[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI767468B - Dual sensor imaging system and imaging method thereof - Google Patents

Dual sensor imaging system and imaging method thereof Download PDF

Info

Publication number
TWI767468B
TWI767468B TW109145632A TW109145632A TWI767468B TW I767468 B TWI767468 B TW I767468B TW 109145632 A TW109145632 A TW 109145632A TW 109145632 A TW109145632 A TW 109145632A TW I767468 B TWI767468 B TW I767468B
Authority
TW
Taiwan
Prior art keywords
image
sensor
infrared
color
scene
Prior art date
Application number
TW109145632A
Other languages
Chinese (zh)
Other versions
TW202211674A (en
Inventor
彭詩淵
鄭書峻
黃旭鍊
李運錦
賴國銘
Original Assignee
聚晶半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聚晶半導體股份有限公司 filed Critical 聚晶半導體股份有限公司
Priority to US17/216,639 priority Critical patent/US11568526B2/en
Publication of TW202211674A publication Critical patent/TW202211674A/en
Application granted granted Critical
Publication of TWI767468B publication Critical patent/TWI767468B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/64Computer-aided capture of images, e.g. transfer from script file into camera, check of taken image quality, advice or proposal for image composition or decision on when to take image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/743Bracketing, i.e. taking a series of images with varying exposure conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Traffic Control Systems (AREA)
  • Cameras In General (AREA)
  • Burglar Alarm Systems (AREA)
  • Air Bags (AREA)
  • Measurement Of Optical Distance (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A dual sensor imaging system and an imaging method thereof are provided. The method includes following steps: identifying an imaging scene; controlling a color sensor and an IR sensor to respectively capture multiple color images and multiple IR images using multiple capturing conditions under the imaging scene; calculating a signal-to-noise ratio (SNR) difference between each color image and the IR images and a luminance mean value of each color image; selecting the color image and the IR image captured under the capturing condition having the SNR difference lower than or equal to a SNR threshold and having the luminance mean value higher than or equal to a luminance threshold for performing a feature domain transformation, so as to extract partial details of the imaging scene; and fusing the selected color image and IR image to adjust the partial details of the color image with a guidance of the partial details of the IR image, so as to obtain a scene image with full details of the imaging scene.

Description

雙感測器攝像系統及其攝像方法Dual-sensor camera system and camera method thereof

本發明是有關於一種攝像系統及方法,且特別是有關於一種雙感測器攝像系統及其攝像方法。The present invention relates to a camera system and method, and more particularly, to a dual-sensor camera system and a camera method thereof.

相機的曝光條件(包括光圈、快門、感光度)會影響所拍攝影像的品質,因此許多相機在拍攝影像的過程中會自動調整曝光條件,以獲得清晰且明亮的影像。然而,在低光源或是背光等高反差的場景中,相機調整曝光條件的結果可能會產生雜訊過高或是部分區域過曝的結果,無法兼顧所有區域的影像品質。The camera's exposure conditions (including aperture, shutter, and sensitivity) affect the quality of the images captured, so many cameras automatically adjust exposure conditions during image capture to obtain clear and bright images. However, in scenes with high contrast such as low light source or backlight, the result of camera adjustment of exposure conditions may result in excessive noise or overexposure in some areas, and the image quality in all areas cannot be balanced.

對此,目前技術有採用一種新的影像感測器架構,其是利用紅外線(IR)感測器高光敏感度的特性,在影像感測器的色彩像素中穿插配置IR像素,以輔助亮度偵測。舉例來說,圖1是習知使用影像感測器擷取影像的示意圖。請參照圖1,習知的影像感測器10中除了配置有紅(R)、綠(G)、藍(B)等顏色像素外,還穿插配置有紅外線(I)像素。藉此,影像感測器10能夠將R、G、B顏色像素所擷取的色彩資訊12與I像素所擷取的亮度資訊14結合,而獲得色彩及亮度適中的影像16。In this regard, the current technology adopts a new image sensor architecture, which utilizes the characteristics of high light sensitivity of infrared (IR) sensors to intersperse and configure IR pixels among the color pixels of the image sensor to assist brightness detection. Measurement. For example, FIG. 1 is a schematic diagram of conventionally using an image sensor to capture images. Referring to FIG. 1 , in addition to red (R), green (G), blue (B) and other color pixels, the conventional image sensor 10 is also interspersed with infrared (I) pixels. Thereby, the image sensor 10 can combine the color information 12 captured by the R, G, and B color pixels with the luminance information 14 captured by the I pixel to obtain an image 16 with moderate color and brightness.

然而,在上述單一影像感測器的架構下,影像感測器中每個像素的曝光條件相同,因此只能選擇較適用於顏色像素或紅外線像素的曝光條件來擷取影像,結果仍無法有效地利用兩種像素的特性來改善所擷取影像的影像品質。However, in the above-mentioned single image sensor structure, the exposure conditions of each pixel in the image sensor are the same, so only the exposure conditions that are more suitable for color pixels or infrared pixels can be selected to capture images, and the result is still ineffective. The characteristics of the two pixels are used to improve the image quality of the captured image.

本發明提供一種雙感測器攝像系統及其攝像方法,利用獨立配置的色彩及紅外線感測器分別擷取不同拍攝條件下的多張影像,並選擇曝光適當、雜訊在容許範圍內的色彩及紅外線影像融合為結果影像,可增加所攝影像的細節並提高影像品質。The present invention provides a dual-sensor camera system and a camera method thereof, which utilize independently configured color and infrared sensors to capture multiple images under different shooting conditions, and select colors with appropriate exposure and noise within an allowable range. And the infrared image is fused into the result image, which can increase the details of the captured image and improve the image quality.

本發明的雙感測器攝像系統包括至少一個色彩感測器、至少一個紅外線感測器、儲存裝置以及耦接所述色彩感測器、紅外光感測器及儲存裝置的處理器。所述處理器經配置以載入並執行儲存在儲存裝置中的電腦程式以:識別雙感測器攝像系統的攝像場景;控制色彩感測器及紅外線感測器採用適用於攝像場景下的多個拍攝條件分別擷取多張色彩影像及多張紅外線影像,所述拍攝條件包括曝光時間及感光度的不同組合;計算各張色彩影像的訊噪比分別與紅外線影像的訊噪比的差異,以及各張色彩影像的亮度平均值;選擇使用訊噪比差異小於一訊噪比門檻值且亮度平均值大於一亮度門檻值的拍攝條件下所擷取的色彩影像及紅外線影像執行特徵域轉換,以提取攝像場景的部分細節;以及融合所選擇的色彩影像及紅外線影像,以根據紅外線影像的部分細節的引導,調整色彩影像的部分細節,而獲得具備攝像場景的完整細節的場景影像。The dual-sensor camera system of the present invention includes at least one color sensor, at least one infrared sensor, a storage device, and a processor coupled to the color sensor, the infrared light sensor, and the storage device. The processor is configured to load and execute a computer program stored in the storage device to: identify the camera scene of the dual-sensor camera system; control the color sensor and the infrared sensor to use multiple methods suitable for the camera scene Capture multiple color images and multiple infrared images under different shooting conditions, the shooting conditions include different combinations of exposure time and sensitivity; calculate the difference between the signal-to-noise ratio of each color image and the signal-to-noise ratio of the infrared image, respectively, and the average brightness of each color image; choose to use the color images and infrared images captured under the shooting conditions where the signal-to-noise ratio difference is less than a signal-to-noise ratio threshold value and the brightness average value is greater than a brightness threshold value to perform feature domain conversion, extracting some details of the shooting scene; and fusing the selected color image and the infrared image to adjust some details of the color image according to the guidance of the partial details of the infrared image to obtain a scene image with complete details of the shooting scene.

