TWI767952B - 無線傳輸/接收單元(wtru)及用於解碼資料的方法 - Google Patents
無線傳輸/接收單元(wtru)及用於解碼資料的方法 Download PDFInfo
- Publication number
- TWI767952B TWI767952B TW106137870A TW106137870A TWI767952B TW I767952 B TWI767952 B TW I767952B TW 106137870 A TW106137870 A TW 106137870A TW 106137870 A TW106137870 A TW 106137870A TW I767952 B TWI767952 B TW I767952B
- Authority
- TW
- Taiwan
- Prior art keywords
- wtru
- urllc
- embb
- dci
- search space
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0078—Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
- H04L1/0079—Formats for control data
- H04L1/008—Formats for control data where the control data relates to payload of a different packet
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1864—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1273—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/11—Allocation or use of connection identifiers
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
Abstract
揭露了用於解碼資料的系統、方法和工具。例如,可以確定在當前槽中在先前槽中接收的資料是否被成功解碼。在該先前槽中接收的該資料可以被包括在實體下鏈共享通道(PDSCH)中。如果在該先前槽中接收的該資料未被成功解碼,可以在第一搜索空間中檢測佔先多工資訊。例如可以使用檢測到的佔先多工資訊來解碼在先前槽中接收的資料。佔先多工資訊可以是在當前槽。佔先多工資訊可以被包括在第一DCI中。當前槽的第二搜索空間可以被搜索。例如,可以為了第二DCI搜索第二搜索空間。第一DCI和第二DCI可以是不同的。
Description
交叉引用
本申請要求以下申請的權益:2016年11月2日申請的美國臨時申請No.62/416,620;2017年1月6日申請的美國臨時申請No.62/443,457;2017年2月3日申請的美國臨時申請No.62/454,425;以及2017年3月22日申請的美國臨時申請No.62/474,897,其通過引用整體的方式結合於此。
行動通信繼續演進。第五代可以稱為5G。行動通信的先前(例如,舊有)世代可以是例如第四代(4G)長期演進(LTE)。
揭露了用於共享資料通道的系統、方法和工具。可以例如使用針對上鏈和下鏈的統一架構來實施用於5G資料通道的功能塊和處理流。可以例如在碼塊中使用資訊攜帶填充符(filler)位元。上鏈和下鏈信號處理鏈可以是可變的以適應各種可選擇的通道碼、超可靠和低潛時通信(URLLC)資料插入和訊務(traffic)優先化、混合波束成形和波形選擇。資料(例如低潛時資料,諸如URLLC)可以被插入到正在進行的傳輸(例如低優先順序,諸如eMBB)。低潛時訊務可以接管被分配用於其他訊務的資源,例如通過刪截(puncturing)、
疊加以及多用戶MIMO傳輸的一者或多者。盲解碼可以由增強行動寬頻(eMBB)WTRU和URLLC WTRU執行。上鏈無許可(例如,隨機存取)URLLC傳輸可以與(例如被排程的)上鏈eMBB傳輸(例如,來自其他WTRU)多工。子槽(sub-slot)MU/SU MIMO切換可以被提供。
揭露了用於編碼資料的系統、方法和工具。例如,可以在當前槽中確定在先前槽(slot)中接收的資料是否成功被解碼。在先前槽中接收的資料可以被包括在實體下鏈共享通道(PDSCH)中。如果在先前槽中接收的資料沒有成功被解碼,則可以在第一搜索空間中檢測佔先(preemptive)多工(multiplexing)資訊。可以例如使用被檢測的佔先多工資訊來解碼在先前槽中接收的資料。佔先多工資訊可以在當前槽。佔先多工資訊可以被包括在第一DCI中。當前槽的第二搜索空間可以被搜索。例如,可以針對第二DCI而搜索第二搜索空間。第一DCI和第二DCI可以是不同的。
10:傳輸塊
12:循環冗餘檢測(CRC)
100:通信系統
102、102a、102b、102c、102d:無線傳輸/接收單元(WTRU)
104、113:無線電存取網路(RAN)
106、115:核心網路(CN)
108:公共交換電話網路(PSTN)
110:網際網路
112:其他網路
116:空中介面
118:處理器
120:收發器
122:傳輸/接收元件
124:揚聲器/麥克風
126:小鍵盤
128:顯示器/觸控板
130:非可移記憶體
132:可移記憶體
134:電源
136:全球定位系統(GPS)晶片組
138:週邊設備
160a、160b、160c:e節點B
162:行動性管理閘道(MME)
164:服務閘道
166:封包資料網路(PDN)閘道
180a、180b、180c:下一代節點B(gNB)
182a、182b:行動性管理功能(AMF)
183a、183b:對話管理功能(SMF)
184a、184b:使用者平面功能(UPF)
185a、185b:資料網路(DN)
202:填充符位元的長度
204:填充符位元的目的
206:填充符位元的酬載
208:填充符位元的CRC
502:URLLC資料
504、506:eMBB資料
DCI:下鏈控制資訊
DL:下鏈
eMBB:增強行動寬頻
RNTI:無線電網路臨時識別符
UL:上鏈
URLLC:超可靠低潛時
WTRU:無線傳輸/接收單元
第1圖是碼塊分段和資訊攜帶填充符位元的添加的範例;第2圖是在碼塊中用於填充符位元的範例結構或格式;第3圖是DL-SCH通道處理鏈的範例;第4圖是UL-SCH處理鏈(例如,針對PU-SCH通道)的範例;第5圖是將低潛時資料(例如,URLLC)插入到正在進行的低優先順序傳輸(例如,eMBB)的範例;第6圖是用於指示哪些eMBB資源元件被URLLC使用的週期帶內控制資訊的範例;第7圖是在eMBB WTRU處的盲解碼的範例;
第8圖是在eMBB WTRU處的盲解碼的範例;第9圖是在URLLC WTRU處帶內控制資訊的盲解碼的範例;第10圖是在eNB/gNB/TRP處將URLLC插入到eMBB傳輸的範例;第11圖是在URLLC資料插入發生時動態改變類比波束成形的範例;第12圖是在URLLC資料插入發生時動態改變總波束的範例;第13圖是在URLLC資料插入發生時動態改變總波束的範例,URLLC波束可以不具有任何數位波束成形;第14圖是假設前面被載入RS的RS定位的範例;第15圖是使用另外控制區的範例;第16圖是具有與在上鏈中現有eMBB傳輸重疊的提升的功率等級的URLLC傳輸的範例;第17圖是在迷你槽(mini-slot)上被排程的URLLC傳輸佔先在正常槽上被排程的增強行動寬頻(eMBB)傳輸的範例;第18圖是用於處理來自URLLC無線傳輸/接收單元(WTRU)的許可請求的下一代節點B(gNB)的範例;第19圖是在存在迷你槽存在時的佔先指示的範例;第20圖是使用指示符的偏移來傳達資訊的範例;第21圖是將位元映射到資源偏移和資源(例如不使用通道編碼)的範例;第22圖是將位元映射到資源偏移和資源(例如使用通道編碼)的範例;第23圖是在下一個槽的下鏈控制資訊(DCI)中提供的佔先多工資訊的範例;第24圖是使用針對DCI的多搜索空間的增強行動寬頻(eMBB)的範例;第25圖示出了eMBB WTRU可以搜索三個搜索空間的範例;
第26圖是對於具有URLLC上鏈(UL)佔先eMBB傳輸的編碼和傳輸功率的範例;第27圖是具有資源保留和URLLC性能傳訊的URLLC UL傳輸的範例;第28圖是基於URLLC UL負載率和URLLC性能傳訊的UL資源保留的範例;第29A圖是示出可以在其中實施一個或多個揭露的實施方式的範例通信系統的系統圖;第29B圖是示出根據實施方式的可以在第29A圖中示出的通信系統內使用的範例無線傳輸/接收單元(WTRU)的系統圖;第29C圖是示出根據實施方式的可以在第29A圖中示出的通信系統內使用的範例無線電存取網路(RAN)和範例核心網路(CN)的系統圖;第29D圖是示出根據實施方式的可以在第29A圖中示出的通信系統內使用的另一範例RAN和另一範例CN的系統圖。
現在參考附圖描述圖式的實施方式的詳細描述。雖然該描述提供了可能實施的詳細範例,但是應當理解這些細節旨在提供範例且絕不限制本申請的範圍。這些範例和其他範例可以整體地或部分地缺少和/或添加而被實施。在範例中出現的任何順序可以在適當的時候改變。
5G可以實施各種技術。例如,5G可以實施用於上鏈和/或先進波束管理的多波形。5G可以用於超可靠低潛時(URLLC)。5G資料通道可以不同於用於LTE/LTE-A/LTE-Pro的資料通道(例如實體上鏈共享通道(PUSCH)和實體下鏈共享通道(PDSCH))。
可以支援5G技術的用於資料通道(例如,PDSCH和PUSCH)的功能塊和流可以使用對於上鏈和下鏈的統一架構來實施。
可以使用資訊攜帶填充符位元。例如,可以在碼塊中使用資訊攜帶填充符位元。
在一範例(例如,LTE/LTE-A/LTE Pro)中,傳輸塊可以被分段成多碼塊。多碼塊可以具有相等的尺寸。例如,當傳輸塊尺寸大於臨界值Z(例如,6144位元)時傳輸塊可以被分段成具有相等尺寸的多個碼塊。一個或多個碼塊的尺寸可以不同於一個或多個其他碼塊的尺寸。填充符位元可以被添加到一個或多個碼塊。例如填充符位元可以被添加到一個或多個碼塊以為了相同尺寸碼塊而填補差值。填充符位元可以被設定為NULL(例如,零)和/或填充符位元可以不攜帶資訊。在一範例(例如eMBB)中,碼塊尺寸可為大和/或填充符位元的數量可為大(例如,6136位元)。具有大碼塊尺寸和/或大數量的填充符位元會浪費資源。
第1圖是碼塊分段和資訊攜帶填充符位元添加的範例。資訊攜帶填充符位元可以用於保護資料和/或增強控制傳訊。可以計算用於包含填充符位元的碼塊的CRC。例如,可以使用碼塊中的一個或多個(例如,全部)位元和/或使用碼塊中的非填充符位元來計算用於包含填充符位元的碼塊的CRC。
如第1圖所示,可以提供傳輸塊10。傳輸塊10可以包括循環冗餘檢測(CRC)。傳輸塊10可以被分段。例如,傳輸塊10可以被分成一個或多個碼塊(例如,碼塊1、碼塊2、碼塊M等)。CRC可以被添加到碼塊的一者或多者。例如,CRC可以被添加到碼塊1、碼塊2、碼塊M等的一者或多者。
第2圖是碼塊中填充符位元的範例結構(例如,格式)。一個或多個變數可以用於描述填充符位元。例如,填充符位元可以包括填充符位元的長度202、填充符位元的目的204、填充符位元的酬載206和/或填充符位元的CRC 208。
填充符位元循環冗餘檢測(CRC)208可以是可選的。例如,當碼塊CRC是使用填充符位元和/或資料位元而計算時,可以不使用填充符位元CRC 208。
填充符位元的長度欄位202可以指示資訊攜帶填充符中的位元的數量。
填充符位元的目的欄位204可以提供指示。例如,填充符位元的目的欄位204可以指示填充符位元的酬載206是否用於資料保護和/或控制增強。
填充符位元的酬載206可以是以下的一者或多者。例如,填充符位元的酬載206可以是碼塊的部分(例如,排除CRC)的重複,這可以作為用於可以在系統碼上操作的通道解碼演算法的邊資訊。填充符位元的酬載206可以是在碼塊的資料部分上的同位檢查位元(例如,另外的同位檢查位元)。填充符位元的酬載206可以是控制資訊,例如調變和編碼方案(MCS)、資源配置或通道狀態資訊(CSI)和/或用於下鏈(DL)和/或上鏈(UL)傳輸的回饋。
在資料通道上的信號處理鏈可以被實施,例如以支援5G。
第3圖是下鏈共享通道(DL-SCH)通道處理鏈的範例。可以應用於以下的一者或多者。
資料通道上的信號處理鏈可以提供通道碼的一個或多個家族的選擇。通道碼的家族可以包括Turbo碼、LDPC碼、Polar碼、TBCC等。選擇標準可以依據以下的一者或多者:碼塊長度、塊錯誤率(BLER)或位元錯誤率(BER)、編碼潛時、解碼潛時、功率消耗等。通道碼選擇控制模組可以確定要使用的通道碼的一者或多者。
URLLC資料插入模組可以對URLLC訊務提供優先服務。例如,URLLC資料插入模組可以在服務較低優先順序訊務之中對URLLC訊務提供優先的服務。較低優先順序訊務的範例可以包括eMMB訊務、mMTC訊務等。
URLLC訊務可以接管已經被分配給eMBB訊務(例如,在刪截的情況中是頻率和時間)的資源和/或可以共享資源(例如,在疊加編碼的情況中是頻率和時間,或在URLLC WTRU和eMBB WTRU之間的MU-MIMO的情況中是空間)。
混合波束成形(例如,數位波束成形(或預編碼)和類比波束成形的組合)可以由數位/類比波束成形控制模組所控制。數位/類比波束成形控制模組可以執行數位波束成形/預編碼、天線選擇、波束搜索和/或類比波束成形等。
上鏈資料通道可以被實施,例如,以支援5G。
第4圖是實體上鏈共享通道(PUSCH)處理鏈的範例。PUSCH處理鏈可以與PDSCH處理鏈類似。PUSCH鏈可以具有用於波形選擇的模組(例如用於選擇CP OFDM或DFT-s-OFDM)。可以做出決定(例如關於波形選擇)。可以由eNB/gNB做出該決定。例如,決定可以基於WTRU的能力和/或對於覆蓋的需求。
資料可以被插入到資料傳輸(例如,正在進行的資料傳輸)。資料可以是低潛時資料。資料可以佔先地被插入到正在進行的資料傳輸。
第5圖是將低潛時資料(例如,URLLC)插入到正在進行的低優先順序傳輸(例如,eMBB)的範例。
低潛時資料可以是URLLC訊務。URLLC訊務可以包括URLLC資料502。URLLC訊務可以具有嚴格的潛時要求。正在進行的資料傳輸可以具有低優先順序訊務且可以是eMBB訊務。在一範例中,eNB(或gNB)可以正在傳輸eMBB資料。例如,eNB(或gNB)可以正在傳輸eMBB資料504和/或eMBB資料506。URLLC資料502可以使用可能已經被分配給eMBB資料(例如,eMBB資料504)的資源。例如,URLLC資料502可以使用被分配給eMBB資料504的資源以降低URLLC訊務的潛時。URLLC資料可以使用被分配給eMBB資料的資源,例如,以避免在當前子框中為了正在進行的eMBB資料傳輸的完成而等待。
低潛時(例如,URLLC)訊務可以使用被分配的(例如eMBB)資源。例如,低潛時(例如,URLLC)訊務可以通過以下的一者或多者來使用被分配的(例如eMBB)資源。低潛時訊務可以藉由刪截來使用被分配的資源。刪截可以包括從資源區中移除eMBB信號和/或將URLLC信號映射到資源區。低潛時訊務可以藉由疊加使用被分配的資源。例如,低潛時訊務可以藉由在eMBB信號上疊加URLLC信號(或反之亦然)來使用被分配的資源。低潛時訊務可以藉由使用疊加編碼在eMBB信號上疊加URLLC信號,或反之亦然。可以基於符號逐符號或碼字逐碼字來執行疊加編碼。低潛時訊務可以藉由多使用者MIMO傳輸來使用被分配的資源。MIMO傳輸可以包括在一個或多個類比或數位空間波束上發送資訊。
eMBB WTRU可以識別被URLLC訊務使用的資源的一個或多個部分。例如,eMBB WTRU可以識別被URLLC訊務使用的資源的一個或多個部分以解碼eMBB資料。URLLC訊務可以刪截eMBB資源的一個或多個部分。刪截eMBB資源的部分可能在eMBB接收器引入錯誤信號。例如,刪截eMBB資源的部分可能在eMBB接收器處引入錯誤信號而不知道關於被URLLC刪截的eMBB資源的位置而允許eMBB WTRU解碼eMBB資料。
URLLC WTRU可以識別URLLC傳輸的位置。控制通道可以向URLLC WTRU通知用於URLLC傳輸的資源配置。
系統可以在eMBB定向波束和可以在單個傳輸時間間隔內適應eMBB傳輸和/或URLLC傳輸的波束之間切換。例如,混合波束成形系統(例如在mmW頻率,其中資料傳輸可以是定向的)可以在eMBB定向波束和可以在單個傳輸時間間隔內適應eMBB傳輸和/或URLLC傳輸的波束之間切換。類比波束可以是跨傳輸通道頻寬的寬頻。例如,類比波束可以是跨整個傳輸通道頻寬的寬頻。
eMBB WTRU和/或URLLC WTRU可以執行盲解碼。例如,eMBB WTRU和/或URLLC WTRU可以為了eMBB資料和/或URLLC資料的DL傳輸執行盲解碼。eMBB WTRU可以使用盲解碼來確定可以被分配給可能已經被URLLC訊務使用的eMBB WTRU的資源的部分。
一個或多個資源區對於一個或多個(例如全部)WTRU和/或gNB可能為已知的。資源區可以為帶內控制資訊的傳輸而被保留。例如,當URLLC訊務存在時,資源區可以為帶內控制資訊的傳輸而被保留。
