施例的場效電晶體可被併入功率放大器中,該功率放大器配置成將訊號放大至不低於0.25瓦的功率位準。本實施例的FET可進一步包括由閘極金屬控制的主動區域,其中主動區域包括GaN、GaAs或InP。在一些案例中,本實施例的FET可進一步包括由閘極金屬控制的主動區域,其中主動區域包括Si。根據一些實施方式,場效電晶體可為LDMOS FET、MOSFET、MISFET、或MODFET。在一些案例中,場效電晶體可為HEMT、HFET、或pHEMT。According to some aspects, the field effect transistor of this embodiment may be incorporated into a power amplifier configured to amplify a signal to a power level of no less than 0.25 watts. The FET of this embodiment may further include an active region controlled by a gate metal, wherein the active region includes GaN, GaAs, or InP. In some cases, the FET of this embodiment may further include an active region controlled by a gate metal, wherein the active region includes Si. According to some embodiments, the field effect transistors may be LDMOS FETs, MOSFETs, MISFETs, or MODFETs. In some cases, the field effect transistor may be a HEMT, HFET, or pHEMT.

一些實施例涉及一種操作場效電晶體的方法,該場效電晶體使用閘極金屬感應溫度。一種方法可包括以下動作,將訊號施加至場效電晶體的閘極金屬;以場效電晶體放大訊號;將交流探測電流施加至場效電晶體的閘極金屬的第一端部區域,其中閘極金屬的第二端部區域遠離第一端部區域且藉由在參考電位和第二端部區域之間串聯連接的電容器和電阻器終止;以及感應由交流探測電流沿著閘極金屬的長度產生的電壓下降。Some embodiments relate to a method of operating a field effect transistor that uses a gate metal to sense temperature. A method may include the acts of applying a signal to a gate metal of a field effect transistor; amplifying the signal with the field effect transistor; applying an alternating detection current to a first end region of the gate metal of the field effect transistor, wherein The second end region of the gate metal is remote from the first end region and is terminated by a capacitor and a resistor connected in series between the reference potential and the second end region; and induced by an alternating current probe current along the gate metal Voltage drop due to length.

根據一些態樣,一種方法可進一步包括從所感應到的電壓評估場效電晶體的峰值溫度的動作。一種方法亦可包含以下動作,將所感應到的電壓與參考值比較以及基於該比較結果控制場效電晶體的功率位準。According to some aspects, a method may further include an act of evaluating a peak temperature of a field effect transistor from the sensed voltage. A method may also include the act of comparing the sensed voltage with a reference value and controlling the power level of the field effect transistor based on the result of the comparison.

在一些案例中,施加交流探測電流的動作可包括於第一頻率施加交流探測電流,該第一頻率與訊號之載波頻率相差不小於10倍。根據一些實施方式,施加交流探測電流的動作可包括間歇地施加交流探測電流至該第一端部區域,使得交流探測電流以時間間隔方式被驅動,該等時間間隔被沿閘極金屬的長度沒有交流探測電流被驅動的其他時間間隔隔開。In some cases, the act of applying the AC detection current may include applying the AC detection current at a first frequency that is not less than 10 times different from the carrier frequency of the signal. According to some embodiments, the act of applying the AC probe current may include intermittently applying the AC probe current to the first end region such that the AC probe current is driven at time intervals that are not interrupted along the length of the gate metal. The AC probe current is driven apart by other time intervals.

一些實施例涉及一種具有溫度感應的場效電晶體,包括具有延伸長度的閘極金屬,該閘極金屬帶有第一端與第二端、源極、汲極、以及在靠近第一端處連接至閘極金屬的第一端部區域的第一接觸片,且該第一接觸片配置成施加交流探測電流至閘極金屬,其中沒有其他接觸片連接至用於傳導探測電流的閘極金屬,並且其中基本上所有的探測電流在施加後係耦合至場效電晶體源。Some embodiments relate to a temperature-sensitive field effect transistor including a gate metal having an extended length, the gate metal having a first end and a second end, a source, a drain, and proximate the first end a first contact pad connected to the first end region of the gate metal and configured to apply an alternating detection current to the gate metal, wherein no other contact pads are connected to the gate metal for conducting the detection current , and wherein substantially all of the probe current is coupled to the field effect transistor source after application.

在一些實施方式中,FET可進一步包括連接至閘極金屬的分離區域的一對接觸片,用於響應交流探測電流而感應沿著閘極金屬的電壓下降。在一些案例中,電壓感應電路系統可連接至一對接觸片。根據一些態樣,電壓感應電路可以向反饋電路提供輸出訊號,該反饋電路控制場效電晶體的功率位準。In some embodiments, the FET may further include a pair of contact pads connected to separate regions of the gate metal for inducing a voltage drop along the gate metal in response to the AC probe current. In some cases, the voltage sensing circuitry may be connected to a pair of contact pads. According to some aspects, the voltage sensing circuit can provide an output signal to a feedback circuit that controls the power level of the field effect transistor.

在一些案例中,當閘極金屬的溫度變化不低於0.001歐姆/ºC時,閘極金屬可表現出電阻的變化。In some cases, the gate metal can exhibit a change in resistance when the temperature of the gate metal changes by not less than 0.001 ohms/ºC.

根據一些態樣,交流探測電流的頻率可在50千赫與5百萬赫之間。在一些案例中,本實施例的FET可被併入功率放大器中,該功率放大器配置成將訊號放大至不低於0.25瓦的功率位準。本實施例的FET可進一步包括由閘極控制的主動區域,其中主動區域包括GaN、GaAs或InP。本實施例的FET可進一步包括由閘極金屬控制的主動區域,其中主動區域包括Si。在一些案例中,場效電晶體可為LDMOS FET、MOSFET、MISFET、或MODFET。在一些態樣,場效電晶體可為HEMT、 HFET、或 pHEMT。According to some aspects, the frequency of the AC probe current may be between 50 kilohertz and 5 megahertz. In some cases, the FET of this embodiment may be incorporated into a power amplifier configured to amplify a signal to a power level of no less than 0.25 watts. The FET of this embodiment may further include an active region controlled by a gate, wherein the active region includes GaN, GaAs, or InP. The FET of this embodiment may further include an active region controlled by a gate metal, wherein the active region includes Si. In some cases, the field effect transistors may be LDMOS FETs, MOSFETs, MISFETs, or MODFETs. In some aspects, the field effect transistor can be a HEMT, HFET, or pHEMT.

一些實施例涉及一種操作場效電晶體的方法,該場效電晶體使用閘極金屬感應溫度。一種方法可包括以下動作,將訊號施加至場效電晶體的閘極金屬;以場效電晶體放大訊號;施加交流探測電流至場效電晶體的閘極金屬的區域,其中基本上所有的交流探測電流係耦合至場效電晶體的源極;以及感應由交流探測電流沿著閘極金屬的長度產生的電壓下降。Some embodiments relate to a method of operating a field effect transistor that uses a gate metal to sense temperature. A method may include the acts of applying a signal to a gate metal of a field effect transistor; amplifying the signal with the field effect transistor; A probe current is coupled to the source of the field effect transistor; and a voltage drop is induced along the length of the gate metal by the AC probe current.

在一些實施方式中,一種方法可進一步包括從所感應到的電壓評估場效電晶體的峰值溫度的動作。一種方法亦可包含以下動作,將所感應到的電壓與參考值比較以及基於該比較結果控制場效電晶體的功率位準。In some embodiments, a method may further include the act of evaluating the peak temperature of the field effect transistor from the sensed voltage. A method may also include the act of comparing the sensed voltage with a reference value and controlling the power level of the field effect transistor based on the result of the comparison.

在一些案例中,施加交流探測電流的動作可包括於第一頻率施加交流探測電流,該第一頻率與訊號之載波頻率相差不小於10倍。根據一些實施方式,施加交流探測電流的動作可包括間歇地施加交流探測電流至該區域,使得交流探測電流以時間隔隔方式被驅動,該等時間間隔被閘極金屬的區域中沒有交流探測電流被驅動的其他時間間隔隔開。In some cases, the act of applying the AC detection current may include applying the AC detection current at a first frequency that is not less than 10 times different from the carrier frequency of the signal. According to some embodiments, the act of applying the AC probe current may include intermittently applying the AC probe current to the region such that the AC probe current is driven at time intervals that are free from the AC probe current in the region of the gate metal. The other time intervals that are driven are spaced apart.

前述設備以及方法實施例可利用上文或後述進一步詳細描述的態樣、特徵以及動作的任何合適組合來實現。本案教示的此等與其他態樣、實施例、以及特徵可藉由結合附圖的描述,更全面地理解。The foregoing apparatus and method embodiments may be implemented using any suitable combination of the aspects, features, and acts described in further detail above or below. These and other aspects, embodiments, and features of the teachings herein can be more fully understood from the description in conjunction with the accompanying drawings.

本領域熟習技術者將理解,本文描述的附圖的目的僅用於說明。應當理解,在一些例子下,為便於理解實施例,實施例的各態樣可能被誇大或放大示出。附圖不一定按比例繪製,而是著重於說明本案教示的原理上。在附圖中,相似的附圖標記在各個附圖中通常意旨相同的特徵、相似的功能及/或結構相似的元件。在附圖涉及微製造電路的情況下,可以僅示出單一元件及/或電路以簡化附圖。實際上,可以在大面積的基材或整個基材上並行地製造大量元件或電路。此外,所描繪的元件或電路可整合在更大的電路中。Those skilled in the art will understand that the drawings described herein are for illustration purposes only. It should be understood that, in some instances, various aspects of the embodiments may be exaggerated or shown enlarged in order to facilitate the understanding of the embodiments. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles taught in the present case. In the drawings, like reference numerals generally refer to the same features, similar functions, and/or structurally similar elements throughout the various figures. Where the drawings relate to microfabricated circuits, only a single element and/or circuit may be shown to simplify the drawing. In fact, a large number of components or circuits can be fabricated in parallel on a large area of a substrate or an entire substrate. Furthermore, the depicted elements or circuits may be integrated into larger circuits.

當參考以下詳細描述的附圖時,可使用空間參考用詞「頂部」、「底部」、「上部」、「下部」、「垂直」、「水平」、「上方」、「下方」等。如此參考用詞用於教示目的,而非意圖作為實施的元件的絕對參考。實施的元件可以任何合適的方式在空間上定向,該方向可與附圖中所示的方向不同。附圖並非意圖以任何方式限制本案教示的範圍。When referring to the drawings in the following detailed description, the spatial references "top," "bottom," "upper," "lower," "vertical," "horizontal," "above," "below," etc. may be used. Such references are used for teaching purposes and are not intended as absolute references to elements of the implementation. Elements of an implementation may be spatially oriented in any suitable manner, which may be different from that shown in the figures. The drawings are not intended to limit the scope of the present teachings in any way.

高電子遷移率電晶體(HEMT)是一種利用二維電子氣(2DEG)進行載流子傳輸的半導體電晶體。2DEG於具有不同能隙的兩種不同半導體材料之間的異質接面處形成。異質接面導致形成空間薄的位能井,位能井收集形成2DEG的高密度電子。一般而言,2DEG在未摻雜的半導體中形成。由於缺乏(充當雜質)的摻雜劑,自由電子可以穿過未摻雜的半導體而大幅減少散射。因此,HEMT可在非常高的頻率下運行,例如,深入地進入兆赫頻率範圍,並且適用於雷達、微波以及RF通信應用。使用氮化鎵或砷化鎵材料形成的HEMT亦可用於高功率應用。在高功率運作中,電晶體可能會加熱至高溫(例如,超過120ºC),並且可能需要知道電晶體達到的最高溫度及/或當在投入特定的應用使用時監控電晶體的溫度。High electron mobility transistors (HEMTs) are semiconductor transistors that utilize two-dimensional electron gas (2DEG) for carrier transport. 2DEG is formed at a heterojunction between two different semiconductor materials with different energy gaps. The heterojunction results in the formation of spatially thin potential wells that collect the high-density electrons that form the 2DEG. In general, 2DEGs are formed in undoped semiconductors. Due to the lack of dopants (acting as impurities), free electrons can pass through the undoped semiconductor with greatly reduced scattering. Consequently, HEMTs can operate at very high frequencies, eg, deep into the megahertz frequency range, and are suitable for radar, microwave, and RF communications applications. HEMTs formed using gallium nitride or gallium arsenide materials can also be used for high power applications. During high power operation, the transistor may heat up to high temperatures (eg, over 120ºC), and it may be necessary to know the maximum temperature reached by the transistor and/or monitor the temperature of the transistor when put into use in a particular application.

根據一些實施例,儘管本發明的態樣不限於HEMT電晶體,可應用溫度感應的態樣的範例性HEMT結構於在 1A 中所示。HEMT 100可形成為橫向元件,並且包含源極S、汲極D、以及包括閘極金屬140的閘極G。閘極金屬140可具有長度Lg 並且控制汲極D和源極S之間的電流流動。根據一些實施例,閘極長度Lg 可在大約0.1微米和大約3.0微米之間。閘極、源極和汲極可形成在基材105的同一側上(例如,在基材的處理表面上)。橫向HEMT結構的優點為不需要用於連接至元件的源極或汲極的貫穿基材通孔,這使元件的整個背面可用於散熱。單側電氣連接亦可將HEMT整合至積體電路(IC)中成為更容易的任務。According to some embodiments, although aspects of the invention are not limited to HEMT transistors, an exemplary HEMT structure to which temperature-sensing aspects can be applied is shown in FIG . 1A . HEMT 100 may be formed as a lateral element and include source S, drain D, and gate G including gate metal 140 . The gate metal 140 may have a length L g and control the current flow between the drain D and the source S. According to some embodiments, the gate length L g may be between about 0.1 microns and about 3.0 microns. The gate, source, and drain can be formed on the same side of the substrate 105 (eg, on the treated surface of the substrate). The advantage of the lateral HEMT structure is that no through-substrate vias are required for connection to the source or drain of the element, which makes the entire backside of the element available for heat dissipation. Single-sided electrical connections also make integrating HEMTs into integrated circuits (ICs) an easier task.

在一些實施例中,可在源極和汲極周圍形成電隔離區域115,以改善元件隔離並減少漏電流。隔離區115可藉由離子植入形成,離子植入可損壞晶體結構,從而增加其對漏電流的抵抗。In some embodiments, electrical isolation regions 115 may be formed around the source and drain to improve element isolation and reduce leakage current. The isolation region 115 may be formed by ion implantation, which may damage the crystal structure, thereby increasing its resistance to leakage current.

根據一些實施方式,HEMT 100可包括多層結構,該多層結構包含基材105、緩衝層112、2DEG 150形成在其中的導電層114、阻擋層116以及至少一個電絕緣介電層120。一些實施例可包括或不包括半導體蓋層118,其可由與導電層114相同的材料形成。HEMT亦可包括連接至源極沉積130的源極觸點160以及連接至汲極沉積132的汲極觸點162。According to some embodiments, HEMT 100 may include a multilayer structure including substrate 105 , buffer layer 112 , conductive layer 114 in which 2DEG 150 is formed, barrier layer 116 , and at least one electrically insulating dielectric layer 120 . Some embodiments may or may not include semiconductor capping layer 118 , which may be formed of the same material as conductive layer 114 . The HEMT may also include a source contact 160 connected to the source deposition 130 and a drain contact 162 connected to the drain deposition 132 .

在一些實施例中,HEMT 100亦可進一步包括至少一個閘極連接(gate-connected)的場板145,其電連接至閘極金屬140並延伸超出閘極金屬140的邊緣。在一些案例下,閘極連接的場板145和閘極金屬140可由相同沉積步驟(例如,T閘極結構)中沉積的相同金屬形成。根據一些實施例,閘極金屬140可位於比汲極沉積132更靠近源極沉積130的位置,雖然在一些案例下閘極可位於源極沉積與汲極沉積之間,或在其他實施例中位於更靠近汲極的位置。在一些實施方式中,可在閘極連接的場板145以及源極與汲極觸點160、162上方形成絕緣鈍化層(未示出)。In some embodiments, HEMT 100 may also further include at least one gate-connected field plate 145 that is electrically connected to gate metal 140 and extends beyond the edge of gate metal 140 . In some cases, gate-connected field plate 145 and gate metal 140 may be formed from the same metal deposited in the same deposition step (eg, T-gate structure). According to some embodiments, the gate metal 140 may be located closer to the source deposition 130 than the drain deposition 132, although in some cases the gate may be located between the source and drain deposition, or in other embodiments located closer to the drain. In some embodiments, an insulating passivation layer (not shown) may be formed over the gate-connected field plate 145 and the source and drain contacts 160 , 162 .

一個或更多個HEMT 100可佈置於管芯(die)上以便於一起操作,如 1B 1C 的平面圖所示。其他配置亦為可能,並且可在電路中連接多個電晶體,此等電晶體在個別的訊號上操作。在一些實施方式中,電晶體的源極、閘極、以及汲極可在一個方向(例如,寬度方向Wg )上具有延伸長度並且彼此平行延伸,如 1B 中所描繪。在一些實施例中,HEMT可包含於閘極或閘極連接場板145與閘極觸點墊185之間、源極觸點160或源極場板(第1A 至1C 中未示出)與源極觸點墊180之間、以及於汲極觸點162與汲極觸點墊182之間延伸的導電引線170(例如,在金屬化層級期間圖案化的內連線)。舉例而言,如 1C 中所示,當電晶體在陣列中的基材上重複多次時,汲極觸點162可在兩個相鄰電晶體之間共享,並且源極觸點160可在兩個相鄰電晶體之間共享。在其他配置中,在陣列中的兩個相鄰延伸閘極(有時稱為閘極指狀物)之間可能僅有源極觸點160或汲極觸點162中的一個,並且源極和汲極觸點可沿著陣列交替,從而使每個陣列中的源極觸點160與汲極觸點162相對於陣列中的兩個相鄰閘極是共用的。One or more HEMTs 100 may be arranged on a die for operation together, as shown in the plan view of FIG. 1B or FIG . 1C . Other configurations are possible, and multiple transistors can be connected in the circuit that operate on separate signals. In some implementations, the source, gate, and drain of the transistor may have extended lengths in one direction (eg, the width direction Wg ) and extend parallel to each other, as depicted in FIG . 1B . In some embodiments, the HEMT may be included between the gate or gate connection field plate 145 and the gate contact pad 185, the source contact 160 or the source field plate (not shown in Figures 1A -1C ) Conductive leads 170 (eg, interconnects patterned during metallization levels) extend between source contact pad 180 and between drain contact 162 and drain contact pad 182 . For example, as shown in Figure 1C , when a transistor is repeated multiple times on a substrate in an array, the drain contact 162 may be shared between two adjacent transistors, and the source contact 160 Can be shared between two adjacent transistors. In other configurations, there may be only one of source contact 160 or drain contact 162 between two adjacent extended gates (sometimes referred to as gate fingers) in the array, and the source and drain contacts may alternate along the array such that source contact 160 and drain contact 162 in each array are common to two adjacent gates in the array.