本發明的雙感測器攝像系統的攝像方法,適用於包括至少一個色彩感測器、至少一個紅外線感測器及處理器的雙感測器攝像系統。所述方法包括下列步驟:識別雙感測器攝像系統的攝像場景;控制色彩感測器及紅外線感測器採用適用於攝像場景下的多個拍攝條件分別擷取多張色彩影像及多張紅外線影像,所述拍攝條件包括曝光時間及感光度的不同組合;計算各張色彩影像的訊噪比分別與紅外線影像的訊噪比的差異,以及各張色彩影像的亮度平均值;選擇使用訊噪比差異小於一訊噪比門檻值且亮度平均值大於一亮度門檻值的拍攝條件下所擷取的色彩影像及紅外線影像執行特徵域轉換,以提取攝像場景的部分細節;以及融合所選擇的色彩影像及紅外線影像,以根據紅外線影像的部分細節的引導,調整色彩影像的部分細節,而獲得具備攝像場景的完整細節的場景影像。The imaging method of the dual-sensor imaging system of the present invention is suitable for a dual-sensor imaging system comprising at least one color sensor, at least one infrared sensor and a processor. The method includes the following steps: recognizing the shooting scene of the dual-sensor camera system; controlling the color sensor and the infrared sensor to capture a plurality of color images and a plurality of infrared images respectively using a plurality of shooting conditions suitable for the shooting scene image, the shooting conditions include different combinations of exposure time and sensitivity; calculate the difference between the signal-to-noise ratio of each color image and the signal-to-noise ratio of the infrared image, and the average brightness of each color image; choose to use the signal-to-noise ratio Perform feature domain conversion on color images and infrared images captured under shooting conditions where the ratio difference is less than a signal-to-noise ratio threshold and the average brightness is greater than a brightness threshold, so as to extract some details of the shooting scene; and fuse the selected colors The image and the infrared image are used to adjust part of the details of the color image according to the guidance of the part of the details of the infrared image, so as to obtain a scene image with complete details of the shooting scene.

基於上述,本發明的雙感測器攝像系統及其攝像方法,在獨立配置的色彩感測器及紅外線感測器上採用適於當前攝像場景的不同拍攝條件擷取多張影像,並根據所擷取影像的訊噪比和亮度差異,選擇出曝光適當且雜訊在容許範圍內的色彩及紅外線影像融合為結果影像,可增加所攝影像的細節並提高影像品質。Based on the above, the dual-sensor camera system and the camera method thereof of the present invention capture a plurality of images on the independently configured color sensor and infrared sensor using different shooting conditions suitable for the current shooting scene, and according to the The difference in signal-to-noise ratio and brightness of the captured image is selected, and the color and infrared images with proper exposure and noise within the allowable range are selected to fuse the resulting image, which can increase the details of the captured image and improve the image quality.

圖2是依照本發明一實施例所繪示的使用影像感測器擷取影像的示意圖。請參照圖2,本發明實施例的影像感測器20採用獨立配置色彩感測器22與紅外線(IR)感測器24的雙感測器架構,利用色彩感測器22與紅外線感測器24各自的特性,採用適於當前拍攝場景的多個曝光條件分別擷取多張影像,並從中選擇曝光條件適當的色彩影像22a與紅外線影像24a,透過影像融合的方式,使用紅外線影像24a來補足色彩影像22a中缺乏的紋理細節,從而獲得色彩及紋理細節均佳的場景影像26。FIG. 2 is a schematic diagram of capturing an image using an image sensor according to an embodiment of the present invention. Referring to FIG. 2 , the image sensor 20 of the embodiment of the present invention adopts a dual-sensor structure in which a color sensor 22 and an infrared (IR) sensor 24 are independently configured, and the color sensor 22 and the infrared sensor are used. 24 have their respective characteristics, use multiple exposure conditions suitable for the current shooting scene to capture multiple images respectively, and select the color image 22a and infrared image 24a with appropriate exposure conditions from them, and use the infrared image 24a to complement the image fusion method. The lack of texture details in the color image 22a results in a scene image 26 with good color and texture details.

圖3是依照本發明一實施例所繪示的雙感測器攝像系統的方塊圖。請參照圖3,本實施例的雙感測器攝像系統30可配置於手機、平板電腦、筆記型電腦、導航裝置、行車紀錄器、數位相機、數位攝影機等電子裝置中,用以提供攝像功能。雙感測器攝像系統30包括至少一個色彩感測器32、至少一個紅外線感測器34、儲存裝置36及處理器38,其功能分述如下:FIG. 3 is a block diagram of a dual-sensor camera system according to an embodiment of the present invention. Please refer to FIG. 3 , the dual-sensor camera system 30 of this embodiment can be configured in electronic devices such as mobile phones, tablet computers, notebook computers, navigation devices, driving recorders, digital cameras, digital cameras, etc., to provide a camera function . The dual-sensor camera system 30 includes at least one color sensor 32, at least one infrared sensor 34, a storage device 36 and a processor 38, and its functions are described as follows:

色彩感測器32例如包括電荷耦合元件(Charge Coupled Device,CCD)、互補性氧化金屬半導體(Complementary Metal-Oxide Semiconductor,CMOS)元件或其他種類的感光元件,而可感測光線強度以產生攝像場景的影像。色彩感測器32例如是紅綠藍(RGB)影像感測器,其中包括紅(R)、綠(G)、藍(B)顏色像素,用以擷取攝像場景中的紅光、綠光、藍光等色彩資訊,並將這些色彩資訊合成以生成攝像場景的色彩影像。The color sensor 32 includes, for example, a Charge Coupled Device (CCD), a Complementary Metal-Oxide Semiconductor (CMOS) device, or other types of photosensitive devices, and can sense light intensity to generate a camera scene image. The color sensor 32 is, for example, a red-green-blue (RGB) image sensor, which includes red (R), green (G), and blue (B) color pixels for capturing red light and green light in the camera scene , blue light and other color information, and combine these color information to generate a color image of the camera scene.

紅外線感測器34例如包括CCD、CMOS元件或其他種類的感光元件,其經由調整感光元件的波長感測範圍,而能夠感測紅外光。紅外線感測器34例如是以上述感光元件作為像素來擷取攝像場景中的紅外光資訊,並將這些紅外光資訊合成以生成攝像場景的紅外線影像。The infrared sensor 34 includes, for example, a CCD, a CMOS element or other types of photosensitive elements, which can sense infrared light by adjusting the wavelength sensing range of the photosensitive element. The infrared sensor 34, for example, uses the above-mentioned photosensitive elements as pixels to capture infrared light information in the imaging scene, and synthesizes the infrared light information to generate an infrared image of the imaging scene.

儲存裝置36例如是任意型式的固定式或可移動式隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash memory)、硬碟或類似元件或上述元件的組合,而用以儲存可由處理器38執行的電腦程式。在一些實施例中,儲存裝置36例如還可儲存由色彩感測器32所擷取的色彩影像及紅外線感測器34所擷取的紅外線影像。The storage device 36 is, for example, any type of fixed or removable random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), flash memory (Flash memory), hard drive A disk or similar element, or a combination of the foregoing, for storing computer programs executable by the processor 38 . In some embodiments, the storage device 36 may also store, for example, the color image captured by the color sensor 32 and the infrared image captured by the infrared sensor 34 .

處理器38例如是中央處理單元(Central Processing Unit,CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、微控制器(Microcontroller)、數位訊號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式化邏輯裝置(Programmable Logic Device,PLD)或其他類似裝置或這些裝置的組合,本發明不在此限制。在本實施例中,處理器38可從儲存裝置36載入電腦程式,以執行本發明實施例的雙感測器攝像系統的攝像方法。The processor 38 is, for example, a central processing unit (CPU), or other programmable general-purpose or special-purpose microprocessors (Microprocessors), microcontrollers (Microcontrollers), and digital signal processors (Digital Signal Processors). Processor, DSP), programmable controller, application specific integrated circuit (Application Specific Integrated Circuits, ASIC), programmable logic device (Programmable Logic Device, PLD) or other similar devices or a combination of these devices, the present invention does not this limit. In this embodiment, the processor 38 can load a computer program from the storage device 36 to execute the imaging method of the dual-sensor imaging system of the embodiment of the present invention.

基於在深夜(或低光源)、大太陽或背光等極端的攝像場景中,色彩影像的許多部分將由於過暗或過曝而失去細節,這些部分(即後述的缺陷區域)需要適當地填補,才能較佳地提高影像品質。對此,本發明實施例藉由適應性地調整色彩感測器的曝光時間及/或感光度(ISO),來確保所擷取影像至少可顯露出缺陷區域的一些細節。而針對曝光時間及/或感光度的調整,本發明實施例還利用預先定義的訊噪比門檻值和亮度門檻值作適當的限定,從而在影像細節、亮度和雜訊之間取得平衡。Based on the fact that in extreme camera scenes such as late night (or low light source), bright sun or backlight, many parts of the color image will lose detail due to being too dark or overexposed, and these parts (i.e. the defect areas described later) need to be properly filled, In order to better improve the image quality. In this regard, the embodiments of the present invention ensure that the captured image can reveal at least some details of the defective area by adaptively adjusting the exposure time and/or the sensitivity (ISO) of the color sensor. For the adjustment of exposure time and/or sensitivity, the embodiments of the present invention also use pre-defined signal-to-noise ratio thresholds and brightness thresholds as appropriate limits, so as to achieve a balance among image details, brightness and noise.