可以用於潛在的帶內傳訊的資源可以遵循一模式。該模式對於傳輸器和/或接收器可以為已知。模式可以是週期性的或偽隨機的。第6圖是週期性帶內控制資訊的範例。週期性帶內控制資訊可以用於指示URLLC可以使用哪些eMBB資源元件。gNB可以使用一序列的資源區來向URLLC WTRU發送帶內控制資訊。用於向URLLC WTRU發送帶內控制資訊的由gNB所使用的該序列的資源區可以被表示為604。URLLC WTRU可以在資源區中收聽URLLC控制資訊(例如,可能的URLLC控制資訊)。如果URLLC訊務抵達,該區的一者或多者可以被啟動。該被啟動的區可以被表示為606。如果URLLC訊務沒有抵達,則該區可以不被啟動和/或可以被用於eMBB傳輸。
eMBB WTRU可以解碼資料。例如,eMBB WTRU可以解碼資料而不用考慮URLLC資料的存在。eMBB WTRU可以觸發搜索帶內控制資訊。例如,eMBB WTRU可以在解碼失敗時觸發對於帶內控制資訊的搜索。搜索可以發生處理時間開銷。開銷可以是有限的。例如,當URLLC訊務是分散的和/或通道條件(例如,沒有佔先URLLC傳輸)為良性的時,開銷可以是有限的。
第7圖是eMBB WTRU用於盲解碼的範例。以下的一者或多者可以被執行。
在702,eMBB WTRU可以接收eMBB資料。eMBB WTRU可以(例如,可以首先)嘗試解碼eMBB資料。例如,在704,eMBB WTRU可以執行通道解碼(例如,正常通道解碼)。eMBB WTRU可以(例如,可以首先)不用確定URLLC訊務的存在而嘗試解碼eMBB資料。URLLC訊務可以藉由刪截、疊加和/或另一特徵被添加到eMBB傳輸。
在706,可以確定解碼是否成功。如果解碼成功,則eMBB資料接收可以為完成的。
eMBB解碼可能不成功(例如,可能失敗)。例如,不成功的(例如,失敗的)eMBB解碼可能導致(例如,由eMBB WTRU確定)是否失敗由於URLLC資料的存在所造成的確定。是否失敗由於URLLC資料的存在所造成的確定可以由eMBB WTRU執行。在708,如果eMBB解碼不成功,則eMBB WTRU可以搜索帶內控制資訊區。例如,eMBB WTRU可以為了帶內控制資訊(例如潛在的帶內控制資訊)在資源網格中搜索帶內控制資訊區。帶內控制資訊區可以包括一數量(例如,固定數量)的資源元件。帶內控制資訊區可以使用預定義MCS。帶內控制資訊可以包含使用帶內控制資訊和/或eMBB WTRU的識別符(例如,RNTI)所計算的CRC,這允許eMBB WTRU確定eMBB對帶內控制資訊的解碼是否正確。可以使用一個或多個因素來確定成功解碼。例如,當CRC校驗通過時可以確定解碼成功。
在710,可以確定是否帶內資訊已經找到。在712,如果帶內控制資訊未被找到,則可以確定eMBB接收已經失敗。如果帶內控制資訊未被找到,則繼續一個或多個其他動作。例如,如果帶內控制資訊未被找到,則以HARQ繼續,等。
eMBB WTRU可找到(例如,識別)帶內控制資訊。eMBB WTRU可以遵循帶內控制資訊提供的指令。例如,在714,如果帶內控制資訊被找到,
則eMBB WTRU可以遵循帶內控制資訊提供的指令以定位可以被URLLC訊務使用的資源元件。eMBB WTRU可以識別被提供和/或使用的一種或多種類型的特徵。例如,eMBB WTRU可以識別刪截、疊加、多使用者MIMO等。
在716,eMBB WTRU可以分開URLLC傳輸和eMBB傳輸。eMBB WTRU可以解碼eMBB資料。eMBB WTRU可以跳過eMBB信號的刪截部分。例如,針對刪截,eMBB WTRU可以跳過eMBB信號的刪截部分。eMBB WTRU可以在由URLLC訊務使用的資源網格上恢復eMBB資料符號。例如,針對疊加編碼,eMBB WTRU可以在URLLC訊務使用的資源網格上恢復eMBB資料符號。可以根據一種或多種基礎來執行恢復。例如可以在每個符號為基礎和/或以每個碼字為基礎來執行恢復。
可以使用其他特徵來實現盲解碼。例如,可以使用具有相同或不同的流和/或排序的一個或多個特徵來執行盲解碼。
第8圖是用於盲解碼的eMBB WTRU的範例。可以執行以下的一者或多者。
例如,大量的URLLC訊務可以存在。eMBB接收器可以實現一個或多個(例如,不同的)解碼順序。例如,eMBB接收器可以藉由從一個或多個(例如,一個或多個不同的)解碼進行選擇和/或藉由重新排序特徵來實現一個或多個(例如不同的)解碼順序。
eMBB接收器可以執行帶內控制資訊的盲解碼。例如,eMBB接收器可以先於或替代eMBB資料的盲解碼而執行帶內控制資訊的盲解碼。在802,eMBB WTRU可以接收eMBB資料。在804,eMBB WTRU可以搜索帶內控制資訊。在806,eMBB WTRU可以確定是否找到帶內控制資訊。
在808,eMBB接收器可以找到帶內控制資訊。eMBB接收器可以遵循可能由帶內控制資訊提供的指令。例如,在808,eMBB接收器可以遵循可
由帶內控制資訊提供的指令以定位由URLLC可以使用的資源元件和/或識別所提供的和/或所使用的一種多種類型的特徵。特徵可以包括刪截、疊加、多使用者MIMO等中的一者或多者。eMBB WTRU可以分開URLLC傳輸和eMBB傳輸。eMBB WTRU可以解碼eMBB資料。在810,eMBB接收器可以分開URLLC傳輸和/或eMBB傳輸。eMBB接收器可以解碼eMBB資料。
在812,例如,如果eMBB接收器沒有找到帶內控制資訊,則可以執行通道解碼(例如,正常通道解碼)。在814,可以確定解碼是否成功。在816,例如,如果解碼不成功,則確定eMBB接收失敗。eMBB接收器可以繼續一個或多個其他動作(例如,HARQ等)。
eMBB接收器可以確定是否執行帶內控制通道的盲解碼。例如,eMBB接收器可以確定是否針對URLLC和/或eMBB資料執行帶內控制通道的盲解碼。接收器可以追蹤URLLC插入統計。接收器可以在預定義臨界值切換。
TRP可以在一個(例如,每個)排程間隔中保留特定區。例如,TRP可以在一個(例如,每個)排程間隔中保留帶內控制資訊的部分。TRP可以發送指示URLLC插入的存在的信號。接收器可以檢查指示。例如,接收器可以在接收的開始之前檢查指示。
第9圖是編碼用於帶內控制資訊的盲解碼的URLLC WTRU的範例。可以執行以下的一者或多者。
URLLC接收器可以收聽(例如,可以持續收聽)資源元件。例如,在902,URLLC接收器可以調到帶內控制傳訊資源(例如,潛在的帶內控制傳訊資源)。URLLC接收器可以收聽為了帶內控制資訊可能被分配的資源元件。在904,可以確定是否已經找到帶內資訊。URLLC接收器可能找到帶內控制資訊。在906,如果找到帶內資訊,則解碼URLLC資料。如果沒有找到帶內資訊,在902,則調到潛在帶內控制傳訊資源。
URLLC接收器可以遵循資訊。例如,URLLC接收器可以遵循該資訊來定位資源元件和/或可以確定如何接收URLLC資料。URLLC接收器可以使用疊加編碼來接收URLLC資料。
第10圖是用於將URLLC插入到eMBB傳輸的eNB/gNB/TRP的範例。可以執行以下的一者或多者。
在1002,可以準備eMBB資料和/或可以映射一個或多個資源。傳輸可以開始。在1004,可以確定URLLC訊務是否已經抵達。在1006,例如,如果URLLC訊務尚未抵達,則等待一逾時。
在1008,如果URLLC訊務已經抵達,則確定eMBB傳輸是否完成。在1010,如果eMBB傳輸尚未完成,則eNB/gNB/TRP可以執行URLLC資料插入。例如,在URLLC訊務在正在進行的eMBB傳輸期間抵達時,eNB/gNB/TRP可以執行URLLC資料插入。可以添加帶內控制資訊和/或可以改變預編碼。在1012,如果eMBB傳輸已經完成,則可以發送URLLC控制資訊。可以傳輸URLLC資料。可以改變預編碼。
波束成形可以被定向(例如,可以僅被定向)到eMBB WTRU。例如,當eNB/gNB/TRP傳輸eMBB資料(例如,僅eMBB資料)時,波束成形可以被定向(例如,可以僅被定向)到eMBB WTRU。波束可以覆蓋多個(例如兩個)WTRU。例如,當eNB/gNB/TRP傳輸(例如,同時傳輸)至eMBB WTRU和URLLC WTRU時,波束可以覆蓋多個(例如,兩個)WTRU。eNB/gNB/TRP可以改變波束成形。
波束成形可以包括一個或多個部分。例如,波束成形可以包括數位波束成形和/或類比波束成形。類比波束可以被配置成不同尺寸。例如,類比波束可以被配置成寬的。類比波束可以被配置成寬的以覆蓋多個WTRU。eNB/gNB/TRP可以形成數位波束(例如,分開的數位波束)。eNB/gNB/TRP可
以向多個WTRU形成數位波束。總波束可以被WTRU識別。例如,被WTRU識別的總波束可以是被數位波束調變的類比波束的產物。可以覆蓋多個WTRU。多個WTRU可以被覆蓋而不損失能量效率。
可以執行具有URLLC的下鏈波束成形。混合波束成形可以提供增加的頻率傳輸。混合波束成形可以組合類比RF波束成形器和數位基帶波束成形器。
被傳輸的信號可以由等式1來描述: x=B Analog B Digital s 等式1
其中 B Analog可以是類比波束成形矩陣, B Digital可以是數位波束成形矩陣,和/或s可以是資訊向量。
eNB/gNB可以改變類比波束成形。例如,當URLLC資料插入發生時,eNB/gNB可以改變類比波束成形。當URLLC資料插入發生時,eNB/gNB可以改變類比波束成形使得類比波束成形可以覆蓋eMBB WTRU和/或URLLC WTRU。
第11圖是在URLLC資料插入發生時動態改變類比波束成形的範例。
在範例(例如,如第11圖所示)中,例如,橢圓可以代表類比波束 B Analog,類比波束可以隨時間而形成類比波束。例如,類比波束可以隨時間而動態形成。eNB/gNB可以對多個WTRU(例如,eMBB WTRU和URLLC WTRU)應用不同的預編碼器(例如,數位波束成形)。例如,eNB/gNB可以對多個WTRU應用不同的預編碼器使得複數個總波束可以指向不同的方向。例如,波束(例如總波束)可以指向URLLC WTRU和/或另一波束(例如另一總波束)可以指向
eMBB WTRU。總波束可以由類比波束(例如如第11圖中的範例所示)和/或數位或基帶波束組成。
第12圖是在URLLC資料插入發生時動態改變總波束的範例。
在範例(例如,如第12圖所示)中,橢圓可以代表隨時間所形成的(例如,動態形成的)總波束 B Analog B Digital。
第13圖是在URLLC資料插入發生時動態改變總波束的範例。如第13圖所示,URLLC WTRU可以使用(例如,可以僅使用)類比波束。例如,URLLC WTRU可以使用(例如,可以僅使用)類比波束來降低對回饋的需要。URLLC波束可以不具有數位波束成形。
類比波束切換可以呈現一個或多個實施選擇。例如,類比波束切換可以呈現關於波束掃描、數位預編碼回饋、盲解碼和/或參考符號的一個或多個實施選擇。
對於波束掃描,一個(例如,每個)WTRU可以(例如,可以需要)識別多個類比波束。例如,在L1/L2波束管理期間,一個(例如,每個)WTRU可以(例如,可以需要)識別多個類比波束。L1/L2波束管理可以包括波束搜索。針對一個(例如每個)預定義訊務類型,WTRU可以執行波束管理和/或可以識別預定義類比上鏈/下鏈波束對。在一範例(例如第11圖至第13圖中示出的範例)中,類比波束1可以是eMBB波束和/或類比波束2可以是用於eMBB和URLLC傳輸的URLLC插入波束。來自P-1級波束管理(例如,粗波束掃描)的結果可以被使用於URLLC傳輸/接收。來自P-2/P-3波束管理(例如,波束細化)的結果可以被使用於eMBB傳輸。
針對數位預編碼回饋,一個(例如,每個)WTRU可以(例如,可以需要)發送用於一個(例如,每個)類比波束類型的數位基帶預編碼器所需的回饋。發送用於一個(例如每個)類比波束類型的數位基帶預編碼器所需
的回饋可以涉及針對一個(例如,每個)預編碼器的回饋(例如,分開的回饋)。可以(例如,也可以)提供一個或多個參數。一個或多個參數可以包括MCS可支援和/或傳輸功率。對於eMBB WTRU可以需要(例如,可以僅需要)一個或多個回饋。例如,對於非預編碼的URLLC(例如,如第13圖中所示)eMBB WTRU可以需要(例如可以僅需要)一個或多個回饋。
在盲解碼中可以考慮預編碼器改變。可以使用傳訊(例如,顯式傳訊)。例如,傳訊(例如顯式傳訊)可以用於降低盲解碼的複雜性。當eMBB(例如,單個eMBB)傳輸被URLLC訊務影響一次或多次時,傳訊(例如,顯式傳訊)可以被使用於降低盲解碼的複雜性。
可以修改參考符號(RS)。例如,可以修改參考符號以解釋波束中的改變。可以使用(例如,可以需要)RS信號。例如,當存在波束和/或訊務類型中的切換時,可以使用(例如可以需要)RS信號。RS1可以是用於eMBB波束1的RS。RS2可以是用於eMBB波束2和/或URLLC波束2的RS。RS3可以是用於URLLC帶內控制的RS。RS信號(例如,不具有波束成形)可以使用於帶內控制資訊。例如,如果URLLC WTRU和/或eMBB WTRU可以(例如,必須)解碼帶內控制資訊,則RS信號(例如,不具有波束成形)可以使用於帶內控制資訊。第14圖是假設前載入RS的RS定位的範例。在範例(例如前載入RS信號)中,eMBB WTRU可以在(例如,第一次)波束切換時使用另外的RS信號,且不在(例如,第一次)波束切換之後使用。RS信號可以使用於啟動的URLLC控制和/或資料區。
可以配置(例如,靜態和/或動態配置)TRP。例如,TRP可以被配置(例如,靜態和/或動態配置)以允許或拒絕URLLC傳輸。沒有URLLC傳輸的配置可以造成關閉一個或多個訊務掃描、盲解碼和/或參考符號改變。
可以使用一個或多個控制區。一個或多個控制區可以遵循對於eNB/gNB/TRP和WTRU可為已知的模式。模式可以是週期性的或偽隨機的。第
15圖是使用另外的控制區的範例。可以分配潛在控制區。例如,可以分配潛在控制區以通知URLLC WTRU和eMBB WTRU關於URLLC資料插入。
裝置可以提供上鏈混合URLLC-eMBB傳輸。WTRU的PHY層可以接收URLLC資料。例如,WTRU的PHY層可以接收從WTRU的應用層發送的URLLC資料。當WTRU正傳輸eMBB資料或mMTC資料時,WTRU的PHY層可以為了上鏈傳輸接收從WTRU的應用層發送的URLLC資料。WTRU可以將URLLC資料插入到eMBB資料的傳輸(例如,正在進行的傳輸)。例如,WTRU可以將URLLC資料插入到eMBB資料的正在進行的傳輸以降低服務URLLC資料中的潛時。
下鏈傳輸可以適用於(例如,使用於)上鏈傳輸。
在eNB/gNB/TRP處的接收波束可以被切換成URLLC類比波束。例如,對於上鏈URLLC訊務的被確定的可能接收週期的期間,在eNB/gNB/TRP處的接收波束可以被切換到URLLC類比波束。
上鏈無許可的(例如,隨機存取)URLLC傳輸可以被多工。例如,上鏈無許可的(例如,隨機存取)URLLC傳輸可以與(例如,被排程的)上鏈eMBB傳輸(例如,來自其他WTRU)而被多工。eMBB上鏈傳輸可以(例如,可以已經)被排程。例如,eMBB上鏈傳輸可以是基於許可的傳輸。WTRU在不具有來自eNB/gNB的許可和/或不知道來自eMBB WTRU的被排程的上鏈傳輸,可以傳輸(例如,可以需要傳輸)URLLC封包。URLLC上鏈傳輸可以在時間/頻率區(例如,時間/頻率區的一部分)上被執行。例如,URLLC上鏈傳輸可以在為了上鏈eMBB傳輸而被指派的時間/頻率區(例如,時間/頻率區的一部分)上被執行。eNB/gNB可以檢測(例如,盲檢測)URLLC WTRU和/或可以將URLLC WTRU的資料從已排程的eMBB WTRU的資料分開。
第16圖是具有與上鏈中已存在的eMBB傳輸重疊的升高的功率等級的URLLC傳輸的範例。URLLC傳輸可以與mMTC資源區重疊。頻率範圍可以被劃分成多個(例如,兩個)頻帶。例如,頻率範圍可以被劃分成用於eMBB的頻帶和用於mMTC的頻帶。
(例如,每個)URLLC WTRU可以被指派區的子集(例如,小子集),該子集可以被指派用於eMBB傳輸。子區(例如,小子區)可以是頻率子帶(例如,小頻率子帶)上的時槽/框的部分。在子區(例如,小子區)中,URLLC WTRU可以提升URLLC WTRU的功率。例如,URLLC WTRU可以升高URLLC WTRU的功率以凌駕於來自可能的已排程的eMBB WTRU的上鏈傳輸的功率。在一範例中,子區中用於eMBB傳輸的傳輸功率可以被降低因數X dB(例如,X=10dB)。子區中的eMBB傳輸的傳輸功率可以被降低因數X dB使得URLLC功率可以凌駕於eMBB功率。URLLC WTRU可以不升高URLLC WTRU的功率。eMBB WTRU可以使用降低的通道編碼率使得eMBB WTRU的傳輸更穩健。接收器(例如,在eNB/gNB處的接收器)可以檢測來自URLLC使用者的傳輸。例如,接收器(例如,在eNB/gNB處的接收器)可以藉由檢測在WTRU特定子區中的高功率密度來檢測來自URLLC使用者的傳輸和/或可以使用連續干擾消除(SIC)來檢測URLLC WTRU的資料、移除URLLC WTRU的資料,和/或檢測eMBB資料。
在範例中,可以使用低速率CDMA技術。例如,低速率CDMA技術可以使用於將URLLC使用者的資料擴展到區(例如,區的部分或全部)。低速率CDMA技術基於指派給URLLC使用者的簽名可以使用於將URLLC使用者的資料擴展到區(例如,區的部分或全部)。基於編碼的擴展可為以頻率(例如,而限制潛時)或以頻率和時間。接收器(例如,在eNB/gNB處)可以監視(例如,盲監視)CDMA傳輸。例如,接收器(例如,在eNB/gNB處)可以使用不同的簽名(例如,對應於不同的潛在URLLC上鏈傳輸)監視(例如,盲監