儘管結合本文描述的各種實施例描述了HEMT的細節,但本發明不僅限於HEMT元件。實施例可用於其他場效電晶體上,例如,但不限於接面FET(JFET)、金屬氧化物半導體FET(MOSFET)、金屬-絕緣體-半導體FET(MISFET)、金屬-半導體FET(MESFET)、調製摻雜FET(MODFET)、異質結構FET(HFET)、以及偽形HEMT(pHEMT)等。此外,本發明不限於氮化鎵材料。上述類型的電晶體可具有由閘極控制的半導體的主動區域,其可使用任何合適的半導體材料或例如,但不限於矽(Si)、鍺(Ge)、碳化矽(SIC)、砷化鎵 (GaAs)、磷化銦 (InP)、碲化鎘 (CdTe) 等材料所形成。Although the details of HEMTs are described in connection with the various embodiments described herein, the invention is not limited to HEMT elements. Embodiments may be used on other field effect transistors such as, but not limited to, junction FET (JFET), metal oxide semiconductor FET (MOSFET), metal-insulator-semiconductor FET (MISFET), metal-semiconductor FET (MESFET), Modulation doped FET (MODFET), heterostructure FET (HFET), and pseudo-shaped HEMT (pHEMT), etc. Furthermore, the present invention is not limited to gallium nitride materials. Transistors of the type described above may have an active region of semiconductor controlled by a gate, which may use any suitable semiconductor material or for example, but not limited to, silicon (Si), germanium (Ge), silicon carbide (SIC), gallium arsenide (GaAs), indium phosphide (InP), cadmium telluride (CdTe) and other materials.

如本文所用,「氮化鎵材料」一詞用於表示氮化鎵(GaN)以及其任何合金,如氮化鋁鎵(Alx Ga(1-x) N)、氮化銦鎵(Iny Ga(1 -y) N)、鋁銦鎵氮化物(Alx Iny Ga(1-xy) N)、砷化鎵磷氮化物(GaAsx Py N(1-xy) )、鋁銦鎵砷磷氮化物(Alx Iny Ga(1-xy) Asa Pb N(1-ab) )等。一般而言,當存在時,砷及/或磷為低濃度(即,低於5重量百分比)。在某些較佳實施例中,氮化鎵材料具有高濃度的鎵並且包含少量或不含有鋁及/或銦。在高鎵濃度的實施例中,在一些實施方式中(x + y)的總和可小於0.4,在一些實施方式中小於0.2,在一些實施方式中小於0.1,或在其他實施方式中甚至更小。在一些案例下,較佳為至少一個氮化鎵材料層具有GaN的組成(即,x = y = a = b = 0)。舉例而言,其中發生大部分電流傳導的主動層可具有GaN的成分。多層堆疊中的氮化鎵材料可為n型或p型摻雜的,或可為未摻雜的。合適的氮化鎵材料於美國專利第6,649,287號中描述,其全部內容通過引用方式併入本文。As used herein, the term "gallium nitride material" is used to refer to gallium nitride (GaN) and any alloy thereof, such as aluminum gallium nitride ( AlxGa (1-x) N ), indium gallium nitride (Iny) Ga (1-y) N), Aluminum Indium Gallium Nitride ( AlxInyGa (1- xy ) N), Gallium Arsenide Phosphide Nitride ( GaAsxPyN (1 - xy )N), Aluminum Indium Gallium Arsenic phosphorus nitride (Al x In y Ga (1-xy) As a P b N (1-ab) ) and the like. Generally, when present, arsenic and/or phosphorus are in low concentrations (ie, less than 5 weight percent). In certain preferred embodiments, the gallium nitride material has a high concentration of gallium and contains little or no aluminum and/or indium. In high gallium concentration embodiments, the sum of (x + y) may be less than 0.4 in some embodiments, less than 0.2 in some embodiments, less than 0.1 in some embodiments, or even less in other embodiments . In some cases, it is preferred that at least one layer of gallium nitride material has a composition of GaN (ie, x=y=a=b=0). For example, the active layer in which most of the current conduction occurs may have a composition of GaN. The gallium nitride material in the multilayer stack may be n-type or p-type doped, or may be undoped. Suitable gallium nitride materials are described in US Patent No. 6,649,287, which is incorporated herein by reference in its entirety.

第1A 1B 以及 1C 中的HEMT的附圖未按比例繪製。根據一些實施例,接觸墊可顯著大於附圖中所示,並且可顯著大於閘極、源極、以及汲極觸點。在一些實施方式中,延伸的閘極金屬140可顯著地窄於源極及/或汲極觸點。儘管 1A 1B 以及 1C 描繪了一個或數個HEMT元件,但在各種實施例中可在管芯或晶圓上形成許多元件。舉例而言,可在半導體管芯上製造HEMT的線性陣列以形成功率電晶體。由於它們的小尺寸,可能在管芯上形成數百或數千個HEMT,並且於晶圓上形成數千或數百萬個HEMT。上述HEMT或其他類型的電晶體可以連接在管芯上的不同類型的積體電路中,例如,但不限於放大器、電流源、訊號開關、脈衝發生電路、功率轉換器、特殊應用積體電路(ASICs)等。 The drawings of the HEMT in Figures 1A , 1B and 1C are not drawn to scale. According to some embodiments, the contact pads may be substantially larger than shown in the figures, and may be substantially larger than the gate, source, and drain contacts. In some implementations, the extended gate metal 140 can be significantly narrower than the source and/or drain contacts. Although Figures 1A , 1B and 1C depict one or several HEMT elements, many elements may be formed on a die or wafer in various embodiments . For example, linear arrays of HEMTs can be fabricated on a semiconductor die to form power transistors. Due to their small size, it is possible to form hundreds or thousands of HEMTs on a die and thousands or millions of HEMTs on a wafer. The HEMTs described above or other types of transistors can be connected in different types of integrated circuits on the die, such as, but not limited to, amplifiers, current sources, signal switches, pulse generator circuits, power converters, special application integrated circuits ( ASICs) etc.

在如雷達、微波、以及RF通信的應用中,經常發生高功率位準的訊號放大或切換。舉例而言,放大器可將訊號放大至幾十或幾百瓦的功率位準,以便於長距離傳輸。高功率位準可能導致放大電晶體內的加熱,若過熱,則會導致元件性能、過早老化及/或元件故障等不期望的變化。發明者已經認知並理解,在場效電晶體內加熱為不均勻的,並且通常在閘極的汲極側附近發生熱點155(第1A )。在一些實施方式中,在FET操作的期間,此區域中的溫度可超過160℃。此種升高的溫度會加速FET的老化並減少平均故障時間(MTTF)。據信加速老化歸因於,至少部分為,在元件的材料介面形成化合物的增加速率。在一些案例下,長時間過高的溫度可能導致元件突然故障(舉例而言,藉由降低元件對高壓故障的抵抗力)。In applications such as radar, microwave, and RF communications, signal amplification or switching of high power levels often occurs. For example, amplifiers can amplify signals to power levels of tens or hundreds of watts for long-distance transmission. High power levels can result in heating within the amplifier transistor, which, if overheated, can lead to undesirable changes in device performance, premature aging, and/or device failure. The inventors have recognized and understood that heating is non-uniform within a field effect transistor and that a hot spot 155 typically occurs near the drain side of the gate ( FIG . 1A ). In some embodiments, the temperature in this region may exceed 160°C during FET operation. This elevated temperature accelerates FET aging and reduces mean time to failure (MTTF). It is believed that accelerated aging is due, at least in part, to an increased rate of compound formation at the material interface of the device. In some cases, prolonged periods of excessively high temperature may cause sudden component failure (for example, by reducing the component's resistance to high voltage failure).

為了更好地理解FET中的加熱,發明者已構思並實現了使用金屬電阻測溫(MRT)監控FET內的溫度的結構以及方法。在一些實施方式中,閘極金屬140附近的熱敏結構及/或閘極金屬本身可用於監控FET溫度。在一些實施例中,熱敏結構可以耦合至閘極金屬140。在其他實施例中,熱敏結構可以連接或耦合至閘極金屬160。在一些案例下,可在反饋模型(paradigm)使用感應到的溫度值控制FET的操作,以便降低FET的操作溫度。To better understand heating in FETs, the inventors have conceived and implemented structures and methods for monitoring temperature within FETs using metal resistance thermometry (MRT). In some embodiments, thermally sensitive structures near gate metal 140 and/or the gate metal itself can be used to monitor FET temperature. In some embodiments, thermally sensitive structures may be coupled to gate metal 140 . In other embodiments, thermally sensitive structures may be connected or coupled to gate metal 160 . In some cases, the sensed temperature value may be used in a feedback model (paradigm) to control the operation of the FET in order to reduce the operating temperature of the FET.

現在參考 2A 的正視圖,描繪了HEMT,其中浮閘極板147已形成與閘極金屬140以及閘極連接場板145相鄰。根據一些實施例,浮閘極板可用作電晶體中的熱敏結構。HEMT可另外類似於 1A 描述的結構。浮閘極板147可藉由絕緣層122(例如,氧化物層或其他介電層)與閘極金屬140以及閘極連接的場板145隔離。浮閘極板147可沿著閘極金屬140的一部分延伸並且覆蓋閘極金屬140的一部分,或者可覆蓋整個閘極金屬。在一些案例下,浮閘極板147可從閘極金屬140朝向汲極偏移,並且可不覆蓋閘極金屬140,亦不覆蓋閘極連接的場板145。或者,浮閘極板147可覆蓋閘極金屬140的一小部分及/或閘極連接的場板145的一部分。偏置浮閘極板147可減小與閘極金屬及/或閘極連接的場板之間的電容耦合,並減小對電晶體速度的不利影響。Referring now to the front view of FIG . 2A , a HEMT is depicted in which a floating gate plate 147 has been formed adjacent to the gate metal 140 and the gate connection field plate 145. According to some embodiments, floating gate plates can be used as heat-sensitive structures in transistors. The HEMT may otherwise resemble the structure described in Figure 1A . Floating gate plate 147 may be isolated from gate metal 140 and gate-connected field plate 145 by insulating layer 122 (eg, an oxide layer or other dielectric layer). The floating gate plate 147 may extend along and cover a portion of the gate metal 140, or may cover the entire gate metal. In some cases, the floating gate plate 147 may be offset from the gate metal 140 toward the drain and may not cover the gate metal 140 nor the gate-connected field plate 145 . Alternatively, the floating gate plate 147 may cover a small portion of the gate metal 140 and/or a portion of the gate-connected field plate 145 . Biasing the floating gate plate 147 can reduce capacitive coupling between the gate metal and/or the field plates connected to the gate, and reduce adverse effects on transistor speed.

當使用術語「上」,「相鄰」或「上方」來描述層或結構的位置時,所描述的層和下層之間可能具有或不具有一層或更多層材料,該層被描述在該下層之上、鄰近、或上方。當一層被描述為「直接」或「立即」在另一層上、鄰近或另一層上方時、不存在中間層。當一層被描述為在另一層或基材「上」或「上方」時,該層可覆蓋整個層或基材,或層與基材的一部分。術語「上」以及「上方」用於便於相對於圖示解釋,並非意旨作為絕對方向參考。元件能以不同於圖中所示的其他方位製造及/或實施(例如,繞水平軸旋轉超過90度)。When the terms "on," "adjacent," or "over" are used to describe the position of a layer or structure, the layer being described may or may not have one or more layers of material between the layer described and the layer described above. On, adjacent to, or above the lower layer. When a layer is described as being "directly" or "immediately" on, adjacent to, or over another layer, there are no intervening layers present. When a layer is described as being "on" or "over" another layer or substrate, it can cover the entire layer or substrate, or a portion of both the layer and the substrate. The terms "on" and "above" are used to facilitate interpretation relative to the drawings and are not intended as absolute directional references. Elements can be fabricated and/or implemented in other orientations than shown in the figures (eg, rotated more than 90 degrees about a horizontal axis).

浮閘極板147的不同實施例的平面圖在 2B 以及 2C 中所示。浮閘極板147的其他配置亦為可能,並且本發明不限於所示的佈局圖案。當FET以陣列形成時,例如 1C 中所示,可在每個電晶體形成浮閘極板147,從而可獨立地監控每個電晶體的溫度。或者,浮閘極板147可形成在一個(例如,在陣列的中心處或附近的一個)或沿陣列分佈的幾個電晶體以對陣列中的一個或更多代表性溫度進行採樣。Plan views of various embodiments of the floating gate plate 147 are shown in Figures 2B and 2C . Other configurations of floating gate plate 147 are possible, and the invention is not limited to the layout pattern shown. When the FETs are formed in an array, such as shown in Figure 1C , a floating gate plate 147 can be formed on each transistor so that the temperature of each transistor can be independently monitored. Alternatively, the floating gate plate 147 may be formed on one (eg, one at or near the center of the array) or several transistors distributed along the array to sample one or more representative temperatures in the array.

根據一些實施例,浮閘極板147(或浮閘極)可被配置用於四點探針,舉例而言,從而可進行四端凱爾文電阻測量。在一些案例下,可具有兩對導電接觸片210a,210b,212a,212b,其提供與浮閘極板147的電連接。根據一些實施例,一對接觸片中的觸點可間隔開(例如,位於熱敏結構的遠端或相對的端部區域中)。在一些實施方式中,成對的接觸片可不位於浮閘極板的端部,並且可位於沿著浮閘極板147的不同點處。在較佳案例下,至少兩個接觸片(212a,212b)在浮閘極板147上間隔開距離D ,當強制電流沿著浮閘極板147時,該距離D 足以測量沿浮閘極板的電壓下降的變化。According to some embodiments, the floating gate plate 147 (or floating gate) can be configured for use with a four-point probe, for example, so that four-terminal Kelvin resistance measurements can be made. In some cases, there may be two pairs of conductive contact pads 210a , 210b , 212a , 212b that provide electrical connection to the floating gate plate 147 . According to some embodiments, the contacts in a pair of contact pads may be spaced apart (eg, in distal or opposite end regions of the thermally sensitive structure). In some embodiments, pairs of contact pads may not be located at the ends of the floating gate plate, and may be located at different points along the floating gate plate 147 . In the preferred case, at least two contact pieces (212a, 212b ) are spaced apart on the floating gate plate 147 by a distance D that is sufficient to measure along the floating gate plate 147 when the current is forced along the floating gate plate 147 change in voltage drop.

接觸片210a,210b,212a,212b可與內連線161電隔離,內連線161提供與閘極金屬140、源極觸點160、以及汲極觸點162的電連接。根據一些實施例,接觸片210a,210b,212a,212b可由與浮閘極板147相同的材料形成並且同時被圖案化。在其他實施例中,接觸片可以由與浮閘極板147不同的材料形成,並且在個別的處理步驟期間沉積成與浮閘極板電接觸。在一些案例下,接觸片可以形成為導電內連接。Contact pads 210a, 210b, 212a, 212b may be electrically isolated from interconnect 161, which provides electrical connections to gate metal 140, source contact 160, and drain contact 162. According to some embodiments, the contact pads 210a, 210b, 212a, 212b may be formed of the same material as the floating gate plate 147 and patterned at the same time. In other embodiments, the contact pads may be formed of a different material than the floating gate plate 147 and deposited in electrical contact with the floating gate plate during separate processing steps. In some cases, the contact pads may be formed as conductive interconnects.

在一些實施方式中,閘極板147可為不浮動,而是以一個或更多個所需電壓值驅動。反而,閘極金屬140以及閘極連接的場板145(若有的話)可為浮動的。在如此的實施方式中,四點探針可連接至浮閘極金屬140及/或浮閘極連接的場板145,其中的一或兩個可用作電晶體中的熱敏結構。In some embodiments, the gate plate 147 may not float, but rather be driven at one or more desired voltage values. Instead, gate metal 140 and gate-connected field plate 145 (if any) may be floating. In such an embodiment, the four-point probe may be connected to the floating gate metal 140 and/or the floating gate connected field plate 145, one or both of which may be used as thermally sensitive structures in the transistor.

在操作中並且如 2B 所示,可藉由熱敏結構上的第一對接觸片210a,210b施加探測電流IP 。施加的電流可以是DC電流或AC電流。探測電流IP 可施加於浮閘極板147與閘極金屬140相鄰的區域中(在 2B 中不可見),若存在閘極連接的場板,可位於閘極連接的場板145下方。在施加探測電流IP 的同時,可使用第二對接觸片(212a,212b)在跨過電流流動的區域的至少一部分上監測電壓VS 。根據測量的電壓VS 以及已知所施加的電流IP 值,可確認熱敏結構的探測區域的電阻值RS 。根據一些實施例,施加的探測電流的量可在200微安培和10毫安培之間。In operation and as shown in Figure 2B , a probe current IP may be applied through the first pair of contact pads 210a, 210b on the thermally sensitive structure. The applied current can be DC current or AC current. The probe current IP can be applied in the area of the floating gate plate 147 adjacent to the gate metal 140 (not visible in Figure 2B ) , or in the gate-connected field plate 145, if present below. While the probe current IP is applied, the second pair of contact pads (212a, 212b ) can be used to monitor the voltage Vs across at least a portion of the area where the current flows. From the measured voltage V S and the known value of the applied current IP, the resistance value R S of the detection area of the thermally sensitive structure can be confirmed. According to some embodiments, the amount of probe current applied may be between 200 microamps and 10 milliamps.

用於閘極金屬,閘極場板(連接或耦合),源極觸點,源極場板(連接或耦合)和汲極觸點的許多金屬或材料具有對溫度敏感的RS (T)的電阻。根據一些實施例,此等金屬或材料可用於電晶體中的熱敏結構。隨溫度變化(temperature-dependent)的電阻率將反映在測量電壓VS (T)中。因此,監控FET內的微尺度熱敏結構的電壓VS (T)可提供FET的操作溫度的指示,該溫度在閘極附近的區域中並且接近元件的最高溫度區域。Many metals or materials for gate metal, gate field plate (connected or coupled), source contact, source field plate (connected or coupled) and drain contact have temperature sensitive R S (T) The resistance. According to some embodiments, these metals or materials can be used for heat-sensitive structures in transistors. The temperature-dependent resistivity will be reflected in the measurement voltage V S (T). Thus, monitoring the voltage V S (T) of the microscale thermal structures within the FET can provide an indication of the FET's operating temperature, which is in the region near the gate and near the highest temperature region of the element.