圖4是依照本發明一實施例所繪示的雙感測器攝像系統的攝像方法的流程圖。請同時參照圖3及圖4,本實施例的方法適用於上述的雙感測器攝像系統30,以下即搭配雙感測器攝像系統30的各項元件說明本實施例的攝像方法的詳細步驟。FIG. 4 is a flowchart of an imaging method of a dual-sensor imaging system according to an embodiment of the present invention. Please refer to FIG. 3 and FIG. 4 at the same time. The method of this embodiment is applicable to the above-mentioned dual-sensor camera system 30 . The following describes the detailed steps of the camera method of this embodiment in combination with various elements of the dual-sensor camera system 30 . .

在步驟S402中,由處理器38識別雙感測器攝像系統30的攝像場景。在一些實施例中,處理器38例如是控制色彩感測器32及紅外線感測器34中的至少一者採用標準曝光條件來擷取攝像場景的至少一張標準影像,並使用這些標準影像來識別攝像場景。所述標準曝光條件例如包括採用既有測光技術所決定的光圈、快門、感光度等參數,而處理器38則根據在此曝光條件下所擷取之影像的色相(Hue)、明度(Value)、彩度(Chroma)、白平衡等影像參數的強弱或分佈來識別攝像場景,包括攝像場景的位置(室內或室外)、光源(高光源或低光源)、反差(高反差或低反差)、攝像物的種類(物品或人像)或狀態(動態或靜態)等。在其他實施例中,處理器38亦可採用定位方式來識別攝像場景或是直接接收使用者操作來設定攝像場景,在此不設限。In step S402 , the camera scene of the dual-sensor camera system 30 is identified by the processor 38 . In some embodiments, the processor 38 controls at least one of the color sensor 32 and the infrared sensor 34 to capture at least one standard image of the camera scene using standard exposure conditions, and uses these standard images to Identify the camera scene. The standard exposure conditions include, for example, parameters such as aperture, shutter, and sensitivity determined by using the existing light metering technology. , Chroma, white balance and other image parameters to identify the camera scene, including the location of the camera scene (indoor or outdoor), light source (high light source or low light source), contrast (high contrast or low contrast), The type (object or portrait) or state (dynamic or static) of the photographed object, etc. In other embodiments, the processor 38 may also use a positioning method to identify the camera scene or directly receive user operations to set the camera scene, which is not limited herein.

在步驟S404中,由處理器38控制色彩感測器32及紅外線感測器34採用適用於所識別之攝像場景下的多個拍攝條件分別擷取多張色彩影像及多張紅外線影像。在一些實施例中,處理器38例如會通過判定所擷取影像中是否包括缺乏紋理細節的亮部區域或暗部區域,來識別攝像場景中是否包括缺乏紋理細節的缺陷區域。而在識別出缺陷區域時,處理器38例如會以標準曝光條件中的曝光時間和感光度為基準,並以增加缺陷區域的紋理細節為目標,來決定各個拍攝條件的曝光時間及感光度。其中,針對攝像場景中包括缺乏紋理細節的亮部區域和暗部區域的情況,後文將分別舉實施例詳細描述其對應的實施方式。In step S404, the processor 38 controls the color sensor 32 and the infrared sensor 34 to capture a plurality of color images and a plurality of infrared images respectively using a plurality of shooting conditions suitable for the identified shooting scene. In some embodiments, the processor 38 identifies whether a defect area lacking texture details is included in the camera scene, for example, by determining whether the captured image includes a bright area or a dark area lacking texture details. When identifying a defective area, the processor 38 determines the exposure time and sensitivity of each shooting condition based on, for example, exposure time and sensitivity in standard exposure conditions, and aiming at increasing the texture details of the defective area. Wherein, for the case where the photographing scene includes a bright part area and a dark part area lacking texture details, the corresponding implementations will be described in detail with examples hereinafter.

在步驟S406中,由處理器38計算各張色彩影像的訊噪比分別與紅外線影像的訊噪比的差異,以及各張色彩影像的亮度平均值,並用以與預設的訊噪比門檻值和亮度門檻值比較。所述的訊噪比門檻值和亮度門檻值例如是預先針對各種場景,以不同的拍攝條件擷取影像,並通過分析影像的訊噪比、亮度等影像參數,而歸納出能夠使所擷取影像的品質符合需求的限定條件。此限定條件可提供處理器38用以作為選擇色彩影像和紅外線影像的依據。In step S406, the processor 38 calculates the difference between the signal-to-noise ratio of each color image and the signal-to-noise ratio of the infrared image, and the average brightness of each color image, and uses them to compare with the preset signal-to-noise ratio threshold. Compare with the luminance threshold. The signal-to-noise ratio threshold value and the brightness threshold value are, for example, pre-acquired images for various scenes under different shooting conditions, and by analyzing the image parameters such as the signal-to-noise ratio, brightness, etc. The quality of the image meets the required constraints. This qualification can be used by the processor 38 as a basis for selecting the color image and the infrared image.

在步驟S408中,由處理器38選擇使用訊噪比差異小於訊噪比門檻值且亮度平均值大於亮度門檻值的色彩影像及對應的紅外線影像來執行特徵域轉換,以提取攝像場景的部分細節。其中,處理器38例如是從符合上述訊噪比差異小於訊噪比門檻值且亮度平均值大於亮度門檻值的多張色彩影像中選擇具有較多攝像場景細節的色彩影像作為後續用以與紅外線影像融合的影像,藉此增加融合影像的細節。此外,處理器38例如會對所選擇的色彩影像和紅外線影像執行色彩空間轉換或梯度(gradient)轉換等特徵域轉換,藉此提取影像中具有更多攝像場景細節(例如色彩細節、紋理細節或邊緣細節)的特徵,作為後續影像融合的依據。In step S408, the processor 38 selects and uses the color image and the corresponding infrared image with the signal-to-noise ratio difference less than the signal-to-noise ratio threshold value and the luminance average value greater than the luminance threshold value to perform feature domain conversion, so as to extract some details of the shooting scene . The processor 38 , for example, selects a color image with more details of the shooting scene from among the plurality of color images whose SNR difference is less than the SNR threshold and the average brightness is greater than the brightness threshold as the subsequent color image to be used with infrared rays. The image of the image fusion, thereby increasing the details of the fusion image. In addition, the processor 38, for example, performs feature domain conversion such as color space conversion or gradient conversion on the selected color image and infrared image, thereby extracting more details of the camera scene in the images (such as color details, texture details or edge details) as the basis for subsequent image fusion.

在步驟S410中,由處理器38融合所選擇的色彩影像及紅外線影像,以根據紅外線影像的部分細節的引導,調整色彩影像的部分細節,而獲得具備攝像場景的完整細節的場景影像。在一些實施例中,處理器38在融合色彩影像及紅外線影像時,例如是利用紅外線影像的紋理細節及/或邊緣細節的引導,來增強色彩影像中的色彩細節,最終獲得具備攝像場景完整的色彩、紋理、邊緣細節的場景影像。In step S410, the processor 38 fuses the selected color image and the infrared image to adjust some details of the color image according to the guidance of the partial details of the infrared image to obtain a scene image with complete details of the shooting scene. In some embodiments, when the processor 38 fuses the color image and the infrared image, for example, using the guidance of texture details and/or edge details of the infrared image to enhance the color details in the color image, and finally obtain a complete image with the camera scene. Scene images with color, texture, edge detail.

需說明的是,在一些實施例中,雙感測器攝像系統30中可額外配置一個紅外線投射器(IR projector),而處理器38可在控制紅外線感測器32擷取紅外線影像的同時,藉由控制紅外線投射器向攝像場景投射紅外光,而增加紅外線感測器32所擷取的紅外線影像中的紋理細節。It should be noted that, in some embodiments, the dual-sensor camera system 30 may be additionally configured with an infrared projector (IR projector), and the processor 38 may control the infrared sensor 32 to capture infrared images at the same time. By controlling the infrared projector to project infrared light to the shooting scene, the texture details in the infrared image captured by the infrared sensor 32 are increased.

此外,在一些實施例中,色彩影像中某些缺陷區域的紋理細節可能會因特定因素無法用紅外線影像來增強或補足,例如色彩感測器32與紅外線感測器34之間的視差(parallax)會造成紅外線感測器34被遮蔽。在此情況下,處理器38例如會控制色彩感測器32採用較所選擇色彩影像的曝光時間長或短的多個曝光時間擷取多張色彩影像並執行高動態範圍(high dynamic range,HDR)處理,以生成具備缺陷區域的紋理細節的場景影像。In addition, in some embodiments, the texture details of some defective areas in the color image may not be enhanced or complemented by the infrared image due to certain factors, such as the parallax between the color sensor 32 and the infrared sensor 34 . ) will cause the infrared sensor 34 to be blocked. In this case, the processor 38, for example, controls the color sensor 32 to capture multiple color images with multiple exposure times that are longer or shorter than the exposure time of the selected color image and perform high dynamic range (HDR) ) processing to generate a scene image with texture detail in defective areas.