視)CDMA傳輸和/或可以檢測(例如,盲檢測)URLLC使用者。接收器可以使用連續干擾消除(SIC)來檢測其資料、移除資料,和/或檢測eMBB資料。
gNB可以指出可以被安全使用的資源。例如,gNB可以指出被安全使用的資源,以防止佔先UL URLLC傳輸在為了某些目的(例如關鍵目的,例如UL DMRS和/或其他URLLC UL傳輸)在所分配的資源上中斷傳輸。資源可以包括未分配的資源和/或為了eMBB分配的資源。
gNB可以匯集(例如,聯合)未分配的資源和/或分配給一個或多個(例如,全部)eMBB WTRU的資源。例如為了限制傳訊開銷,gNB可以匯集(例如,聯合)未分配的資源和分配給一個或多個(例如,所有)eMBB WTRU的資源。gNB可以選擇資源的子集和/或可以為了子集提供描述符。gNB可以指定最大功率升高因數Y dB以限制由URLLC WTRU產生的干擾(例如,Y=23)。
gNB可以在下鏈控制資訊(DCI)中在公共搜索空間中發送關於資源的子集的資訊。例如,為了限制傳訊開銷,gNB可以在DCI中在公共搜索空間中發送關於資源的子集的資訊。URLLC WTRU(例如,全部的URLLC WTRU)可以在公共搜索空間中讀取資訊。例如,URLLC WTRU(例如,全部的URLLC WTRU)可以在公共搜索空間中讀取資訊以避免與單獨向URLLC WTRU發送資訊相關聯的傳訊開銷。在範例中,公共搜索空間可以用於一個或多個(例如,全部的)WTRU。
URLLC WTRU可以在DCI中搜索搜索空間。例如,URLLC WTRU可以在DCI中搜索公共搜索空間。URLLC WTRU可以識別URLLC WTRU可以疊加其上的資源。URLLC WTRU可以升高URLLC WTRU的TX功率。例如,URLLC WTRU可以將URLLC WTRU的TX功率升高X dB(例如,X=20),其中XY。
可以提供上鏈eMBB和基於許可的URLLC多存取。在上鏈中,eMBB傳輸可以使用正常時槽。正常時槽可以是M個OFDM符號長的時間,其中M可以
是整數。URLLC傳輸可以使用迷你槽。例如,URLLC傳輸可以使用迷你槽來達成更短的潛時。迷你槽可以是N個OFDM符號長的時間,其中N可以是整數和/或N<M。
取消許可和/或傳輸可能是耗成本的。例如,如果為了UL傳輸gNB排程對於eMBB WTRU的資源,則取消許可和/或傳輸是耗成本的。如果eMBB WTRU為了一個或多個(例如,每一個)迷你槽在DL中監視來自gNB的傳輸,則可能取消。監視可能增加eMBB WTRU的能耗。
如果URLLC WTRU為了UL傳輸請求許可,且許可會在一些eMBB WTRU被排程之後到達,在分配給eMBB傳輸的資源上傳輸(例如,佔先傳輸)可以為有利的(例如,對於URLLC WTRU為有利的)。第17圖是在迷你槽上排程的URLLC傳輸的範例,該迷你槽佔先在正常槽上排程的eMBB傳輸。在第17圖中,M=7以及N=3。URLLC WTRU和eMBB WTRU可以在三個OFDM符號中傳輸(例如,同時傳輸)。
第18圖是處理來自URLLC WTRU的許可請求的gNB的範例。在第18圖中,gNB可以執行可以允許佔先URLLC傳輸的資源配置。
在1802,URLLC WTRU可以請求UL許可。在1804,可以確定是否有足夠的未分配的資源。例如,gNB可以確定是否有足夠的未許可的資源用於URLLC WTRU。在1806,例如,如果有足夠的未分配資源,則gNB可以分配未分配資源給URLLC WTRU。在1808,許可可以被發送給URLLC WTRU。在1810,例如,如果沒有足夠的未分配資源,則gNB可以分配未分配資源和/或已經被分配給eMBB WTRU的資源。例如,gNB可以將未分配資源和/或已經分配給eMBB WTRU的資源分配給URLLC WTRU。在1812,可以發送許可。在許可中,gNB可以向URLLC WTRU指定配置(例如,用於eMBB資源的配置)。gNB可以向
URLLC WTRU指定配置(例如,用於eMBB資源的配置)以允許來自URLLC WTRU的佔先傳輸(例如,有效的佔先傳輸)。
可以藉由功率升高達成佔先傳輸。例如,gNB可以指示URLLC WTRU升高URLLC WTRU的傳輸功率。gNB可以指示URLLC WTRU升高URLLC WTRU的傳輸功率以在被排程的eMBB傳輸上端執行疊加。gNB可以在被接收的疊加的信號執行連續干擾消除(SIC)。例如,gNB可以在被接收的疊加的信號執行連續干擾消除(SIC)以分開URLLC信號和eMBB信號。gNB可以發送功率控制命令。例如,gNB可以發送功率控制命令以要求URLLC WTRU將功率升高X dB(例如,X=20)。X的值可以藉由以下一者或多者確定:eMBB傳輸的接收功率、URLLC WTRU的路徑損耗,和/或對於由URLLC WTRU導致的對其他WTRU或附近胞元的控制干擾的考慮。gNB可以包括在許可中所建議的功率升高因數。URLLC WTRU可以將URLLC WTRU的傳輸功率增加因數X dB。
gNB可以在DCI中發送指示。例如,gNB可以在DCI中發送指示以向URLLC WTRU指出分配給URLLC WTRU的資源正被eMBB傳輸使用。URLLC WTRU可以決定URLLC WTRU的功率升高因數。例如,URLLC WTRU可以基於諸如其剩餘電池能量等級、路徑損耗和/或干擾的資訊來決定URLLC WTRU的功率升高因數。
gNB可以向URLLC WTRU發送預編碼矩陣索引(PMI)。例如gNB可以向URLLC WTRU發送預編碼矩陣索引(PMI),使得URLLC傳輸和eMBB傳輸可以在gNB處的正交子空間中。URLLC WTRU可以針對URLLC WTRU的UL傳輸應用由PMI所指示的預編碼。
可以執行子槽MU/SU MIMO切換。eNB/gNB/TRP可以以正交方式預編碼多個(例如,兩個)傳輸。例如,eNB/gNB/TRP可以以正交方式預編碼多個(例如,兩個)傳輸以確保eMBB傳輸與URLLC傳輸正交。從eNB/gNB/TRP
到URLLC WTRU的通道可以是 H 1 ,和/或到eMBB WTRU的通道可以是 H 2 。預編碼器(數位波束成形矩陣) V 1 和 V 2 可以被選擇分別用於URLLC WTRU和eMBB WTRU。類比波束成形矩陣(例如,通用類比波束成形矩陣) B 可以被選擇。例如,類比波束成形矩陣(例如,通用類比波束成形矩陣) B 可以被選擇,使得(H 1 BV 1 ) T H 1 BV 2 =0,其中, H 1 BV 1 的欄空間(column space)和 H 1 BV 2 的欄空間可以是正交的。URLLC WTRU可以提取URLLC WTRU的期望信號。例如,URLLC WTRU可以藉由將接收信號 y 1 投影到 H 1 BV 1 所跨距的子空間來提取URLLC WTRU的期望信號。接收信號可以例如由等式2給出: y 1 =H 1 B(V 1 s 1 +V 2 s 2 ) 等式2
不同的(例如,兩個不同的)類比波束成形矩陣 B 1 和 B 2 可以被建立。例如,不同的(例如,兩個不同的)類比波束成形矩陣 B 1 和 B 2 可以被建立使得 H 1 B 1 可以與 H 1 B 2 正交。預編碼器 V 1 和 V 2 可以被選擇。例如,預編碼器 V 1 和 V 2 可以被選擇以最大化其他標準。預編碼器 V 1 和 V 2 可以被選擇以最大化其他標準而不用考慮使得 H 1 B 1 V 1 的欄空間與 H 1 B 2 V 2 的欄空間正交的約束。 H 1 B 1 與 H 1 B 2 之間的正交性可以確保 H 1 B 1 V 1 與 H 1 B 2 V 2 的正交性。
預編碼矩陣和波束成形矩陣的選擇可以把URLLC WTRU和eMBB WTRU的性能最佳化作為目標。權重(例如,不同的權重)可以被應用於目標函數。總目標函數可以是分別用於兩個WTRU的兩個目標函數的線性組合,例如根據等式3: α ∥(H 1 BV 1 ) † H 1 BV 2 ∥+(1-α)∥(H 2 BV 1 ) † H 2 BV 2 ∥ 等式3
其中α可以是範圍從0到1的權重和/或†可以是複共軛轉置運算子和/或∥ ∥可以是弗比尼斯範數(Frobenius norm)。
eNB/gNB/TRP可以使用通道狀態資訊和/或以一種或多種(例如,一種或多種不同)的方式處理缺少通道狀態資訊,該方式可以包括以下中的一
者或多者。例如,eNB/gNB/TRP可以使用在時槽(例如先前時槽)中從WTRU得到的通道狀態資訊。eNB/gNB/TRP可以使用傳輸分集方案,例如循環延遲分集(CDD)。例如,在通道狀態資訊為不可用時,eNB/gNB/TRP可以使用傳輸分集方案,例如循環延遲分集(CDD)。eNB/gNB/TRP可以發起通道測量和來自URLLC WTRU的CSI回饋。發起通道測量和來自URLLC WTRU的CSI回饋可以改善CSI測量的品質以及可以轉變到更好的性能。當URLLC訊務為可預測時(例如,週期性到達),eNB/gNB/TRP可以發起通道測量和來自URLLC WTRU的CSI回饋。
可以為了URLLC和eMBB多工提供傳訊。可以使用迷你槽提供多細微性指示。迷你槽可以用於URLLC作為最小排程資源單元。例如,迷你槽可以用於URLLC作為時域中的最小排程資源單元。正常時槽可以是X數量的OFDM符號。迷你槽可以是Y數量的OFDM符號,其中Y<X(例如,X=7且Y=2)。例如,對於具有7個符號的槽,Y{1,2,...,6},以及對於具有14個符號的槽,Y{1,2,...,13}。當URLLC訊務與eMBB傳輸(例如,正在進行的eMBB傳輸)多工(例如,佔先多工)時,則URLLC訊務可以佔用(例如,可以需要佔用,例如,僅佔用)正常時槽的部分。佔用(例如,可以需要佔用,例如,僅佔用)正常時槽的部分的URLLC訊務可以在正常時槽中留下資源(例如,剩餘資源)。
第19圖是在迷你槽存在時的佔先的指示的範例。佔先資源可以在當前正常槽內和/或可以在之外以及進入下一個正常槽。例如,如果在當前正常槽中URLLC資料不能被服務(例如,完全被服務),則佔先資源可以在當前正常槽內和/或可以在之外並進入下一個正常槽。gNB可以能夠(例如,可以需要能夠)在迷你槽的等級描述資源使用。例如gNB可以能夠(例如,可以需要能夠)在迷你槽的等級描述資源使用以讓eMBB WTRU使用剩餘資源。gNB可以能夠(例如,可以需要能夠)在多個迷你槽的等級(例如,不是剛好在正常槽的等
級)描述資源使用。頻域中的最小排程資源單元可以是(例如,一個)RB。URLLC訊務可以在一個RB、多個RB和/或子帶上在頻域中多工。
指示可以在槽(例如,當前正常槽)的末端。例如,如第19圖中具有斜線的指示符矩形所示,指示可以在當前正常槽的末端。指示符可以提供以下資訊的一者或多者。指示符可以提供關於URLLC資料封包傳輸的存在的資訊。指示符可以提供關於受影響的正常槽的資訊。例如,當前正常槽可以被指派數字0,下一個正常槽可以被指派數字1,等。指示符可以提供關於迷你槽時間單元的資訊。迷你槽時間單元可以是OFDM符號的倍數。針對(例如,每個)正常槽,指示符可以提供關於以下一者或多者的資訊。針對(例如,每個)正常槽,指示符可以提供關於URLLC訊務使用的第一個迷你槽的開始時間的資訊。開始時間可以是OFDM符號的倍數。例如,開始時間可以是OFDM符號的倍數和/或可以從當前正常槽的開始時間來測量。針對(例如,每個)正常槽,指示符可以提供關於當前正常槽中迷你槽的結束時間的資訊。針對(例如,每個)正常槽,指示符可以提供關於迷你槽數量的資訊。例如,在多個迷你槽被排程的情況下,指示符可以提供關於迷你槽數量的資訊。針對(例如,每個)正常槽,指示符可以提供關於當前正常槽內開始頻率和/或結束頻率的資訊。頻率可以是頻率單元的倍數。例如,頻率可以是資源元件、資源塊(RB)和/或一組資源塊(RB)的倍數。
可以執行具有CRC(循環冗餘檢測)的混合傳訊。指示(例如指示整體)可以藉由調變資源的子集來顯式地表示。資源的選擇可以傳達資訊和/或可以提供顯式傳訊。CRC檢測位元可以被包括在指示中。例如,CRC檢測位元可以被包括在指示中以讓eMBB WTRU決定eMBB WTRU是否已經接收指示(例如,正確指示)。CRC檢測位元可以考慮另外資訊。例如,藉由使用用於傳達另外資訊的資源選擇,CRC檢測位元可以考慮另外資訊。
第20圖是使用用於傳達資訊的指示符的偏移的範例。例如,頻率中的指示符的偏移可以表示資源選擇。偏移可以是參考頻率(例如,正在討論的頻帶的較低頻率)和指示符的開始頻率之間的差。偏移可以是基礎頻率單元的倍數。例如,偏移可以是15KHz的倍數。指示符的長度可以是固定的。
指示符的偏移可以採用2M個值。可以有L個消息位元和/或K個CRC位元。L+K個位元的一部分可以被映射到偏移。其餘位元可以用於調變資源。
第21圖是例如不用通道編碼的情況下將位元映射到資源偏移和資源的範例。前M個消息位元(例如,位元b1,b2,...,bM)可以被映射到指示符的偏移s。剩餘的位元(例如,位元bM+1,...,bL,c1,...,cK)可以被映射到資源和/或可以確定資源上的信號。可以使用由調變信號在選擇的資源上攜帶的位元和/或由偏移傳達的位元來計算CRC。例如(c1,...,cK)=f(b1,b2,...,bM,bM+1,...,bL,),其中f()可以是構建CRC位元的函數。如果RNTI具有少於f(b1,b2,...,bM,bM+1,...,bL,)的位元,則可以由(c1,...,cK)=f(b1,b2,...,bM,bM+1,...,bL,)XOR R來構建CRC,其中R可以是藉由將零作為首碼加到RNTI的延伸RNTI(無線電網路臨時識別符)。
eMBB WTRU可以嘗試偏移s的值(例如,可能的值)。例如,當接收和/或處理DL傳輸時,eMBB WTRU可以嘗試偏移s的值(例如可能的值)和/或可以使用逆映射來得到對應位元b1,b2,...,bM。eMBB WTRU可以處理資源。eMBB WTRU可以得到位元bM+1,...,bL,c1,...,cK。eMBB WTRU可以檢測b1,b2,...,bM與bM+1,...,bL一起是否給出正確的CRC位元(c1,...,cK)。例如,在沒有使用延伸RNTI的情況下,eMBB WTRU可以檢測b1,b2,...,bM與bM+1,...,bL一起是否給出正確的CRC位元(c1,...,cK)。eMBB WTRU可以檢測b1,b2,...,bM與bM+1,...,bL一起是否給出延伸RNTI。例如,在使用延伸RNTI的情況下,eMBB WTRU可以檢測b1,b2,...,bM與bM+1,...,bL一起是否給出延伸RNTI。
指示符資訊可以被通道編碼。例如,指示符資訊和CRC可以被通道編碼。指示符資訊和CRC可以被通道編碼以防止通道錯誤。通道編碼位元可以表示偏移和/或可以被傳達(例如,隱式地傳達)。例如,通道編碼位元中的前M個位元可以表示偏移和/或可以被傳達(例如,隱式地傳達)。其餘位元可以藉由調變所選的時間-頻率資源而被傳輸(例如,顯式地傳輸)。
第22圖是例如使用通道編碼將位元映射到資源偏移和資源的範例。可以使用通道碼來編碼資訊位元b1,...,bL和CRC位元c1,...,ck。輸出可以是N個位元:d1,...,dN。在這N個位元中,前M個位元d1,d2,...,dM可以被映射到指示符的偏移。其餘的N-M個位元可以被映射到分配的時間-頻率資源。如果通道碼具有同位檢測能力,則可以刪除CRC位元(例如,以節省資源)。例如,如果通道碼具有同位檢測能力,例如LDPC碼,則可以去除CRC位元,例如,以節省資源。
可以在下鏈中發送指示符。例如,可以在下鏈中發送指示符以確保eMBB和/或URLLC接收器知道eMBB資料可以被佔先(例如,藉由刪截和/或藉由疊加)。指示符可以將開銷添加至系統和/或可能導致不良的性能。例如,如果不正確地解碼,則指示符可以將開銷添加至系統和/或可能導致不良的性能。可以提供半持久URLLC指示。在可以有連續的URLLC資料插入的情節和/或可以在一個或多個時間資源(例如,槽/迷你槽)上傳輸URLLC傳輸(例如,特定URLLC傳輸)的情節中,半持久URLLC指示符可以用於指示可以橫跨預定義時間量在預定義數量的資源中插入URLLC資料。半持久URLLC指示可以對於n個時槽生效。n可以是可配置的。指示符可以降低開銷和/或偽為正確(false positive)的概率。指示符可以降低eMBB接收器所需的處理(例如,總處理)。接收器可以確定適應URLLC訊務。例如,接收器可以先驗地(a-priori)確定適應URLLC訊務。
可以提供用於DCI盲解碼的一個或多個搜索空間。例如,可以提供用於URLLC和eMBB多工的DCI盲解碼的一個或多個搜索空間。URLLC與eMBB的佔先多工的詳情可以被發送到eMBB WTRU。例如,URLLC與eMBB的佔先多工的詳情可以被發送到eMBB WTRU以最佳化eMBB WTRU的性能。eMBB WTRU可以執行每槽DCI監視。如果eMBB WTRU執行每槽DCI監視,則可以在下一個時槽的DCI中發送佔先多工資訊。
第23圖是在下一個時槽的DCI中提供的佔先多工資訊的範例。具有佔先多工的DCI格式(例如,可能的DCI格式)可以不同於不具有佔先多工的DCI格式。例如,當有佔先多工時DCI格式可以被提供以及當沒有佔先多工時另一DCI格式可以被提供。WTRU可以搜索(例如,可以一直搜索)預定義的專用DCI格式。例如,WTRU可以搜索(例如,可以一直搜索)預定義的專用DCI格式,其可以攜帶關於在先前槽/迷你槽/子框中的重疊eMBB/URLLC資源的資訊。如本文所述,可以應用以下的一者或多者。用於重疊eMBB/URLLC資源的預定義DCI格式可以攜帶較小酬載尺寸。用於eMBB/URLLC多工的預定義DCI格式可以攜帶較大酬載尺寸。WTRU可以識別DCI是否屬於先前槽和/或當前槽。WTRU可以使用一個或多個(例如,不同的)CRC遮罩。