用於浮閘極板147或本文所述之其他熱敏結構可為數種材料。在一些案例下可使用單個金屬或材料層,或者在其他案例下可使用多層金屬疊層。在一些實施方式中,可使用非金屬材料,如多晶矽。可使用的範例性金屬疊層包括但不限於鎳/金、鎳/金/鈦、鈦/鉑/金、鈦/金、鈦/鉑/金/鈦、鎳/鈀/金/鈦、鎳/鉑/金/鈦、鎳/鈦/鋁/鎢、鎳/鉬/鋁/鎢、鎳/鉭/鋁/鉭、鎳/鉭/鋁/鎢、鎳/一氧化鎳/鋁/鎢、鎳/一氧化鎳/鉭/鋁/鉭、鎳/一氧化鎳/鉭/鋁/鎢、鉬/鋁/鎢、鎳/氮化鎢/鋁/鎢、鎳/一氧化鎳/鉬/鋁/鎢、鎳/一氧化鎳/氮化鎢/鋁/鎢、氮化鎢/鋁/鎢、鉑/金/鈦、鈦/鉑/金、鋁/銅,鎳/鉻、或氮化鈦/銅。單金屬層可由此等多層疊堆中的任何一種金屬形成。Several materials may be used for the floating gate plate 147 or other heat sensitive structures described herein. A single metal or material layer may be used in some cases, or a multi-layer metal stack may be used in other cases. In some embodiments, non-metallic materials such as polysilicon may be used. Exemplary metal stacks that can be used include, but are not limited to, nickel/gold, nickel/gold/titanium, titanium/platinum/gold, titanium/gold, titanium/platinum/gold/titanium, nickel/palladium/gold/titanium, nickel/ platinum/gold/titanium, nickel/titanium/aluminum/tungsten, nickel/molybdenum/aluminum/tungsten, nickel/tantalum/aluminum/tantalum, nickel/tantalum/aluminum/tungsten, nickel/nickel monoxide/aluminum/tungsten, nickel/ Nickel monoxide/tantalum/aluminum/tantalum, nickel/nickel monoxide/tantalum/aluminum/tungsten, molybdenum/aluminum/tungsten, nickel/tungsten nitride/aluminum/tungsten, nickel/nickel monoxide/molybdenum/aluminum/tungsten, Nickel/Nickel Oxide/Tungsten Nitride/Aluminum/Tungsten, Tungsten Nitride/Aluminum/Tungsten, Platinum/Au/Titanium, Titanium/Platinum/Au, Aluminum/Copper, Nickel/Chromium, or Titanium Nitride/Copper. A single metal layer can be formed from any metal in such a multilayer stack.

實際上,用於通信應用中可以在RF頻率(舉例而言,超過500MHz並且高達7GHz的頻率)驅動閘極金屬140。在其他實施例中可使用更高的頻率。在高頻率應用中,可能希望減少RF訊號與連接至浮閘極板147或熱敏結構的電路系統的不利耦合(電路系統未在 2B 2C 中示出)。根據一些實施例,可藉由在浮閘極板/熱敏結構與連接電路系統之間添加高阻抗元件220來減少RF訊號到熱敏結構及/或其電路系統的耦合。根據一些實施例,電感或電阻或其組合可用作高阻抗元件,但在施加的探測電流IP 為AC電流的實施例中可替代地或額外地使用電容器。In practice, the gate metal 140 can be driven at RF frequencies (eg, frequencies in excess of 500 MHz and up to 7 GHz) for use in communications applications. Higher frequencies may be used in other embodiments. In high frequency applications, it may be desirable to reduce unwanted coupling of the RF signal to circuitry connected to floating gate plate 147 or thermally sensitive structures (circuitry not shown in Figure 2B or Figure 2C ). According to some embodiments, coupling of the RF signal to the thermally sensitive structure and/or its circuitry may be reduced by adding a high impedance element 220 between the floating gate plate/thermally sensitive structure and the connecting circuitry. According to some embodiments, an inductor or a resistor or a combination thereof may be used as the high impedance element, although a capacitor may be used instead or in addition in embodiments where the applied probe current IP is an AC current.

在一些實施方式中,高阻抗元件220(第2B 中所示的四個)包括電阻器,舉例而言,薄膜電阻器。薄膜電阻器可由TaN形成,舉例而言,多晶矽,或任何其他合適的材料。高電阻性阻抗元件220可具有300歐姆至2000歐姆之間的電阻值。根據一些實施例,電阻值可以在500歐姆與1500歐姆之間。在一些案例下,薄膜電阻器或高阻抗元件220可形成在與應用溫度感應的電晶體相同的管芯上。在一些案例下,高阻抗元件可形成在個別的管芯上(舉例而言,與電晶體一起封裝)或者位於(舉例而言,電晶體安裝至其上的)電路板上並且電連接至浮閘極板147的接觸片,舉例而言。在一些案例下,高阻抗元件220可包括分立電阻器,其可安裝於包含熱敏結構的封裝電晶體外部。封裝可包含用於連接高阻抗元件220的電阻器的接腳。形成在與電晶體相同的管芯上的薄膜電阻元件可允許比具有外部分立電阻器更小型的組件。或者,外部電阻器可允許客戶有更多的設計靈活性。In some embodiments, the high impedance elements 220 (the four shown in Figure 2B ) comprise resistors, for example, thin film resistors. Thin film resistors may be formed from TaN, for example, polysilicon, or any other suitable material. The high resistive impedance element 220 may have a resistance value between 300 ohms and 2000 ohms. According to some embodiments, the resistance value may be between 500 ohms and 1500 ohms. In some cases, the thin film resistor or high impedance element 220 may be formed on the same die as the transistor to which temperature sensing is applied. In some cases, high impedance elements may be formed on separate dies (eg, packaged with transistors) or on a circuit board (eg, on which transistors are mounted) and electrically connected to floating Contact pads of gate plate 147, for example. In some cases, the high impedance element 220 may comprise discrete resistors, which may be mounted outside the packaged transistors containing the thermally sensitive structures. The package may include pins for connecting the resistors of the high impedance element 220 . Thin film resistive elements formed on the same die as the transistors may allow for smaller components than having external discrete resistors. Alternatively, external resistors can allow customers more design flexibility.

根據一些實施方式,接觸片211a,211b,213a,213b可由薄膜電阻器形成,如 2C 所示。可在浮閘極板147之前或之後沉積並且圖案化薄膜電阻器。得到的接觸片211a,211b,213a,213b可在一端形成至浮閘極板147的電阻接觸,並在相對的端部處連接或提供連接點至額外的溫度感應電路系統。According to some embodiments, the contact pads 211a, 211b, 213a, 213b may be formed of thin film resistors, as shown in Figure 2C . Thin film resistors may be deposited and patterned before or after floating gate plate 147 . The resulting contact pads 211a, 211b, 213a, 213b can form a resistive contact to the floating gate plate 147 at one end and connect or provide a connection point to additional temperature sensing circuitry at the opposite end.

根據一些實施例,溫度感應電路系統300的一個範例包含形成在電晶體(未示出)上的浮閘板147,如 3 所描繪。舉例而言,溫度感應電路系統300可包括電流源310以及差分放大器320。溫度感應電路系統亦可包括前文的描述的高阻抗元件220並且於 3 中示為電阻器R1-R4。在一些實施方式中,舉例而言,電流源310可包括由一個或更多個電晶體形成的積體電流源。電流源310可形成在與電晶體以及浮閘極板147相同的管芯上,或者在一些案例下,可形成在個別的管芯上。就 3 中描繪的實施例而言,電流源310可配置成提供DC電流,在其他實施例中,可配置成提供AC電流。According to some embodiments, one example of temperature sensing circuitry 300 includes floating gate 147 formed on a transistor (not shown), as depicted in FIG . 3 . For example, temperature sensing circuitry 300 may include current source 310 and differential amplifier 320 . The temperature sensing circuitry may also include the high impedance element 220 described above and shown in FIG . 3 as resistors R1-R4. In some embodiments, the current source 310 may comprise an integrated current source formed of one or more transistors, for example. The current source 310 may be formed on the same die as the transistor and floating gate plate 147, or in some cases, may be formed on a separate die. For the embodiment depicted in FIG . 3 , current source 310 may be configured to provide DC current, and in other embodiments, may be configured to provide AC current.

差分放大器320可包括具有多個電晶體的積體電路(舉例而言,並聯電路分支中的兩個電晶體,其發射極或源極連接至共同電流源)。差分放大器可配置成感應浮閘極板147的兩個區域之間的電勢差,如 3 所示。根據一些實施例,差分放大器320可包括運算放大器電路系統,該運算放大器電路系統在浮閘極板147的兩個區域之間感應的電壓提供有限的差分增益。差分放大器320可形成在與電晶體與浮閘極板147相同的管芯上,或者可形成在個別的管芯上。The differential amplifier 320 may comprise an integrated circuit with multiple transistors (eg, two transistors in a parallel circuit branch with either their emitters or sources connected to a common current source). The differential amplifier can be configured to sense the potential difference between the two regions of the floating gate plate 147, as shown in FIG. According to some embodiments, the differential amplifier 320 may include operational amplifier circuitry that provides limited differential gain from the voltage induced between the two regions of the floating gate plate 147 . Differential amplifier 320 may be formed on the same die as transistor and floating gate plate 147, or may be formed on a separate die.

來自差分放大器320的輸出VM 可用於監控電晶體工作期間浮閘極板147的區域上的電壓下降的變化。如上所述,所監控的電壓VS (T)隨溫度變化,並且可提供電晶體的峰值操作溫度的指示。在一些實施方式中,可處理輸出電壓VM 以估計及/或跟踪FET的操作溫度。舉例而言,VM 可被轉換為如本文所述之溫度值,並且溫度值可作為數位資料輸出及/或以視覺的方式顯示於測試設備上。在一些案例下,可在元件測試期間監控FET溫度,以評估FET在使用狀態時操作成效及/或在使用狀態時估計FET的MTTF。在一些實施方式中,可於製造時的品質控制程序期間監控FET溫度。The output VM from differential amplifier 320 can be used to monitor changes in the voltage drop across the area of floating gate plate 147 during transistor operation. As mentioned above, the monitored voltage Vs( T ) varies with temperature and can provide an indication of the peak operating temperature of the transistor. In some implementations, the output voltage VM may be processed to estimate and/or track the operating temperature of the FET. For example, VM can be converted to temperature values as described herein, and the temperature values can be output as digital data and/or displayed visually on test equipment. In some cases, the temperature of the FET can be monitored during component testing to assess how well the FET operates when in use and/or to estimate the MTTF of the FET when in use. In some embodiments, the FET temperature can be monitored during a quality control process at the time of manufacture.

在其他實施例中,輸出電壓VM 可被提供至比較器330,以確定FET是否在預定溫度極限內操作。舉例而言,可將輸出電壓VM 與預設參考電壓Vref 進行比較以產生控制訊號CS 。可反饋控制訊號以控制電晶體的操作。舉例而言,控制訊號可用於改變電晶體的偏置,電壓供應值及/或改變輸入RF訊號上的可變衰減器,從而改變電晶體的操作功率以降低溫度或允許溫度升高。在其他實施例中,可使用其他方法來處理VM 並生成控制訊號CS In other embodiments, the output voltage VM may be provided to the comparator 330 to determine whether the FET is operating within predetermined temperature limits. For example, the output voltage VM can be compared with a predetermined reference voltage Vref to generate the control signal CS . A control signal can be fed back to control the operation of the transistor. For example, the control signal can be used to change the bias of the transistor, the voltage supply value and/or to change the variable attenuator on the input RF signal, thereby changing the operating power of the transistor to reduce the temperature or allow the temperature to rise. In other embodiments, other methods may be used to process VM and generate control signal CS .

浮閘極板147之外的組件可用作FET中的熱敏結構,並且其他溫度感應電路可用於其他實施例中。進一步的實施例在 46B 中所描繪。在一些實施方式中,FET的閘極金屬或材料140可用於感應FET溫度,如 4 中所描繪。發明者已經認知並理解,向閘極施加DC電流可能不利地影響電晶體的偏置,因為此舉將沿著閘極引入偏置梯度。因此,除了閘極偏壓Vgs 之外,亦可將來自AC電流源410的AC探測電流IP AC 施加至電晶體的閘極140。根據一些實施例,AC電流源410可包括積體振盪器以及電流放大器。AC電流源410可整合在與實施溫度感應的電晶體相同的管芯上,或者整合在個別的管芯上。Components other than floating gate plate 147 can be used as thermally sensitive structures in the FET, and other temperature sensing circuits can be used in other embodiments. Further embodiments are depicted in Figures 4 to 6B . In some embodiments, the gate metal or material 140 of the FET can be used to sense the FET temperature, as depicted in FIG . 4 . The inventors have recognized and understood that applying a DC current to the gate can adversely affect the biasing of the transistor, as doing so will introduce a bias gradient along the gate. Therefore, in addition to the gate bias Vgs , the AC probe current IP , AC from the AC current source 410 can also be applied to the gate 140 of the transistor. According to some embodiments, the AC current source 410 may include an integrated oscillator and a current amplifier. The AC current source 410 may be integrated on the same die as the transistor implementing the temperature sensing, or on a separate die.

包括電容器C1與電阻器R2的RC分流器可連接至閘極140以提供AC探測電流的路徑。RC分流器可在遠離電流源410、連接至閘極的位置的區域處連接至閘極。為了避免干擾RF訊號,探測AC電流的頻率可顯著低於RF訊號的頻率。舉例而言,RF訊號的特徵頻率可為用於RF通訊中發送資料的載波頻率,或者可為用於雷達應用的雷達脈衝的載波頻率。An RC shunt including capacitor C1 and resistor R2 may be connected to gate 140 to provide a path for AC detection current. The RC shunt may be connected to the gate at a region remote from the current source 410 where it is connected to the gate. To avoid interfering with the RF signal, the frequency at which the AC current is detected can be significantly lower than the frequency of the RF signal. For example, a characteristic frequency of an RF signal may be the carrier frequency used to transmit data in RF communications, or may be the carrier frequency of radar pulses used in radar applications.

在一些實施方式中,探測AC電流的頻率可與RF訊號的頻率相差不小於25倍。在一些案例下,探測AC電流的頻率可與RF訊號的頻率相差不小於10倍。可使用各種探測AC頻率。舉例而言,在一些實施例中,探測器電流IP 的頻率可為大約1百萬赫茲。在一些案例下,探測AC頻率可為50千赫茲和5百萬赫茲之間的值。其他實施例可使用具有不小於10赫茲的值的探測AC頻率。其他實施例可使用具有高達10或數百的百萬赫茲的值的探測AC頻率。RC分流器可包括低通濾波器,其提供探測電流的路徑但阻擋高頻率。在一些實施方式中,可選擇C1以及R2的值以提供RC分流器的截止頻率,其大約等於或高於探測電流IP 的頻率20%。當使用AC探測電流時,可採用AC電壓感應電路系統420。在一些實施方式中,AC電壓感應電路系統可包括平均峰值電壓偵測器。AC電壓感應電路系統420可以整合在與實施溫度感應的電晶體相同的管芯上,或者整合在個別的管芯上。In some embodiments, the frequency at which the AC current is detected may differ from the frequency of the RF signal by a factor of no less than 25. In some cases, the frequency at which the AC current is detected may differ from the frequency of the RF signal by a factor of not less than 10. Various probing AC frequencies can be used. For example, in some embodiments, the frequency of the detector current IP may be about 1 megahertz. In some cases, the probing AC frequency may be a value between 50 kilohertz and 5 megahertz. Other embodiments may use probing AC frequencies with values no less than 10 Hz. Other embodiments may use probing AC frequencies with values as high as 10 or hundreds of megahertz. The RC shunt may include a low pass filter that provides a path to detect current but blocks high frequencies. In some embodiments, the values of C1 and R2 may be selected to provide a cutoff frequency of the RC shunt that is approximately equal to or higher than the frequency of the probe current IP by 20%. AC voltage sensing circuitry 420 may be employed when AC detection current is used. In some embodiments, the AC voltage sensing circuitry may include an average peak voltage detector. The AC voltage sensing circuitry 420 may be integrated on the same die as the transistor implementing the temperature sensing, or on a separate die.

在一些實施例中(如測試設施),電流源310、410以及電壓感應電路320、420中的一個或兩個可體現為商業儀器或獨立測試設備。在此種案例下,探針可用於連接至包含一個或更多個待測電晶體的管芯上的接觸片或連接的探針墊(未示出)。舉例而言,當在製造時測試或認證元件時,可使用如此的實施例,並且允許更小型的電晶體管芯。In some embodiments (eg, a test facility), one or both of the current sources 310, 410 and the voltage sensing circuits 320, 420 may be embodied as commercial instruments or stand-alone test equipment. In such cases, probes may be used to connect to contact pads or connected probe pads (not shown) on a die containing one or more transistors under test. Such embodiments can be used, for example, when testing or qualifying components at manufacture, and allow for smaller electrical transistor cores.

第5 描繪了用於FET的溫度感應電路系統的另一實施例,其中AC探測電流被施加至FET的閘極金屬140。在如此的實施例中,可不使用RC分流器,並且於閘極金屬的遠端處可不具有用於探測電流流過的接觸片。反而,基本上所有AC電流IP ,AC 可藉由寄生電阻及/或寄生電容(未示於圖中)耦合至電晶體,源極觸點160及/或源極場板的源極130(如此範例所示)。可選擇探測電流頻率以增加或最大化探測源極、源極觸點及/或源場板的AC電流的流量。 5 中描繪的實施例包括:可產生比 4 所示的實施例更小型的電晶體管芯或整體組件。 Figure 5 depicts another embodiment of a temperature sensing circuitry for a FET in which an AC probe current is applied to the gate metal 140 of the FET. In such an embodiment, an RC shunt may not be used, and there may be no contact pads at the distal end of the gate metal for detecting current flow. Instead, substantially all of the AC current IP , AC may be coupled to the transistor, source contact 160 and/or source 130 ( as shown in this example). The probing current frequency can be selected to increase or maximize the flow of AC current probing the source, source contacts, and/or source field plate. The embodiment depicted in FIG . 5 includes the possibility of producing a smaller electrical transistor die or integral assembly than the embodiment shown in FIG . 4 .

第6A 描繪了一實施例,其中源極場板660可用作熱敏結構,用於在FET的操作期間感應溫度。在此等範例中,雖然描繪的為HEMT,但是可使用其他類型的FET。根據一個範例,該元件的平面圖示於 6B 中。根據一些實施例,源極場板660可被圖案化以覆蓋閘極140及/或閘極連接的場板145的至少一部分。源極場板660可藉由絕緣層122與閘極及/或閘極連接的場板絕緣,並且藉由導電內連接665連接至源極觸點160。在一些實施例中,導電內連接665、源極觸點160、以及源極場板660可由同一材料層同時形成(舉例而言,在相同的沉積製程期間)。在一些實施例中,導電內連接665可包括如上所述之薄膜電阻器,其在與源極場板不同的個別處理步驟中被圖案化以及沈積。舉例而言,電阻內連接665可向源極場板提供輕微的DC電勢,使得施加至源極場板660的AC探測電流高於接地電壓。 Figure 6A depicts an embodiment in which the source field plate 660 may be used as a thermally sensitive structure for sensing temperature during operation of the FET. In these examples, although a HEMT is depicted, other types of FETs may be used. According to one example, a plan view of the element is shown in Figure 6B . According to some embodiments, source field plate 660 may be patterned to cover at least a portion of gate 140 and/or gate-connected field plate 145 . The source field plate 660 may be insulated from the gate and/or gate-connected field plates by the insulating layer 122 and connected to the source contact 160 by a conductive interconnect 665 . In some embodiments, conductive interconnect 665, source contact 160, and source field plate 660 may be formed simultaneously from the same layer of material (eg, during the same deposition process). In some embodiments, the conductive interconnects 665 may include thin film resistors as described above, which are patterned and deposited in a separate process step than the source field plate. For example, the inter-resistive connection 665 may provide a slight DC potential to the source field plate such that the AC probe current applied to the source field plate 660 is higher than the ground voltage.