在一些實施例中,處理器38例如會根據其所選擇的色彩影像的曝光時間,使用較此曝光時間為短的曝光時間以及較此曝光時間為長的曝光時間,控制色彩感測器32分別擷取曝光時間較短的色彩影像以及曝光時間較長的色彩影像,而結合使用原曝光時間擷取的色彩影像來實施HDR處理。即,從三張色彩影像中選擇具備較佳顏色及紋理細節的區域來補足其他色彩影像中欠缺細節的區域,從而獲得亮部及暗部細節均佳的HDR影像作為最終輸出的場景影像。In some embodiments, the processor 38 controls the color sensor 32 to use an exposure time shorter than the exposure time and an exposure time longer than the exposure time, for example, according to the exposure time of the selected color image. A color image with a shorter exposure time and a color image with a longer exposure time are captured, and HDR processing is performed in combination with the color image captured with the original exposure time. That is, an area with better color and texture details is selected from the three color images to make up for the lack of detail in other color images, so as to obtain an HDR image with good details in both highlights and shadows as the final output scene image.

在一些實施例中,處理器38例如會針對HDR影像執行二維空間降噪(2D spatial denoise)等降噪(noise reduction,NR)處理,以減少HDR影像中的雜訊,提高最終輸出影像的影像品質。In some embodiments, the processor 38 may, for example, perform noise reduction (NR) processing such as 2D spatial denoise (2D spatial denoise) on the HDR image, so as to reduce noise in the HDR image and improve the quality of the final output image. image quality.

在深夜或低光源的場景中,即使採用較長的曝光時間及/或較高的感光度擷取影像,嘗試增加所擷取影像的色彩及紋理細節,影像雜訊將對應增加。對此,為了確保所擷取影像的品質在可接受的範圍內,本發明實施例適應性地設定多個增加曝光時間及/或感光度的拍攝條件並用以拍攝影像,並藉由計算所拍攝影像之間的訊噪比和亮度值的差異,選擇曝光適當且雜訊在容許範圍內的影像進行融合,從而得到可兼顧影像細節及品質的場景影像。In a late night or low light source scene, even if the image is captured with a longer exposure time and/or a higher sensitivity, trying to increase the color and texture details of the captured image will result in a corresponding increase in image noise. In this regard, in order to ensure that the quality of the captured image is within an acceptable range, the embodiment of the present invention adaptively sets a plurality of shooting conditions that increase the exposure time and/or the sensitivity to shoot the image, and calculates the captured image by calculating The difference in signal-to-noise ratio and brightness value between images, select images with proper exposure and noise within the allowable range for fusion, so as to obtain scene images that can take into account the details and quality of the images.

圖5是依照本發明一實施例所繪示的雙感測器攝像系統的攝像方法的流程圖。請同時參照圖3及圖5,本實施例的方法說明雙感測器攝像系統30於深夜或低光源的場景的攝像方法,以下即搭配雙感測器攝像系統30的各項元件說明本實施例的攝像方法的詳細步驟。FIG. 5 is a flowchart of an imaging method of a dual-sensor imaging system according to an embodiment of the present invention. Please refer to FIG. 3 and FIG. 5 at the same time. The method of the present embodiment describes the imaging method of the dual-sensor camera system 30 in the middle of the night or the scene of low light source. The following describes the implementation with the components of the dual-sensor camera system 30 . The detailed steps of the imaging method of the example.

在步驟S502中,由處理器38控制色彩感測器32及紅外線感測器34中的至少一者採用標準曝光條件來擷取攝像場景的至少一張標準影像,並使用這些標準影像來識別攝像場景。所述標準曝光條件的定義以及攝像場景的識別方式如前述實施例所述,在此不再贅述。In step S502, at least one of the color sensor 32 and the infrared sensor 34 is controlled by the processor 38 to capture at least one standard image of the camera scene using standard exposure conditions, and use these standard images to identify the camera Scenes. The definition of the standard exposure conditions and the way of identifying the imaging scene are as described in the foregoing embodiments, and will not be repeated here.

在步驟S504中,由處理器38辨識標準影像中缺乏紋理細節的至少一個暗部區域,並基於標準拍攝條件的曝光時間及感光度,以增加曝光時間及感光度至少其中之一的方式,決定多個拍攝條件的曝光時間及感光度。其中,所增加的曝光時間例如是介於0.1至3的曝光值(Exposure Value,EV)中的任意值,而所增加的感光度例如是介於50至1000中的任意值,在此不設限。In step S504, the processor 38 identifies at least one dark area in the standard image that lacks texture details, and based on the exposure time and sensitivity of the standard shooting conditions, increases at least one of the exposure time and the sensitivity to determine more exposure time and sensitivity for each shooting condition. Wherein, the increased exposure time is, for example, any value in the exposure value (Exposure Value, EV) between 0.1 and 3, and the increased sensitivity is, for example, any value between 50 and 1000, which is not set here. limit.

在步驟S506中,由處理器38控制色彩感測器32及紅外線感測器34採用上述決定的多個拍攝條件分別擷取多張色彩影像及多張紅外線影像。In step S506, the processor 38 controls the color sensor 32 and the infrared sensor 34 to capture a plurality of color images and a plurality of infrared images respectively using the plurality of shooting conditions determined above.

在步驟S508中,由處理器38計算各張色彩影像的訊噪比分別與紅外線影像的訊噪比的差異,以及各張色彩影像的亮度平均值,並用以與預設的訊噪比門檻值和亮度門檻值比較。In step S508, the processor 38 calculates the difference between the signal-to-noise ratio of each color image and the signal-to-noise ratio of the infrared image, and the average brightness of each color image, and uses them to compare with the preset signal-to-noise ratio threshold. Compare with the luminance threshold.

在步驟S510中,由處理器38選擇使用訊噪比的差異小於訊噪比門檻值且亮度平均值大於亮度門檻值的色彩影像及對應的紅外線影像來執行特徵域轉換,以提取攝像場景的部分細節。In step S510, the processor 38 selects and uses the color image and the corresponding infrared image whose signal-to-noise ratio difference is smaller than the signal-to-noise ratio threshold value and the luminance average value is greater than the luminance threshold value to perform feature domain conversion, so as to extract part of the camera scene detail.

在步驟S512中,由處理器38融合所選擇的色彩影像及紅外線影像,以根據紅外線影像的部分細節的引導,調整色彩影像的部分細節,而獲得具備攝像場景的完整細節的場景影像。上述步驟S506~S512的實施方式與前述實施例的步驟S404~S410相同或相似,故其細節在此不再贅述。In step S512, the processor 38 fuses the selected color image and the infrared image to adjust part of the detail of the color image according to the guidance of the part of the detail of the infrared image to obtain a scene image with complete details of the shooting scene. The implementations of the above steps S506 to S512 are the same as or similar to the steps S404 to S410 of the foregoing embodiment, so the details are not repeated here.

藉由上述方法,即使在深夜或低光源的場景中,雙感測器攝像系統30也能夠藉由拍攝並選定曝光適當且雜訊在容許範圍內的色彩影像及紅外線影像以進行融合,從而最大程度地增加所攝影像的細節,並提高影像品質。With the above method, even in the dark night or in the scene of low light source, the dual-sensor camera system 30 can capture and select a color image and an infrared image with proper exposure and noise within the allowable range for fusion, so as to maximize the image quality. Maximize the details of the captured images and improve the image quality.

在背光場景或高亮度的場景中,背景將比拍攝主體亮,或是整體偏亮,這將使得由色彩感測器所擷取的色彩影像會因為過曝而失去色彩及紋理細節。為了讓所擷取影像包括更多的細節,本發明實施例適應性地設定多個減少曝光時間及/或感光度的拍攝條件並用以拍攝影像,藉由計算所拍攝影像之間的訊噪比和亮度值差異,選擇曝光適當且雜訊在容許範圍內的影像進行融合,從而得到可兼顧影像細節及品質的場景影像。In backlit scenes or high-brightness scenes, the background will be brighter than the subject, or overall brighter, which will cause the color image captured by the color sensor to lose color and texture details due to overexposure. In order to allow the captured images to include more details, the embodiments of the present invention adaptively set a plurality of shooting conditions that reduce exposure time and/or sensitivity and use them to capture images, by calculating the signal-to-noise ratio between the captured images and brightness value difference, select images with proper exposure and noise within the allowable range for fusion, so as to obtain scene images that can take into account the details and quality of the images.