用於重疊eMBB/URLLC資源的預定義DCI格式可以攜帶酬載尺寸。例如,用於重疊eMBB/URLLC資源的預定義DCI格式可以攜帶比攜帶關於當前槽中的正在進行的eMBB訊務的資訊的DCI格式較小(例如,更較小)的酬載尺寸。短預定義DCI格式可以攜帶(例如,可以僅攜帶)關於頻率和/或時間資源(例如PRB、OFDM符號、迷你槽索引等)的資訊。例如,短預定義DCI格式可以攜帶(例如,可以僅攜帶)關於為了在先前槽中的重疊URLLC/eMBB傳輸所分配的頻率和/或時間資源(例如,PRB、OFDM符號、迷你槽索引等)的資訊。用於eMBB/URLLC多工的短DCI格式可以被使用於刪截。例如,用於
eMBB/URLLC多工的短DCI格式可以被使用於刪截,其中eMBB資源被部分刪截和/或被URLLC傳輸取代。
用於eMBB/URLLC多工的預定義DCI格式可以攜帶較大酬載尺寸。例如,用於eMBB/URLLC多工的預定義DCI格式可以攜帶較大酬載尺寸,其可以包括資訊和/或頻率-時間分配,例如調變和編碼方案、傳輸模式、MIMO預編碼、功率分配等。長DCI格式可以被使用於疊加方案。長DCI格式可以被WTRU使用。例如,長DCI格式可以被WTRU使用,其確定檢測和/或抵消在重疊eMBB/URLLC資源上來自共排程WTRU的干擾。WTRU可以導出關於干擾WTRU的調變、編碼、功率和/或MIMO預編碼等的資訊。WTRU可以重構用於共排程WTRU的傳輸信號。WTRU可以消除來自接收信號的傳輸信號。例如,WTRU可以消除來自接收信號的傳輸信號以提取期望信號。
WTRU可以識別DCI是否屬於先前槽或當前槽。例如,WTRU可以藉由檢測位元(例如,一個位元)旗標來識別DCI是否屬於先前槽或當前槽。位元旗標可以被包括在DCI的酬載中。DCI格式可以對於eMBB/URLLC多工和eMBB訊務為相同或一樣(例如,實質相同或一樣)。如果旗標位元是一,則WTRU可以確定DCI消息可以包括資訊。例如,WTRU可以確定DCI消息可以包括關於來自先前槽的重疊eMBB/URLLC資源的資訊。如果旗標位元是零,則WTRU可以確定DCI消息可以包括資訊。WTRU可以確定DCI消息可以包括關於在打算用於WTRU的當前槽中的指派/許可的資訊。
WTRU可以使用一個或多個(例如,不同的)CRC遮罩(例如,RNTI)。例如,WTRU可以使用一個或多個(例如,不同的)CRC遮罩(例如,RNTI)來識別(例如,隱式地識別)DCI是否屬於槽。WTRU可以使用一個或多個(例如,不同的)CRC遮罩(例如,RNTI)來識別(例如,隱式地識別)DCI是屬於先前槽還是當前槽(例如,先前槽中的eMBB/URLLC多工或當前槽
中的eMBB訊務)。WTRU可以被指派兩個RNTI。例如,WTRU可以被指派RNTI1和RNTI2。WTRU可以使用RNTI(例如,被指派的RNTI)來檢測CRC。如果使用RNTI1對CRC的檢測成功(例如,在傳輸中攜帶的CRC位元符合從資料計算的CRC位元),則WTRU可以確定DCI消息可以包括關於來自槽(例如,先前槽)的重疊eMBB/URLLC資源的資訊。例如,如果WTRU確定傳輸中攜帶的CRC位元符合使用RNTI1從資料計算的CRC位元,則WTRU可以確定DCI消息包括關於來自先前槽的重疊eMBB/URLLC資源的資訊。如果使用RNTI2對CRC的檢測成功,則WTRU可以得出結論該DCI消息包括關於在打算用於WTRU的當前槽中的指派/許可的資訊。
具有佔先多工的可能DCI格式可以不同於不具有佔先多工的DCI格式。如果eMBB WTRU搜遍DCI格式(例如,全部DCI格式),可能為時間和/或功率的不足使用。
可以提供兩個搜索空間。例如,可以針對沒有佔先多工的情況提供搜索空間(例如,S1)。可以針對具有佔先多工的情況提供搜索空間(例如,S2)。
第24圖是使用用於DCI的多個搜索空間(例如S1、S2)的eMBB WTRU的範例。搜索空間S1和S2可以在用於WTRU的實體資源或PDCCH候選上重疊。在2402,eMBB WTRU可以嘗試搜索S1。在2404,可以確定S1的搜索是否成功。在2406,如果S1的搜索成功,則處理eMBB資料。在2408,如果eMBB WTRU搜索S1失敗,則eMBB WTRU可以嘗試搜索S2。在2410,可以確定S2的搜索是否成功。在2412,如果S2的搜索成功,則識別URLLC資料和/或處理eMBB WTRU資料。如果S2的搜索不成功,則不採取進一步動作。例如,針對當前槽可以不採取進一步動作。
正常槽的搜索空間可以與迷你槽的搜索空間重疊。例如,如果存在迷你槽,則正常槽的搜索空間可以與迷你槽的搜索空間重疊。正常槽的搜索空間可以與迷你槽的搜索空間重疊以降低與盲解碼相關聯的計算複雜性。WTRU可以被配置成在槽和/或迷你槽的搜索空間上執行盲解碼。
第25圖示出了eMBB WTRU可以搜索三個搜索空間中的一者或多者的範例。三個搜索空間可以如下標注。S2可以是用於URLLC和eMBB佔先多工的搜索空間。S1可以是WTRU特定搜索空間。S0可以是公共搜索空間。
第25圖中可以示出eMBB WTRU的範例行為。eMBB WTRU可以嘗試解碼(例如,檢測)資料(例如,PDSCH的資料)。例如,eMBB WTRU可以嘗試在先前槽中解碼(例如,檢測)PDSCH。如果eMBB不能在先前槽中編碼(例如,不能檢測)PDSCH,則eMBB可以為了URLLC和eMBB佔先多工而搜索搜索空間(例如,S2)。例如,在當前槽(例如,當前時槽)中,eMBB WTRU可以從搜索空間(例如,S2)搜索(例如,可以開始搜索)新無線電PDCCH(NR-PDCCH)候選。PDCCH(NR-PDCCH)可以包括DCI。eMBB WTRU可以使用RNTI2搜索搜索空間(例如,S2)。搜索空間(例如,S2)可以包括用於先前槽(例如,先前槽)中的URLLC/eMBB的佔先多工的NR-PDCCH。
如果eMBB WTRU在先前槽中檢測到(例如,解碼)PDSCH,則WTRU可以在攜帶用於在先前槽中URLLC/eMBB的佔先多工的NR-PDCCH候選的當前槽中不搜索搜索空間(例如,S2)。如果WTRU解碼(例如,成功解碼)用於先前槽的PDCCH,則WTRU可以盲編碼(例如,繼續盲解碼)一個或多個(例如,其他)PDCCH候選。WTRU可以在相同控制區中盲編碼(例如,繼續盲解碼)用於當前槽的一個或多個(例如,其他)PDCCH候選。例如,WTRU可以在公共搜索空間(例如,S0)和/或WTRU特定搜索空間(例如,S1)中盲編碼(例如,繼續盲解碼)用於當前槽的一個或多個(例如其他)PDCCH候選。
WTRU可以在公共搜索空間(例如,S0)和/或WTRU特定搜索空間(例如,S1)中繼續盲解碼用於當前槽的一個或多個(例如,其他)PDCCH候選以確定當前槽中是否有用於WTRU的指派。
如果eMBB WTRU不能在先前槽中檢測到(例如,不能解碼)PDSCH,則eMBB WTRU可以確定具有RNTI2的S2的搜索是否成功。如果具有RNTI2的S2的搜索成功,則WTRU可以識別在先前時槽中受到URLLC佔先多工影響的資源。WTRU可以處理包括用於先前時槽的軟位元的軟緩衝器。例如,如果佔先多工方案是刪截,則WTRU可以忽略被影響的軟位元。如果佔先多工方案是疊加,則WTRU可以執行疊加解碼。
搜索空間可以是重疊的。例如,如果eMBB WTRU在具有RNTI2的搜索空間S2的搜索是不成功的,則搜索空間可以是重疊的。公共搜索空間(例如S0)的一者或多者可以攜帶佔先URLLC/eMBB多工資訊。例如,公共搜索空間(例如,S0)的一者或多者可以攜帶佔先URLLC/eMBB多工,因為(例如,每一個)WTRU(例如,eMBB WTRU)可以搜索(例如,可以一直搜索)公共搜索空間(例如,S0)。eMBB WTRU可以嘗試(例如,可以首先嘗試)使用用於在公共搜索空間(例如,S0)中打算用於得到佔先URLLC/eMBB多工資訊的RNTI。例如,eMBB可以嘗試搜索具有RNTI2的公共搜索空間(例如,S0),如第25圖所示。如果eMBB WTRU成功搜索到具有RNTI2的S0,則eMBB WTRU可以處理用於先前時槽的軟緩衝器。例如,如果eMBB WTRU成功搜索到具有RNTI2的S0,則eMBB WTRU可以識別受URLLC影響的資源(例如,在先前槽中受URLLC影響的資源)和/或處理軟緩衝器。
如果eMBB WTRU未成功搜索到具有RNTI2的公共搜索空間(例如,S0),則eMBB WTRU可以搜索(例如,繼續搜索)公共搜索空間(例如,S0)。例如,如果eMBB WTRU未成功搜索到具有RNTI2的S0,則eMBB WTRU
可以搜索(例如,繼續搜索)具有RNTI0的公共搜索空間(例如S0)。eMBB WTRU可以繼續搜索公共搜索空間(例如,搜索具有RNTI0的S0),不管搜索結果。如第25圖所示,eMBB WTRU可以得到系統資訊等。eMBB WTRU可以搜索WTRU特定搜索空間(例如,S1)。例如,eMBB WTRU可以搜索具有RNTI1的WTRU特定搜索空間(例如,S1)。
WTRU可以搜索(例如,可以僅搜索)可以被配置成攜帶用於URLLC/eMBB的佔先多工的NR-PDCCH的預定義搜索空間。例如,為了降低盲解碼數量,WTRU在可以被用於eMBB/URLLC多工的較高層傳訊所配置的槽/迷你槽/子框上可以搜索(例如,可以僅搜索)被配置成攜帶用於在先前槽中的URLLC/eMBB的佔先多工的NR-PDCCH的預定義搜索空間。gNB可以限制eMBB/URLLC多工。例如,gNB可以限制eMBB/URLLC多工以預定義槽/迷你槽/子框。gNB可以經由半靜態配置將eMBB/URLLC多工限制到預定義槽/迷你槽/子框。
搜索空間可以是公共搜索空間。例如,攜帶在先前槽中用於URLLC和eMBB的佔先多工的NR-PDCCH候選的搜索空間可以是公共搜索空間。攜帶在先前槽中用於URLLC和eMBB的佔先多工的NR-PDCCH候選的搜索空間可以是(例如,每一個,全部)WTRU在搜索空間內可以需要監視NR-PDCCH候選(例如,全部NR-PDCCH候選)的公共搜索空間。WTRU可以監視固定的NR-PDCCH候選。例如,WTRU在可以專用於eMBB/URLLC多工的槽/迷你槽/子框(例如,全部槽/迷你槽/子框)中可以監視DL控制區內的固定的NR-PDCCH候選。NR-PDCCH候選可以不用於傳輸用於當前槽的DCI格式。
攜帶在先前槽中用於URLLC和/或eMBB的佔先多工的NR-PDCCH候選的搜索空間可以是群組公共搜索空間。例如,攜帶在先前槽中用於URLLC和/或eMBB的佔先多工的NR-PDCCH候選的搜索空間可以是群組公共搜索空
間,其中WTRU群組(例如,僅WTRU群組)可以在(例如,每一個)槽/迷你槽/子框(例如,被配置的槽/迷你槽/子框)中監視(例如,可以需要監視)。WTRU群組是WTRU的子集。例如,對於群組公共搜索空間,可以監視(例如,可以需要監視)搜索空間的WTRU群組可以是可以具有PDSCH指派的WTRU,該PDSCH指派可以與在先前槽中用於URLLC傳輸的資源重疊。WTRU可以從gNB接收群組ID。WTRU可以使用該群組ID。例如,WTRU可以使用該群組ID來確定在先前槽中用於重疊資源的NR-PDCCH候選。
搜索空間可以攜帶NR-PDCCH候選。例如,攜帶在先前槽中用於URLLC和/或eMBB的佔先多工的NR-PDCCH候選的搜索空間可以被尺寸化(dimensioned)。攜帶在先前槽中用於URLLC和/或eMBB的佔先多工的NR-PDCCH候選的搜索空間可以被尺寸化,使得阻擋(blocking)可以被最小化。在搜索空間中可以有足夠的NR-PDCCH候選。例如,在搜索空間中可以有足夠的NR-PDCCH候選,使得WTRU可以找到(例如,可以總是找到)對應於在先前槽中的重疊URLLC/eMBB資源的NR-PDCCH。不管WTRU是否設法檢測和解碼(例如,成功檢測和編碼)在先前槽中的PDSCH,WTRU可以找到(例如,可以總是找到)對應於在先前槽中的重疊URLLC/eMBB資源的NR-PDCCH。gNB可以尺寸化搜索空間的大小。例如,gNB可以根據URLLC訊務來尺寸化該搜索空間的大小。URLLC訊務可以包括在(例如,每個)槽中需要被服務的URLLC使用者的數量。攜帶在先前槽中用於URLLC和/或eMBB的佔先多工的NR-PDCCH候選的搜索空間可以與用於當前槽的公共搜索空間和/或WTRU的WTRU特定搜索空間重疊。重疊可以增加用於WTRU的PDCCH候選的池和/或降低阻擋概率。搜索空間之間的重疊可以在槽中改變。例如,搜索空間之間的重疊可以根據某種預定義模式在槽中改變。搜索空間之間的重疊可以根據某種預定義模式在槽中改變以降低阻擋概率。為了WTRU特定搜索空間和/或公共搜索
空間WTRU可以遵循用於監視NR-PDCCH候選的特徵(例如,相同特徵)。例如,當URLLC/eMBB多工的搜索空間存在重疊時,為了WTRU特定搜索空間和/或公共搜索空間,WTRU可以遵循用於監視NR-PDCCH候選的相同特徵。
UL資源保留可以基於URLLC UL負載率。資源可以基於URLLC負載率為了URLLC UL佔先傳輸而被保留。隨著URLLC負載率上升,為了URLLC UL傳輸所保留的資源量可以增加。
gNB可以估計要被保留的URLLC資源。URLLC UL資源(例如,需要的URLLC UL資源)量可以被半靜態估計。基於URLLC WTRU初始存取,URLLC UL資源(例如,需要的URLLC UL資源)量可以被半靜態估計。例如,WTRU可以用傳訊(例如,顯式傳訊)延遲和/或可靠性(例如,期望的延遲和/或可靠性)。WTRU可以用傳訊(例如,顯式傳訊)在初始存取時的延遲和/或可靠性(例如,期望的延遲和/或可靠性)。WTRU可以傳訊預先確定的URLLC訊務種類。例如,WTRU可以傳訊指示(例如,隱式指示)在初始存取時需要的延遲和/或可靠性的預先確定的URLLC訊務種類。
eNB可以靜態、半靜態地和/或動態地傳訊資源的量和/或位置。例如,eNB可以靜態、半靜態和/或動態傳訊資源的量和/或位置,作為即時或半持久傳訊。可以在DCI中用傳訊資訊。例如,可以使用PDCCH在DCI中用傳訊資訊。專用URLLC/gNB資源指示通道可以用信號發送資訊。
可以發生eMBB UL傳輸和/或URLLC UL傳輸。URLLC WTRU可以與用於URLLC WTRU保留的資源(例如,時間和頻率)被排程。URLLC WTRU可以例如以無許可方式存取被分配給eMBB WTRU的資源。eMBB WTRU可以避免為了URLLC WTRU保留的資源。eMBB WTRU可以例如以可以適應被URLLC WTRU佔先方式在為了URLLC WTRU保留的資源內進行傳輸。第26圖是對於具有URLLC UL佔先eMBB傳輸的編碼和傳輸功率的範例。以適應由URLLC WTRU
佔先的方式傳輸可以包括以下的一者或多者。例如,以適應由URLLC WTRU佔先的方式傳輸可以包括在預定義URLL資源中以穩健(例如,更穩健)的編碼率傳輸(例如,以保護eMBB傳輸)。以適應由URLLC WTRU佔先的方式傳輸可以包括在包含資源的符號/框(例如,整個符號/框)中以穩健(例如,更穩健)的編碼率傳輸(例如,以保護eMBB資源)。以適應URLLC WTRU佔先的方式傳輸可以包括以低於非URLLC資源的功率傳輸(例如,以保護可能的URLLC傳輸)。以適應URLLC WTRU佔先的方式傳輸可以包括避免在URLLC資源中傳輸(例如,以保護可能的URLLC傳輸)。
gNB可以估計要被保留的URLLC資源。例如,gNB可以基於URLLC WTRU性能傳訊而估計要被保留的URLLC資源。URLLC WTRU可以向gNB通知與URLLC WTRU的需求相比的URLLC WTRU的性能。例如,傳訊可以不需要是超可靠的和/或低潛時。可以在來自URLLC WTRU的訊務/服務請求(例如,在排程情況中)動態估計URLLC UL資源(例如,需要的URLLC UL資源)的量。需要的URLLC UL資源的量可以URLLC UL傳輸的成功率和/或URLLC WTRU的延遲上(例如,在排程和/或無許可情況下)在URLLC WTRU與gNB之間的傳訊(例如,顯式傳訊)上被估計。WTRU可以發送在所經歷的URLLC可靠性和/或延遲的資訊。例如,WTRU可以發送在與所請求的URLLC可靠性和/或延遲相比的所經歷的URLLC可靠性和/或延遲的資訊。比較可以是差異(例如,實際差異)和/或可以基於可以指示所經歷的服務種類的預先確定的參數集。例如,可以定義URLLC可靠性和延遲種類的集合(例如,有限集)。URLLC WTRU可以指示在初始存取時URLLC WTRU的期望URLLC可靠性和/或延遲種類。URLLC WTRU可以向gNB(例如,在服務請求期間)指示URLLC WTRU所經歷的URLLC可靠性和/或經歷過的傳輸(例如,顯式傳輸)的延遲種類。URLLC WTRU可以
向gNB指示NAK的數量和/或ACK/NAK比。例如,URLLC WTRU可以向gNB指示NAK的數量和/或ACK/NAK比以傳訊URLLC WTRU的可靠性。
第27圖是具有資源保留和URLLC性能傳訊的URLLC UL傳輸的範例。