在一些情況下,導電內連接665可位於源極場板的附近或末端,使施加的探測電流於源於極場板660的大部分長度上流動,而非於源極場板中間附近分流。在一些實施例中,可省略接觸片(舉例而言, 6B 中的片210b),並且施加的探測電流可沿著源極場板660的大部分長度藉由導電內連接665流動至參考電位,參考電位連接至電晶體的源極觸點160。在一些案例下,導電內連接665可包括如上所述之薄膜電阻器,其減少至源極觸點160的RF耦合。In some cases, conductive interconnects 665 may be located near or at the ends of the source field plates, allowing the applied probe current to flow over most of the length of the source field plates 660 rather than being shunted near the middle of the source field plates. In some embodiments, the contact pads (eg, pad 210b in Figure 6B ) may be omitted, and the applied probe current may flow along most of the length of the source field plate 660 through the conductive interconnect 665 to the reference potential, the reference potential is connected to the source contact 160 of the transistor. In some cases, conductive interconnects 665 may include thin film resistors as described above, which reduce RF coupling to source contact 160 .

根據一些實施方式,源極場板660可為電浮動的。舉例而言,在源極場板660與源極觸點160之間可能沒有直接電流路徑。在一些案例下,可具有一個或更多個電容耦合器667,其將源極場板660電容性地耦合至源極觸點160,如 6C 所示。電容耦合器667可由導電膜形成,該導電膜藉由絕緣層(舉例而言,氧化物層或其他介電質)與源極觸點160分離。為了藉由浮閘源極場板提高電晶體的熱點155(第6A 中所示)的熱感應精確度,可存在將電容耦合器667連接至源極場板660的窄導電內連接665。According to some embodiments, the source field plate 660 may be electrically floating. For example, there may be no direct current path between source field plate 660 and source contact 160 . In some cases, there may be one or more capacitive couplers 667 that capacitively couple the source field plate 660 to the source contact 160, as shown in Figure 6C . Capacitive coupler 667 may be formed from a conductive film that is separated from source contact 160 by an insulating layer (eg, an oxide layer or other dielectric). To improve the thermal sensing accuracy of the transistor's hot spot 155 (shown in Figure 6A ) by means of the floating gate source field plate, there may be a narrow conductive interconnect 665 connecting the capacitive coupler 667 to the source field plate 660.

在其他實施例中,源極場板660可一直延伸至並且覆蓋源極觸點160,以提供與源極觸點的電容耦合。在如此的實施例中,可不存在個別的電容耦合器667。相反的,源極場板660可以單個矩形導電膜的方式呈現,其覆蓋源極觸點160的至少一部分以及閘極140及/或閘極連接的場板145的至少一部分。In other embodiments, the source field plate 660 may extend all the way to and cover the source contact 160 to provide capacitive coupling with the source contact. In such an embodiment, the individual capacitive coupler 667 may not be present. Instead, source field plate 660 may be present as a single rectangular conductive film covering at least a portion of source contact 160 and at least a portion of gate 140 and/or gate-connected field plate 145 .

使用源極場板660用於FET的熱感應而非閘極140或閘極連接的場板145可有若干益處。第一益處為源極場板660可有一部分位於FET的最熱區域155的附近。在一些實施方式中,源極場板660的形狀可限於電晶體的熱點附近的區域,如 6A 中所描繪。舉例而言,源極場板660可限於與閘極金屬140沒有重疊或者部分重疊的區域,並且不延伸超過距閘極至汲極觸點162的距離的四分之一。另一益處為源極場板660可以藉由RF///DC隔離電連接至源極,使其對電晶體性能產生很小擾動或沒有擾動。否則,當用於感應溫度的電流和電壓施加於電晶體的閘極金屬140或閘極連接的場板145上時,可能會發生此種擾動。Using the source field plate 660 for thermal sensing of the FET instead of the gate 140 or gate-connected field plate 145 can have several benefits. The first benefit is that a portion of the source field plate 660 can be located in the vicinity of the hottest region 155 of the FET. In some implementations, the shape of the source field plate 660 may be limited to the area near the hot spot of the transistor, as depicted in Figure 6A . For example, the source field plate 660 may be limited to areas that do not overlap or partially overlap the gate metal 140 and do not extend more than a quarter of the distance from the gate-to-drain contact 162 . Another benefit is that the source field plate 660 can be electrically connected to the source with RF///DC isolation, with little or no perturbation to transistor performance. Otherwise, such perturbations may occur when currents and voltages for sensing temperature are applied to the gate metal 140 of the transistor or the field plate 145 of the gate connection.

對於某些FET類型,使用源極場板660進行溫度感應的另一益處為可避免與施加至電晶體閘極的探測電流洩漏相關的問題。在一些FET中,施加至電晶體的閘極金屬的探測電流可能洩漏至交流電流路徑(舉例而言,至電晶體的源極)。此種洩漏可能與溫度有關,並導致在一定溫度範圍內對元件溫度的不準確評估。相反的,源極場板660可具有比閘極更好的隔離,並且可於溫度感應期間減少探測電流IP 的洩漏。Another benefit of using the source field plate 660 for temperature sensing for certain FET types is that problems associated with leakage of probe currents applied to the transistor gates can be avoided. In some FETs, the probe current applied to the gate metal of the transistor may leak into the AC current path (eg, to the source of the transistor). Such leakage can be temperature dependent and result in an inaccurate assessment of component temperature over a range of temperatures. Conversely, the source field plate 660 may have better isolation than the gate and may reduce leakage of the probe current IP during temperature sensing.

儘管在一些案例下使用源極場板可能為較佳的,但是一些實施方式可使用閘極金屬140及/或閘極連接的場板145來進行熱感應。在其他實施例中,同一電晶體中的獨立溫度感應電路可使用閘極金屬或閘極場板和源極場板。可採用具有兩個熱敏結構的兩個溫度感應電路來提供冗餘及/或測量確認。在一些實施方式中,可使用兩個溫度感應電路來評估FET中的熱梯度並基於熱梯度更好地估計元件的峰值溫度。Although the use of a source field plate may be preferable in some cases, some embodiments may use gate metal 140 and/or gate-connected field plate 145 for thermal induction. In other embodiments, separate temperature sensing circuits in the same transistor may use gate metal or gate and source field plates. Two temperature sensing circuits with two thermally sensitive structures may be employed to provide redundancy and/or measurement confirmation. In some embodiments, two temperature sensing circuits can be used to evaluate thermal gradients in the FET and to better estimate the peak temperature of the element based on the thermal gradients.

使用上述熱敏結構亦為有益的。舉例而言,現有的FET結構和材料(僅稍略修改)可用於感應FET溫度。另外,熱敏結構可為微尺度的並且位於FET的熱點155附近,從而可獲得FET峰值溫度的改進的局部估計。在一些實施方式中,熱敏結構可具有在閘極長度方向上的長度,其為0.2微米與5微米之間的任何值。熱敏結構的寬度可近似等於FET閘極的寬度,並且可在1微米與1毫米之間。熱敏結構的厚度可在50奈米與2微米之間。在其他實施例中,其他尺寸可用於熱敏結構。It is also beneficial to use the heat sensitive structures described above. For example, existing FET structures and materials (with only minor modifications) can be used to sense FET temperature. Additionally, the thermally sensitive structures can be microscale and located near the hot spot 155 of the FET, so that an improved local estimate of the peak temperature of the FET can be obtained. In some embodiments, the thermally sensitive structure may have a length in the gate length direction that is anywhere between 0.2 microns and 5 microns. The width of the thermally sensitive structure may be approximately equal to the width of the FET gate, and may be between 1 micron and 1 millimeter. The thickness of the thermally sensitive structures may be between 50 nanometers and 2 micrometers. In other embodiments, other dimensions may be used for thermally sensitive structures.

根據一些實施例,可使用管芯或晶圓上的一個或更多個FET來校準FET中的熱敏結構(閘極金屬、閘極連接的場板、源極場板)的溫度靈敏度。舉例而言,當FET的源極、閘極、以及汲極觸點任其浮動時,可將管芯或晶圓放置於熱板上並在一定溫度範圍內加熱。在進行電阻測量之前,可允許晶圓或管芯在每個溫度下達到熱平衡。電阻測量可包括施加探測電流IP 並且感應探測電流在其中流動的熱敏結構的區域上的電壓下降VS (T)。此種校準的結果可能如 7 所示。According to some embodiments, one or more FETs on a die or wafer may be used to calibrate the temperature sensitivity of thermally sensitive structures (gate metal, gate-connected field plates, source field plates) in the FETs. For example, when the source, gate, and drain contacts of a FET are left to float, a die or wafer can be placed on a hot plate and heated over a range of temperatures. The wafer or die can be allowed to thermally equilibrate at each temperature before making resistance measurements. The resistance measurement may include applying a probe current IP and inducing a voltage drop V S (T) over the area of the thermally sensitive structure in which the probe current flows. The result of such a calibration might look like Figure 7 .

第7 的資料係藉由使用金屬源極場板作為熱敏結構的範例性HEMT元件取得的。該圖表顯示了作為基板溫度的函數繪製的電阻值(根據施加的電流和所測量的電壓下降計算)。在此範例性元件中,熱敏結構的電阻相對於結構溫度變化的變化值約為0.006歐姆 /℃。具有不同材料的其他實施例可具有不同的熱敏感度在某些案例下,熱敏度可能介於0.001 歐姆 /ºC與0.05 歐姆/ºC之間。在其他案例下,熱敏結構的熱敏度可具有比該範圍更低或更高的值。The data in Figure 7 was obtained with an exemplary HEMT device using a metal source field plate as the thermally sensitive structure. The graph shows the resistance value (calculated from applied current and measured voltage drop) plotted as a function of substrate temperature. In this exemplary device, the resistance of the thermally sensitive structure varies by approximately 0.006 ohms/°C with respect to changes in temperature of the structure. Other embodiments with different materials may have different thermal sensitivities. In some cases, the thermal sensitivity may be between 0.001 ohms/ºC and 0.05 ohms/ºC. In other cases, the thermal sensitivity of the thermally sensitive structure may have a lower or higher value than this range.

第7 的圖表可用於評估在元件操作期間被探測的相同FET元件(或包含相同的熱敏結構的類似FET元件)的溫度。作為範例,可從測量資料確定校準方程式(舉例而言,用於擬合 7 中的點中的資料的線的方程式)或檢查表,並用於將隨後測量的電阻值轉換為溫度。The graph of Figure 7 can be used to evaluate the temperature of the same FET element (or similar FET element containing the same thermal structure) that is probed during operation of the element. As an example, a calibration equation (eg, the equation used to fit a line to the data in the points in Figure 7 ) or a look-up table can be determined from the measurement data and used to convert subsequently measured resistance values to temperature.

儘管於 7 中繪製了電阻值,其他實施例可使用其他值。在一些案例下,電壓可能無法轉換為電阻。反而,可將測量的電壓繪製為基板溫度的函數,並且可直接使用電壓值來評估在元件操作期間被探測的相同FET元件的溫度。在其他案例下,可確定熱敏結構的薄層電阻(歐姆/平方)並且繪製為溫度的函數,使得結果可用於評估儘管具有相同的薄層電阻但具有不同形狀及/或尺寸的熱敏結構的FET中的溫度。Although resistance values are plotted in Figure 7 , other embodiments may use other values. In some cases, voltage may not be converted to resistance. Instead, the measured voltage can be plotted as a function of substrate temperature, and the voltage value can be used directly to estimate the temperature of the same FET element probed during element operation. In other cases, the sheet resistance (ohms/square) of a thermally sensitive structure can be determined and plotted as a function of temperature so that the results can be used to evaluate thermally sensitive structures of different shapes and/or sizes despite having the same sheet resistance temperature in the FET.

使用校準值的範例,如針對 7 的範例取得的校準值。結合 8 9 進一步描述。為了產生如 8 所示的圖表,HEMT在不同的功率位準(0至約8瓦特/毫米)下操作,而支撐HEMT的基板依次設定在五個不同的溫度。用於 8 中所示的每個測量值所繪製的電阻值係由跨越源極場板的區域以及施加的探測電流IP 所測量的電壓下降VS (T)所確認。Use examples of calibration values, such as those obtained for the example in Figure 7 . Further description will be given in conjunction with Figures 8 and 9 . To generate the graph shown in Figure 8 , the HEMTs were operated at different power levels (0 to about 8 watts/mm), while the substrate supporting the HEMTs was sequentially set at five different temperatures. The resistance values plotted for each measurement shown in Figure 8 are confirmed by the voltage drop VS ( T ) measured across the area of the source field plate and the applied probe current IP.

在不同的操作條件下找到電阻值(於 8 中所描繪)之後,可以使用 7 的校準值(或得到的校準方程式或檢查表)將 8 的測量的電阻轉換為溫度值。相應的溫度值繪製於 9 ,作為使用校準資料的資料轉換的範例。After finding the resistance value (depicted in Figure 8 ) under different operating conditions, the measured resistance of Figure 8 can be converted to a temperature value using the calibration value of Figure 7 (or the resulting calibration equation or checklist) . The corresponding temperature values are plotted in Figure 9 as an example of data conversion using calibration data.

第9 中每條線的斜率表示在不同的基板操作溫度下熱敏結構(源極場板)的熱阻。將範例性元件的熱阻繪製為 10 中的溫度的函數。The slope of each line in Figure 9 represents the thermal resistance of the thermally sensitive structure (source field plate) at different substrate operating temperatures. Plot the thermal resistance of exemplary components as a function of temperature in Figure 10 .

在封裝的功率電晶體中,可包含散熱器(例如,導熱板)以改善熱量遠離電晶體的熱傳導。在一些案例下,可能有不只一個散熱器。在一些案例下,散熱器可包含在功率電晶體封裝中。在一些實施例中,可於裝配有電晶體封裝的功率電晶體封裝外部具有額外地或替代地的散熱器。一些實施方式可包含散熱器上的溫度感應器(例如,熱敏電阻),使得可於功率電晶體的操作期間監控散熱器的溫度。因此,類似於 8 9 中所示的資料的實施例可用於使用所測量的電阻值以及與功率電晶體熱接觸的散熱器的測量溫度來估計功率電晶體的操作溫度。In packaged power transistors, a heat sink (eg, a thermally conductive plate) may be included to improve thermal conduction of heat away from the transistor. In some cases, there may be more than one heat sink. In some cases, the heat sink may be included in the power transistor package. In some embodiments, there may be additional or alternative heat spreaders outside the power transistor package to which the transistor package is assembled. Some embodiments may include a temperature sensor (eg, a thermistor) on the heat sink so that the temperature of the heat sink can be monitored during operation of the power transistor. Thus, embodiments similar to the data shown in Figures 8 and 9 can be used to estimate the operating temperature of the power transistor using the measured resistance value and the measured temperature of the heat sink in thermal contact with the power transistor.

應當理解, 710 中繪製的值僅用於範例性元件並且僅用於解釋目的。對於與樣品元件不同的元件,可取得不同的值和校準曲線。本發明不限於此等圖示中所示的值和校準資料。It should be understood that the values plotted in Figures 7 to 10 are for exemplary elements only and for explanatory purposes only. Different values and calibration curves may be obtained for elements different from the sample element. The invention is not limited to the values and calibration data shown in these figures.

根據本發明實施例的操作FET的方法提供了用於感應以及評估FET的操作溫度的技術。在一些案例下,感應溫度的值可用於FET的反饋控制。根據一些實施例,操作場效電晶體的方法可包括以下動作:將訊號施加至場效電晶體的閘極、用FET放大訊號、以及於 FET(例如,源極場板)的敏感結構區域中施加探測電流。源極場板可耦合至FET的源極觸點。一種方法亦可以包括感應由施加的探測電流產生的電壓。在一些案例下,探測電流可施加至FET的閘極、浮閘極,閘極場板或浮閘極板。在其他案例下,探測電流可施加至FET的閘極、浮閘極,閘極場板或浮閘極板、以及源極場板中的至少兩個組件。Methods of operating a FET in accordance with embodiments of the present invention provide techniques for sensing and evaluating the operating temperature of a FET. In some cases, the value of the sensed temperature can be used for feedback control of the FET. According to some embodiments, a method of operating a field effect transistor may include the acts of applying a signal to the gate of the field effect transistor, amplifying the signal with a FET, and in a sensitive structure region of the FET (eg, source field plate) A probe current is applied. The source field plate can be coupled to the source contact of the FET. A method may also include sensing a voltage resulting from the applied probe current. In some cases, the probe current may be applied to the gate, floating gate, gate field plate, or floating gate plate of the FET. In other cases, the probe current may be applied to at least two components of the FET's gate, floating gate, gate field plate or floating gate plate, and source field plate.

操作FET的方法可包含從所感應的電壓評估場效電晶體的溫度,該溫度表示電晶體的閘極附近的局部峰值溫度。溫度的評估可包括使用場效電晶體的熱敏結構的校準結果。在一些實施例中,感應的電壓可不轉換為溫度。反而,感應的電壓可用作FET溫度的指示器。舉例而言,在一些實施方式中,操作FET的方法可包括將感應的電壓與參考值進行比較的動作。在一些案例下,可基於比較結果控制場效電晶體的功率位準。A method of operating a FET may include evaluating the temperature of the field effect transistor from the induced voltage, the temperature representing a local peak temperature near the gate of the transistor. Evaluation of temperature may include calibration results of thermally sensitive structures using field effect transistors. In some embodiments, the induced voltage may not be converted to temperature. Instead, the induced voltage can be used as an indicator of the temperature of the FET. For example, in some embodiments, a method of operating a FET may include the act of comparing the induced voltage to a reference value. In some cases, the power level of the FET may be controlled based on the comparison.

在溫度感應的一些態樣,一種方法可包括沿著熱敏結構(例如,源極場板或浮閘極板)的區域施加探測電流,該區域覆蓋FET的閘極的至少一部分。在一些案例中,施加探測電流的動作包括在該區域中施加交流電流。對於一些實施例,施加交流電流可包括於第一頻率施加交流電流,該第一頻率與由場效電晶體放大的載波或特徵頻率相差不小於25倍。In some aspects of temperature sensing, a method may include applying a probe current along a region of a heat sensitive structure (eg, a source field plate or a floating gate plate) that covers at least a portion of the gate of the FET. In some cases, the act of applying the probe current includes applying an alternating current in the region. For some embodiments, applying the alternating current may include applying the alternating current at a first frequency that is not less than 25 times different from the carrier or characteristic frequency amplified by the field effect transistor.

在一些實施方式中,施加探測電流可包括間歇地在該區域中施加電流,使得電流以時間間隔方式被驅動,該等時間間隔被其他在熱敏結構的區域中沒有被施加探測電流的時間間隔隔開。間歇地施加地探測電流可降低功耗以及對FET操作的干擾。根據一些實施例,可僅於輸入訊號上升至預定功率或電壓位準之上的期間及/或之後立即施加探測電流。舉例而言,比較器可被連接以感應施加至FET的閘極140的輸入位準,並響應於輸入位準超過或低於參考值而啟動電流源310、410。在此種方式中,可僅於電晶體處理大輸入訊號期間及/或之後立即執行溫度感應(例如,在峰值功率間隔期間及/或之後)。In some embodiments, applying the probe current may include intermittently applying the current in the region such that the current is driven at time intervals that are separated by other time intervals in the region of the thermally sensitive structure where the probe current is not applied separated. Applying the probe current intermittently reduces power consumption and interference with FET operation. According to some embodiments, the detection current may be applied only during and/or immediately after the input signal rises above a predetermined power or voltage level. For example, a comparator may be connected to sense the input level applied to the gate 140 of the FET and activate the current sources 310, 410 in response to the input level exceeding or falling below a reference value. In this manner, temperature sensing may be performed only during and/or immediately after the transistor is processing a large input signal (eg, during and/or after a peak power interval).