圖6是依照本發明一實施例所繪示的雙感測器攝像系統的攝像方法的流程圖。請同時參照圖3及圖6,本實施例的方法說明雙感測器攝像系統30於背光或高亮度場景的攝像方法,以下即搭配雙感測器攝像系統30的各項元件說明本實施例的攝像方法的詳細步驟。FIG. 6 is a flowchart of an imaging method of a dual-sensor imaging system according to an embodiment of the present invention. Please refer to FIG. 3 and FIG. 6 at the same time. The method of this embodiment describes the imaging method of the dual-sensor camera system 30 in a backlight or high-brightness scene. The following describes this embodiment with the components of the dual-sensor camera system 30 . The detailed steps of the camera method.

在步驟S602中,由處理器38控制色彩感測器32及紅外線感測器34中的至少一者採用標準曝光條件來擷取攝像場景的至少一張標準影像,並使用這些標準影像來識別攝像場景。所述標準曝光條件的定義以及攝像場景的識別方式如前述實施例所述,在此不再贅述。In step S602, at least one of the color sensor 32 and the infrared sensor 34 is controlled by the processor 38 to capture at least one standard image of the camera scene using standard exposure conditions, and use these standard images to identify the camera Scenes. The definition of the standard exposure conditions and the way of identifying the imaging scene are as described in the foregoing embodiments, and will not be repeated here.

在步驟S604中,由處理器38辨識標準影像中缺乏紋理細節的至少一個亮部區域,並基於標準拍攝條件的曝光時間及感光度,以減少曝光時間及感光度至少其中之一的方式,決定多個拍攝條件的曝光時間及感光度。其中,所減少的曝光時間例如是介於0.1至3的曝光值(Exposure Value,EV)中的任意值,而所減少的感光度例如是介於50至1000中的任意值,在此不設限。In step S604, the processor 38 identifies at least one bright area in the standard image lacking texture details, and determines at least one of the exposure time and the sensitivity based on the exposure time and sensitivity of the standard shooting conditions to reduce at least one of the exposure time and sensitivity. Exposure time and sensitivity for multiple shooting conditions. Wherein, the reduced exposure time is, for example, any value in the exposure value (Exposure Value, EV) between 0.1 and 3, and the reduced sensitivity is, for example, any value between 50 and 1000, which is not set here. limit.

在步驟S606中,由處理器38控制色彩感測器32及紅外線感測器34採用上述決定的多個拍攝條件分別擷取多張色彩影像及多張紅外線影像。In step S606, the processor 38 controls the color sensor 32 and the infrared sensor 34 to capture a plurality of color images and a plurality of infrared images respectively using the plurality of shooting conditions determined above.

在步驟S608中,由處理器38計算各張色彩影像的訊噪比分別與紅外線影像的訊噪比的差異,以及各張色彩影像的亮度平均值,並用以與預設的訊噪比門檻值和亮度門檻值比較。In step S608, the processor 38 calculates the difference between the signal-to-noise ratio of each color image and the signal-to-noise ratio of the infrared image, and the average brightness of each color image, and uses them to compare with the preset signal-to-noise ratio threshold. Compare with the luminance threshold.

在步驟S610中,由處理器38選擇使用訊噪比的差異小於訊噪比門檻值且亮度平均值大於亮度門檻值的色彩影像及對應的紅外線影像來執行特徵域轉換,以提取攝像場景的部分細節。In step S610, the processor 38 selects the color image and the corresponding infrared image with the difference of the signal-to-noise ratio less than the signal-to-noise ratio threshold value and the brightness average value greater than the brightness threshold value and the corresponding infrared image to perform feature domain conversion, so as to extract the part of the shooting scene detail.

在步驟S612中,由處理器38融合所選擇的色彩影像及紅外線影像,以根據紅外線影像的部分細節的引導,調整色彩影像的部分細節,而獲得具備攝像場景的完整細節的場景影像。上述步驟S606~S612的實施方式與前述實施例的步驟S404~S410相同或相似,故其細節在此不再贅述。In step S612, the processor 38 fuses the selected color image and the infrared image to adjust some details of the color image according to the guidance of the partial details of the infrared image to obtain a scene image with complete details of the shooting scene. The implementations of the above steps S606 to S612 are the same as or similar to the steps S404 to S410 of the foregoing embodiment, so the details are not repeated here.

藉由上述方法,即使在背光或高亮度的場景中,雙感測器攝像系統30也能夠藉由拍攝並選定曝光適當且雜訊在容許範圍內的色彩影像及紅外線影像以進行融合,從而最大程度地增加所攝影像的細節,並提高影像品質。With the above method, even in a backlit or high-brightness scene, the dual-sensor camera system 30 can capture and select a color image and an infrared image with proper exposure and noise within the allowable range for fusion, thereby maximizing the image quality. Maximize the details of the captured images and improve the image quality.

綜上所述,本發明的雙感測器攝像系統及其攝像方法藉由獨立配置色彩感測器與紅外線感測器,採用適於當前拍攝場景的多個拍攝條件分別擷取多張影像,並依據所擷取影像的訊噪比及亮度差異,從中選擇曝光適當且雜訊在容許範圍內的影像以進行融合。其中,利用紅外線影像的紋理、邊緣細節的引導,適當調整色彩影像的色彩細節,本發明的雙感測器攝像系統最終可獲得具備攝像場景的完整細節的場景影像。To sum up, the dual-sensor camera system and the camera method of the present invention capture a plurality of images respectively using a plurality of shooting conditions suitable for the current shooting scene by independently configuring the color sensor and the infrared sensor, And according to the difference in signal-to-noise ratio and brightness of the captured images, images with proper exposure and noise within the allowable range are selected for fusion. Wherein, using the guidance of the texture and edge details of the infrared image to properly adjust the color details of the color image, the dual-sensor camera system of the present invention can finally obtain a scene image with complete details of the camera scene.

10、20:影像感測器 12:色彩資訊 14:亮度資訊 16:影像 22:色彩感測器 22a:色彩影像 24:紅外線感測器 24a:紅外線影像 26:場景影像 30:雙感測器攝像系統 32:色彩感測器 34:紅外線感測器 36:儲存裝置 38:處理器 R、G、B、I:像素 S402~S410、S502~S512、S602~S612:步驟 10, 20: Image sensor 12: Color Information 14: Brightness information 16: Video 22: Color Sensor 22a: Color Image 24: Infrared sensor 24a: Infrared imagery 26: Scene image 30: Dual-sensor camera system 32: Color Sensor 34: Infrared sensor 36: Storage device 38: Processor R, G, B, I: Pixels S402~S410, S502~S512, S602~S612: Steps

圖1是習知使用影像感測器擷取影像的示意圖。 圖2是依照本發明一實施例所繪示的使用影像感測器擷取影像的示意圖。 圖3是依照本發明一實施例所繪示的雙感測器攝像系統的方塊圖。 圖4是依照本發明一實施例所繪示的雙感測器攝像系統的攝像方法的流程圖。 圖5是依照本發明一實施例所繪示的雙感測器攝像系統的攝像方法的流程圖。 圖6是依照本發明一實施例所繪示的雙感測器攝像系統的攝像方法的流程圖。 FIG. 1 is a schematic diagram of conventionally using an image sensor to capture images. FIG. 2 is a schematic diagram of capturing an image using an image sensor according to an embodiment of the present invention. FIG. 3 is a block diagram of a dual-sensor camera system according to an embodiment of the present invention. FIG. 4 is a flowchart of an imaging method of a dual-sensor imaging system according to an embodiment of the present invention. FIG. 5 is a flowchart of an imaging method of a dual-sensor imaging system according to an embodiment of the present invention. FIG. 6 is a flowchart of an imaging method of a dual-sensor imaging system according to an embodiment of the present invention.