第28圖是基於URLLC UL負載率和URLLC性能傳訊的UL資源保留的範例。在2802,gNB可以估計資源。例如,gNB可以基於初始存取和/或URLLC性能傳訊估計資源。在2804,gNB可以傳訊資源。例如,gNB可以傳訊分配的資源。在2806,gNB可以傳訊eMBB上鏈(UL)傳輸。例如,gNB可以在DCI中傳訊eMBB UL傳輸。一個或多個eMMB WTRU可以使用URLLC資源資訊。例如,一個或多個eMBB WTRU可以使用URLLC資源來調整傳輸。在2808,gNB可以用傳訊URLLC UL傳輸和/或一個或多個URLLC WTRU可以發送無許可UL傳輸。在2810,一個或多個URLLC WTRU可以發送資訊。例如,一個或多個URLLC WTRU可以發送URLLC性能資訊。
在第29A圖至第29D圖中提供了包括本文中描述的功能和/或元件的一個或多個的裝置。
第29A圖是示出可以在其中實施一個或多個揭露的實施方式的範例通信系統100的圖式。通信系統100可以為對多個無線使用者提供諸如語音、資料、視訊、訊息傳遞、廣播等內容的多存取系統。通信系統100經由包括無線頻寬在內的系統資源的共享來賦能多個無線使用者存取此類內容。例如,通信系統100可以利用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字DFT-擴展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊濾波OFDM、濾波器組多載波(FBMC),及其類似者。
如第29A圖所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施方式考慮了任意數量的WTRU、基地台、網路和/或網路元素。WTRU 102a、102b、102c、102d中的每一者可以是被配置成在無線環境中操作和/或通信的任何類型的裝置。藉由範例,WTRU 102a、102b、102c、102d(其任意可以被稱為“站”和/或“STA”)可以被配置成傳輸和/或接收無線信號,並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、基於用戶的單元、呼叫器、蜂巢式電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴、頭戴式顯示器(HMD)、車輛、無人機、醫療裝置和應用(例如,遠端手術)、工業裝置和應用(例如,機器人和/或在工業和/或自動處理鏈上下文中操作的其他無線裝置)、消費電子裝置、在商業和/或工業無線網路中操作的裝置,及其類似者。WTRU 102a、102b、102c及102d的任一者可以互換地稱為UE。
通信系統100還可以包括基地台114a和基地台114b。基地台114a、114b的每一者可以是被配置成藉由與WTRU 102a、102b、102c、102d中的至少一者無線連接來促使對一個或多個通信網路(例如CN 106/115、網際網路110和/或其他網路112)的任何類型的裝置的存取,該網路。藉由範例,基地台114a、114b可以是基地收發站(BTS)、節點B、e節點B、本地節點B、本地e節點B、gNB、NR節點B、站控制器、存取點(AP)、無線路由器,或其類似者。儘管基地台114a、114b每一者都被描述成是單個元素,應該瞭解,基地台114a、114b可以包括任何數量的互連基地台和/或網路部件。
基地台114a可以是RAN 104/113的部分,其還可以包括其他基地台和/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、
中繼節點等等。基地台114a和/或基地台114b可以被配置成可稱為為胞元(未顯示)的一個或多個載波頻率上傳輸和/或接收無線信號。這些頻率可以是許可頻譜、未許可頻譜或許可和未許可頻譜的組合。胞元可以對特定地理區域提供無線服務的覆蓋,特定地理區域可以相對固定或可以隨時間改變。胞元可被進一步劃分成胞元區段。例如,與基地台114a關聯的胞元可劃分為三個區段。因此,在一個實施方式中,基地台114a可以包括三個收發器,也就是說,每一個收發器對應於胞元的一個區段。在一個實施方式中,基地台114a可以利用多輸入多輸出(MIMO)技術,並且可以對於胞元的每個區段利用多個收發器。例如波束成形在期望空間方向可以被使用於傳輸和/或接收信號。
基地台114a、114b可以經由空中介面116來與WTRU 102a、102b、102c、102d的一者或多者通信,空中介面116可以是任何適當的無線通訊鏈路(例如,射頻(RF)、微波、釐米波、微米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。
更具體地說,如上所述,通信系統100可以是多重存取系統,並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA,及其類似者。舉例來說,RAN 104/113中的基地台114a與WTRU 102a、102b、102c可以實施諸如全球行動通信系統(UMTS)地面無線電存取(UTRA)之類的無線電技術,其可以使用寬頻CDMA(WCDMA)來建立空中介面116。WCDMA可以包括諸如高速封包存取(HSPA)和/或演進型HSPA(HSPA+)的通信協定。HSPA則可以包括高速下鏈封包存取(HSDPA)和/或高速UL上鏈封包存取(HSUPA)。
在一實施方式中,基地台114a與WTRU 102a、102b、102c可以實施諸如演進型UMTS地面無線電存取(E-UTRA)的無線電技術,其可以使用長
期演進(LTE)和/或先進LTE(LTE-A)和/或先進LTE Pro(LTE-A Pro)來建立空中介面116。
在一實施方式中,基地台114a和WTRU 102a、102b、102c可以實施諸如NR無線電存取的無線電技術,其可以使用新無線電(NR)來建立空中介面116。
在一實施方式中,基地台114a和WTRU 102a、102b、102c可以實施多種無線電存取技術。例如基地台114a和WTRU 102a、102b、102c可以例如使用雙連接性(DC)原則來一起實施LTE無線電存取和NR無線電存取。因此,被WTRU 102a、102b、102c使用的空中介面可以由多種類型的無線電存取技術和/或發送到/來自多種類型的基地台(例如,eNB和gNB)的傳輸為其特徵。
在其他實施方式中,基地台114a與WTRU 102a、102b、102c可以實施諸如IEEE 802.11(即,無線保真度(WiFi)、IEEE 802.16(即,全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通信系統(GSM)、GSM增強資料率演進(EDGE)、GSM EDGE(GERAN),或其類似者的無線電存取技術。
例如,第29A圖中的基地台114b可以是無線路由器、本地節點B、本地e節點B或存取點,並且可以利用任何適當的RAT來促成局部區域中的無線連接性,該局部區域例如為營業場所、住宅、交通工具、校園、工業設施、空中走廊(例如,被無人機使用)、道路,及其類似者。在一個實施方式中,基地台114b與WTRU 102c、102d可以藉由實施諸如IEEE 802.11的無線電技術來建立無線區域網路(WLAN)。在一實施方式中,基地台114b與WTRU 102c、102d可以實施諸如IEEE 802.15的無線電技術來建立無線個人區域網路(WPAN)。在再一實施方式中,基地台114b和WTRU 102c、102d可以利用基於蜂巢式的RAT
(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-APro、NR等)來建立微微胞元或毫微微胞元。如第29A圖所示,基地台114b可以直接連接到網際網路110。因此,基地台114b未必需要透過CN 106/115來存取網際網路110。
RAN 104/113可以與CN 106/115通信,其可以是被配置成向WTRU 102a、102b、102c、102d中的一者或多者提供語音、資料、應用和/或借助網際網路協定上的語音(VoIP)服務的任何類型的網路。資料可以具有變化的服務品質(QoS)要求,例如不同通量(throughput)要求、潛時要求、容許誤差要求、可靠性要求、資料通量要求、行動性要求,及其類似者。CN 106/115可以提供呼叫控制、記帳服務、基於行動位置的服務、預付費呼叫、網際網路連接性、視訊分發等等,和/或執行諸如使用者驗證之類的高水準安全功能。雖然在第29A圖中沒有顯示,但是應該瞭解,RAN 104/113和/或CN 106/115可以直接或間接地與利用那些與RAN 104/113相同的RAT或不同RAT的的其他RAN直接或間接地通信。例如,除了與可以利用NR無線電技術的RAN 104/113連接之外,CN 106/115還可以與利用GSM、UMTS、CDMA 2000、WiMax、E-UTRA或WiFi無線電技術的其他RAN(未顯示)通信。
CN 106/115還可以對於WTRU 102a、102b、102c、102d服務作為存取PSTN 108、網際網路110和/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括全球互聯電腦網路的系統和使用公共通信協定的裝置,該協定可以例如是傳輸控制協定(TCP)、使用者資料包通訊協定(UDP)和/或在TCP/網際網路協定(IP)套件中的IP。網路112可以包括由其他服務供應商擁有和/或操作的有線或無線通信網路。例如,網路112可以包括與一個或多個RAN連接的另一個CN,該一個或多個RAN可以利用與RAN 104/113相同的RAT或不同的RAT。
通信系統100中一些或所有WTRU 102a、102b、102c、102d可以包括多模式能力(例如,WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上用於與不同無線網路通信的多個收發器)。例如,第29A圖所示的WTRU 102c可以被配置成與可以利用基於蜂巢式的無線電技術的基地台114a通信,以及與可以利用IEEE 802無線電技術的基地台114b通信。
第29B圖是示出範例WTRU 102的系統圖式。如第29B圖所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136和/或其他週邊設備138等。應該瞭解的是,在保持符合實施方式的同時,WTRU 102可以包括前述元件的任何子組合。
處理器118可以是通用處理器、專門目的處理器、傳統處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式閘陣列(FPGA)電路、其他任何類型的積體電路(IC)、狀態機器,及其類似者。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理和/或其他任何賦能WTRU 102在無線環境中操作的功能性。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然第29B圖將處理器118和收發器120描述成是分開的組件,但是應該瞭解,處理器118和收發器120可以集成在一電子封裝或晶片中。
傳輸/接收元件122可以被配置成經由空中介面116來傳輸信號至基地台(例如,基地台114a)或接收來自基地台(例如,基地台114a)的信號。例如,在一個實施方式中,傳輸/接收元件122可以是被配置成傳輸和/或接收RF信號的天線。在一實施方式中,例如,傳輸/接收元件122可以是被配置成傳輸和/或接收IR、UV或可見光信號的發射器/檢測器。在再一實施方式中,傳輸/接收
元件122可以被配置成傳輸和/或接收RF和光信號兩者。應該瞭解的是,傳輸/接收元件122可以被配置成傳輸和/或接收無線信號的任何組合。
雖然在第29B圖中傳輸/接收元件122被描述成作為單個元件,WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地,WTRU 102可以利用MIMO技術。因此,在一個實施方式中,WTRU 102可以包括兩個或多個經由空中介面116用於傳輸和接收無線信號的傳輸/接收元件122(例如,多個天線)。
收發器120可以被配置成將要被傳輸/接收元件122傳輸的信號進行調變,以及對被傳輸/接收元件122接收的信號進行解調變。如上所述,WTRU 102可以具有多模式能力。因此,收發器120可以例如包括用於賦能WTRU 102透過諸如NR和IEEE 802.11的多種RAT來通信的多個收發器。
WTRU 102的處理器118可以耦合至,也可以接收使用者輸入資料來自,揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如,液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)。處理器118還可以向揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以存取資訊來自,以及儲存資料於,任何適當類型的記憶體(例如非可移記憶體130和/或可移記憶體132)。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶儲存裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、保全數位(SD)記憶卡,及其類似者。在其他實施方式中,處理器118可以存取資訊來自,以及儲存資料於,非實體位於WTRU 102的記憶體,例如該於伺服器或家用電腦(未顯示)上。
處理器118可以接收來自電源134的電力,並且可以被配置分發和/或控制在WTRU 102中的其他組件的電力。電源134可以是為WTRU 102供電的任何適當的裝置。舉例來說,電源134可以包括一個或多個乾電池組(如鎳鎘
(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等)、太陽能電池、燃料電池,及其類似者。
處理器118還可以與GPS晶片組136耦合,該晶片組可以被配置成提供與WTRU 102的當前位置相關的位置資訊(例如,經度和緯度)。除了或代替來自GPS晶片組136的資訊,WTRU 102可以經由空中介面116接收來自基地台(例如,基地台114a、114b)的位置資訊,和/或基於從兩個或多個附近基地台接收的信號的定時來確定其位置。應該瞭解的是,WTRU 102可以借助任何適當的位置確定方法來獲取位置資訊,惟保持與實施方式一致。
處理器118還可以耦合到其他週邊設備138,其可以包括提供附加特徵、功能性和/或有線或無線連接性的一個或多個軟體和/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片或視訊)、通用串列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲播放機模組、網際網路瀏覽器、虛擬實境和/或強化實境(VR/AR)裝置、活動追蹤器,及其類似者。週邊設備138可以包括一個或多個感測器,感測器可以是陀螺儀、加速度計、霍爾效應感測器、磁力計、方向感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸摸感測器、磁力計、氣壓計、姿勢感測器、生物特徵感測器和/或濕度感測器的一者或多者。
WTRU 102可以包括全雙工無線電,對此一些或全部信號的傳輸和接收(例如,與用於UL(例如,用於傳輸)和下鏈(例如,用於接收)的特定子框相關聯)可以同時發生和/或是同時的。全雙工無線電可以包括干擾管理單元139,以經由硬體(例如,抗流器)或經由處理器(例如,分開的處理器(未示出)或經由處理器118)的信號處理來降低和/或實質地消除自干擾。在一實施方式中,WTRU 102可以包括半雙工無線電,對此一些或全部信號的傳輸和接收
(例如,與用於UL(例如,用於傳輸)或下鏈(例如,用於接收)的特定子框相關聯)。
第29C圖是示出根據一實施方式的RAN 104以及CN 106的系統圖式。如上所述,RAN 104可以利用E-UTRA無線電技術以經由空中介面116來與WTRU 102a、102b、102c進行通信。RAN 104還可以與CN 106通信。
RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在保持與實施方式相符的同時,RAN 104可以包括任何數量的e節點B。e節點B 160a、160b、160c可以每一個包括一個或多個收發器,以便經由空中介面116來與WTRU 102a、102b、102c通信。在一個實施方式中,e節點B 160a、160b、160c可以實施MIMO技術。因此,例如,e節點B 160a可以使用多個天線來向WTRU 102a傳輸無線信號,和/或接收來自WTRU 102a的無線信號。
e節點B 160a、160b、160c的每一者可以關聯於特定胞元(未顯示),並且可以被配置成處理無線電資源管理決策、交接決策、UL和/或DL中的使用者排程,及其類似者。如第29C圖所示,e節點B 160a、160b、160c可以藉由X2介面與彼此通信。
第29C圖所示的CN 106可以包括行動性管理實體(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(或PGW)166。雖然上述每一元件都被描述成是CN 106的一部分,但是應該瞭解,CN操作者之外的其他實體同樣可以擁有和/或操作這其中的任一元件。