操作包括溫度感應的FET的方法亦可包含以下動作:放大訊號(例如,用於通信系統,醫學成像設備或微波應用)或切換電壓及/或電流(例如,用於功率轉換應用、發電、緩衝電路、或過壓/過流保護)。在功率應用中,具有熱感應的FET可用在功率放大器(如Doherty放大器)中,該功率放大器將訊號放大至不低於0.25瓦特的功率位準。在一些實施方式中,熱感應可用於功率放大器中,所述功率放大器將訊號放大至不低於0.5瓦特且高達150瓦特的範圍內的功率位準。應當理解,具有溫度感應的FET可用於各種不同的FET應用,並且如本文所述,使用習知閘極及/或源極結構的溫度感應技術對FET的正常操作幾乎沒有影響或無影響。Methods of operating FETs including temperature sensing may also include the act of amplifying a signal (eg, for communication systems, medical imaging equipment, or microwave applications) or switching voltage and/or current (eg, for power conversion applications, power generation, buffering circuit, or overvoltage/overcurrent protection). In power applications, FETs with thermal sensing can be used in power amplifiers, such as Doherty amplifiers, which amplify the signal to a power level of no less than 0.25 watts. In some embodiments, thermal induction can be used in power amplifiers that amplify signals to power levels in the range of no less than 0.5 watts and up to 150 watts. It should be understood that FETs with temperature sensing can be used in a variety of different FET applications, and that temperature sensing techniques using conventional gate and/or source structures, as described herein, have little or no effect on the normal operation of the FET.

場效電晶體能以不同的配置實施。範例性配置包含如下所述之配置(1)至(18)的組合。Field effect transistors can be implemented in different configurations. Exemplary configurations include combinations of configurations (1) to (18) described below.

(1)一種具有溫度感應的場效電晶體,包括:閘極;源極接觸;汲極接觸;耦合至源極接觸的源場板;連接至源極場板並且以第一距離隔開的第一對接觸片,用於施加探測電流通過源極場板;以及連接至源極場板並且係以第二距離隔開的第二對接觸片,用於感應探測電流流過的源極場板的區域上的電壓。(1) A field effect transistor with temperature sensing, comprising: a gate electrode; a source electrode contact; a drain electrode contact; a source field plate coupled to the source contact; a first pair of contact pads for applying a probe current through the source field plate; and a second pair of contact pads connected to the source field plate and separated by a second distance for sensing the source field through which the probe current flows voltage on the area of the board.

(2)根據配置(1)所述之場效電晶體,其中源極場板覆蓋閘極的至少一部分。(2) The field effect transistor of configuration (1), wherein the source field plate covers at least a portion of the gate.

(3)根據配置(1)或(2)所述之場效電晶體,其中當源極場板的溫度變化不低於0.001歐姆/ºC時,源極場板表現出電阻的變化。(3) The field effect transistor according to configuration (1) or (2), wherein the source field plate exhibits a change in resistance when the temperature change of the source field plate is not less than 0.001 ohm/ºC.

(4)根據配置(1)至(3)中任一項所述之場效電晶體,其中所述源極場板交流耦合至所述源極觸點。(4) The field effect transistor of any one of configurations (1) to (3), wherein the source field plate is AC coupled to the source contact.

(5)根據配置(1)至(4)中任一項所述之場效電晶體,其中所述第一對接觸片包括第一薄膜電阻器以及第二薄膜電阻器。(5) The field effect transistor according to any one of configurations (1) to (4), wherein the first pair of contact pieces includes a first thin film resistor and a second thin film resistor.

(6)根據配置(5)所述之場效電晶體,其中第一薄膜電阻器以及第二薄膜電阻器的電阻不低於300歐姆。(6) The field effect transistor according to configuration (5), wherein the resistances of the first thin film resistor and the second thin film resistor are not less than 300 ohms.

(7)根據配置(5)或(6)中任一項所述之場效電晶體,其中所述第二對接觸片包括第三薄膜電阻器以及第四薄膜電阻器。(7) The field effect transistor of any one of configurations (5) or (6), wherein the second pair of contact pieces includes a third thin film resistor and a fourth thin film resistor.

(8)根據配置(5)至(7)中任一項所述之場效電晶體,其中第三薄膜電阻器以及第四薄膜電阻器的電阻不低於300歐姆。(8) The field effect transistor according to any one of configurations (5) to (7), wherein the resistances of the third thin film resistor and the fourth thin film resistor are not less than 300 ohms.

(9)根據配置(1)至(8)中任一項所述之場效電晶體,進一步包括連接至第一對接觸片的探測電流源。(9) The field effect transistor of any one of configurations (1) to (8), further comprising a detection current source connected to the first pair of contact pads.

(10)根據配置(9)之場效電晶體,其中探測電流源配置成提供交流電流。(10) The field effect transistor of configuration (9), wherein the detection current source is configured to provide an alternating current.

(11)根據配置(9)或(10)所述之場效電晶體,其中交流電流具有在50千赫茲與5百萬赫茲之間的頻率。(11) The field effect transistor of configuration (9) or (10), wherein the alternating current has a frequency between 50 kHz and 5 megahertz.

(12)根據配置(1)至(11)中任一項所述之場效電晶體,進一步包括連接至第二對接觸片的電壓感應電路系統。(12) The field effect transistor of any one of configurations (1) to (11), further comprising voltage sensing circuitry connected to the second pair of contact pads.

(13)根據配置(12)所述之場效電晶體,其中電壓感應電路可向反饋電路提供輸出訊號,該反饋電路控制場效電晶體的功率位準。(13) The field effect transistor of configuration (12), wherein the voltage sensing circuit can provide an output signal to a feedback circuit that controls the power level of the field effect transistor.

(14)根據配置(1)至(13)中任一項所述之場效電晶體,其中所述場效電晶體被併入功率放大器,所述功率放大器配置成將訊號放大至不低於0.25瓦特的功率位準。(14) The field effect transistor according to any one of configurations (1) to (13), wherein the field effect transistor is incorporated into a power amplifier configured to amplify a signal not lower than 0.25 watt power level.

(15)根據配置(1)至(14)中任一項所述之場效電晶體,進一步包括由閘極控制的主動區域,其中主動區域包括GaN、GaAs、或InP。(15) The field effect transistor of any one of configurations (1) to (14), further comprising an active region controlled by a gate, wherein the active region includes GaN, GaAs, or InP.

(16)根據配置(1)至(14)中任一項所述之場效電晶體,進一步包括由閘極控制的主動區域,其中主動區域包括Si。(16) The field effect transistor of any one of configurations (1) to (14), further comprising an active region controlled by a gate, wherein the active region includes Si.

(17)根據配置(1)至(16)中任一項所述之場效電晶體,其中所述場效電晶體為LDMOS FET、MOSFET、MISFET、或MODFET。(17) The field effect transistor according to any one of configurations (1) to (16), wherein the field effect transistor is an LDMOS FET, MOSFET, MISFET, or MODFET.

(18)根據配置(1)至(16)中任一項所述之場效電晶體,其中所述所述場效電晶體為HEMT、HFET、或pHEMT。(18) The field effect transistor of any one of configurations (1) to (16), wherein the field effect transistor is a HEMT, HFET, or pHEMT.

用於操作場效電晶體的方法可包括各種動作以及態樣。範例性方法包含如下所述之方法特徵(19)至(26)的組合。此等方法可至少部分地用於操作上文列出的配置的場效電晶體。Methods for operating field effect transistors may include various acts and aspects. Exemplary methods include combinations of method features (19) to (26) as described below. Such methods may be used, at least in part, to operate field effect transistors of the configurations listed above.

(19)一種操作場效電晶體的方法,該方法包括:將訊號施加至場效電晶體的閘極;以該場效電晶體放大該該訊號訊號;施加探測電流至場效電晶體的源極場板的區域,其中源極場板耦合至場效電晶體的源極觸點;以及感應藉由探測電流產生的電壓。(19) A method of operating a field effect transistor, the method comprising: applying a signal to a gate of the field effect transistor; amplifying the signal signal with the field effect transistor; applying a detection current to a source of the field effect transistor a region of the pole field plate, wherein the source field plate is coupled to the source contact of the field effect transistor; and inducing a voltage generated by the probe current.

(20)根據(19)的方法,進一步包括從所感應到的電壓評估場效電晶體的峰值溫度。(20) The method of (19), further comprising evaluating a peak temperature of the field effect transistor from the induced voltage.

(21)根據(20)的方法,其中評估包括使用與場效電晶體相關的校準結果。(21) The method according to (20), wherein evaluating includes using calibration results associated with field effect transistors.

(22)根據(19)至(21)中任一項所述之方法,進一步包括:包括將感應到的電壓與參考值進行比較;以及基於該比較控制場效電晶體的功率位準。(22) The method of any one of (19) to (21), further comprising: comparing the sensed voltage with a reference value; and controlling the power level of the field effect transistor based on the comparison.

(23)根據(19)至(22)中任一項所述之方法,其中施加探測電流包括沿著源極場板的區域施加探測電流,該區域覆蓋閘極的至少一部分。(23) The method of any one of (19) to (22), wherein applying the probe current includes applying the probe current along a region of the source field plate that covers at least a portion of the gate.

(24)根據(19)至(23)中任一項所述之方法,其中施加探測電流包括在該區域中施加交流電流。(24) The method of any one of (19) to (23), wherein applying the probe current includes applying an alternating current in the region.

(25)根據(24)的方法,其中施加交流電流包括於第一頻率施加交流電流,該第一頻率與由場效電晶體放大的載波頻率相差不小於10倍。(25) The method according to (24), wherein applying the alternating current includes applying the alternating current at a first frequency that is not less than 10 times different from the carrier frequency amplified by the field effect transistor.

(26)根據(19)至(25)中任一項之方法,其中施加探測電流包括間歇地在該區域中施加探測電流,使得探測電流以時間間隔方式被驅動,該等時間間隔被源極場板的區域中沒有探測電流被驅動的其他時間間隔隔開。(26) The method according to any one of (19) to (25), wherein applying the probe current includes intermittently applying the probe current in the region such that the probe current is driven at time intervals, the time intervals being driven by the source Regions of the field plate where no probe current is driven are separated by other time intervals.

場效電晶體能以不同的額外配置實施。範例性配置包含如下所述之配置(27)至(43)的組合。Field effect transistors can be implemented in different additional configurations. Exemplary configurations include combinations of configurations (27) through (43) as described below.

(27)一種具有溫度感應的場效電晶體,包括:閘極;與閘極相鄰並具有延伸長度的浮閘極板;源極觸點;汲極觸點;連接至浮閘極板並且以第一距離隔開的第一對接觸片,用於施加探測電流通過浮閘極板;以及連接至浮閘極板並且係以第二距離隔開的第二對接觸片,用於感應探測電流流過的浮閘極板的區域上的電壓。(27) A field effect transistor with temperature sensing, comprising: a gate; a floating gate plate adjacent to the gate and having an extended length; a source contact; a drain contact; connected to the floating gate plate and a first pair of contact pads separated by a first distance for applying a detection current through the floating gate plate; and a second pair of contact pads connected to the floating gate plate and separated by a second distance for inductive detection The voltage on the area of the floating gate plate through which current flows.

(28)根據配置(27)的場效電晶體,其中浮閘極板覆蓋閘極的至少一部分。(28) The field effect transistor of configuration (27), wherein the floating gate plate covers at least a portion of the gate.

(29)根據配置(27)或(28)之場效電晶體,其中當浮閘極板的溫度變化不低於0.001歐姆/ºC時,浮閘極板表現出電阻的變化。(29) The field effect transistor according to configuration (27) or (28), wherein the floating gate plate exhibits a change in resistance when the temperature of the floating gate plate changes by not less than 0.001 ohm/ºC.

(30)根據配置(27)至(29)中任一項所述之場效電晶體,其中所述第一對接觸片包括第一薄膜電阻器以及第二薄膜電阻器。(30) The field effect transistor of any one of configurations (27) to (29), wherein the first pair of contact pieces includes a first thin film resistor and a second thin film resistor.

(31)根據配置(30)所述之場效電晶體,其中第一薄膜電阻器以及第二薄膜電阻器的電阻不低於300歐姆。(31) The field effect transistor according to configuration (30), wherein the resistances of the first thin film resistor and the second thin film resistor are not less than 300 ohms.

(32)根據配置(30)或(31)中任一項所述之場效電晶體,其中所述第二對接觸片包括第三薄膜電阻器以及第四薄膜電阻器。(32) The field effect transistor of any one of configurations (30) or (31), wherein the second pair of contact pieces includes a third thin film resistor and a fourth thin film resistor.

(33)根據配置(32)所述之場效電晶體,其中第三薄膜電阻器以及第四薄膜電阻器的電阻不低於300歐姆。(33) The field effect transistor according to the configuration (32), wherein the resistances of the third thin film resistor and the fourth thin film resistor are not less than 300 ohms.

(34)根據配置(27)至(33)中任一項所述之場效電晶體,進一步包括連接至第一對接觸片的探測電流。(34) The field effect transistor of any one of configurations (27) to (33), further comprising a probe current connected to the first pair of contact pads.

(35)根據配置(34)之場效電晶體,其中探測電流源配置成提供交流電流。(35) The field effect transistor of configuration (34), wherein the detection current source is configured to provide an alternating current.

(36)根據配置(34)或(35)所述之場效電晶體,其中交流電流具有在50千赫茲與5百萬赫茲之間的頻率。(36) The field effect transistor of configuration (34) or (35), wherein the alternating current has a frequency between 50 kHz and 5 megahertz.

(37)根據配置(27)至(36)中任一項所述之場效電晶體,進一步包括連接至第二對接觸片的電壓感應電路系統。(37) The field effect transistor of any one of configurations (27) to (36), further comprising voltage sensing circuitry connected to the second pair of contact pads.

(38)根據配置(37)所述之場效電晶體,其中電壓感應電路可向反饋電路提供輸出訊號,該反饋電路控制場效電晶體的功率位準。(38) The field effect transistor of configuration (37), wherein the voltage sensing circuit provides an output signal to a feedback circuit that controls the power level of the field effect transistor.

(39)根據配置(27)至(38)中任一項所述之場效電晶體,其中所述場效電晶體被併入功率放大器,所述功率放大器配置成將訊號放大至不低於0.25瓦特的功率位準。(39) The field effect transistor of any one of configurations (27) to (38), wherein the field effect transistor is incorporated into a power amplifier configured to amplify a signal to no less than 0.25 watt power level.

(40)根據配置(27)至(39)中任一項所述之場效電晶體,進一步包括由閘極控制的主動區域,其中主動區域包括GaN、GaAs、或InP。(40) The field effect transistor of any one of configurations (27) to (39), further comprising an active region controlled by a gate, wherein the active region comprises GaN, GaAs, or InP.

(41)根據配置(27)至(39)中任一項所述之場效電晶體,進一步包括由閘極控制的主動區域,其中主動區域包括Si。(41) The field effect transistor of any one of configurations (27) to (39), further comprising an active region controlled by a gate, wherein the active region includes Si.

(42)根據配置(27)至(41)中任一項所述之場效電晶體,其中所述場效電晶體為LDMOS FET、MOSFET、MISFET、或MODFET。(42) The field effect transistor of any one of configurations (27) to (41), wherein the field effect transistor is an LDMOS FET, MOSFET, MISFET, or MODFET.

(43)根據配置(27)至(41)中任一項所述之場效電晶體,其中所述所述場效電晶體為HEMT、HFET、或pHEMT。(43) The field effect transistor of any one of configurations (27) to (41), wherein the field effect transistor is a HEMT, HFET, or pHEMT.

用於操作配置(27)至(43)中任一者之場效電晶體的方法可包含各種動作以及態樣。範例性方法包含如下所述之方法特徵(44)至(51)的組合。此等方法可至少部分地用於操作以上列出之配置(27)至(43)的場效電晶體。Methods for operating field effect transistors of any of configurations (27)-(43) may include various acts and aspects. Exemplary methods include combinations of method features (44) to (51) as described below. These methods can be used, at least in part, to operate field effect transistors of the configurations (27) to (43) listed above.

(44)一種操作場效電晶體的方法,該方法包括:將訊號施加至場效電晶體的閘極;以該場效電晶體放大該訊號訊號;沿著場效電晶體的浮閘極板的區施加探測電流,其中浮閘極板覆蓋閘極的至少一部分;以及感應藉由探測電流產生的電壓。(44) A method of operating a field effect transistor, the method comprising: applying a signal to a gate of the field effect transistor; amplifying the signal signal with the field effect transistor; along a floating gate plate of the field effect transistor A probe current is applied to the region, wherein the floating gate plate covers at least a portion of the gate; and a voltage generated by the probe current is induced.

(45)根據(44)的方法,進一步包括從所感應到的電壓評估場效電晶體的峰值溫度。(45) The method of (44), further comprising evaluating a peak temperature of the field effect transistor from the sensed voltage.

(46)根據(45)的方法,其中評估包括使用與場效電晶體相關的校準結果。(46) The method of (45), wherein evaluating includes using calibration results associated with field effect transistors.

(47)根據(44)至(46)中任一項所述之方法,進一步包括:包括將感應到的電壓與參考值進行比較;以及基於該比較控制場效電晶體的功率位準。(47) The method of any one of (44) to (46), further comprising: comparing the sensed voltage with a reference value; and controlling the power level of the field effect transistor based on the comparison.

(48)根據(44)至(47)中任一項所述之方法,其中施加探測電流包括沿著浮極場板的區域施加探測電流,該區域覆蓋閘極的至少一部分(48) The method of any one of (44) to (47), wherein applying the probe current includes applying the probe current along a region of the floating field plate that covers at least a portion of the gate

(49)根據(44)至(48)中任一項所述之方法,其中施加探測電流包括施加交流電流至在該區域。(49) The method of any one of (44) to (48), wherein applying the probe current includes applying an alternating current to the region.

(50)根據(49)的方法,其中施加交流電流包括於第一頻率施加交流電流,該第一頻率與由場效電晶體放大的訊號之載波頻率相差不小於10倍。(50) The method according to (49), wherein applying the alternating current includes applying the alternating current at a first frequency that is not less than 10 times different from the carrier frequency of the signal amplified by the field effect transistor.

(51)根據(44)至(50)中任一項之方法,其中施加探測電流包括間歇地施加探測電流至該區域,使得探測電流以時間間隔方式被驅動,該等時間間隔被浮閘極板的區域中沒有探測電流被驅動的其他時間間隔隔開。(51) The method according to any one of (44) to (50), wherein applying the detection current comprises applying the detection current to the region intermittently such that the detection current is driven at time intervals, the time intervals being driven by the floating gate Areas of the plate where no probe current is driven are separated by other time intervals.