S402~S410:步驟S402~S410: Steps

Claims (16)

一種雙感測器攝像系統,包括: 至少一色彩感測器; 至少一紅外線感測器; 儲存裝置,儲存電腦程式;以及 處理器,耦接所述至少一色彩感測器、所述至少一紅外光感測器及所述儲存裝置,經配置以載入並執行所述電腦程式以: 識別所述雙感測器攝像系統的一攝像場景; 控制所述至少一色彩感測器及所述至少一紅外線感測器採用適用於所述攝像場景下的多個拍攝條件分別擷取多張色彩影像及多張紅外線影像,所述拍攝條件包括曝光時間及感光度的不同組合; 計算各所述色彩影像的訊噪比分別與所述紅外線影像的訊噪比的差異,以及各所述色彩影像的亮度平均值; 選擇使用所述訊噪比的差異小於一訊噪比門檻值且所述亮度平均值大於一亮度門檻值的所述色彩影像及對應的所述紅外線影像來執行特徵域轉換,以提取所述攝像場景的部分細節;以及 融合所選擇的所述色彩影像及所述紅外線影像,以根據所述紅外線影像的所述部分細節的引導,調整所述色彩影像的所述部分細節,而獲得具備所述攝像場景的完整細節的場景影像。 A dual-sensor camera system comprising: at least one color sensor; at least one infrared sensor; storage devices to store computer programs; and A processor, coupled to the at least one color sensor, the at least one infrared light sensor, and the storage device, is configured to load and execute the computer program to: identifying a camera scene of the dual-sensor camera system; controlling the at least one color sensor and the at least one infrared sensor to capture a plurality of color images and a plurality of infrared images respectively using a plurality of shooting conditions suitable for the shooting scene, the shooting conditions include exposure Different combinations of time and sensitivity; calculating the difference between the signal-to-noise ratio of each of the color images and the signal-to-noise ratio of the infrared image, and the average brightness of each of the color images; Selecting and using the color image and the corresponding infrared image with the difference of the signal-to-noise ratio less than a signal-to-noise ratio threshold value and the brightness average value greater than a brightness threshold value to perform feature domain conversion to extract the image some details of the scene; and Fusion of the selected color image and the infrared image, so as to adjust the partial details of the color image according to the guidance of the partial details of the infrared image, so as to obtain an image with complete details of the camera scene. scene image. 如請求項1所述的雙感測器攝像系統,其中所述處理器包括: 控制所述至少一色彩感測器及所述至少一紅外線感測器中的至少一者採用標準拍攝條件擷取所述攝像場景的至少一標準影像,並使用所述至少一標準影像識別所述攝像場景。 The dual-sensor camera system of claim 1, wherein the processor comprises: controlling at least one of the at least one color sensor and the at least one infrared sensor to capture at least one standard image of the camera scene using standard shooting conditions, and using the at least one standard image to identify the camera scene. 如請求項1所述的雙感測器攝像系統,其中所述處理器包括在所識別的攝像場景包括缺乏紋理細節的至少一個缺陷區域時,以增加所述缺陷區域的所述紋理細節為目標決定各所述拍攝條件的所述曝光時間及所述感光度。The dual-sensor camera system of claim 1, wherein the processor includes, when the identified camera scene includes at least one defective area lacking texture detail, targeting an increase in the texture detail of the defective area The exposure time and the sensitivity are determined for each of the shooting conditions. 如請求項3所述的雙感測器攝像系統,其中所述處理器包括在所識別的攝像場景包括缺乏紋理細節的至少一個暗部區域時,基於所述標準拍攝條件的所述曝光時間及所述感光度,以增加所述曝光時間及所述感光度至少其中之一的方式,決定各所述拍攝條件的所述曝光時間及所述感光度。The dual-sensor camera system of claim 3, wherein the processor includes, when the identified camera scene includes at least one dark area lacking texture detail, the exposure time and The sensitivity is determined by increasing at least one of the exposure time and the sensitivity to determine the exposure time and the sensitivity for each of the shooting conditions. 如請求項3所述的雙感測器攝像系統,其中所述處理器包括在所識別的攝像場景包括缺乏紋理細節的至少一個亮部區域時,基於所述標準拍攝條件的所述曝光時間及所述感光度,以減少所述曝光時間及所述感光度至少其中之一的方式,決定各所述拍攝條件的所述曝光時間及所述感光度。The dual-sensor camera system of claim 3, wherein the processor includes, when the identified camera scene includes at least one highlight region lacking texture detail, the exposure time based on the standard shooting conditions and The sensitivity determines the exposure time and the sensitivity for each of the photographing conditions so as to reduce at least one of the exposure time and the sensitivity. 如請求項3所述的雙感測器攝像系統,更包括紅外線投射器,其中所述處理器更包括: 控制所述紅外線投射器投射紅外光,以增加所述至少一紅外線感測器所擷取之所述紅外線影像中的所述紋理細節。 The dual-sensor camera system of claim 3, further comprising an infrared projector, wherein the processor further comprises: The infrared projector is controlled to project infrared light, so as to increase the texture details in the infrared image captured by the at least one infrared sensor. 如請求項3所述的雙感測器攝像系統,其中所述處理器更包括: 判斷各所述紅外線影像是否包括所述缺陷區域的所述紋理細節;以及 在所述紅外線影像均未包括所述紋理細節時,控制所述至少一色彩感測器採用較所選擇的所述色彩影像的曝光時間長或短的多個曝光時擷取多張色彩影像並執行高動態範圍(high dynamic range,HDR)處理,以生成具備所述缺陷區域的所述紋理細節的所述場景影像。 The dual-sensor camera system of claim 3, wherein the processor further comprises: determining whether each of the infrared images includes the texture details of the defect area; and When none of the infrared images includes the texture details, control the at least one color sensor to capture a plurality of color images and capture a plurality of color images when using a plurality of exposures with a longer or shorter exposure time than the selected color image. High dynamic range (HDR) processing is performed to generate the scene image with the texture details of the defect area. 如請求項1所述的雙感測器攝像系統,其中所述特徵域轉換包括色彩空間轉換或梯度(gradient)轉換。The dual-sensor camera system of claim 1, wherein the feature domain transformation includes color space transformation or gradient transformation. 一種雙感測器攝像系統的攝像方法,所述雙感測器攝像系統包括至少一色彩感測器、至少一紅外線感測器及處理器,所述方法包括下列步驟: 識別所述雙感測器攝像系統的一攝像場景; 控制所述至少一色彩感測器及所述至少一紅外線感測器採用適用於所述攝像場景下的多個拍攝條件分別擷取多張色彩影像及多張紅外線影像,所述拍攝條件包括曝光時間及感光度的不同組合; 計算各所述色彩影像的訊噪比分別與所述紅外線影像的訊噪比的差異,以及各所述色彩影像的亮度平均值; 選擇使用所述訊噪比的差異小於一訊噪比門檻值且所述亮度平均值大於一亮度門檻值的所述拍攝條件下所擷取的所述色彩影像及所述紅外線影像執行特徵域轉換,以提取所述攝像場景的部分細節;以及 融合所選擇的所述色彩影像及所述紅外線影像,以根據所述紅外線影像的所述部分細節的引導,調整所述色彩影像的所述部分細節,而獲得具備所述攝像場景的完整細節的場景影像。 A camera method for a dual-sensor camera system, the dual-sensor camera system includes at least one color sensor, at least one infrared sensor, and a processor, and the method includes the following steps: identifying a camera scene of the dual-sensor camera system; controlling the at least one color sensor and the at least one infrared sensor to capture a plurality of color images and a plurality of infrared images respectively using a plurality of shooting conditions suitable for the shooting scene, the shooting conditions include exposure Different combinations of time and sensitivity; calculating the difference between the signal-to-noise ratio of each of the color images and the signal-to-noise ratio of the infrared image, and the average brightness of each of the color images; Selecting the color image and the infrared image captured under the shooting condition where the difference of the signal-to-noise ratio is less than a signal-to-noise ratio threshold value and the luminance average value is greater than a luminance threshold value to perform feature domain conversion , to extract some details of the camera scene; and Fusion of the selected color image and the infrared image, so as to adjust the partial details of the color image according to the guidance of the partial details of the infrared image, so as to obtain an image with complete details of the camera scene. scene image. 如請求項9所述的方法,其中識別所述雙感測器攝像系統的所述攝像場景的步驟包括: 控制所述至少一色彩感測器及所述至少一紅外線感測器中的至少一者採用標準拍攝條件擷取所述攝像場景的至少一標準影像,並使用所述至少一標準影像識別所述攝像場景。 The method of claim 9, wherein the step of identifying the camera scene of the dual-sensor camera system comprises: controlling at least one of the at least one color sensor and the at least one infrared sensor to capture at least one standard image of the camera scene using standard shooting conditions, and using the at least one standard image to identify the camera scene. 如請求項9所述的方法,其中在識別所述雙感測器攝像系統的所述攝像場景的步驟之後,更包括: 在所識別的攝像場景包括缺乏紋理細節的至少一個缺陷區域時,以增加所述缺陷區域的所述紋理細節為目標決定各所述拍攝條件的所述曝光時間及所述感光度。 The method of claim 9, wherein after the step of identifying the camera scene of the dual-sensor camera system, further comprising: When the identified imaging scene includes at least one defect area lacking texture details, the exposure time and the sensitivity of each of the shooting conditions are determined with the goal of increasing the texture details of the defect area. 如請求項11所述的方法,其中以增加所述缺陷區域的所述紋理細節為目標決定各所述拍攝條件的所述曝光時間及所述感光度的步驟包括: 在所識別的攝像場景包括缺乏紋理細節的至少一個暗部區域時,基於所述標準拍攝條件的所述曝光時間及所述感光度,以增加所述曝光時間及所述感光度至少其中之一的方式,決定各所述拍攝條件的所述曝光時間及所述感光度。 The method according to claim 11, wherein the step of determining the exposure time and the sensitivity of each of the shooting conditions with the goal of increasing the texture details of the defect area comprises: When the identified shooting scene includes at least one dark area lacking texture details, based on the exposure time and the sensitivity of the standard shooting conditions, to increase at least one of the exposure time and the sensitivity In the method, the exposure time and the sensitivity are determined for each of the shooting conditions. 如請求項11所述的方法,其中以增加所述缺陷區域的所述紋理細節為目標決定各所述拍攝條件的所述曝光時間及所述感光度的步驟包括: 在所識別的攝像場景包括缺乏紋理細節的至少一個亮部區域時,基於所述標準拍攝條件的所述曝光時間及所述感光度,以減少所述曝光時間及所述感光度至少其中之一的方式,決定各所述拍攝條件的所述曝光時間及所述感光度。 The method according to claim 11, wherein the step of determining the exposure time and the sensitivity of each of the shooting conditions with the goal of increasing the texture details of the defect area comprises: When the identified camera scene includes at least one bright area lacking texture details, reducing at least one of the exposure time and the sensitivity based on the exposure time and the sensitivity of the standard shooting conditions way, the exposure time and the sensitivity of each of the shooting conditions are determined. 如請求項11所述的方法,其中所述雙感測器攝像系統更包括紅外線投射器,且所述方法更包括: 控制所述紅外線投射器投射紅外光,以增加所述至少一紅外線感測器所擷取之所述紅外線影像中的所述紋理細節。 The method of claim 11, wherein the dual-sensor camera system further comprises an infrared projector, and the method further comprises: The infrared projector is controlled to project infrared light, so as to increase the texture details in the infrared image captured by the at least one infrared sensor. 如請求項11所述的方法,更包括: 判斷各所述紅外線影像是否包括所述缺陷區域的所述紋理細節;以及 在所述紅外線影像均未包括所述紋理細節時,控制所述至少一色彩感測器採用較所選擇的所述色彩影像的曝光時間長或短的多個曝光時擷取多張色彩影像並執行高動態範圍處理,以生成具備所述缺陷區域的所述紋理細節的所述場景影像。 The method according to claim 11, further comprising: determining whether each of the infrared images includes the texture details of the defect area; and When none of the infrared images includes the texture details, control the at least one color sensor to capture a plurality of color images and capture a plurality of color images when using a plurality of exposures with a longer or shorter exposure time than the selected color image. High dynamic range processing is performed to generate the scene image with the texture detail of the defect area. 如請求項9所述的方法,其中所述特徵域轉換包括色彩空間轉換或梯度轉換。The method of claim 9, wherein the feature domain transformation includes color space transformation or gradient transformation.
TW109145632A 2020-09-04 2020-12-23 Dual sensor imaging system and imaging method thereof TWI767468B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/216,639 US11568526B2 (en) 2020-09-04 2021-03-29 Dual sensor imaging system and imaging method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063074477P 2020-09-04 2020-09-04
US63/074,477 2020-09-04