MME 162可以經由S1介面連接到RAN 104中的e節點B 160a、160b、160c的每一者,並且可以充當控制節點。例如,MME 162可以負責驗證WTRU 102a、102b、102c的使用者、承載者啟動/去啟動、在WTRU 102a、102b、102c的初始附著程序中選擇特定服務閘道,及其類似者。該MME 162可以提供
控制平面功能,以便在RAN 104與利用GSM及/或WCDMA之類的其他無線電技術的其他RAN(未顯示)之間切換。
SGW 164可以經由S1介面連接到RAN 104中的e節點B 160a、160b、160c的每一者。SGW 164通常可以路由和轉發使用者資料封包至/來自WTRU 102a、102b、102c。SGW 164可以執行其他功能,例如在e節點B間的交接程序中錨定使用者平面,在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼,管理和儲存WTRU 102a、102b、102c的上下文,及其類似者。
SGW 164可以連接到PGW 166,該PGW 166可以為WTRU 102a、102b、102c提供針對諸如網際網路110之類的封包交換網路的存取,以便促成WTRU 102a、102b、102c與IP賦能裝置之間的通信。
CN 106可以促成與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供針對諸如PSTN 108之類的電路交接式網路的存取,以便促成WTRU 102a、102b、102c與傳統陸線通信裝置之間的通信。例如,CN 106可以包括或可以X通信於IP閘道(例如,IP多媒體子系統(IMS)伺服器),該IP閘道充當CN 106與PSTN 108之間的介面。此外,CN 106還可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其中該其他網路可以包括由其他服務供應商擁有和/或操作的其他有線和/或無線網路。
雖然在第1A圖至第1D圖中將WTRU描述為無線終端,但是在某些代表性實施方式中構想了這種終端可以(例如暫時或永久)使用具有通信網路的有線通信介面。
在代表性實施方式中,其他網路112可以是WLAN。
基礎設施基礎服務集(BSS)模式中的WLAN可以具有用於BSS的存取點(AP)和與AP相關聯的一個或多個站(STA)。AP可以具有對分發系統(DS)或攜帶訊務進到和/或離開BSS的另一類型的有線/無線網路的存取或介
面。送至起始於BSS外的STA的訊務可以經過AP而到達並可以被遞送到STA。起始於STA到BSS外的目的地的訊務可以被發送到AP以被遞送到各自的目的地。BSS內的STA之間的訊務可以藉由AP發送,例如,其中源STA可以向AP發送訊務以及AP可以將訊務遞送到目的地STA。BSS內的STA之間的訊務可以被認為和/或稱為點對點訊務。點對點訊務可以使用直接鏈路設定(DLS)在源和目的地STA之間(例如,直接地在之間)被發送。在某些代表性實施方式中,DLS可以使用802.11e DLS或802.11z隧道DLS(TDLS)。使用獨立BSS(IBSS)模式的WLAN可以不具有AP,以及IBSS內或使用IBSS的STA(例如,所有STA)可以彼此直接通信。IBSS通信模式有時在本申請中可以稱為“ad-hoc”通信模式。
當使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在固定通道(例如,主通道)上傳輸信標。主通道可以是固定寬度(例如20MHz寬的頻寬)或經由傳訊動態設定的寬度。主通道可以是BSS的操作通道並可以由STA使用來建立與AP的連接。在某些代表性實施方式中,具有衝突避免的載波感測多存取(CSMA/CA)可以例如在802.11系統中實施。針對CSMA/CA,STA(例如,每一個STA)包括AP,可以感測主通道。如果主通道被特定STA感測/檢測和/或確定為繁忙,則該特定STA可以退避。一個STA(例如,僅一個站)可以在給定BSS中在任一給定時間傳輸。
高通量(HT)STA可以使用40MHz寬的通道來通信,例如,經由主20MHz通道與相鄰或不相鄰的20MHz通道的結合來形成40MHz寬的通道。
非常高通量(VHT)STA可以支援20MHz、40MHz、80MHz和/或160MHz寬的通道。可以藉由結合連續的20MHz通道來形成40MHz和/或80MHz的通道。可以藉由結合8個連續的20MHz通道,或藉由結合兩個非連續的80MHz通道(這可以稱為80+80配置)來形成160MHz通道。針對80+80配置,在通道編碼之後,資料可以被傳遞經由段剖析器,其可以將資料分成兩個逆流。
可以對每個串流分開進行逆快速傅立葉(IFFT)處理以及時域處理。串流可以被映射到兩個80MHz通道,以及資料可以藉由傳輸STA而被傳輸。在接收STA的接收器處,上述的用於80+80配置的操作可以反向,且所結合的資料可以被發送到媒介存取控制(MAC)。
802.11af和802.11ah支援子1GHz操作模式。通道操作頻寬和載波,在802.11af和802.11ah中相對於在802.11n和802.11ac中被使用的該等者為減少。802.11af支援TV白空間(TVWS)頻譜中的5MHz、10MHz和20MHz頻寬,以及802.11ah支援使用非TVWS頻譜的1MHz、2MHz、4MHz、8MHz和16MHz頻寬。根據代表性實施方式,802.11ah可以支援儀錶類控制/機器類型通信,例如在巨集覆蓋區域中的MTC裝置。MTC裝置可以具有某些能力,例如,包括支援(例如,僅支援)某些和/或有限頻寬的有限能力。MTC裝置可以包括具有電池壽命高於臨界值的電池(例如,以維持非常長的電池壽命)。
可以支援多個通道和通道頻寬的WLAN系統(例如802.11n、802.11ac、802.11af和802.11ah)包括可以被指定為主通道的通道。主通道可以具有等於BSS中由全部STA所支援的最大公共操作頻寬的頻寬。主通道的頻寬可以由來自BSS中操作中的全部STA的支援最小頻寬操作模式的STA而設定和/或限制。在802.11ah的範例中,針對支援(例如,僅支援)1MHz模式的STA(例如,MTC型裝置)主通道可以是1MHz寬,即使AP和BSS中的其他STA支持2MHz、4MHz、8MHz、16MHz和/或其他通道頻寬操作模式。載波感測和/或網路分配向量(NAV)設定可以取決於主通道的狀態。如果主通道例如由於STA(其支援僅1MHz操作模式)而繁忙,向AP傳輸,整個可用頻帶可以認為是繁忙的,即使頻帶的大部分仍然空閒且為可用。
在美國,可以被802.11ah使用的可用頻帶為從902MHz到928MHz。在韓國,可用頻帶為從917.5MHz到923.5MHz。在日本,可用頻帶為從
916.5MHz到927.5MHz。802.11ah可用的總頻寬是6MHz至26MHz,這取決於國家碼。
第29D圖是示出根據一實施方式的RAN 113和CN 115的系統圖式。如上所述,RAN 113可以利用NR無線電技術來在空中介面116上與WTRU 102a、102b、102c通信。RAN 113還可以與CN 115通信。
RAN 113可以包括gNB 180a、180b、180c,然而可以理解RAN 113可以包括任意數量的gNB而仍然與實施方式保持一致。gNBs 180a、180b、180c可以每一者包括用於在空中介面116上與WTRU 102a、102b、102c通信的一個或多個收發器。在一個實施方式中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b可以使用波束成形來傳輸信號到gNB 180a、180b、180c和/或從其接收信號。因此,例如gNB 180a可以使用多個天線來傳輸無線信號至WTRU 102a和/或從其接收無線信號。在一實施方式中,gNB 180a、180b、180c可以實施載波匯集技術。例如,gNB 180a可以向WTRU 102a(未示出)傳輸多個分量載波。這些分量載波的子集可以在未許可頻譜上而其餘分量載波可以在許可頻譜上。在一實施方式中,gNB 180a、180b、180c可以實施協調多點(CoMP)技術。例如,WTRU 102a可以從gNB 180a和gNB 180b(和/或gNB 180c)接收協調傳輸。
WTRUs 102a、102b、102c可以使用與可縮放數字學(numerology)相關聯的傳輸與gNB 180a、180b、180c通信。例如,OFDM符號間隔和/或OFDM子載波間隔可以針對不同的傳輸、不同的胞元和/或無線傳輸頻譜的不同部分而變化。WTRUs 102a、102b、102c可以使用各種或可縮放長度(包含變化數量的OFDM符號和/或持續變化的絕對時間長度)的子框或傳輸時間間隔(TTI)與gNB 180a、180b、180c通信。
gNB 180a、180b、180c可以被配置成在獨立(standalone)配置和/或非獨立配置中與WTRU 102a、102b、102c通信。在獨立配置中,WTRU 102a、102b、102c可以與gNB 180a、180b、180c通信,也不用存取其他RAN(例如,像是e節點B 160a、160b、160c)。在獨立配置中,WTRU 102a、102b、102c可以利用gNB 180a、180b、180c的一者或多者作為行動錨定點。在獨立配置中,WTRU 102a、102b、102c可以在未許可頻帶中使用信號與gNB 180a、180b、180c通信。在非獨立配置中,WTRU 102a、102b、102c可以通信於/連接到gNB 180a、180b、180c,同時還通信於/連接到另一RAN(例如,e節點B 160a、160b、160c)。例如,WTRU 102a、102b、102c可以實施DC原理來與一個或多個gNB 180a、180b、180c以及一個或多個e節點B 160a、160b、160c實質同時通信。在非獨立配置中,e節點B 160a、160b、160c可以服務作為用於WTRU 102a、102b、102c的行動性錨定,以及gNB 180a、180b、180c可以提供用於服務WTRU 102a、102b、102c的另外的覆蓋和/或通量。
gNB 180a、180b、180c的每一者可以與特定胞元(未示出)相關聯,並可以被配置成處理無線電資源管理決定、交接決定、在UL和/或DL中的使用者的排程、網路截分(slicing)的支援、雙連接性、NR和E-UTRA之間的交互工作、使用者平面資料向使用者平面功能(UPF)184a、184b的路由,控制平面資訊向存取和行動性管理功能(AMF)182a、182b的路由,及其類似者。如第29D圖中所示,gNB 180a、180b、180c可以藉由Xn介面彼此通信。
第29D圖中所示的CN 115可以包括至少一個AMF 182a、182b、至少一個UPF 184a、184b、至少一個對話管理功能(SMF)183a、183b以及可能地資料網路(DN)185a、185b。儘管上述元件的每一個被描繪為CN 115的部分,可以理解這些元件的任一個可以被CN操作者以外的實體所擁有和/或操作。
AMF 182a、182b可以經由N2介面連接到RAN 113中的gNB 180a、180b、180c的一者或多者並可以服務作為控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者、網路截分的支援(例如不同需求的不同PDU對話的處理)、選擇特定SMF 183a、183b、註冊區的管理、NAS傳訊的終止、行動性管理,及其類似者。網路截分可以被AMF 182a、182b使用以便基於WTRU 102a、102b、102c使用的服務類型來定制(customize)用於WTRU 102a、102b、102c的CN支持。例如,可以針對不同的案例(例如依賴超可靠低潛時(URLLC)存取的服務,依賴增強巨量行動寬頻(eMBB)存取的服務、針對機器類型通信(MTC)存取的服務,和/或其類似者)建立不同的網路截分。AMF 162可以提供用於在RAN 113和利用其他無線電技術(例如LTE、LTE-A、LTE-A Pro和/或非3GPP存取技術,例如WiFi)的其他RAN(未示出)之間交接的控制平面功能。
SMF 183a、183b可以經由N11介面連接到CN 115中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面連接到CN 115中的UPF 184a、184b。SMF 183a、183b可以選擇並控制UPF 184a、184b並藉由UPF 184a、184b配置訊務的路由。SMF 183a、183b可以執行其他功能,例如管理和分配UE IP位址、管理PDU對話、控制策略執行和QoS、提供下鏈資料通知,及其類似者。PDU對話類型可以是基於IP的、非基於IP的、基於乙太網路的,及其類似者。
UPF 184a、184b可以經由N3介面連接到RAN 113中的gNB 180a、180b、180c的一者或多者,該N3介面可以將對諸如網際網路110的封包交換網路的存取提供予WTRU 102a、102b、102c,以促進WTRU 102a、102b、102c與IP賦能裝置之間的通信。UPF 184、184b可以執行其他功能,例如路由和轉發封包、執行使用者平面策略、支援多宿主(multi-homed)PDU對話、處理使用者平面QoS,緩衝下鏈封包、提供行動性錨定,及其類似者。
CN 115可以促進與其他網路的通信。例如,CN 115可以包括或可以與IP閘道(例如,IP多媒體子系統(IMS)伺服器)通信,該IP閘道服務作為CN 115與PSTN 108之間的介面。此外,CN 115可以為WTRU 102a、102b、102c提供對其他網路112的存取,其他網路112可以包括由其他服務供應商擁有和/或操作的其他有線或無線網路。在一個實施方式中,WTRU 102a、102b、102c可以經由到UPF 184a、184bN3介面以及UPF 184a、184b和DN 185a、185b之間的N6介面藉由UPF 184a、184b連接到本地資料網路(DN)185a、185b。
鑒於第1A圖至第1D圖以及第1A圖至第1D圖的相應描述,本文中關於所描述的的一個或多個或全部的功能的以下一者或多者可以由一個或多個仿真裝置(未示出)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-ab、UPF 184a-b、SMF 183a-b、DN 185a-b和/或本文描述的任意其他裝置。仿真裝置可以是被配置成仿真本文描述的一個或多個或全部的功能的一個或多個裝置。例如,仿真裝置可以用於測試其他裝置和/或仿真網路和/或WTRU功能。
仿真裝置可以被設計成在實驗室環境中和/或在操作者網路環境中執行其他裝置的一個或多個測試。例如,一個或多個仿真裝置可以在被完全或部分實施和/或利用作為有線和/或無線通訊網路的部分執行一個或多個或全部功能,以便測試通信網路內的其他裝置。一個或多個仿真裝置可以在被暫時實施/利用作為有線和/或無線通訊網路的部分時執行一個或多個或全部功能。仿真裝置可以為了測試的目的直接耦合到另一裝置和/或可以使用透過空中無線通信執行測試。
一個或多個仿真裝置可以在沒有被實施/利用作為有線和/或無線通信網路的部分時執行一個或多個(包括全部)功能。例如,仿真裝置可以在測試實驗室和/或非利用(例如,測試)的有線和/或無線通信網路中被使用於測試
場景以便實施一個或多個元件的測試。一個或多個仿真裝置可以是測試裝置。直接的RF耦合和/或經由RF電路(例如,其可以包括一個或多個天線)的無線通信可以被仿真裝置使用來傳輸和/或接收資料。
上述的程序可以在併入到由電腦和/或處理器執行的電腦可讀媒介中的電腦程式、軟體和/或韌體中實施。電腦可讀媒介的範例包括但不限於電子信號(經由有線或無線連接傳輸)和/或電腦可讀儲存媒體。電腦可讀儲存媒介的範例包括但不侷限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶裝置、內部硬碟和可拆卸磁片之類的磁媒體、磁光媒體,和/或CD-ROM碟片和/或多樣化數位光碟(DVD)之類的光媒體。與軟體關聯的處理器可以用於實施在WTRU、UE、終端、基地台、RNC和/或任何主電腦中使用的射頻收發器。
揭露了用於共享資料通道的系統、方法和工具。對於5G資料通道的功能塊和處理流可以由用於上鏈和下鏈的統一架構來實施。資訊攜帶填充符位元可以在碼塊中使用。上鏈和下鏈信號處理鏈可以是多變的以適應各種可選通道碼、URLLC資料插入和訊務優先化、混合波束成形和波形選擇。資料(例如,低潛時資料,諸如URLLC)可以被插入到正在進行的傳輸(例如,低優先順序,諸如eMBB)。低潛時訊務可以接管為其他訊務分配的資源,例如藉由刪截、疊加和多使用者MIMO傳輸中的一者或多者。盲解碼可以由eMBB WTRU和URLLC WTRU實施。上鏈無許可(例如,隨機存取)URLLC傳輸可以與(例如,排程的)上鏈eMBB傳輸(例如,來自其他WTRU)被多工。子槽MU/SU MIMO交換可以被提供。
10:傳輸塊
12:循環冗餘檢測(CRC)
Claims (15)