場效電晶體能以不同的額外配置實施。範例性配置包含如下所述之配置(52)至(62)的組合。Field effect transistors can be implemented in different additional configurations. Exemplary configurations include combinations of configurations (52) through (62) as described below.

(52)一種具有溫度感應的場效電晶體,包括:具有延伸的長度的閘極金屬,具有第一端以及相對的第二端;源極觸點;汲極觸點;第一接觸片,在靠近第一端處連接至閘極金屬,用於施加交流探測電流至閘極金屬;電容器以及電阻器,串聯連接在參考電位與遠離第一端的閘極金屬的端部區域之間;一對接觸片,連接至閘極金屬的分離區域,用於響應於交流探測電流而感應沿著閘極金屬的電壓下降。(52) A field effect transistor with temperature sensing, comprising: a gate metal having an extended length, having a first end and an opposite second end; a source contact; a drain contact; a first contact piece, connected to the gate metal near the first end for applying an alternating detection current to the gate metal; a capacitor and a resistor connected in series between the reference potential and the end region of the gate metal remote from the first end; a A pair of contact pads is connected to a separate area of the gate metal for inducing a voltage drop along the gate metal in response to an AC probe current.

(53)根據配置(52)所述之場效電晶體,其中當閘極金屬的溫度變化不低於0.001歐姆/ºC時,閘極金屬表現出電阻的變化。(53) The field effect transistor of configuration (52), wherein the gate metal exhibits a change in resistance when the temperature of the gate metal changes by not less than 0.001 ohm/ºC.

(54)根據配置(52)或(53)中任一項所述之場效電晶體,進一步包括連接至第一接觸片的探測電流源。(54) The field effect transistor of any one of configurations (52) or (53), further comprising a probe current source connected to the first contact pad.

(55)根據配置(52)至(54)中任一項所述之場效電晶體,其中交流探測電流具有在50千赫茲與5百萬赫茲之間的頻率。(55) The field effect transistor of any one of configurations (52) to (54), wherein the alternating current probe current has a frequency between 50 kilohertz and 5 megahertz.

(56)根據配置(52)至(55)中任一項所述之場效電晶體,進一步包括連接至所述對接觸片的電壓感應電路系統。(56) The field effect transistor of any one of configurations (52) to (55), further comprising voltage sensing circuitry connected to the pair of contact pads.

(57)根據配置(56)所述之場效電晶體,其中電壓感應電路可向反饋電路提供輸出訊號,該反饋電路控制場效電晶體的功率位準。(57) The field effect transistor of configuration (56), wherein the voltage sensing circuit can provide an output signal to a feedback circuit that controls the power level of the field effect transistor.

(58)根據配置(52)至(57)中任一項所述之場效電晶體,其中所述場效電晶體被併入功率放大器,所述功率放大器配置成將訊號放大至不低於0.25瓦特的功率位準。(58) The field effect transistor of any one of configurations (52) to (57), wherein the field effect transistor is incorporated into a power amplifier configured to amplify a signal to no less than 0.25 watt power level.

(59)根據配置(52)至(58)中任一項所述之場效電晶體,進一步包括由閘極控制的主動區域,其中主動區域包括GaN、GaAs、或InP。(59) The field effect transistor of any one of configurations (52) to (58), further comprising an active region controlled by a gate, wherein the active region comprises GaN, GaAs, or InP.

(60)根據配置(52)至(58)中任一項所述之場效電晶體,進一步包括由閘極控制的主動區域,其中主動區域包括Si。(60) The field effect transistor of any one of configurations (52) to (58), further comprising an active region controlled by a gate, wherein the active region includes Si.

(61)根據配置(52)至(60)中任一項所述之場效電晶體,其中所述場效電晶體為LDMOS FET、MOSFET、MISFET、或MODFET。(61) The field effect transistor of any one of configurations (52) to (60), wherein the field effect transistor is an LDMOS FET, MOSFET, MISFET, or MODFET.

(62)根據配置(52)至(60)中任一項所述之場效電晶體,其中所述所述場效電晶體為HEMT、HFET、或pHEMT。(62) The field effect transistor of any one of configurations (52) to (60), wherein the field effect transistor is a HEMT, HFET, or pHEMT.

用於操作配置(52)至(62)中任一者之場效電晶體的方法可包含各種動作以及態樣。範例性方法包含如下所述之方法特徵(63)至(67)的組合。此等方法可至少部分地用於操作以上列出之配置(52)至(62)的場效電晶體。Methods for operating field effect transistors of any of configurations (52)-(62) may include various acts and aspects. Exemplary methods include combinations of method features (63) to (67) as described below. These methods may be used, at least in part, to operate field effect transistors of the configurations (52)-(62) listed above.

(63)一種操作場效電晶體的方法,該方法包括:將訊號施加至場效電晶體的閘極金屬上;以場效電晶體放大訊號;施加交流探測電流至場效電晶體的閘極金屬的第一端部區域,其中閘極金屬的第二端部區域遠離第一端部區域且藉由在參考電位與第二端部區域之間串聯連接的電容器與電阻器終止;以及感應由交流探測電流沿著閘極金屬的長度產生的電壓下降。(63) A method of operating a field effect transistor, the method comprising: applying a signal to a gate metal of the field effect transistor; amplifying the signal with the field effect transistor; applying an alternating current detection current to the gate electrode of the field effect transistor a first end region of metal, wherein a second end region of gate metal is remote from the first end region and terminated by a capacitor and a resistor connected in series between the reference potential and the second end region; and sensing by The AC probe current produces a voltage drop along the length of the gate metal.

(64)根據(63)的方法,進一步包括從所感應到的電壓評估場效電晶體的峰值溫度。(64) The method of (63), further comprising evaluating a peak temperature of the field effect transistor from the sensed voltage.

(65)根據(63)或(64)所述之方法,進一步包括:將感應到的電壓與參考值進行比較;以及基於該比較控制場效電晶體的功率位準。(65) The method according to (63) or (64), further comprising: comparing the sensed voltage with a reference value; and controlling the power level of the field effect transistor based on the comparison.

(66)根據(63)至(65)任一項所述之方法,其中施加交流探測電流包括於第一頻率施加交流探測電流,該第一頻率與訊號之載波頻率相差不小於10倍。(66) The method according to any one of (63) to (65), wherein applying the AC detection current includes applying the AC detection current at a first frequency that differs from the carrier frequency of the signal by not less than 10 times.

(67)根據(63)至(67)中任一項所述之方法,其中施加交流探測電流包括間歇地施加交流探測電流至第一端部區域,使得交流探測電流以時間間隔方式被驅動,該等時間間隔被沿著閘極金屬的長度沒有交流探測電流被驅動的其他時間間隔隔開。(67) The method of any one of (63) to (67), wherein applying the alternating detection current comprises intermittently applying the alternating detection current to the first end region such that the alternating detection current is driven at time intervals, The time intervals are separated by other time intervals along the length of the gate metal where no AC probe current is driven.

場效電晶體能以不同的額外配置實施。範例性配置包含如下所述之配置(68)至(78)的組合。Field effect transistors can be implemented in different additional configurations. Exemplary configurations include combinations of configurations (68) through (78) as described below.

(68)一種具有溫度感應的場效電晶體,包括:具有延伸長度的閘極金屬,該閘極金屬帶有第一端與第二端;源極;汲極;以及第一接觸片,在靠近第一端處連接至閘極金屬的第一端部區域且配置成施加交流探測電流至閘極金屬,其中沒有其他接觸片連接至用於傳導探測電流的閘極金屬,並且其中基本上所有的探測電流在施加後係耦合至場效電晶體源。(68) A field effect transistor with temperature sensing, comprising: a gate metal having an extended length, the gate metal having a first end and a second end; a source electrode; a drain electrode; and a first contact piece, at a first end region connected to the gate metal near the first end and configured to apply an alternating probing current to the gate metal, wherein no other contact pads are connected to the gate metal for conducting the probing current, and wherein substantially all of the The probe current is coupled to the FET source after application.

(69)根據配置(68)所述之場效電晶體,進一步包括連接至閘極金屬的分離區域的一對接觸片,用於響應交流探測電流而感應沿著閘極金屬的電壓下降。(69) The field effect transistor of configuration (68), further comprising a pair of contact pads connected to separate regions of the gate metal for inducing a voltage drop across the gate metal in response to the alternating probing current.

(70)根據配置(69)所述之場效電晶體,進一步包括連接至該對接觸片的電壓感應電路。(70) The field effect transistor of configuration (69), further comprising a voltage sensing circuit connected to the pair of contact pads.

(71)根據配置(70)所述之場效電晶體,其中電壓感應電路系統可向反饋電路提供輸出訊號,該反饋電路控制場效電晶體的功率位準。(71) The field effect transistor of configuration (70), wherein the voltage sensing circuitry provides an output signal to a feedback circuit that controls the power level of the field effect transistor.

(72)根據配置(68)至(71)中任一項所述之場效電晶體,其中當閘極金屬的溫度變化不低於0.001歐姆/ºC時,閘極金屬表現出電阻的變化。(72) The field effect transistor of any one of configurations (68) to (71), wherein the gate metal exhibits a change in resistance when the temperature of the gate metal changes by not less than 0.001 ohm/ºC.

(73)根據配置(68)至(72)中任一項所述之場效電晶體,其中交流探測電流具有在50千赫茲與5百萬赫茲之間的頻率。(73) The field effect transistor of any one of configurations (68) to (72), wherein the alternating current probe current has a frequency between 50 kilohertz and 5 megahertz.

(74)根據配置(68)至(73)中任一項所述之場效電晶體,其中所述場效電晶體被併入功率放大器,所述功率放大器配置成將訊號放大至不低於0.25瓦特的功率位準。(74) The field effect transistor of any one of configurations (68) to (73), wherein the field effect transistor is incorporated into a power amplifier configured to amplify a signal to no less than 0.25 watt power level.

(75)根據配置(68)至(74)中任一項所述之場效電晶體,進一步包括由閘極金屬控制的主動區域,其中主動區域包括GaN、GaAs、或InP。(75) The field effect transistor of any one of configurations (68) to (74), further comprising an active region controlled by a gate metal, wherein the active region comprises GaN, GaAs, or InP.

(76)根據配置(68)至(74)中任一項所述之場效電晶體,進一步包括由閘極金屬控制的主動區域,其中主動區域包括Si。(76) The field effect transistor of any one of configurations (68) to (74), further comprising an active region controlled by a gate metal, wherein the active region includes Si.

(77)根據配置(68)至(76)中任一項所述之場效電晶體,其中所述場效電晶體為LDMOS FET、MOSFET、MISFET、或MODFET。(77) The field effect transistor of any one of configurations (68) to (76), wherein the field effect transistor is an LDMOS FET, MOSFET, MISFET, or MODFET.

(78)根據配置(68)至(76)中任一項所述之場效電晶體,其中所述場效電晶體為HEMT、HFET、或pHEMT。(78) The field effect transistor of any one of configurations (68) to (76), wherein the field effect transistor is a HEMT, HFET, or pHEMT.

用於操作配置(68)至(78)中任一者所述之場效電晶體的方法可包含各種動作以及態樣。範例性方法包含如下所述之方法特徵(79)至(83)的組合。此等方法可至少部分地用於操作以上列出之配置(68)至(78)的場效電晶體。The method for operating the field effect transistor of any of configurations (68)-(78) may include various acts and aspects. Exemplary methods include combinations of method features (79) to (83) as described below. These methods may be used, at least in part, to operate field effect transistors of the configurations (68)-(78) listed above.

(79)一種操作電晶體的方場效法,該方法包括:將訊號施加至場效電晶體的閘極金屬;以該場效電晶體放大該訊號;施加交流探測電流至場效電晶體的閘極金屬的區域,其中基本上所有的交流探測電流係耦合至場效晶體的源極;以及感應由交流探測電流沿著閘極金屬的長度產生的電壓下降。(79) A square field effect method for operating a transistor, the method comprising: applying a signal to a gate metal of a field effect transistor; amplifying the signal with the field effect transistor; applying an alternating current detection current to the gate of the field effect transistor a region of the gate metal where substantially all of the AC probe current is coupled to the source of the field effect crystal; and induces a voltage drop along the length of the gate metal produced by the AC probe current.

(80)根據(79)的方法,進一步包括從所感應到的電壓評估場效電晶體的峰值溫度。(80) The method of (79), further comprising evaluating a peak temperature of the field effect transistor from the sensed voltage.

(81)根據(79)或(80)所述之方法,進一步包括:將感應到的電壓與參考值進行比較;以及基於該比較控制場效電晶體的功率位準。(81) The method of (79) or (80), further comprising: comparing the sensed voltage with a reference value; and controlling the power level of the field effect transistor based on the comparison.

(82)根據(79)至(81)任一項所述之方法,其中施加交流探測電流包括於第一頻率施加交流探測電流,該第一頻率與由訊號之載波頻率相差不小於10倍。(82) The method according to any one of (79) to (81), wherein applying the AC detection current includes applying the AC detection current at a first frequency that differs from the carrier frequency of the signal by not less than 10 times.

(83)根據(79)至(82)中任一項所述之方法,其中施加交流探測電流包括間歇地施加交流探測電流至區域,使得交流探測電流以時間間隔方式被驅動,該等時間間隔被所述閘極金屬的區域中沒有交流探測電流被驅動的其他時間間隔隔開。(83) The method of any one of (79) to (82), wherein applying the AC detection current includes intermittently applying the AC detection current to the zone such that the AC detection current is driven at time intervals, the time intervals Other time intervals in which no AC probe current is driven are separated by the region of the gate metal.

結論in conclusion

在一些實施例中,術語「近似」以及「約」用於表示目標值的±20%內,在一些實施例中為目標值的±10%內,在一些實施例中為目標值的±5%內,並且在一些實施例中為目標值的±2%範圍內。術語「近似」以及「大約」可能包含目標值。In some embodiments, the terms "approximately" and "about" are used to mean within ±20% of the target value, in some embodiments within ±10% of the target value, and in some embodiments ±5% of the target value %, and in some embodiments ±2% of the target value. The terms "approximately" and "approximately" may include target values.

本文中描述的技術可以一種方法體現,其中已經描述了至少一些動作。作為方法的一部分而執行的動作可能以任何合適的方式排序。因此,實施例可能以不同於描述的執行動作的順序所構成,即便說明性實施例中被描述為有順序的動作,其中可能包含同時執行一些動作。此外,在一些實施例中,方法可能包含比該等描述中更多的動作,並且在其他實施例中,可能比該等描述的動作更少。The techniques described herein can be embodied in a method in which at least some of the acts have been described. Actions performed as part of a method may be ordered in any suitable manner. Thus, embodiments may be constructed in a different order to perform actions than described, even though illustrative embodiments are described as sequential actions, possibly including performing some actions concurrently. Furthermore, in some embodiments, methods may contain more actions than those described, and in other embodiments, there may be fewer actions than those described.

隨著如此描述了本發明的至少一個說明性實施例,熟習此項技術領域者將容易想到各種改變、修改、以及改進。如此改變、修改、以及改進、意圖被本發明的精神與範圍所涵蓋。此外,補充說明僅為範例性的,並非意圖限制。本發明僅被後文的申請專利範圍以及其均等物所界定者所限定。Having thus described at least one illustrative embodiment of this invention, various changes, modifications, and improvements will readily occur to those skilled in the art. Such changes, modifications, and improvements are intended to be encompassed by the spirit and scope of the present invention. Furthermore, the supplementary descriptions are exemplary only and not intended to be limiting. The present invention is limited only by those defined by the following claims and their equivalents.

S‧‧‧源極D‧‧‧汲極G‧‧‧閘極Lg‧‧‧長度Wg‧‧‧寬度方向D‧‧‧距離IP‧‧‧探測電流VS‧‧‧電壓RS‧‧‧電阻值R1、R2、R3、R4‧‧‧電阻器VM‧‧‧輸出電壓Vref‧‧‧預設參考電壓CS‧‧‧控制訊號Vgs‧‧‧閘極偏壓C1‧‧‧電容器IP‧‧‧探測器電流VS(T)‧‧‧電壓下降10‧‧‧HEMT105‧‧‧基材112‧‧‧緩衝層114‧‧‧導電層115‧‧‧電隔離區域/隔離區116‧‧‧阻擋層118‧‧‧半導體蓋層120‧‧‧電絕緣介電層122‧‧‧絕緣層130‧‧‧源極沉積130‧‧‧源極132‧‧‧汲極沉積140‧‧‧閘極金屬/浮閘極金屬145‧‧‧場板147‧‧‧浮閘極板150‧‧‧2DEG155‧‧‧最熱區域/熱點160‧‧‧源極觸點/閘極金屬161‧‧‧內連線162‧‧‧汲極觸點170‧‧‧導電引線180‧‧‧源極觸點板182‧‧‧汲極觸點板185‧‧‧閘極觸點墊210a、210b、212a、212b‧‧‧導電接觸片211a、211b、213a、213b‧‧‧接觸片220‧‧‧高電阻性阻抗元件300‧‧‧溫度感應電路系統310‧‧‧電流源320‧‧‧差分放大器330‧‧‧比較器410‧‧‧AC電流源、電流源420‧‧‧AC電壓感應電路系統660‧‧‧源極場板665‧‧‧導電內連接667‧‧‧電容耦合器S‧‧‧Source D‧‧‧Drain G‧‧‧Gate L g ‧‧‧Length W g ‧‧‧Width direction D‧‧‧Distance IP ‧‧‧Detecting current V S ‧‧‧Voltage R S ‧‧‧Resistance value R1, R2, R3, R4‧‧‧Resistor VM ‧‧‧Output voltage V ref ‧‧‧Default reference voltage C S ‧‧‧Control signal V gs ‧‧‧Gate bias C1‧‧‧Capacitor IP ‧‧‧Detector current V S (T)‧‧‧Voltage drop 10‧‧‧HEMT105‧‧‧Substrate 112‧‧‧Buffer layer 114‧‧‧Conducting layer 115‧‧‧Electrical Isolation Regions/Isolation Regions 116‧‧‧Barrier Layer 118‧‧‧Semiconductor Cap Layer 120‧‧‧Electrically Insulating Dielectric Layer 122‧‧‧Insulating Layer 130‧‧‧Source Deposition 130‧‧‧Source Electrode 132‧‧‧ Drain Deposition 140‧‧‧Gate Metal/Floating Gate Metal 145‧‧‧Field Plate 147‧‧‧Floating Gate Plate 150‧‧‧2DEG155‧‧‧Hottest Area/Hot Spot 160‧‧‧Source Contact /Gate Metal 161‧‧‧Interconnect 162‧‧‧Drain Contact 170‧‧‧Conductive Lead 180‧‧‧Source Contact Plate 182‧‧‧Drain Contact Plate 185‧‧‧Gate Contact Dot pads 210a, 210b, 212a, 212b‧‧‧Conductive contact pads 211a, 211b, 213a, 213b‧‧‧contact pads 220‧‧‧High resistive impedance element 300‧‧‧Temperature sensing circuit system 310‧‧‧Current source 320‧‧‧Differential Amplifiers330‧‧‧Comparators 410‧‧‧AC Current Sources, Current Sources420‧‧‧AC Voltage Sensing Circuitry 660‧‧‧Source Field Plates 665‧‧‧Conductive Interconnects 667‧‧‧ Capacitive Coupler