Publications (2)

Publication Number Publication Date
TW202211674A TW202211674A (en) 2022-03-16
TWI767468B true TWI767468B (en) 2022-06-11

Family

ID=80438521

Family Applications (5)

Application Number Title Priority Date Filing Date
TW109145614A TWI778476B (en) 2020-09-04 2020-12-23 Dual sensor imaging system and imaging method thereof
TW109145632A TWI767468B (en) 2020-09-04 2020-12-23 Dual sensor imaging system and imaging method thereof
TW109146764A TWI764484B (en) 2020-09-04 2020-12-30 Dual sensor imaging system and calibration method thereof
TW109146831A TWI797528B (en) 2020-09-04 2020-12-30 Dual sensor imaging system and privacy protection imaging method thereof
TW109146922A TWI767484B (en) 2020-09-04 2020-12-30 Dual sensor imaging system and depth map calculation method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW109145614A TWI778476B (en) 2020-09-04 2020-12-23 Dual sensor imaging system and imaging method thereof

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW109146764A TWI764484B (en) 2020-09-04 2020-12-30 Dual sensor imaging system and calibration method thereof
TW109146831A TWI797528B (en) 2020-09-04 2020-12-30 Dual sensor imaging system and privacy protection imaging method thereof
TW109146922A TWI767484B (en) 2020-09-04 2020-12-30 Dual sensor imaging system and depth map calculation method thereof

Country Status (2)

Country Link
CN (5) CN114143418B (en)
TW (5) TWI778476B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116091341B (en) * 2022-12-15 2024-04-02 南京信息工程大学 Exposure difference enhancement method and device for low-light image

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102461156A (en) * 2009-06-03 2012-05-16 弗莱尔系统公司 Infrared camera systems and methods for dual sensor applications
CN107431760A (en) * 2015-03-31 2017-12-01 富士胶片株式会社 Camera device, the image processing method of camera device and program

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246252A (en) * 2003-02-17 2004-09-02 Takenaka Komuten Co Ltd Apparatus and method for collecting image information
JP2005091434A (en) * 2003-09-12 2005-04-07 Noritsu Koki Co Ltd Position adjusting method and image reader with damage compensation function using the same
JP4244018B2 (en) * 2004-03-25 2009-03-25 ノーリツ鋼機株式会社 Defective pixel correction method, program, and defective pixel correction system for implementing the method
JP4341680B2 (en) * 2007-01-22 2009-10-07 セイコーエプソン株式会社 projector
US9307212B2 (en) * 2007-03-05 2016-04-05 Fotonation Limited Tone mapping for low-light video frame enhancement
US8866920B2 (en) * 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8902321B2 (en) * 2008-05-20 2014-12-02 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
CN101404060B (en) * 2008-11-10 2010-06-30 北京航空航天大学 Human face recognition method based on visible light and near-infrared Gabor information amalgamation
US8681216B2 (en) * 2009-03-12 2014-03-25 Hewlett-Packard Development Company, L.P. Depth-sensing camera system
JP5670456B2 (en) * 2009-08-25 2015-02-18 アイピーリンク・リミテッド Reduce noise in color images
US8478123B2 (en) * 2011-01-25 2013-07-02 Aptina Imaging Corporation Imaging devices having arrays of image sensors and lenses with multiple aperture sizes
JP2013115679A (en) * 2011-11-30 2013-06-10 Fujitsu General Ltd Imaging apparatus
US10848731B2 (en) * 2012-02-24 2020-11-24 Matterport, Inc. Capturing and aligning panoramic image and depth data
TW201401186A (en) * 2012-06-25 2014-01-01 Psp Security Co Ltd System and method for identifying human face
US20150245062A1 (en) * 2012-09-25 2015-08-27 Nippon Telegraph And Telephone Corporation Picture encoding method, picture decoding method, picture encoding apparatus, picture decoding apparatus, picture encoding program, picture decoding program and recording medium
KR102070778B1 (en) * 2012-11-23 2020-03-02 엘지전자 주식회사 Rgb-ir sensor with pixels array and apparatus and method for obtaining 3d image using the same
WO2014100783A1 (en) * 2012-12-21 2014-06-26 Flir Systems, Inc. Time spaced infrared image enhancement
TWM458748U (en) * 2012-12-26 2013-08-01 Chunghwa Telecom Co Ltd Image type depth information retrieval device
JP6055681B2 (en) * 2013-01-10 2016-12-27 株式会社 日立産業制御ソリューションズ Imaging device
CN104661008B (en) * 2013-11-18 2017-10-31 深圳中兴力维技术有限公司 The treating method and apparatus that color image quality is lifted under low light conditions
CN104021548A (en) * 2014-05-16 2014-09-03 中国科学院西安光学精密机械研究所 Method for acquiring scene 4D information
US9516295B2 (en) * 2014-06-30 2016-12-06 Aquifi, Inc. Systems and methods for multi-channel imaging based on multiple exposure settings
JP6450107B2 (en) * 2014-08-05 2019-01-09 キヤノン株式会社 Image processing apparatus, image processing method, program, and storage medium
US10462390B2 (en) * 2014-12-10 2019-10-29 Sony Corporation Image pickup apparatus, image pickup method, program, and image processing apparatus
WO2016192437A1 (en) * 2015-06-05 2016-12-08 深圳奥比中光科技有限公司 3d image capturing apparatus and capturing method, and 3d image system
JP2017011634A (en) * 2015-06-26 2017-01-12 キヤノン株式会社 Imaging device, control method for the same and program
CN105049829B (en) * 2015-07-10 2018-12-25 上海图漾信息科技有限公司 Optical filter, imaging sensor, imaging device and 3-D imaging system
CN105069768B (en) * 2015-08-05 2017-12-29 武汉高德红外股份有限公司 A kind of visible images and infrared image fusion processing system and fusion method
US10523855B2 (en) * 2015-09-24 2019-12-31 Intel Corporation Infrared and visible light dual sensor imaging system
TW201721269A (en) * 2015-12-11 2017-06-16 宏碁股份有限公司 Automatic exposure system and auto exposure method thereof
JP2017112401A (en) * 2015-12-14 2017-06-22 ソニー株式会社 Imaging device, apparatus and method for image processing, and program
CN206117865U (en) * 2016-01-16 2017-04-19 上海图漾信息科技有限公司 Range data monitoring device
JP2017163297A (en) * 2016-03-09 2017-09-14 キヤノン株式会社 Imaging apparatus
KR101747603B1 (en) * 2016-05-11 2017-06-16 재단법인 다차원 스마트 아이티 융합시스템 연구단 Color night vision system and operation method thereof
CN106815826A (en) * 2016-12-27 2017-06-09 上海交通大学 Night vision image Color Fusion based on scene Recognition
CN108280807A (en) * 2017-01-05 2018-07-13 浙江舜宇智能光学技术有限公司 Monocular depth image collecting device and system and its image processing method
JP6974873B2 (en) * 2017-02-06 2021-12-01 フォトニック センサーズ アンド アルゴリズムス,エセ.エレ. Devices and methods for retrieving depth information from the scene
CN108419062B (en) * 2017-02-10 2020-10-02 杭州海康威视数字技术股份有限公司 Image fusion apparatus and image fusion method
CN109474770B (en) * 2017-09-07 2021-09-14 华为技术有限公司 Imaging device and imaging method
CN109712102B (en) * 2017-10-25 2020-11-27 杭州海康威视数字技术股份有限公司 Image fusion method and device and image acquisition equipment
CN107846537B (en) * 2017-11-08 2019-11-26 维沃移动通信有限公司 A kind of CCD camera assembly, image acquiring method and mobile terminal
CN112788249B (en) * 2017-12-20 2022-12-06 杭州海康威视数字技术股份有限公司 Image fusion method and device, electronic equipment and computer readable storage medium
US10748247B2 (en) * 2017-12-26 2020-08-18 Facebook, Inc. Computing high-resolution depth images using machine learning techniques
US10757320B2 (en) * 2017-12-28 2020-08-25 Waymo Llc Multiple operating modes to expand dynamic range
TWI661726B (en) * 2018-01-09 2019-06-01 呂官諭 Image sensor with enhanced image recognition and application
CN110136183B (en) * 2018-02-09 2021-05-18 华为技术有限公司 Image processing method and device and camera device
CN108965654B (en) * 2018-02-11 2020-12-25 浙江宇视科技有限公司 Double-spectrum camera system based on single sensor and image processing method
CN110572583A (en) * 2018-05-18 2019-12-13 杭州海康威视数字技术股份有限公司 method for shooting image and camera
CN108961195B (en) * 2018-06-06 2021-03-23 Oppo广东移动通信有限公司 Image processing method and device, image acquisition device, readable storage medium and computer equipment
JP6574878B2 (en) * 2018-07-19 2019-09-11 キヤノン株式会社 Image processing apparatus, image processing method, imaging apparatus, program, and storage medium
JP7254461B2 (en) * 2018-08-01 2023-04-10 キヤノン株式会社 IMAGING DEVICE, CONTROL METHOD, RECORDING MEDIUM, AND INFORMATION PROCESSING DEVICE
CN109035193A (en) * 2018-08-29 2018-12-18 成都臻识科技发展有限公司 A kind of image processing method and imaging processing system based on binocular solid camera
CN112602316B (en) * 2018-09-14 2022-06-24 浙江宇视科技有限公司 Automatic exposure method and device for double-light image, double-light image camera and machine storage medium
JP2020052001A (en) * 2018-09-28 2020-04-02 パナソニックIpマネジメント株式会社 Depth acquisition device, depth acquisition method, and program
US11176694B2 (en) * 2018-10-19 2021-11-16 Samsung Electronics Co., Ltd Method and apparatus for active depth sensing and calibration method thereof
CN109636732B (en) * 2018-10-24 2023-06-23 深圳先进技术研究院 Hole repairing method of depth image and image processing device
CN110248105B (en) * 2018-12-10 2020-12-08 浙江大华技术股份有限公司 Image processing method, camera and computer storage medium
US11120536B2 (en) * 2018-12-12 2021-09-14 Samsung Electronics Co., Ltd Apparatus and method for determining image sharpness
CN113170048A (en) * 2019-02-19 2021-07-23 华为技术有限公司 Image processing device and method
US10972649B2 (en) * 2019-02-27 2021-04-06 X Development Llc Infrared and visible imaging system for device identification and tracking
JP7316809B2 (en) * 2019-03-11 2023-07-28 キヤノン株式会社 Image processing device, image processing device control method, system, and program
CN110349117B (en) * 2019-06-28 2023-02-28 重庆工商大学 Infrared image and visible light image fusion method and device and storage medium
CN110706178B (en) * 2019-09-30 2023-01-06 杭州海康威视数字技术股份有限公司 Image fusion device, method, equipment and storage medium
CN111524175A (en) * 2020-04-16 2020-08-11 东莞市东全智能科技有限公司 Depth reconstruction and eye movement tracking method and system for asymmetric multiple cameras
CN111540003A (en) * 2020-04-27 2020-08-14 浙江光珀智能科技有限公司 Depth image generation method and device
CN111586314B (en) * 2020-05-25 2021-09-10 浙江大华技术股份有限公司 Image fusion method and device and computer storage medium
CN111383206B (en) * 2020-06-01 2020-09-29 浙江大华技术股份有限公司 Image processing method and device, electronic equipment and storage medium
IN202021032940A (en) * 2020-07-31 2020-08-28 .Us Priyadarsan

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102461156A (en) * 2009-06-03 2012-05-16 弗莱尔系统公司 Infrared camera systems and methods for dual sensor applications
CN107431760A (en) * 2015-03-31 2017-12-01 富士胶片株式会社 Camera device, the image processing method of camera device and program

Also Published As

Publication number Publication date
CN114143420B (en) 2024-05-03
TWI778476B (en) 2022-09-21
CN114143418B (en) 2023-12-01
CN114143443B (en) 2024-04-05
CN114143420A (en) 2022-03-04
TW202211673A (en) 2022-03-16
TW202211165A (en) 2022-03-16
CN114143419B (en) 2023-12-26
CN114143421A (en) 2022-03-04
CN114143421B (en) 2024-04-05
CN114143443A (en) 2022-03-04
TW202211160A (en) 2022-03-16
CN114143418A (en) 2022-03-04
TW202211161A (en) 2022-03-16
TWI764484B (en) 2022-05-11
TWI797528B (en) 2023-04-01
CN114143419A (en) 2022-03-04
TWI767484B (en) 2022-06-11
TW202211674A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
RU2565343C2 (en) Imaging device and control method
US9936141B2 (en) Image processing apparatus for performing correction processing for effecting virtual light source and method executed by image processing apparatus
TWI454139B (en) High dynamic range transition
US8106965B2 (en) Image capturing device which corrects a target luminance, based on which an exposure condition is determined
TWI526068B (en) Dual image capture processing
US11496694B2 (en) Dual sensor imaging system and imaging method thereof
CN107846556B (en) Imaging method, imaging device, mobile terminal and storage medium
US11689822B2 (en) Dual sensor imaging system and privacy protection imaging method thereof
US20110150357A1 (en) Method for creating high dynamic range image
CN108337449A (en) High-dynamic-range image acquisition method, device based on dual camera and equipment
US9036046B2 (en) Image processing apparatus and method with white balance correction
US11838648B2 (en) Image processing device, imaging apparatus, image processing method, and program for determining a condition for high dynamic range processing
JP2017152866A (en) Image processing system and image processing method
TWI767468B (en) Dual sensor imaging system and imaging method thereof
US11568526B2 (en) Dual sensor imaging system and imaging method thereof
WO2015192545A1 (en) Photographing method and apparatus and computer storage medium
US11496660B2 (en) Dual sensor imaging system and depth map calculation method thereof
US20210103201A1 (en) Flash metering for dual camera devices
JP6725105B2 (en) Imaging device and image processing method
JP2016005105A (en) Imaging apparatus
JP2014220701A (en) Imaging device and imaging method
JP2003259231A (en) Automatic exposure controller and program thereof
Leznik et al. Optimization of demanding scenarios in CMS and image quality criteria