- 一種無線傳輸/接收單元(WTRU),包括:一處理器,被配置為:在一第一槽的一第一搜索空間中監視一第一下鏈控制資訊(DCI),其中該第一DCI具有一第一格式且與一第一無線電網路臨時識別符(RNTI)相關聯;在一第二槽的一第二搜索空間中監視一第二DCI,其中該第二DCI具有一第二格式且與一第二RNTI相關聯;如果在該第二槽的該第二搜索空間中檢測到該第二DCI,則基於該第二DCI來確定至該WTRU的一先前分配中的一區域未攜帶用於該WTRU的一資料,其中該先前分配是與至該WTRU的一先前傳輸相關聯;以及使用與該第一DCI相關聯的一資訊解碼與該先前傳輸相關聯的一資料。
- 如申請專利範圍第1項所述的無線傳輸/接收單元(WTRU),其中至該WTRU的該先前傳輸是在一先前槽中。
- 如申請專利範圍第1項所述的無線傳輸/接收單元(WTRU),其中該處理器更被配置為在該第二槽的一第三搜索空間中監視一第三DCI,其中該第三DCI包括關於在一當前槽中針對該WTRU的一傳輸的一排程資訊,以及其中該第三DCI與該第一RNTI相關聯。
- 如申請專利範圍第3項所述的無線傳輸/接收單元(WTRU),其中該第二搜索空間以及該第三搜索空間不重疊。
- 如申請專利範圍第3項所述的無線傳輸/接收單元(WTRU),其中該第二搜索空間以及該第三搜索空間重疊。
- 如申請專利範圍第3項所述的無線傳輸/接收單元(WTRU),其中該第二搜索空間是一公共搜索空間以及該第三搜索空間是在一WTRU特定的搜索空間中。
- 如申請專利範圍第3項所述的無線傳輸/接收單元(WTRU),其中該第二DCI具有一第一大小且該第三DCI具有一第二大小,以及其中該第二大小大於該第一大小。
- 如申請專利範圍第3項所述的無線傳輸/接收單元(WTRU),其中該第一RNTI以及該二RNTI不相同。
- 如申請專利範圍第1項所述的無線傳輸/接收單元(WTRU),其中該先前分配中的該區域包括資源塊或符號的至少其中之一。
- 一種在一無線傳輸/接收單元(WTRU)中實施與解碼一資料相關聯的方法,該方法包括:在一第一槽的一第一搜索空間中監視一第一下鏈控制資訊(DCI),其中該第一DCI具有一第一格式且與一第一無線電網路臨時識別符(RNTI)相關聯;在一第二槽的一第二搜索空間中監視一第二DCI,其中該第二DCI具有一第二格式且與一第二RNTI相關聯;如果在該第二槽的該第二搜索空間中檢測到該第二DCI,則基於該第二DCI來確定至該WTRU的一先前分配中的一區域未攜帶用於該WTRU的一資料,其中該先前分配與至該WTRU的一先前傳輸相關聯;以及使用與該第一DCI相關聯的一資訊解碼與該先前傳輸相關聯的一資料。
- 如申請專利範圍第10項所述的方法,更包括在該第二槽的一第三搜索空間中監視一第三DCI,其中該第三DCI包括關於在一當前槽中針對該WTRU的一傳輸的一排程資訊,其中該第三DCI與該第一RNTI相關聯,以及其中該第一RNTI以及該二RNTI不相同。
- 如申請專利範圍第11項所述的方法,其中該第二搜索空間以及該第三搜索空間不重疊、或該第二搜索空間以及該第三搜索空間重疊。
- 如申請專利範圍第11項所述的方法,其中該第-二搜索空間是一公共搜索空間以及該第三搜索空間是在一WTRU特定的搜索空間中。
- 如申請專利範圍第11項所述的方法,其中該第二DCI具有一第一大小且該第三DCI具有一第二大小,以及其中該第二大小大於該第一大小。
- 如申請專利範圍第11項所述的方法,其中至該WTRU的該先前傳輸是在一先前槽中。
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662416620P | 2016-11-02 | 2016-11-02 | |
US62/416,620 | 2016-11-02 | ||
US201762443457P | 2017-01-06 | 2017-01-06 | |
US62/443,457 | 2017-01-06 | ||
US201762454425P | 2017-02-03 | 2017-02-03 | |
US62/454,425 | 2017-02-03 | ||
US201762474897P | 2017-03-22 | 2017-03-22 | |
US62/474,897 | 2017-03-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201832484A TW201832484A (zh) | 2018-09-01 |
TWI767952B true TWI767952B (zh) | 2022-06-21 |
Family
ID=60473633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106137870A TWI767952B (zh) | 2016-11-02 | 2017-11-02 | 無線傳輸/接收單元(wtru)及用於解碼資料的方法 |
Country Status (5)
Country | Link |
---|---|
US (3) | US11121815B2 (zh) |
EP (1) | EP3535886B1 (zh) |
CN (2) | CN110073619B (zh) |
TW (1) | TWI767952B (zh) |
WO (1) | WO2018085485A1 (zh) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI720052B (zh) * | 2015-11-10 | 2021-03-01 | 美商Idac控股公司 | 無線傳輸/接收單元和無線通訊方法 |
CN108023665A (zh) * | 2016-11-03 | 2018-05-11 | 中兴通讯股份有限公司 | 一种数据传输方法及装置、电子设备 |
WO2018086807A1 (en) | 2016-11-11 | 2018-05-17 | Sony Corporation | Wireless telecommunications apparatus and methods |
PT3528563T (pt) * | 2016-11-16 | 2021-07-05 | Guangdong Oppo Mobile Telecommunications Corp Ltd | Método e dispositivo de transmissão de sinais de ligação ascendente |
US10681708B2 (en) * | 2016-12-16 | 2020-06-09 | Qualcomm Incorporated | Subslot bundling and acknowledgement |
EP3603251A4 (en) * | 2017-03-24 | 2020-11-11 | Telefonaktiebolaget LM Ericsson (publ) | SEMI-BLIND DETECTION OF URLLC IN A PUNCHED EMBB |
US10863522B2 (en) * | 2017-05-03 | 2020-12-08 | Huawei Technologies Co., Ltd. | System and method for coexistence of low latency and latency tolerant communications |
CN109462892B (zh) * | 2017-06-30 | 2019-11-19 | 华为技术有限公司 | 控制信息传输方法和设备 |
US10944501B2 (en) * | 2017-12-15 | 2021-03-09 | Mediatek Singapore Pte. Ltd. | Method and apparatus for determining modulation and coding scheme table in mobile communications |
KR102543097B1 (ko) * | 2018-01-04 | 2023-06-14 | 삼성전자주식회사 | 무선 통신 시스템에서 자원을 할당하기 위한 장치 및 방법 |
US10951366B2 (en) | 2018-02-16 | 2021-03-16 | Qualcomm Incorporated | Uplink transmission collision management |
US10680745B2 (en) * | 2018-04-11 | 2020-06-09 | Samsung Electronics Co., Ltd. | Blind detection of preempted resources in orthogonal frequency division multiplexing (OFDM) systems |
US11284414B2 (en) * | 2018-04-13 | 2022-03-22 | Qualcomm Incorporated | Preemption indication for low latency communications on dynamically allocated resources |
CN111670599B (zh) * | 2018-06-28 | 2022-04-05 | Oppo广东移动通信有限公司 | 控制信息传输方法、网络设备、终端和计算机存储介质 |
KR102441982B1 (ko) * | 2018-07-05 | 2022-09-13 | 삼성전자주식회사 | 무선 통신 시스템에서 빔 포밍을 수행하는 방법 및 장치 |
US11943774B2 (en) * | 2018-07-25 | 2024-03-26 | Sony Corporation | System and method for indicating a first set and a second set of uplink channel transmission parameters |
US11265129B2 (en) * | 2018-08-07 | 2022-03-01 | Qualcomm Incorporated | Dynamic configuration and adaptation of physical downlink control channel candidates |
JP7097527B2 (ja) * | 2018-08-27 | 2022-07-08 | 日本電信電話株式会社 | 無線lan通信システム、アップリンク制御方法および無線制御装置 |
US11929836B2 (en) | 2018-09-05 | 2024-03-12 | Beijing Xiaomi Mobile Software Co., Ltd. | Feedback method and apparatus for grant-free uplink transmission, and storage medium |
WO2020056773A1 (zh) * | 2018-09-21 | 2020-03-26 | 北京小米移动软件有限公司 | 上行数据传输方法、装置、设备及系统 |
WO2020067985A1 (en) * | 2018-09-27 | 2020-04-02 | Telefonaktiebolaget Lm Ericsson (Publ) | Radio network node, user equipment (ue) and methods performed in a wireless communication network |
US20210345319A1 (en) | 2018-09-28 | 2021-11-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods of signaling reserved resources for ultra-reliable low latency communication (urllc) traffic |
CN110972281A (zh) * | 2018-09-28 | 2020-04-07 | 华为技术有限公司 | 一种检测控制信道的方法及装置 |
CN111491323B (zh) * | 2019-01-29 | 2023-06-23 | 普天信息技术有限公司 | 一种基于iab的预留上行传输资源的方法及装置 |
CN113597005B (zh) * | 2019-02-11 | 2023-04-07 | Oppo广东移动通信有限公司 | 一种资源指示方法、终端设备及网络设备 |
CN111954308B (zh) * | 2019-05-17 | 2022-05-31 | 华为技术有限公司 | 通信方法和通信装置 |
CN114175825A (zh) | 2019-08-01 | 2022-03-11 | 高通股份有限公司 | 用于基于全双工的iab的上行链路抢占指示 |
WO2022021049A1 (en) * | 2020-07-28 | 2022-02-03 | Qualcomm Incorporated | Application link direction based network slice selection |
CN112888072B (zh) * | 2021-01-25 | 2023-01-31 | 陕西师范大学 | 一种保障服务需求的eMBB和URLLC资源复用方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016123393A1 (en) * | 2015-01-28 | 2016-08-04 | Interdigital Patent Holdings, Inc. | Downlink control signaling |
CN105979597A (zh) * | 2016-06-27 | 2016-09-28 | 宇龙计算机通信科技(深圳)有限公司 | 通信资源的分配方法、分配装置、基站和终端 |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100370746B1 (ko) | 2000-05-30 | 2003-02-05 | 한국전자통신연구원 | 다차원 직교 자원 도약 다중화 통신 방식 및 장치 |
US8467367B2 (en) | 2007-08-06 | 2013-06-18 | Qualcomm Incorporated | Multiplexing and transmission of traffic data and control information in a wireless communication system |
KR101441147B1 (ko) | 2008-08-12 | 2014-09-18 | 엘지전자 주식회사 | 무선 통신 시스템에서 sr 전송 방법 |
US8989208B2 (en) * | 2009-04-30 | 2015-03-24 | Qualcomm Incorporated | PDCCH search space design for LTE-A multi-carrier operation |
US9426671B2 (en) | 2010-04-07 | 2016-08-23 | Koninklijke Philips N.V. | Method for communicating in a mobile network during a transitional configuration mode |
EP2583519A4 (en) | 2010-06-18 | 2015-03-25 | Blackberry Ltd | SYSTEM AND METHOD FOR THE TRANSMISSION OF UPLINK CONTROL INFORMATION IN A CARRIER ASSEMBLY |
WO2013009089A2 (en) * | 2011-07-12 | 2013-01-17 | Lg Electronics Inc. | Method for transmitting or receiving pdcch and user equipment or base station for the method |
US9357420B2 (en) * | 2011-07-15 | 2016-05-31 | Lg Electronics Inc. | Method and apparatus for reporting channel state |
EP3229509B1 (en) * | 2012-01-03 | 2019-03-13 | Telefonaktiebolaget LM Ericsson (publ) | A radio communication system for assigning a shortlived c-rnti |
US10264437B2 (en) * | 2013-01-16 | 2019-04-16 | Interdigital Patent Holdings, Inc. | Discovery signal generation and reception |
CN105075170B (zh) * | 2013-04-03 | 2019-05-03 | 交互数字专利控股公司 | 用于公共搜索空间的方法及wtru |
JP6400022B2 (ja) * | 2013-11-29 | 2018-10-03 | シャープ株式会社 | 端末装置、基地局装置、および、通信方法 |
JP6400023B2 (ja) * | 2013-11-29 | 2018-10-03 | シャープ株式会社 | 端末装置、基地局装置、および、通信方法 |
US11432305B2 (en) | 2014-05-19 | 2022-08-30 | Qualcomm Incorporated | Apparatus and method for synchronous multiplexing and multiple access for different latency targets utilizing thin control |
US10104683B2 (en) | 2015-02-06 | 2018-10-16 | Qualcomm Incorporated | Parallel low latency awareness |
WO2016137253A1 (ko) | 2015-02-27 | 2016-09-01 | 한국전자통신연구원 | 고정 길이 시그널링 정보 부호화를 위한 패리티 펑처링 장치 및 이를 이용한 패리티 펑처링 방법 |
US9877278B2 (en) * | 2015-04-10 | 2018-01-23 | Futurewei Technologies, Inc. | Monitoring a narrowband control channel for a wideband system to reduce power consumption |
US9717079B2 (en) * | 2015-07-14 | 2017-07-25 | Motorola Mobility Llc | Method and apparatus for selecting a resource assignment |
CN114364023A (zh) * | 2015-11-04 | 2022-04-15 | 交互数字专利控股公司 | 用于带宽缩减的wtru的寻呼过程的方法 |
US11589347B2 (en) * | 2015-11-06 | 2023-02-21 | Motorola Mobility Llc | Method and apparatus for low latency transmissions |
US10536946B2 (en) * | 2015-12-08 | 2020-01-14 | Huawei Technologies Co., Ltd. | Method and system for performing network slicing in a radio access network |
JP2019503634A (ja) * | 2016-02-02 | 2019-02-07 | 華為技術有限公司Huawei Technologies Co.,Ltd. | ダウンリンク制御情報検出方法、ダウンリンク制御情報送信方法、および装置 |
US10880877B2 (en) * | 2016-02-02 | 2020-12-29 | Lg Electronics Inc. | Method for receiving data by terminal in wireless communication system |
US10333674B2 (en) | 2016-02-26 | 2019-06-25 | Lg Electronics Inc. | Method and apparatus for transmitting uplink control information in a wireless communication system |
KR102458074B1 (ko) | 2016-03-31 | 2022-10-24 | 삼성전자 주식회사 | 이동 통신 시스템에서 이종 서비스 제공 방법 및 장치 |
BR112018070657A2 (pt) | 2016-04-08 | 2019-02-05 | Idac Holdings Inc | unidade de transmissão/recepção sem fio, e, método |
CN113965295A (zh) | 2016-04-20 | 2022-01-21 | 康维达无线有限责任公司 | 新无线电中的物理信道 |
US11057906B2 (en) | 2016-05-10 | 2021-07-06 | Ntt Docomo, Inc. | Radio communication apparatus and radio communication method |
US10764000B2 (en) * | 2016-05-10 | 2020-09-01 | Lg Electronics Inc. | Method and apparatus for transmitting and receiving wireless signal in wireless communication system |
JP6935426B2 (ja) * | 2016-05-11 | 2021-09-15 | コンヴィーダ ワイヤレス, エルエルシー | 新しい無線ダウンリンク制御チャネル |
KR102473313B1 (ko) | 2016-06-08 | 2022-12-02 | 삼성전자 주식회사 | 이동 통신 시스템에서 이종 서비스의 제어 정보를 제공하는 방법 및 장치 |
WO2018004320A1 (ko) * | 2016-07-01 | 2018-01-04 | 엘지전자 주식회사 | 데이터 수신 방법 및 수신 장치와, 데이터 전송 방법 및 전송 장치 |
US10868657B2 (en) * | 2016-07-05 | 2020-12-15 | Idac Holdings, Inc. | Wireless network configured to provide mixed services |
US20180027576A1 (en) * | 2016-07-21 | 2018-01-25 | Sharp Laboratories Of America, Inc. | User equipment and base stations that transceive ultra reliable low latency messages amidst delay tolerant transceptions |
US20180041858A1 (en) * | 2016-08-08 | 2018-02-08 | Sharp Laboratories Of America, Inc. | Base station assisted outer code usage |
US10687319B2 (en) * | 2016-08-08 | 2020-06-16 | Comcast Cable Communications, Llc | Group power control for a secondary cell |
US11071136B2 (en) * | 2016-08-25 | 2021-07-20 | Huawei Technologies Co., Ltd. | System and method for multiplexing traffic |
US11252717B2 (en) | 2016-09-02 | 2022-02-15 | Huawei Technologies Co., Ltd. | Co-existence of latency tolerant and low latency communications |
US10205581B2 (en) * | 2016-09-22 | 2019-02-12 | Huawei Technologies Co., Ltd. | Flexible slot architecture for low latency communication |
CN109804657B (zh) * | 2016-09-28 | 2022-09-06 | Idac控股公司 | 针对灵活无线电服务的5g nr数据传送 |
US20180092104A1 (en) | 2016-09-28 | 2018-03-29 | Sharp Laboratories Of America, Inc. | Grant-free access method for urllc service |
US11140714B2 (en) * | 2016-09-30 | 2021-10-05 | Qualcomm Incorporated | PRACH and/or SRS switching enhancements |
CN109286881B (zh) | 2017-07-21 | 2023-08-25 | 惠州迪芬尼声学科技股份有限公司 | 组合式相位塞及其应用在压缩驱动器与扬声器 |
-
2017
- 2017-11-02 TW TW106137870A patent/TWI767952B/zh active
- 2017-11-02 US US16/346,577 patent/US11121815B2/en active Active
- 2017-11-02 EP EP17804729.6A patent/EP3535886B1/en active Active
- 2017-11-02 CN CN201780076557.5A patent/CN110073619B/zh active Active
- 2017-11-02 CN CN202210539340.6A patent/CN115052350A/zh active Pending
- 2017-11-02 WO PCT/US2017/059643 patent/WO2018085485A1/en unknown
-
2021
- 2021-07-26 US US17/385,303 patent/US11824656B2/en active Active
-
2023
- 2023-10-06 US US18/377,490 patent/US20240056221A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016123393A1 (en) * | 2015-01-28 | 2016-08-04 | Interdigital Patent Holdings, Inc. | Downlink control signaling |
CN105979597A (zh) * | 2016-06-27 | 2016-09-28 | 宇龙计算机通信科技(深圳)有限公司 | 通信资源的分配方法、分配装置、基站和终端 |
Non-Patent Citations (4)
Title |
---|
Fujitsu, "DL control channel related to multiplexing eMBB and URLLC", R1-1608814, 3GPP TSG RAN WG1 Meeting 86bis, Lisbon, Portugal 10th - 14th October 2016; * |
Samsung, "Multiplexing URLLC and eMBB in DL", R1-1609059, 3GPP TSG RAN WG1 Meeting 86bis, Lisbon, Portugal, 10th – 14th October 2016 * |
Sony, "Multiplexing eMBB and URLLC Transmissions", R1-1608942, 3GPP TSG RAN WG1 Meeting 86bis, Lisbon, Portugal 10th - 14th October 2016; * |
ZTE, ZTE Microelectronics, "URLLC and eMBB frame structure and multiplexing", R1-1608957, 3GPP TSG-RAN WG1 Meeting 86bis, Lisbon, Portugal 10th - 14th October 2016; * |
Also Published As
Publication number | Publication date |
---|---|
CN110073619B (zh) | 2022-06-03 |
EP3535886A1 (en) | 2019-09-11 |
TW201832484A (zh) | 2018-09-01 |
US20210351862A1 (en) | 2021-11-11 |
US11121815B2 (en) | 2021-09-14 |
US11824656B2 (en) | 2023-11-21 |
CN115052350A (zh) | 2022-09-13 |
US20240056221A1 (en) | 2024-02-15 |
WO2018085485A1 (en) | 2018-05-11 |
US20190280802A1 (en) | 2019-09-12 |
CN110073619A (zh) | 2019-07-30 |
EP3535886B1 (en) | 2024-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI767952B (zh) | 無線傳輸/接收單元(wtru)及用於解碼資料的方法 | |
US20230120035A1 (en) | Methods for reliable communication using physical downlink control channels | |
US11916680B2 (en) | Sidelink resource sensing using feedback channels | |
TWI770060B (zh) | 可撓無線電服務5g nr資料傳輸 | |
CN111034097B (zh) | 可靠控制信令 | |
US20210184801A1 (en) | Method and apparatus for harq-ack codebook size determination and resource selection in nr | |
WO2019195505A1 (en) | Control information signaling and procedure for new radio (nr) vehicle-to-everything (v2x) communications | |
WO2020172576A1 (en) | Methods for nr sl multi-sub-channel pscch transmission | |
US11716746B2 (en) | Scheduling and transmission for NOMA | |
CN110754058A (zh) | 用于经由上行链路共享数据信道的上行链路控制信息(uci)传输的方法、装置、系统、架构及接口 | |
JP2020520147A (ja) | アップリンク制御情報を送信するための方法、システム、および装置 | |
EP3520294B1 (en) | Non-orthogonal control channel design for wireless communication systems | |
WO2018231621A1 (en) | Group-common physical downlink control channels for wireless communication | |
WO2022011253A1 (en) | Methods and apparatus for flexible aperiodic srs transmission | |
WO2018175870A1 (en) | Active interference management | |
WO2021188507A1 (en) | Multi-ru multi-ap transmissions in wlan systems | |
US12144016B2 (en) | Methods for NR SL multi-sub-channel PSCCH transmission | |
WO2024206451A1 (en) | Frequency bundled transmission (fbt) approaches for ultra-reliable low latency communication (urllc) systems |