第1A 為根據一些實施例的正視圖,圖示高電子遷移率電晶體(HEMT)之結構; FIG . 1A is a front view illustrating the structure of a high electron mobility transistor (HEMT) according to some embodiments;

第1B 為根據一些實施例的平面圖,圖示HEMT的閘極、源極以及汲極之結構; Figure 1B is a plan view illustrating the gate, source and drain structure of a HEMT according to some embodiments;

第1C 為根據一些實施例的平面圖,圖示HEMT閘極、源極以及汲極之線性陣列; 1C is a plan view illustrating a linear array of HEMT gates, sources, and drains, according to some embodiments;

第2A 為根據一些實施例的HEMT之正視圖,該HEMT包含浮閘極板; FIG . 2A is a front view of a HEMT including a floating gate plate according to some embodiments;

第2B 為根據一些實施例的平面圖,圖示包含浮閘極板的HEMT之閘極、源極以及汲極的結構; Figure 2B is a plan view illustrating the structure of the gate, source and drain of a HEMT including a floating gate plate, according to some embodiments;

第2C 為根據一些實施例的平面圖,圖示包含浮閘極板的HEMT的閘極、源極以及汲極的結構; Figure 2C is a plan view illustrating the structure of the gate, source, and drain of a HEMT including a floating gate plate, according to some embodiments;

第3 為圖示可與根據一些實施例的浮閘極板使用之溫度感應電路系統; FIG . 3 is a diagram illustrating temperature sensing circuitry that may be used with floating gate plates according to some embodiments;

第4 為圖示可使用根據一些實施例的電晶體的閘極之溫度感應電路系統; FIG . 4 is a diagram illustrating temperature sensing circuitry that may use gates of transistors according to some embodiments;

第5 為圖示可使用根據一些實施例的電晶體的閘極之溫度感應電路系統; FIG . 5 is a diagram illustrating temperature sensing circuitry that may use gates of transistors according to some embodiments;

第6A 為根據一些實施例的正視圖,圖示具有可用於熱感應的源極場板之HEMT; FIG . 6A is a front view illustrating a HEMT with a source field plate usable for thermal induction, according to some embodiments;

第6B 圖示根據一些實施例的平面圖,圖示包含源極場板的HEMT的閘極、源極以及汲極的結構; Figure 6B illustrates a plan view illustrating the structure of a gate, source, and drain of a HEMT including a source field plate;

第6C 圖示根據一些實施例的平面圖,圖示包含浮源極場板的HEMT的閘極、源極以及汲極的結構; Figure 6C illustrates a plan view illustrating the structure of a gate, source, and drain of a HEMT including a floating source field plate;

第7 為繪製了根據一些實施例,由所量測的源極場板電阻作為基板溫度的函數之標繪圖;FIG . 7 is a graph plotting measured source field plate resistance as a function of substrate temperature in accordance with some embodiments;

第8 為繪製了根據一些實施例,由所量測的源極場板電阻作為不同基板溫度的放大器運作功率的函數之標繪圖;FIG . 8 is a graph plotting the measured source field plate resistance as a function of amplifier operating power for various substrate temperatures, according to some embodiments;

第9 為基於 8 的結果,繪製了根據一些實施例的源極場板的推斷溫度,作為在不同基板溫度下的放大器運作功率的函數之標繪圖;以及 FIG . 9 is a plot of the inferred temperature of the source field plate as a function of amplifier operating power at various substrate temperatures, according to some embodiments, based on the results of FIG . 8 ; and

第10 為基於 9 的結果,繪製了根據一些實施例所計算的源極場板熱阻作為基板溫度的函數之標繪圖。 FIG . 10 is a plot of the source field plate thermal resistance as a function of substrate temperature calculated according to some embodiments, based on the results of FIG . 9 .

當結合附圖下面給的詳細描述,所示實施例的特徵和優點將變得更加明顯。The features and advantages of the illustrated embodiments will become more apparent from the detailed description given below in conjunction with the accompanying drawings.

國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic storage information (please note in the order of storage institution, date and number) None

國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Foreign deposit information (please note in the order of deposit country, institution, date and number) None

105‧‧‧基材 105‧‧‧Substrate

112‧‧‧緩衝層 112‧‧‧Buffer layer

114‧‧‧導電層 114‧‧‧Conductive layer

120‧‧‧電絕緣介電層 120‧‧‧Electrically insulating dielectric layer

122‧‧‧絕緣層 122‧‧‧Insulating layer

140‧‧‧閘極金屬/浮閘極金屬 140‧‧‧Gate Metal/Floating Gate Metal

155‧‧‧最熱區域/熱點 155‧‧‧Hottest area/hot spot

160‧‧‧源極觸點/閘極金屬 160‧‧‧Source Contact/Gate Metal

162‧‧‧汲極觸點 162‧‧‧Drain Contact

660‧‧‧源極場板 660‧‧‧Source Field Plate

D‧‧‧距離 D‧‧‧distance

G‧‧‧閘極 G‧‧‧Gate

Lg‧‧‧長度 L g ‧‧‧Length

S‧‧‧源極 S‧‧‧source

Claims (83)

一種具有溫度感應的場效電晶體,包括: 一閘極; 一源極觸點; 一汲極觸點; 一耦合至該源極觸點的源極場板; 一第一對接觸片,連接至該源極場板並且以一第一距離隔開,用於施加一探測電流通過該源極場板;以及 一第二對接觸片,連接至該源極場板並且係以一第二距離隔開,用於感應該探測電流流過的該源極場板的區域上的一電壓。A field effect transistor with temperature sensing, comprising: a gate; a source contact; a drain contact; a source field plate coupled to the source contact; a first pair of contact pieces, connected to to the source field plate and separated by a first distance for applying a probe current through the source field plate; and a second pair of contacts connected to the source field plate by a second distance spaced for sensing a voltage across the region of the source field plate through which the detection current flows. 如請求項1所述之場效電晶體,其中該源極場板覆蓋該閘極的至少一部分。The field effect transistor of claim 1, wherein the source field plate covers at least a portion of the gate. 如請求項1所述之場效電晶體,其中當該源極場板的溫度變化不低於0.001歐姆/ºC時,該源極場板表現出一電阻的變化。The field effect transistor of claim 1, wherein the source field plate exhibits a change in resistance when the temperature change of the source field plate is not less than 0.001 ohm/ºC. 如請求項1所述之場效電晶體,其中該源極場板AC耦合至該源極觸點。The field effect transistor of claim 1, wherein the source field plate is AC coupled to the source contact. 如請求項1至4中任一項所述之場效電晶體,其中該第一對接觸片包括一第一薄膜電阻器以及一第二薄膜電阻器。The field effect transistor according to any one of claims 1 to 4, wherein the first pair of contact pieces includes a first thin film resistor and a second thin film resistor. 如請求項5所述之場效電晶體,其中該第一薄膜電阻器以及該第二薄膜電阻器的一電阻不低於300歐姆。The field effect transistor of claim 5, wherein a resistance of the first thin film resistor and the second thin film resistor is not less than 300 ohms. 如請求項5所述之場效電晶體,其中該第二對接觸片包括一第三薄膜電阻器以及一第四薄膜電阻器。The field effect transistor of claim 5, wherein the second pair of contact pieces includes a third thin film resistor and a fourth thin film resistor. 如請求項7所述之場效電晶體,其中該第三薄膜電阻器以及該第四薄膜電阻器的一電阻不低於於300歐姆。The field effect transistor of claim 7, wherein a resistance of the third thin film resistor and the fourth thin film resistor is not less than 300 ohms. 如請求項1至4中任一項所述之場效電晶體,進一步包括連接至該第一對接觸片的一探測電流源。The field effect transistor of any one of claims 1 to 4, further comprising a probe current source connected to the first pair of contact pads. 如請求項9所述之場效電晶體,其中該探測電流源配置成提供交流電流。The field effect transistor of claim 9, wherein the detection current source is configured to provide alternating current. 如請求項9所述之場效電晶體,其中該交流電流具有一頻率,該頻率為50千赫茲與5百萬赫茲之間。The field effect transistor of claim 9, wherein the alternating current has a frequency between 50 kHz and 5 megahertz. 如請求項1至4中任一項所述之場效電晶體,進一步包括連接至該第二對接觸片的電壓感應電路系統。The field effect transistor of any one of claims 1 to 4, further comprising voltage sensing circuitry connected to the second pair of contact pads. 如請求項12所述之場效電晶體,其中該電壓感應電路提供一輸出訊號至一反饋電路,該反饋電路控制該場效電晶體的一功率位準。The field effect transistor of claim 12, wherein the voltage sensing circuit provides an output signal to a feedback circuit that controls a power level of the field effect transistor. 如請求項1至4中任一項所述之場效電晶體,其中該場效電晶體被併入一功率放大器,該功率放大器配置成將訊號放大至不低於0.25瓦特的一功率位準。The field effect transistor of any one of claims 1 to 4, wherein the field effect transistor is incorporated into a power amplifier configured to amplify the signal to a power level of not less than 0.25 watts . 如請求項1至4中任一項所述之場效電晶體,進一步包括由該閘極控制的一主動區域,其中該主動區域包括GaN、GaAs或InP。The field effect transistor of any one of claims 1 to 4, further comprising an active region controlled by the gate, wherein the active region comprises GaN, GaAs or InP. 如請求項1至4中任一項所述之場效電晶體,進一步包括由該閘極控制的一主動區域,其中該主動區域包括Si。The field effect transistor of any one of claims 1 to 4, further comprising an active region controlled by the gate, wherein the active region includes Si. 如請求項1至4中任一項所述之場效電晶體,其中該場效電晶體為LDMOS FET、MOSFET、MISFET、或MODFET。The field effect transistor of any one of claims 1 to 4, wherein the field effect transistor is an LDMOS FET, a MOSFET, a MISFET, or a MODFET. 如請求項1至4中任一項所述之場效電晶體,其中該場效電晶體為HEMT、HFET、pHEMT。The field effect transistor according to any one of claims 1 to 4, wherein the field effect transistor is HEMT, HFET, pHEMT. 一種操作一場效電晶體的方法,該方法包括以下步驟: 施加一訊號至該場效電晶體的一閘極; 以該場效電晶體放大該訊號; 施加一探測電流至該場效電晶體的一源極場板的一區域,其中該源極場板耦合至該場效電晶體的一源極觸點;以及 感應藉由該探測電流產生的一電壓。A method of operating a field effect transistor, the method comprising the steps of: applying a signal to a gate of the field effect transistor; amplifying the signal with the field effect transistor; applying a detection current to a gate of the field effect transistor a region of a source field plate, wherein the source field plate is coupled to a source contact of the field effect transistor; and induces a voltage generated by the probe current. 如請求項19所述之方法,進一步包括從所感應到的該電壓評估該場效電晶體的一峰值溫度之步驟。The method of claim 19, further comprising the step of estimating a peak temperature of the field effect transistor from the sensed voltage. 如請求項20所述之方法,其中該評估步驟包括使用與該場效電晶體相關的校準結果之步驟。The method of claim 20, wherein the evaluating step includes the step of using calibration results associated with the field effect transistor. 如請求項19所述之方法,進一步包括以下步驟: 將所感應到的該電壓與一參考值比較;以及 基於該比較結果控制該場效電晶體的一功率位準。The method of claim 19, further comprising the steps of: comparing the sensed voltage with a reference value; and controlling a power level of the field effect transistor based on the comparison result. 如請求項19所述之方法,其中施加該探測電流的步驟包括沿著該源極場板的一區域施加該探測電流,該區域覆蓋該閘極的至少一部分。The method of claim 19, wherein the step of applying the probe current includes applying the probe current along a region of the source field plate that covers at least a portion of the gate. 如請求項19至23中任一項所述之方法,其中施加該探測電流之步驟包括施加一交流電流至該區域。The method of any one of claims 19 to 23, wherein the step of applying the probe current includes applying an alternating current to the region. 如請求項24所述之方法,其中施加該交流電流的步驟包括:於一第一頻率施加該交流電流,該第一頻率與由該場效電晶體放大的一載波頻率相差不小於10倍。The method of claim 24, wherein the step of applying the alternating current comprises: applying the alternating current at a first frequency, the first frequency being not less than 10 times different from a carrier frequency amplified by the field effect transistor. 如請求項19至23中任一項所述之方法,其中施加該探測電流之步驟包括:間歇地於該區域中施加該探測電流,使得該探測電流以時間間隔方式被驅動,該等時間間隔被該源極場板的該區域中沒有探測電流被驅動的其他時間間隔隔開。The method of any one of claims 19 to 23, wherein the step of applying the probe current comprises applying the probe current in the region intermittently such that the probe current is driven at time intervals, the time intervals Other time intervals in which no probe current is driven are separated by this region of the source field plate. 一種具有溫度感應的場效電晶體,包括: 一閘極; 與該閘極相鄰並具有一延伸長度的一浮閘極板; 一源極觸點; 一汲極觸點; 一第一對接觸片,連接至該浮閘極板並且以一第一距離隔開,用於施加一探測電流通過該浮閘極板;以及 一第二對接觸片,連接至該浮動閘極板並且以一第二距離隔開,用於感應該探測電流流過的該浮閘極板的一區域上的一電壓。A field effect transistor with temperature sensing, comprising: a gate electrode; a floating gate electrode plate adjacent to the gate electrode and having an extended length; a source contact; a drain contact; a first pair contact pads connected to the floating gate plate and separated by a first distance for applying a detection current through the floating gate plate; and a second pair of contact pads connected to the floating gate plate and separated by a A second distance apart for sensing a voltage on an area of the floating gate plate through which the detection current flows. 如請求項27所述之場效電晶體,其中該浮閘極板覆蓋該閘極的至少一部分。The field effect transistor of claim 27, wherein the floating gate plate covers at least a portion of the gate. 如請求項27所述之場效電晶體,其中當該浮閘極板的一溫度變化不低於0.001歐姆/ºC時,該浮閘極板表現出一電阻的變化。The field effect transistor of claim 27, wherein the floating gate plate exhibits a change in resistance when a temperature change of the floating gate plate is not less than 0.001 ohm/°C. 如請求項27至29中任一項所述之場效電晶體,其中該第一對接觸片包括一第一薄膜電阻器以及一第二薄膜電阻器。The field effect transistor of any one of claims 27 to 29, wherein the first pair of contact pieces includes a first thin film resistor and a second thin film resistor. 如請求項30所述之場效電晶體,其中該第一薄膜電阻器以及該第二薄膜電阻器的一電阻不低於300歐姆。The field effect transistor of claim 30, wherein a resistance of the first thin film resistor and the second thin film resistor is not less than 300 ohms. 如請求項30所述之場效電晶體,其中該第二對接觸片包括一第三薄膜電阻器以及一第四薄膜電阻器。The field effect transistor of claim 30, wherein the second pair of contact pieces includes a third thin film resistor and a fourth thin film resistor. 如請求項32所述之場效電晶體,其中該第三薄膜電阻器以及該第四薄膜電阻器的一電阻不低於300歐姆。The field effect transistor of claim 32, wherein a resistance of the third thin film resistor and the fourth thin film resistor is not less than 300 ohms. 如請求項27至29中任一項所述之場效電晶體,進一步包括連接至該第一對接觸片的一探測電流源。The field effect transistor of any one of claims 27 to 29, further comprising a probe current source connected to the first pair of contact pads. 如請求項34所述之場效電晶體,其中該探測電流源配置成提供一交流電流。The field effect transistor of claim 34, wherein the detection current source is configured to provide an alternating current. 如請求項34所述之場效電晶體,其中該交流電流具有一頻率,該頻率為50千赫茲與5百萬赫茲之間。The field effect transistor of claim 34, wherein the alternating current has a frequency between 50 kilohertz and 5 megahertz. 如請求項27至29中任一項所述之場效電晶體,進一步包括連接至該第二對接觸片的電壓感應電路系統。The field effect transistor of any one of claims 27 to 29, further comprising voltage sensing circuitry connected to the second pair of contact pads. 如請求項37所述之場效電晶體,其中該電壓感應電路提供一輸出訊號至一反饋電路,該反饋電路控制該場效電晶體的一功率位準。The field effect transistor of claim 37, wherein the voltage sensing circuit provides an output signal to a feedback circuit that controls a power level of the field effect transistor. 如請求項27至29中任一項所述之場效電晶體,其中該場效電晶體被併入一功率放大器,該功率放大器配置成將訊號放大至不低於0.25瓦特的一功率位準。The field effect transistor of any one of claims 27 to 29, wherein the field effect transistor is incorporated into a power amplifier configured to amplify the signal to a power level of not less than 0.25 watts . 如請求項27至29中任一項所述之場效電晶體,進一步包括由該閘極控制的一主動區域,其中該主動區域包括GaN、GaAs或InP。The field effect transistor of any one of claims 27 to 29, further comprising an active region controlled by the gate, wherein the active region comprises GaN, GaAs or InP. 如請求項27至29中任一項所述之場效電晶體,進一步包括由該閘極控制的一主動區域,其中該主動區域包括Si。The field effect transistor of any one of claims 27 to 29, further comprising an active region controlled by the gate, wherein the active region includes Si. 如請求項27至29中任一項所述之場效電晶體,其中該場效電晶體為LDMOS FET、MOSFET、MISFET、或MODFET。The field effect transistor of any one of claims 27 to 29, wherein the field effect transistor is an LDMOS FET, MOSFET, MISFET, or MODFET. 如請求項27至29中任一項所述之場效電晶體,其中該場效電晶體為HEMT、HFET、pHEMT。The field effect transistor of any one of claims 27 to 29, wherein the field effect transistor is HEMT, HFET, pHEMT. 一種操作一場效電晶體的方法,該方法包括以下步驟: 將一訊號施加至該場效電晶體的一閘極; 以該場效電晶體放大該訊號; 沿著該場效電晶體的一浮閘極板的一區域施加一探測電流,其中該浮閘極板覆蓋該閘極的至少一部分;及 感應藉由該探測電流產生的一電壓。A method of operating a field effect transistor, the method comprising the steps of: applying a signal to a gate of the field effect transistor; amplifying the signal with the field effect transistor; along a float of the field effect transistor A probe current is applied to a region of the gate plate, wherein the floating gate plate covers at least a portion of the gate electrode; and a voltage generated by the probe current is induced. 如請求項44所述之方法,進一步包括從所感應到的該電壓評估該場效電晶體的一峰值溫度之步驟。The method of claim 44, further comprising the step of estimating a peak temperature of the field effect transistor from the sensed voltage. 如請求項45所述之方法,其中該評估之步驟包括使用與該場效電晶體相關的校準結果。The method of claim 45, wherein the step of evaluating includes using calibration results associated with the field effect transistor. 如請求項44所述之方法,進一步包括以下步驟:將所感應到的該電壓與一參考值比較; 以及基於該比較結果控制該場效電晶體的一功率位準。The method of claim 44, further comprising the steps of: comparing the sensed voltage with a reference value; and controlling a power level of the field effect transistor based on the comparison result. 如請求項44所述之方法,其中施加該探測電流的步驟包括:沿著該浮閘極板的一區域施加該探測電流,該區域覆蓋該閘極的至少一部分。The method of claim 44, wherein the step of applying the probe current comprises: applying the probe current along a region of the floating gate plate, the region covering at least a portion of the gate. 如請求項44至48中任一項所述之方法,其中施加該探測電流之步驟包括施加一交流電流至該區域。The method of any one of claims 44 to 48, wherein the step of applying the probe current includes applying an alternating current to the region. 如請求項49所述之方法,其中施加該交流電流的步驟包括:於一第一頻率施加該交流電流,該第一頻率與由該場效電晶體放大的該訊號之一載波頻率相差不低於10倍。The method of claim 49, wherein the step of applying the alternating current comprises: applying the alternating current at a first frequency that is not less than a carrier frequency of the signal amplified by the field effect transistor than 10 times. 如請求項44至48中任一項所述之方法,其中施加該探測電流之步驟包括:間歇地施加該探測電流至該區域,使得該探測電流以時間間隔方式被驅動,該等時間間隔被該浮閘極板的該區域中沒有探測電流被驅動的其他時間間隔隔開。The method of any one of claims 44 to 48, wherein the step of applying the probe current includes intermittently applying the probe current to the region such that the probe current is driven at time intervals, the time intervals being The region of the floating gate plate is separated from other time intervals in which no detection current is driven. 一種具有溫度感應的場效電晶體,包括: 具有一延伸長度的一閘極金屬,該閘極金屬帶有一第一端以及一相對的第二端; 一源極觸點; 一汲極觸點; 一第一接觸片,在靠近該第一端處連接至該閘極金屬,用於施加一交流探測電流至該閘極金屬,一電容器與電阻器,於一參考電位與遠離該第一端的該閘極金屬的一端部區域之間串聯連接;以及 一對接觸片,連接至該閘極金屬的分離區域,用以響應該交流探測電流而感應沿著該閘極金屬的一電壓下降。A field effect transistor with temperature sensing, comprising: a gate metal having an extended length, the gate metal having a first end and an opposite second end; a source contact; a drain contact ; a first contact piece connected to the gate metal near the first end for applying an alternating current detection current to the gate metal, a capacitor and resistor at a reference potential and away from the first end One end region of the gate metal is connected in series; and a pair of contact pieces are connected to the separated region of the gate metal for inducing a voltage drop along the gate metal in response to the AC detection current. 如請求項52所述之場效電晶體,其中當該閘極金屬的一溫度變化不低於0.001歐姆/ºC時,該閘極金屬表現出一電阻的變化。The field effect transistor of claim 52, wherein the gate metal exhibits a change in resistance when a temperature change of the gate metal is not less than 0.001 ohm/°C. 如請求項52所述之場效電晶體,進一步包括連接至該第一接觸片的一探測電流源。The field effect transistor of claim 52, further comprising a probe current source connected to the first contact pad. 如請求項54所述之場效電晶體,其中該交流探測電流具有一頻率,該頻率為50千赫茲與5百萬赫茲之間。The field effect transistor of claim 54, wherein the AC detection current has a frequency between 50 kHz and 5 megahertz. 如請求項52所述之場效電晶體,進一步包括連接至該對接觸片的電壓感應電路系統。The field effect transistor of claim 52, further comprising voltage sensing circuitry connected to the pair of contact pads. 如請求項56所述之場效電晶體,其中該電壓感應電路提供一輸出訊號至一反饋電路,該反饋電路控制該場效電晶體的一功率位準。The field effect transistor of claim 56, wherein the voltage sensing circuit provides an output signal to a feedback circuit that controls a power level of the field effect transistor. 如請求項52至57中任一項所述之場效電晶體,其中該場效電晶體被併入一功率放大器,該功率放大器配置成將訊號放大至不低於0.25瓦特的一功率位準。The field effect transistor of any one of claims 52 to 57, wherein the field effect transistor is incorporated into a power amplifier configured to amplify the signal to a power level of not less than 0.25 watts . 如請求項52至57中任一項所述之場效電晶體,進一步包括由該閘極金屬控制的一主動區域,其中該主動區域包括GaN、GaAs或InP。The field effect transistor of any one of claims 52 to 57, further comprising an active region controlled by the gate metal, wherein the active region comprises GaN, GaAs, or InP. 如請求項52至57中任一項所述之場效電晶體,進一步包括由該閘極金屬控制的一主動區域,其中該主動區域包括Si。The field effect transistor of any one of claims 52 to 57, further comprising an active region controlled by the gate metal, wherein the active region comprises Si. 如請求項52至57中任一項所述之場效電晶體,其中該場效電晶體為LDMOS FET、MOSFET、MISFET、或MODFET。The field effect transistor of any one of claims 52 to 57, wherein the field effect transistor is an LDMOS FET, MOSFET, MISFET, or MODFET. 如請求項52至57中任一項所述之場效電晶體,其中該場效電晶體為HEMT、HFET、pHEMT。The field effect transistor of any one of claims 52 to 57, wherein the field effect transistor is HEMT, HFET, pHEMT. 一種操作一場效電晶體的方法,該方法包括以下步驟: 將一訊號施加至該場效電晶體的一閘極金屬; 以該場效電晶體放大該該訊號; 將一交流探測電流施加至該場效電晶體的該閘極金屬的一第一端部區域,其中該閘極金屬的一第二端部區域遠離該第一端部區域且藉由在一參考電位與該第二端部區域之間串聯連接的一電容器與電阻器終止;及 感應由該交流探測電流沿著該閘極金屬的一長度產生的一電壓下降。A method of operating a field effect transistor, the method comprising the steps of: applying a signal to a gate metal of the field effect transistor; amplifying the signal with the field effect transistor; applying an alternating current detection current to the field effect transistor a first end region of the gate metal of the field effect transistor, wherein a second end region of the gate metal is remote from the first end region and connected to the second end region by a reference potential A capacitor and resistor connected in series therebetween terminate; and induce a voltage drop along a length of the gate metal by the AC probe current. 如請求項63所述之方法,進一步包括從所感應到的該電壓評估該場效電晶體的一峰值溫度之步驟。The method of claim 63, further comprising the step of evaluating a peak temperature of the field effect transistor from the sensed voltage. 如請求項63所述之方法,進一步包括以下步驟: 將所感應到的該電壓與一參考值比較; 以及基於該比較結果控制該場效電晶體的一功率位準。The method of claim 63, further comprising the steps of: comparing the sensed voltage with a reference value; and controlling a power level of the field effect transistor based on the comparison result. 如請求項63所述之方法,其中施加該交流探測電流的步驟包括:於一第一頻率施加該交流探測電流,該第一頻率與該訊號之一載波頻率相差不小於10倍。The method of claim 63, wherein the step of applying the AC detection current comprises: applying the AC detection current at a first frequency, the first frequency being not less than 10 times different from a carrier frequency of the signal. 如請求項63至66中任一項所述之方法,其中施加該交流探測電流之步驟包括:間歇地施加該交流探測電流至該第一端部區域,使得該交流探測電流以時間間隔方式被驅動,該等時間間隔被沿著該閘極金屬的該長度沒有交流探測電流被驅動的其他時間間隔隔開。The method of any one of claims 63 to 66, wherein the step of applying the AC probe current includes intermittently applying the AC probe current to the first end region such that the AC probe current is applied at time intervals driven, the time intervals are separated by other time intervals along the length of the gate metal where no AC probe current is driven. 一種具有溫度感應的場效電晶體,包括: 具有一延伸長度的一閘極金屬,該閘極金屬帶有一第一端與一第二端; 一源極; 一汲極;以及 一第一接觸片,在靠近該第一端連接至該閘極金屬的第一端部區域且配置成將一交流探測電流施加至該閘極金屬,其中沒有其他接觸片連接至用於傳導該探測電流的該閘極金屬,並且其中基本上所有的該探測電流在施加後係耦合至一場效電晶體源。A field effect transistor with temperature sensing, comprising: a gate metal having an extended length, the gate metal having a first end and a second end; a source electrode; a drain electrode; and a first contact pad connected to the gate metal at the first end region near the first end and configured to apply an alternating probing current to the gate metal, wherein no other contact pads are connected to the probing current for conducting the probing current The gate metal, and wherein substantially all of the probe current is coupled to the field effect transistor source after application. 如請求項68所述之場效電晶體,進一步包括一對接觸片,連接至該閘極金屬的分離區域,用於響應該交流探測電流而感應沿著該閘極金屬的一電壓下降。The field effect transistor of claim 68, further comprising a pair of contact pads connected to the separated regions of the gate metal for inducing a voltage drop along the gate metal in response to the AC probe current. 如請求項69所述之場效電晶體,進一步包括連接至該對接觸片的電壓感應電路系統。The field effect transistor of claim 69, further comprising voltage sensing circuitry connected to the pair of contact pads. 如請求項70所述之場效電晶體,其中該電壓感應電路系統提供一輸出訊號至一反饋電路,該反饋電路控制該場效電晶體的一功率位準。The field effect transistor of claim 70, wherein the voltage sensing circuitry provides an output signal to a feedback circuit that controls a power level of the field effect transistor. 如請求項68至71中任一項所述之場效電晶體,其中當該閘極金屬的一溫度變化不低於0.001歐姆/ºC時,該閘極金屬表現出一電阻的變化。The field effect transistor of any one of claims 68 to 71, wherein the gate metal exhibits a change in resistance when a temperature change of the gate metal is not less than 0.001 ohm/°C. 如請求項68至71中任一項所述之場效電晶體,其中該交流探測電流具有一頻率,該頻率為50千赫茲與5百萬赫茲之間。The field effect transistor of any one of claims 68 to 71, wherein the AC probe current has a frequency between 50 kHz and 5 megahertz. 如請求項68至71中任一項所述之場效電晶體,其中該場效電晶體被併入一功率放大器,該功率放大器配置成將訊號放大至不低於0.25瓦特的一功率位準。The field effect transistor of any one of claims 68 to 71, wherein the field effect transistor is incorporated into a power amplifier configured to amplify the signal to a power level of not less than 0.25 watts . 如請求項68至71中任一項所述之場效電晶體,進一步包括由該閘極金屬控制的一主動區域,其中該主動區域包括GaN、GaAs或InP。The field effect transistor of any one of claims 68 to 71, further comprising an active region controlled by the gate metal, wherein the active region comprises GaN, GaAs, or InP. 如請求項68至71中任一項所述之場效電晶體,進一步包括由該閘極金屬控制的一主動區域,其中該主動區域包括Si。The field effect transistor of any one of claims 68 to 71, further comprising an active region controlled by the gate metal, wherein the active region comprises Si. 如請求項68至71中任一項所述之場效電晶體,其中該場效電晶體為LDMOS FET、MOSFET、MISFET、或MODFET。The field effect transistor of any one of claims 68 to 71, wherein the field effect transistor is an LDMOS FET, MOSFET, MISFET, or MODFET. 如請求項68至71中任一項所述之場效電晶體,其中該場效電晶體為HEMT、HFET、pHEMT。The field effect transistor of any one of claims 68 to 71, wherein the field effect transistor is HEMT, HFET, pHEMT. 一種操作一場效電晶體的方法,該方法包括以下步驟: 將一訊號施加至該場效電晶體的一閘極金屬; 以該場效電晶體放大該訊號; 將一交流探測電流施加至該場效電晶體的該閘極金屬的一區域,其中基本上所有的該交流探測電流係耦合至一場效晶體的源極;及 感應由該交流探測電流沿著該閘極金屬的一長度產生的一電壓下降。A method of operating a field effect transistor, the method comprising the steps of: applying a signal to a gate metal of the field effect transistor; amplifying the signal with the field effect transistor; applying an alternating current probe current to the field a region of the gate metal of the FET in which substantially all of the AC probe current is coupled to the source of the FET; and inducing a generated by the AC probe current along a length of the gate metal voltage drop. 如請求項79所述之方法,進一步包括從所感應到的該電壓評估該場效電晶體的一峰值溫度之步驟。The method of claim 79, further comprising the step of estimating a peak temperature of the field effect transistor from the sensed voltage. 如請求項79所述之方法,進一步包括以下步驟: 將所感應到的該電壓與一參考值比較;以及 基於該比較結果控制該場效電晶體的一功率位準。The method of claim 79, further comprising the steps of: comparing the sensed voltage with a reference value; and controlling a power level of the field effect transistor based on the comparison result. 如請求項79至81中任一項所述之方法,其中施加該交流探測電流的步驟包括:於一第一頻率施加該交流探測電流,該第一頻率與由該訊號之一載波頻率相差不小於10倍。The method of any one of claims 79 to 81, wherein the step of applying the AC probe current comprises: applying the AC probe current at a first frequency that is not different from a carrier frequency of the signal less than 10 times. 如請求項79至81中任一項所述之方法,其中施加該交流探測電流之步驟包括:間歇地施加該交流探測電流至該區域,使得該交流探測電流以時間間隔方式被驅動,該等時間間隔被該閘極金屬的該區域中沒有交流探測電流被驅動的其他時間間隔隔開。The method of any one of claims 79 to 81, wherein the step of applying the AC detection current comprises: intermittently applying the AC detection current to the region such that the AC detection current is driven at time intervals, etc. Time intervals are separated by other time intervals in which no AC probe current is driven in this region of the gate metal.
TW107125300A 2017-07-24 2018-07-23 Fet operational temperature determination by resistance thermometry TWI774808B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/658,116 US20190028065A1 (en) 2017-07-24 2017-07-24 Fet operational temperature determination by gate structure resistance thermometry
US15/658,155 US20190028066A1 (en) 2017-07-24 2017-07-24 Fet operational temperature determination by field plate resistance thermometry
US15/658,116 2017-07-24
US15/658,155 2017-07-24

Publications (2)

Publication Number Publication Date
TW201909423A TW201909423A (en) 2019-03-01
TWI774808B true TWI774808B (en) 2022-08-21

Family

ID=63104126

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107125300A TWI774808B (en) 2017-07-24 2018-07-23 Fet operational temperature determination by resistance thermometry

Country Status (3)

Country Link
EP (1) EP3658872B1 (en)
TW (1) TWI774808B (en)
WO (1) WO2019023028A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3942609A4 (en) * 2019-03-21 2023-06-07 Transphorm Technology, Inc. Integrated design for iii-nitride devices
TWI742613B (en) * 2020-04-14 2021-10-11 聯陽半導體股份有限公司 Temperature sensing device of integrated circuit
TWI738387B (en) * 2020-06-18 2021-09-01 台灣積體電路製造股份有限公司 Method, system and apparatus for measuring resistance of semiconductor device
CN113284816B (en) * 2020-06-18 2024-09-17 台湾积体电路制造股份有限公司 Method, system and device for measuring resistance value of semiconductor component
CN113571580A (en) * 2021-09-23 2021-10-29 深圳市时代速信科技有限公司 HEMT device and preparation method thereof
KR20230153840A (en) * 2022-04-29 2023-11-07 주식회사 웨이브피아 Semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200532907A (en) * 2004-03-31 2005-10-01 Univ Nat Yunlin Sci & Tech Method of manufacturing TiO2 sensing film, ISFET having TiO2 sensing film, and methods and apparatus for measuring the temperature parameter, drift, and hysteresis thereof
US20120153349A1 (en) * 2010-12-20 2012-06-21 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the same
US20130257329A1 (en) * 2012-03-30 2013-10-03 Christoph Orou Junction temperature measurement of a power mosfet
US20150270379A1 (en) * 2014-03-19 2015-09-24 Kabushiki Kaisha Toshiba Semiconductor device
US20170104092A1 (en) * 2015-10-08 2017-04-13 Rohm Co., Ltd. Nitride semiconductor device and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6649287B2 (en) 2000-12-14 2003-11-18 Nitronex Corporation Gallium nitride materials and methods
DE102005043270B4 (en) * 2005-09-12 2011-06-22 Infineon Technologies AG, 81669 Device for monitoring the temperature of planar field-effect transistors and associated production method
EP2565608B1 (en) * 2011-08-31 2017-04-26 Siemens Aktiengesellschaft Semiconductor component in chip design

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200532907A (en) * 2004-03-31 2005-10-01 Univ Nat Yunlin Sci & Tech Method of manufacturing TiO2 sensing film, ISFET having TiO2 sensing film, and methods and apparatus for measuring the temperature parameter, drift, and hysteresis thereof
US20120153349A1 (en) * 2010-12-20 2012-06-21 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the same
US20130257329A1 (en) * 2012-03-30 2013-10-03 Christoph Orou Junction temperature measurement of a power mosfet
US20150270379A1 (en) * 2014-03-19 2015-09-24 Kabushiki Kaisha Toshiba Semiconductor device
US20170104092A1 (en) * 2015-10-08 2017-04-13 Rohm Co., Ltd. Nitride semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
EP3658872B1 (en) 2022-01-05
EP3658872A1 (en) 2020-06-03
WO2019023028A1 (en) 2019-01-31
TW201909423A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
US10790787B2 (en) FET operational temperature determination by gate structure resistance thermometry
US10855230B2 (en) FET operational temperature determination by field plate resistance thermometry
TWI774808B (en) Fet operational temperature determination by resistance thermometry
TWI783040B (en) Operational temperature determination in bipolar transistors by resistance thermometry
Dumka et al. Electrical and thermal performance of AlGaN/GaN HEMTs on diamond substrate for RF applications
US10890553B2 (en) Sensing device, sensing apparatus and sensing system
JPH01157573A (en) Semiconductor device and its manufacture
CN106098769A (en) Current sense ratio compensates
KR20100108203A (en) Method of forming a sensing circuit and structure therefor
CN113793870A (en) Semiconductor device and preparation method thereof
Arenas et al. Integration of micro resistance thermometer detectors in AlGaN/GaN devices
US11742396B2 (en) Threshold voltage adjustment using adaptively biased shield plate
Xu et al. Discrete-pulsed current time method to estimate channel thermal resistance of GaN-based power devices
CN101317144B (en) Thermoelectric bias voltage generator
Cozette et al. Resistive nickel temperature sensor integrated into short-gate length AlGaN/GaN HEMT dedicated to RF applications
Bremer et al. Electric-based thermal characterization of GaN technologies affected by trapping effects
Yang et al. Study on the heat transfer of GaN-based high power HEMTs
US20200111776A1 (en) Diode with current sensor
Bremer et al. Analysis of lateral thermal coupling for GaN MMIC technologies
Weng et al. Pure play GaN foundry 0.25 µm HEMT technology for RF applications
Cozette et al. Temperature monitoring of short-gate length AlGaN/GaN HEMT via an integrated sensor
KR101873219B1 (en) GaN-BASED POWER SWITCHING DEVICE
Kim et al. Pulse‐mode dynamic Ron measurement of large‐scale high‐power AlGaN/GaN HFET
WO2024065625A1 (en) Semiconductor system and method for manufacturing and operating thereof
CN115372782B (en) Test system and semiconductor test method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent