[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI765284B - Isomerization processes for converting aromatic hydrocarbons comprising alkyl-demethylation - Google Patents

Isomerization processes for converting aromatic hydrocarbons comprising alkyl-demethylation Download PDF

Info

Publication number
TWI765284B
TWI765284B TW109121159A TW109121159A TWI765284B TW I765284 B TWI765284 B TW I765284B TW 109121159 A TW109121159 A TW 109121159A TW 109121159 A TW109121159 A TW 109121159A TW I765284 B TWI765284 B TW I765284B
Authority
TW
Taiwan
Prior art keywords
demethylation
stream
zone
alkyl
xylene
Prior art date
Application number
TW109121159A
Other languages
Chinese (zh)
Other versions
TW202114970A (en
Inventor
密雪兒 莫林尼爾
哈利 奈爾
美哈 羅坦
麥可 薩琪卓利
杜倫 拉分
史考特 威格爾
Original Assignee
美商艾克頌美孚化學專利股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商艾克頌美孚化學專利股份有限公司 filed Critical 美商艾克頌美孚化學專利股份有限公司
Publication of TW202114970A publication Critical patent/TW202114970A/en
Application granted granted Critical
Publication of TWI765284B publication Critical patent/TWI765284B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/08Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule
    • C07C4/12Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2702Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/14Purification; Separation; Use of additives by crystallisation; Purification or separation of the crystals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Alkyl-demethylation of C2+-hydrocarbyl substituted aromatic hydrocarbons can be utilized to treat one or more of a heavy naphtha reformate stream, a hydrotreated SCN stream, a C8 aromatic hydrocarbon isomerization feed stream, a C9+ aromatic hydrocarbon transalkylation feed stream, and similar hydrocarbon streams to produce additional quantity of xylene products.

Description

包含烷基-脫甲基化之轉化芳烴的異構化方法Isomerization Process for Converting Aromatic Hydrocarbons Involving Alkyl-Demethylation

本揭露係關於轉化芳烴之方法,比如製造二甲苯、異構化C8芳烴、及轉烷基化芳烴的方法。特別地,本揭露係關於這類包含使芳烴烷基-脫甲基化之方法,該芳烴具有附接至在其中的芳族環之C2+-烷基取代基或稠合至在其中的芳族環之脂族環。本揭露能用於由石油腦重組器流出物和/或石化廠所製得的經加氫處理之蒸汽裂解石油腦流製造例如二甲苯(例如對二甲苯、鄰二甲苯、和/或混合二甲苯)。 [相關申請案之對照參考]The present disclosure relates to methods of converting aromatics, such as methods of making xylenes, isomerizing C8 aromatics, and transalkylating aromatics. In particular, the present disclosure relates to such methods comprising alkyl-demethylation of aromatic hydrocarbons having C2+-alkyl substituents attached to or fused to aromatic rings therein Cyclic aliphatic ring. The present disclosure can be used to produce, for example, xylenes (eg, para-xylene, ortho-xylene, and/or mixed xylenes) from naphtha reformer effluents and/or hydrotreated steam cracked petroleum naphtha streams produced in petrochemical plants. toluene). [Related References to Related Applications]

本申請案主張於2019年7月19日提出申請之U.S.S.N. 62/876,426及於2019年9月25日提出申請之歐洲專利申請案號19199461.5的優先權與權益,以引用方式將其揭露併入本案。This application claims the priority and benefit of U.S.S.N. 62/876,426 filed on July 19, 2019 and European Patent Application No. 19199461.5 filed on September 25, 2019, the disclosures of which are incorporated herein by reference .

對二甲苯(Para-xylene)(「對二甲苯(p-xylene)」)是一種製造對苯二甲酸之重要工業商品,該對苯二甲酸後來被用於製造大量聚酯纖維。鄰二甲苯(ortho-xylene)(「鄰二甲苯(o-xylene)」)是另一種製造鄰苯二甲酸之重要工業商品,該鄰苯二甲酸後來被用於製造塑化劑與其他工業材料。每年全世界消耗掉大量對二甲苯與鄰二甲苯。這兩種芳烴之高度需求業已導致其許多大量生產技術的升級。鄰二甲苯與對二甲苯很常存在於C8芳烴混合物中,該C8芳烴混合物還包含其異構物,其包括各種量之間二甲苯與乙苯。使用例如結晶化與以吸附層析法為基礎的技術可以實現從這類C8芳烴混合物分離出對二甲苯產物。來自結晶分離法之殘餘濾液與來自以吸附層析法為基礎的技術之萃餘物(統稱為「萃餘物」)係耗盡對二甲苯的及富含間二甲苯與鄰二甲苯的。典型地,接著在異構化反應器中萃餘物和異構化觸媒接觸而被異構化以將一部分間二甲苯與鄰二甲苯轉化成對二甲苯,在二甲苯回路中可以分離出額外的對二甲苯。Para-xylene ("p-xylene") is an important industrial commodity in the manufacture of terephthalic acid, which was later used in the manufacture of large quantities of polyester fibers. Ortho-xylene ("o-xylene") is another important industrial commodity in the manufacture of phthalic acid, which was later used in the manufacture of plasticizers and other industrial materials . Large amounts of para-xylene and ortho-xylene are consumed worldwide every year. The high demand for these two aromatics has led to the upgrading of many of their mass production technologies. O-xylene and para-xylene are frequently present in C8 aromatic mixtures, which also contain their isomers, which include inter-xylene and ethylbenzene in various amounts. Separation of the para-xylene product from such C8 aromatic hydrocarbon mixtures can be accomplished using techniques such as crystallization and adsorption chromatography based techniques. The residual filtrate from the crystallization separation process and the raffinate from adsorption chromatography-based techniques (collectively referred to as "raffinate") are para-xylene depleted and meta- and ortho-xylene rich. Typically, the raffinate is then isomerized in contact with an isomerization catalyst in an isomerization reactor to convert a portion of the meta- and ortho-xylene to para-xylene, which can be separated in the xylene loop. Additional paraxylene.

在石化廠中,C8芳烴混合物之主要來源是重石油腦重組反應器(「重組器」)製造的C6+烴重組油流。在重組觸媒存在下在重組條件下,在供應給重組器之重石油腦進料中含有的石蠟與芳烴經受複雜化學反應(比如異構化、脫氫、脫氫環化、芳化等等)以產生包含更多支鏈石蠟、芳烴、與氫之重組混合物。從重組混合物分離出的C6+烴重組油流包含苯、甲苯、C8芳烴、與C9+芳烴。C8芳烴除了二甲苯之外,典型上還包含顯著量的乙苯。C9+芳烴除了只包含附接至在其中的芳族環之甲基取代基的芳烴之外,典型上還包含含有C2+烷基的芳烴(例如乙基甲苯、二乙苯、C3-烷基苯等等)和/或包含稠合至芳族環之脂族環的芳烴(例如二氫茚、甲基二氫茚、四氫萘、甲基四氫萘等等)。In petrochemical plants, the major source of C8 aromatic mixtures is the C6+ hydrocarbon reformed oil stream produced by heavy naphtha reformation reactors ("recombiners"). The paraffins and aromatics contained in the heavy petroleum naphtha feed supplied to the reformer undergo complex chemical reactions (such as isomerization, dehydrogenation, dehydrocyclization, aromatization, etc.) in the presence of a reforming catalyst and under reforming conditions ) to produce a reconstituted mixture containing more branched paraffins, aromatics, and hydrogen. The C6+ hydrocarbon reformed oil stream separated from the reformed mixture contains benzene, toluene, C8 aromatics, and C9+ aromatics. C8 aromatics typically contain significant amounts of ethylbenzene in addition to xylenes. C9+ aromatics typically include aromatics containing C2+ alkyl groups (eg, ethyltoluene, diethylbenzene, C3-alkylbenzenes, etc.) in addition to aromatics containing only methyl substituents attached to the aromatic ring therein etc.) and/or aromatic hydrocarbons comprising an aliphatic ring fused to an aromatic ring (eg, indene, methyldihydroindene, tetralin, methyltetrahydronaphthalene, etc.).

因此,依上述異構化由重組油流衍生之萃餘物典型上包含大量乙苯。在異構化反應器中很難將乙苯直接轉化成二甲苯。為了防止乙苯在二甲苯回路中累積及將乙苯轉化成更有價值的產品,已知策略是在汽相條件下與在可有效將乙苯脫乙基化之觸媒存在下進行異構化方法。從乙苯移除的乙基在氫存在下在異構化反應器中形成輕烴。汽相異構化是高耗能的。將至少一部分之乙基轉化成附接至苯環的甲基使得可以製造更有價值之產品(比如二甲苯)將是有益的。Thus, the raffinate derived from the reconstituted oil stream following the isomerization described above typically contains significant amounts of ethylbenzene. It is difficult to convert ethylbenzene directly to xylenes in an isomerization reactor. In order to prevent the accumulation of ethylbenzene in the xylene loop and convert ethylbenzene to more valuable products, a known strategy is to isomerize ethylbenzene under vapor phase conditions in the presence of a catalyst effective for deethylating ethylbenzene method. The ethyl groups removed from the ethylbenzene form light hydrocarbons in the isomerization reactor in the presence of hydrogen. Vapor phase isomerization is energy intensive. It would be beneficial to convert at least a portion of the ethyl groups to methyl groups attached to the benzene ring so that more valuable products such as xylenes can be made.

為使二甲苯產量最大化,可以分離出在C6+重組油流中的C9+芳烴,接著連同苯和/或甲苯供應給轉烷基化反應器。在轉烷基化觸媒存在下及在轉烷基化條件下,C9+芳烴和苯/甲苯交換甲基以製造更多二甲苯。為將包含C2+烷基取代基和/或脂族環之C9+芳烴轉化成有用的產品(比如二甲苯),策略是在汽相下在可有效將這類C2+烷基取代基脫烷基化之觸媒存在下進行轉烷基化。經移除之烷基在氫存在下在轉烷基化反應器中形成輕烴。汽相轉烷基化是高耗能的。將至少一部分之C2+基與脂族環轉化成附接至苯環的甲基使得可以製造更有價值之產品(比如二甲苯)將是有益的。To maximize xylene production, the C9+ aromatics in the C6+ reconstituted oil stream can be separated and then fed to the transalkylation reactor along with benzene and/or toluene. In the presence of a transalkylation catalyst and under transalkylation conditions, C9+ aromatics and benzene/toluene exchange methyl groups to produce more xylenes. To convert C9+ aromatic hydrocarbons containing C2+ alkyl substituents and/or aliphatic rings to useful products (such as xylenes), the strategy is to dealkylate such C2+ alkyl substituents in the vapor phase in an efficient manner. The transalkylation is carried out in the presence of a catalyst. The removed alkyl groups form light hydrocarbons in the transalkylation reactor in the presence of hydrogen. Vapor phase transalkylation is energy intensive. It would be beneficial to convert at least a portion of the C2+ groups and aliphatic rings to methyl groups attached to the benzene ring so that more valuable products such as xylenes can be made.

C8芳烴也存在於經加氫處理之蒸汽裂解石油腦(「SCN」)中。然而,傳統上經加氫處理的SCN流不被認為是製造二甲苯產品之經濟原材料,茲因在其中的高濃度乙苯與二氫茚。最好開發一種方法由經加氫處理之SCN流製造二甲苯產品。C8 aromatics are also present in hydrotreated steam cracked naphtha ("SCN"). Traditionally, however, hydrotreated SCN streams have not been considered an economical raw material for the manufacture of xylene products due to the high concentrations of ethylbenzene and indene therein. It would be desirable to develop a process for producing xylene product from a hydrotreated SCN stream.

仍有需要更節能的方法,比如C8芳烴異構化方法與C9+芳烴轉烷基化方法,由重組油流與其他類似芳烴來源(比如經加氫處理的SCN流)製造更多二甲苯,特別是對二甲苯。本揭露符合此需要與其他需要。There is still a need for more energy efficient processes, such as C8 aromatics isomerization processes and C9+ aromatics transalkylation processes, to produce more xylenes from reconstituted oil streams and other similar sources of aromatics (such as hydrotreated SCN streams), especially is paraxylene. This disclosure meets this need and others.

據發現,烷基-脫甲基化方法可以用於選擇性地轉化C2+-烴基取代之芳烴以製造烷基-脫甲基化烴(特別是甲基化芳烴),該C2+-烴基取代之芳烴包含附接至在其中的芳族環之C2+烷基或稠合至在其中的芳族環之脂族環。將烷基-脫甲基化方法併入芳烴製造方法中(比如C8芳烴異構化方法,特別是液相異構化方法)可以有下列優點的至少一者:(i)能量效率改善;(ii)更有價值之產品(如二甲苯)產量增加(相對於苯);(iii)碳利用率改善(燃料氣生成率更低、總產物產率更高);及(iv)使方法、設備、與系統簡化。It has been discovered that an alkyl-demethylation process can be used to selectively convert C2+-hydrocarbyl-substituted aromatics to produce alkyl-demethylated hydrocarbons (especially methylated aromatics), the C2+-hydrocarbyl-substituted aromatics An aliphatic ring comprising a C2+ alkyl group attached to an aromatic ring therein or fused to an aromatic ring therein. Incorporating an alkyl-demethylation process into an aromatics manufacturing process (such as a C8 aromatics isomerization process, especially a liquid phase isomerization process) can have at least one of the following advantages: (i) improved energy efficiency; ( ii) increased production (relative to benzene) of more valuable products such as xylene; (iii) improved carbon utilization (lower fuel gas generation, higher overall product yield); and (iv) improved process, Equipment and system simplification.

本揭露之第一態樣係關於C8芳烴異構化方法,該方法包含下列的一或多者:(i)提供第一C8芳烴流,其包含乙苯、對二甲苯、間二甲苯、與隨意鄰二甲苯;(ii)在對二甲苯回收次系統中將該第一C8芳烴流分離,以獲得對二甲苯產物流與對二甲苯耗盡流;(iii)將至少一部分的該對二甲苯耗盡流與第一乙基-脫甲基化觸媒在第一乙基-脫甲基化區中接觸以將存在於該對二甲苯耗盡流中之至少一部分的乙苯轉化成甲苯,以獲得離開該第一乙基-脫甲基化區之第一乙基-脫甲基化流出物;(iv)將至少一部分的該第一乙基-脫甲基化流出物和隨意至少一部分的該對二甲苯耗盡流與第一二甲苯異構化觸媒在第一二甲苯異構化區中在第一組二甲苯異構化條件下接觸,以獲得第一二甲苯異構化流出物;及(v)將至少一部分的該第一二甲苯異構化流出物供應至該對二甲苯回收次系統,以獲得該對二甲苯產物流與該對二甲苯耗盡流。A first aspect of the present disclosure relates to a C8 aromatics isomerization process comprising one or more of the following: (i) providing a first C8 aromatics stream comprising ethylbenzene, para-xylene, meta-xylene, and optional ortho-xylene; (ii) separating the first C8 aromatics stream in a para-xylene recovery subsystem to obtain a para-xylene product stream and a para-xylene depletion stream; (iii) separating at least a portion of the para-xylene The toluene depleted stream is contacted with a first ethyl-demethylation catalyst in the first ethyl-demethylation zone to convert at least a portion of the ethylbenzene present in the paraxylene depleted stream to toluene to obtain the first ethyl-demethylation effluent leaving the first ethyl-demethylation zone; (iv) combining at least a portion of the first ethyl-demethylation effluent and optionally at least A portion of this para-xylene depleted stream is contacted with a first xylene isomerization catalyst in a first xylene isomerization zone under a first set of xylene isomerization conditions to obtain a first xylene isomerization and (v) supplying at least a portion of the first xylene isomerization effluent to the paraxylene recovery subsystem to obtain the paraxylene product stream and the paraxylene depletion stream.

本揭露之第二態樣係關於轉化C8芳烴之方法,該方法包含下列的一或多者:(i)提供第一C8芳烴流,其包含乙苯、對二甲苯、間二甲苯、與隨意鄰二甲苯;(ii)在對二甲苯回收次系統中將該第一C8芳烴流分離,以獲得對二甲苯產物流與對二甲苯耗盡流;(iii)將至少一部分的該對二甲苯耗盡流與第一乙基-脫甲基化觸媒在第一乙基-脫甲基化區中在第一組烷基-脫甲基化條件下接觸以將存在於該對二甲苯耗盡流中之至少一部分的乙苯轉化成甲苯,以獲得離開該第一乙基-脫甲基化區之第一乙基-脫甲基化流出物;(iv)將至少一部分的該第一乙基-脫甲基化流出物和隨意至少一部分的該對二甲苯耗盡流與第一二甲苯異構化觸媒在第一二甲苯異構化區中在第一組二甲苯異構化條件下接觸,以獲得第一二甲苯異構化流出物;及(v)將至少一部分的該第一二甲苯異構化流出物供應至該對二甲苯回收次系統,以獲得該對二甲苯產物流與該對二甲苯耗盡流;其中下列的至少一者被滿足:(a)該第一組烷基-脫甲基化條件包含:在從200至500℃範圍內之溫度;在從350至2500千帕範圍內的絕對壓力;在從0.5至20範圍內之分子氫對烴的莫耳比;及在從1至20小時-1 範圍內之液體重量時空速度;和(b)該第一乙基-脫甲基化觸媒包含:選自第7、8、9、和10族金屬及其組合物之第一金屬元素、及支撐體。A second aspect of the present disclosure relates to a method of converting C8 aromatics, the method comprising one or more of the following: (i) providing a first C8 aromatics stream comprising ethylbenzene, para-xylene, meta-xylene, and optionally ortho-xylene; (ii) separating the first C8 aromatics stream in a para-xylene recovery subsystem to obtain a para-xylene product stream and a para-xylene depletion stream; (iii) separating at least a portion of the para-xylene The depletion stream is contacted with a first ethyl-demethylation catalyst in a first ethyl-demethylation zone under a first set of alkyl-demethylation conditions to deplete the para-xylene present in the depletion. converting at least a portion of the ethylbenzene in the exhaust stream to toluene to obtain a first ethyl-demethylation effluent leaving the first ethyl-demethylation zone; (iv) converting at least a portion of the first ethylbenzene The ethyl-demethylation effluent and optionally at least a portion of this para-xylene depletion stream is isomerized in a first set of xylenes in a first xylene isomerization zone with a first xylene isomerization catalyst contacting under conditions to obtain a first xylene isomerization effluent; and (v) supplying at least a portion of the first xylene isomerization effluent to the para-xylene recovery subsystem to obtain the para-xylene A product stream and the para-xylene depletion stream; wherein at least one of the following is satisfied: (a) the first set of alkyl-demethylation conditions comprises: at a temperature in the range from 200 to 500°C; at a temperature from absolute pressure in the range from 350 to 2500 kPa; molar ratio of molecular hydrogen to hydrocarbon in the range from 0.5 to 20; and liquid weight hourly space velocity in the range from 1 to 20 h -1 ; and (b) the The first ethyl-demethylation catalyst comprises: a first metal element selected from Group 7, 8, 9, and 10 metals and combinations thereof, and a support.

現在將描述本發明之各種具體實施方式、變型與實施例,包括本文中為了瞭解請求的發明而採用之較佳實施方式與定義。儘管下列詳細說明給出特定較佳實施方式,但本領域之習知技藝者會理解這些實施方式只是示範用,並且可以其他方式實踐本發明。為了侵權鑑定,本發明之範圍將是指隨附申請專利範圍的任一或多項(包括其之等效物)、及等效於所述者的元件或限制。任何對「發明」之提及可以是指一或多個,但不一定是全部的申請專利範圍所限定之發明。Various embodiments, modifications, and examples of the present invention will now be described, including the preferred embodiments and definitions employed herein for the purpose of understanding the claimed invention. While the following detailed description gives specific preferred embodiments, those skilled in the art will understand that these embodiments are exemplary only and that the invention may be practiced in other ways. For the purpose of infringement identification, the scope of the present invention will refer to any one or more of the appended claims (including equivalents thereof), and elements or limitations equivalent thereto. Any reference to an "invention" may refer to one or more, but not necessarily all, inventions for which the scope of the claim is limited.

在本揭露中,將方法描述成包含至少一個「步驟」。應當理解各步驟是在方法中可以連續或不連續方式進行一次或多次之動作或操作。除非相反說明或上下文清楚地另外指出,否則在方法中多個步驟可以其被列出之順序(在有或無與一或多個其他步驟重疊下),或視情況以任何其他順序相繼進行。此外,對同批或不同批材料可同時進行一或多個或甚至全部步驟。例如,在連續法中,當對在開始時剛進料至方法中的原料進行方法之第一步驟時,在第一步驟較早時間對處理進料至方法中的原料所形成之中間材料可同時進行第二步驟。較佳地,以上述順序進行上述步驟。In this disclosure, methods are described as including at least one "step." It should be understood that each step is an act or operation that may be performed one or more times in the method in a continuous or discontinuous manner. Unless stated to the contrary or the context clearly dictates otherwise, various steps in a method may be performed sequentially in the order in which they are listed (with or without overlap with one or more other steps), or in any other order as appropriate. Furthermore, one or more or even all of the steps may be performed simultaneously on the same or different batches of material. For example, in a continuous process, when the first step of the process is performed on a feedstock that is just fed into the process at the beginning, the intermediate material formed by treating the feedstock fed into the process earlier in the first step may be At the same time, the second step is carried out. Preferably, the above steps are performed in the above order.

除非另外指出,否則在本揭露中表示量之所有數字在一切情况下被理解為被措詞「約」修飾。亦應當理解在說明書與申請專利範圍中使用之精確數值構成具體實施方式。已經作出努力以確保在實施例中數據之準確性。然而,應當理解任何測量數據本來就含有某一級別的誤差,茲因用於測量之技術與設備的限制。Unless otherwise indicated, all numbers in this disclosure expressing quantities are in all cases understood to be modified by the word "about." It should also be understood that the precise numerical values used in the specification and claimed scope constitute the specific embodiment. Efforts have been made to ensure the accuracy of the data in the examples. However, it should be understood that any measurement data inherently contains some level of error due to limitations of the techniques and equipment used for the measurement.

如本文所用,不定冠詞「一(a)」或「一(an)」是指「至少一」,除非相反說明或上下文清楚地另外指出。因此,使用「一分餾塔」之實施方式包括使用一、二或更多個分餾塔的實施方式,除非相反說明或上下文清楚地指出只使用一個分餾塔。As used herein, the indefinite articles "a (a)" or "an (an)" mean "at least one" unless stated to the contrary or the context clearly dictates otherwise. Thus, embodiments using "a fractionation column" include embodiments using one, two, or more fractionation columns, unless stated to the contrary or the context clearly dictates that only one fractionation column is used.

如本文所用,「基本上由…組成」是指組成物、進料、或流出物包含以上述組成物、進料、或流出物總重量為基準計,至少60重量%,較佳為至少70重量%,更佳為至少80重量%,更佳為至少90重量%,又更佳為至少95重量%的濃度之給定組分。As used herein, "consisting essentially of" means that a composition, feed, or effluent comprises at least 60% by weight, preferably at least 70% by weight, based on the total weight of the composition, feed, or effluent. % by weight, more preferably at least 80% by weight, more preferably at least 90% by weight, still more preferably at least 95% by weight of a given component at a concentration.

術語「烴」是指(i)由氫與碳原子組成之任何化合物或(ii)二或多種這類在(i)中化合物之任何混合物。術語「Cn烴」(其中n是正整數)是指(i)在其分子內含有總數為n的碳原子之任何烴化合物,或(ii)二或多種這類在(i)中烴化合物之任何混合物。因此,C2烴可為乙烷、乙烯、乙炔、或其至少二者的任何比例之混合物。「Cm至Cn烴」或「Cm-Cn烴」(其中m與n是正整數且m<n)是指Cm、Cm+1、Cm+2、…、Cn-1、Cn烴、或其二或多者之任何混合物中的任一者。因此,「C2至C3烴」或「C2-C3烴」可為乙烷、乙烯、乙炔、丙烷、丙烯、丙炔、丙二烯、環丙烷、與其二或多者的在上述組分之間的任何比例之任何混合物。「飽和C2-C3烴」可為乙烷、丙烷、環丙烷、或其二或多者的任何比例之任何混合物。「Cn+烴」是指(i)在其分子內含有總數為至少n的碳原子之任何烴化合物,或(ii)二或多種這類在(i)中烴化合物之任何混合物。「Cn-烴」是指(i)在其分子內含有總數為最多n的碳原子之任何烴化合物,或(ii)二或多種這類在(i)中烴化合物之任何混合物。「Cm烴流」是指基本上由Cm烴組成之烴流。「Cm-Cn烴流」是指基本上由Cm-Cn烴組成之烴流。The term "hydrocarbon" refers to (i) any compound consisting of hydrogen and carbon atoms or (ii) any mixture of two or more such compounds in (i). The term "Cn hydrocarbon" (where n is a positive integer) refers to (i) any hydrocarbon compound containing a total of n carbon atoms in its molecule, or (ii) any of two or more such hydrocarbon compounds in (i) mixture. Thus, the C2 hydrocarbon can be ethane, ethylene, acetylene, or a mixture of at least two of them in any ratio. "Cm to Cn hydrocarbons" or "Cm-Cn hydrocarbons" (where m and n are positive integers and m<n) refers to Cm, Cm+1, Cm+2, ..., Cn-1, Cn hydrocarbons, or both or Any of any mixture of more. Thus, "C2 to C3 hydrocarbons" or "C2-C3 hydrocarbons" can be ethane, ethylene, acetylene, propane, propylene, propyne, propadiene, cyclopropane, or two or more of these components in between. any mixture in any proportion. A "saturated C2-C3 hydrocarbon" can be ethane, propane, cyclopropane, or any mixture of two or more thereof in any ratio. "Cn+hydrocarbon" means (i) any hydrocarbon compound containing in its molecule a total of at least n carbon atoms, or (ii) any mixture of two or more such hydrocarbon compounds in (i). "Cn-hydrocarbon" means (i) any hydrocarbon compound containing in its molecule a total of up to n carbon atoms, or (ii) any mixture of two or more such hydrocarbon compounds in (i). "Cm hydrocarbon stream" means a hydrocarbon stream consisting essentially of Cm hydrocarbons. "Cm-Cn hydrocarbon stream" means a hydrocarbon stream consisting essentially of Cm-Cn hydrocarbons.

在本揭露中「輕烴」是指任何C5-烴。In this disclosure "light hydrocarbon" refers to any C5-hydrocarbon.

「液相異構化」是指在異構化區中在異構化觸媒存在下的C8芳烴異構化方法,由此在異構化條件下二甲苯(例如對二甲苯耗盡和/或鄰二甲苯耗盡的二甲苯混合物)異構化,使得存在於異構化區中的芳烴是實質上液相。「實質上液相」是指≥90重量%,較佳為≥95重量%,較佳為≥99重量%,較佳為整體是液相。這類異構化條件稱為液相異構化條件。"Liquid phase isomerization" refers to a process for the isomerization of C8 aromatics in the presence of an isomerization catalyst in an isomerization zone whereby xylene (e.g., para-xylene is depleted and/or depleted under isomerization conditions) or ortho-xylene depleted xylene mixture) isomerization such that the aromatics present in the isomerization zone are substantially liquid phase. "Substantially liquid phase" means ≥ 90 wt %, preferably ≥ 95 wt %, preferably ≥ 99 wt %, preferably the entire liquid phase. Such isomerization conditions are referred to as liquid phase isomerization conditions.

「汽相異構化」是指在異構化區中在異構化觸媒存在下的C8芳烴異構化方法,由此在異構化條件下二甲苯(例如對二甲苯耗盡和/或鄰二甲苯耗盡的二甲苯混合物)異構化,使得存在於異構化區中的芳烴是實質上汽相。「實質上汽相」是指≥90重量%,較佳為≥95重量%,較佳為≥99重量%,較佳為整體是汽相。這類異構化條件稱為汽相異構化條件。"Vapor phase isomerization" refers to a process for the isomerization of C8 aromatics in the presence of an isomerization catalyst in an isomerization zone whereby xylenes (e.g., para-xylene depletion and/or xylene) under isomerization conditions or ortho-xylene-depleted xylene mixture) is isomerized so that the aromatics present in the isomerization zone are in a substantially vapor phase. "Substantially vapor phase" means ≥ 90 wt %, preferably ≥ 95 wt %, preferably ≥ 99 wt %, preferably the entire vapor phase. Such isomerization conditions are referred to as vapor phase isomerization conditions.

「液相轉烷基化」是指在轉烷基化觸媒存在下在轉烷基化區中在芳烴之間(例如在輕芳烴比如苯和/或甲苯和重芳烴比如C9+芳烴之間,或在兩個甲苯分子之間)的轉烷基化方法,由此在轉烷基化條件下芳烴交換附接至在其中的芳族環之取代基,使得存在於轉烷基化區中的芳烴是實質上液相。「實質上液相」是指≥90重量%,較佳為≥95重量%,較佳為≥99重量%,較佳為整體是液相。這類轉烷基化條件稱為液相轉烷基化條件。因此,使甲苯轉化成二甲苯與苯之甲苯歧化方法是轉烷基化方法的一個特殊類型。"Liquid phase transalkylation" means in the transalkylation zone in the presence of a transalkylation catalyst between aromatics (e.g., between light aromatics such as benzene and/or toluene and heavy aromatics such as C9+ aromatics, or between two toluene molecules), whereby the aromatics exchange under transalkylation conditions for the substituents attached to the aromatic rings therein such that the Aromatic hydrocarbons are substantially liquid phase. "Substantially liquid phase" means ≥ 90 wt %, preferably ≥ 95 wt %, preferably ≥ 99 wt %, preferably the entire liquid phase. Such transalkylation conditions are referred to as liquid phase transalkylation conditions. Therefore, the toluene disproportionation process, which converts toluene to xylene and benzene, is a special type of transalkylation process.

「汽相轉烷基化」是指在轉烷基化觸媒存在下在轉烷基化區中在芳烴之間(例如在輕芳烴比如苯和/或甲苯和重芳烴比如C9+芳烴之間,或在兩個甲苯分子之間)的轉烷基化方法,由此在轉烷基化條件下芳烴交換附接至在其中的芳族環之取代基,使得存在於轉烷基化區中的芳烴是實質上汽相。「實質上汽相」是指≥90重量%,較佳為≥95重量%,較佳為≥99重量%,較佳為整體是汽相。這類轉烷基化條件稱為汽相轉烷基化條件。因此,使甲苯轉化成二甲苯與苯之甲苯歧化方法是轉烷基化方法的一個特異類型。"Vapor phase transalkylation" means in the transalkylation zone in the presence of a transalkylation catalyst between aromatics (e.g., between light aromatics such as benzene and/or toluene and heavy aromatics such as C9+ aromatics, or between two toluene molecules), whereby the aromatics exchange under transalkylation conditions for the substituents attached to the aromatic rings therein such that the Aromatic hydrocarbons are substantially in the vapor phase. "Substantially vapor phase" means ≥ 90 wt %, preferably ≥ 95 wt %, preferably ≥ 99 wt %, preferably the entire vapor phase. Such transalkylation conditions are referred to as vapor phase transalkylation conditions. Therefore, the toluene disproportionation process to convert toluene to xylene and benzene is a specific type of transalkylation process.

如本文所用,「重量%(wt%)」是指重量百分率,「體積%(vol%)」是指體積百分率,「莫耳%(mol%)」是指莫耳百分率,「ppm」是指百萬分率,及「重量ppm(ppm wt)」與「wppm」交替使用以指重量百萬分率。在本文中所有濃度皆以上述組成物總量表示。在本文中表示的所有範圍應當包括作為兩個具體實施方式之兩個端點,除非相反說明或指出。As used herein, "wt %" refers to weight percent, "vol %" refers to volume percent, "mol %" refers to molar percent, and "ppm" refers to Parts per million, and "ppm by weight (ppm wt)" and "wppm" are used interchangeably to refer to parts per million by weight. All concentrations herein are expressed as the total amount of the above-mentioned composition. All ranges expressed herein shall be inclusive of both endpoints as two specific embodiments unless stated or indicated to the contrary.

在本文中使用之元素與其基團的命名法係根據國際純化學暨應用化學聯合會在1988年以後使用的週期表。在Advanced Inorganic Chemistry, 6th Edition, by F. Albert Cotton et al.(John Wiley & Sons, Inc., 1999)封面內頁中顯示週期表之例子。The nomenclature of elements and their groups used in this paper is based on the periodic table used by the International Union of Pure and Applied Chemistry after 1988. An example of a periodic table is shown on the inside front cover of Advanced Inorganic Chemistry, 6th Edition, by F. Albert Cotton et al. (John Wiley & Sons, Inc., 1999).

「甲基化芳烴」是指芳烴,其包含至少一個甲基且只有甲基附接至在其中的芳族環。甲基化芳烴之例子是:甲苯、二甲苯、三甲苯、四甲苯、五甲苯、六甲苯、甲萘、二甲萘、三甲萘、四甲萘等等。"Methylated aromatic hydrocarbon" refers to an aromatic hydrocarbon that contains at least one methyl group and only the methyl group is attached to the aromatic ring in which it is attached. Examples of methylated aromatic hydrocarbons are: toluene, xylene, trimethyl, tetramethyl, pentamethyl, hexamethyl, methyl naphthalene, xylene, trimethyl naphthalene, tetramethyl naphthalene, and the like.

「C2+-烴基取代之芳烴」是指芳烴,其包含甲基化芳烴以外的經取代芳族環。C2+-烴基取代之芳烴可包含(i)附接至在其中的芳族環之C2+-烴基(例如C2+-烷基)和/或(ii)稠合至在其中的芳族環之脂族環。在(i)情況下C2+-烴基取代之芳烴的例子包括但不限於:乙苯(C8)、乙基甲苯(C9)、正丙苯(C9)、異丙苯(C9)、乙基二甲苯(C10)、二乙苯(C10)、正丙基甲苯(C10)、甲基異丙苯(亦即異丙基甲苯)(C10)、正丁苯(C10)、二級丁苯(C10)、三級丁苯(C10)等等。在(ii)情況下C2+-烴基取代之芳烴的例子包括但不限於:二氫茚(C9)、茚(C9)、甲基二氫茚(C10)、甲茚(C10)、四氫萘(C10)、甲基四氫萘(C11)、二甲基二氫茚(C11)、乙基二氫茚(C11)等等。苯與萘既非甲基化芳烴亦非C2+-烴基取代之芳烴。"C2+-hydrocarbyl-substituted aromatic hydrocarbons" refers to aromatic hydrocarbons comprising substituted aromatic rings other than methylated aromatic hydrocarbons. The C2+-hydrocarbyl-substituted aromatic hydrocarbon may comprise (i) a C2+-hydrocarbyl group (eg, a C2+-alkyl group) attached to an aromatic ring therein and/or (ii) an aliphatic ring fused to an aromatic ring therein . Examples of C2+-hydrocarbyl-substituted aromatic hydrocarbons in case (i) include, but are not limited to: ethylbenzene (C8), ethyltoluene (C9), n-propylbenzene (C9), cumene (C9), ethylxylene (C10), diethylbenzene (C10), n-propyl toluene (C10), cumene (that is, cumene) (C10), n-butylbenzene (C10), secondary butylbenzene (C10) , Tertiary butylbenzene (C10) and so on. Examples of C2+-hydrocarbyl-substituted aromatic hydrocarbons in the case of (ii) include, but are not limited to: dihydroindene (C9), indene (C9), methyldihydroindene (C10), methylindene (C10), tetrahydronaphthalene ( C10), methyltetrahydronaphthalene (C11), dimethyldihydroindene (C11), ethyldihydroindene (C11) and the like. Benzene and naphthalene are neither methylated aromatics nor C2+-hydrocarbyl-substituted aromatics.

「烷基-脫甲基化」是指在烷基-脫甲基化觸媒與分子氫存在下,(i)從附接至芳族環之Cm(m≥2)烷基移除一或多個碳原子以留下附接至芳族環的Cm’殘餘烷基,其中1≤m’≤m-1,較佳為m’=1;或(ii)從稠合至芳族環之Cn脂族環移除一或多個碳原子以留下一或多個含有總共n’個碳原子的殘餘烷基(較佳為甲基),其中1≤n’≤n-2。在本揭露中,反應(i)與(ii)統稱為「烷基-脫甲基化反應」。因此,包含附接至在其中的芳族環之Cm(m≥2)烷基的C2+-烴基取代之芳烴的烷基-脫甲基化可以導致經Cm-1烷基、或Cm-2烷基、…、或甲基取代之芳烴成為烷基-脫甲基化烴。包含稠合至在其中的芳族環之n員(n≥5)脂族環的C2+-烴基取代之芳烴的烷基-脫甲基化可以導致經合計具有n-2、n-3、n-4、…、或1個碳原子之至少一個取代基(較佳為兩個甲基)取代的芳烴。經移除之甲基在分子氫存在下形成輕烴(較佳為甲烷)。就C2+-烴基取代的芳烴而言,烷基-脫甲基化觸媒對上述烷基-脫甲基化具所欲選擇性,由於(i)移除附接至芳族環之全部Cn(n≥2)基不留下殘餘取代基及(ii)移除附接至芳族環的甲基不留下殘餘取代基。因此,烷基-脫甲基化烴(也是C2+-烴基取代之芳烴)的進一步烷基-脫甲基化可以導致甲基化芳烴(例如四甲苯、三甲苯、二甲萘、與甲苯)之量增加。無意受具體理論的束縛,這類甲基化芳烴在有或無形成烷基-脫甲基化烴作為中間C2+-烴基芳烴情況下可以由C2+-烴基芳烴製得。理想地,藉由烷基-脫甲基化處理包含C2+-烴基取代之芳烴的芳烴進料混合物製造具有比進料混合物更高之甲基對芳族環莫耳比的芳烴產物混合物。C2+-烴基取代之芳烴製得烷基-脫甲基化烴的烷基-脫甲基化反應之例子包括但不限於下列: C2+-烴基取代之芳烴 烷基-脫甲基化烴 乙苯 甲苯 正丙苯 乙苯、甲苯 異丙苯 乙苯、甲苯 乙基甲苯 二甲苯 二氫茚 乙基甲苯、正丙苯、異丙苯、乙苯、二甲苯、甲苯

Figure 02_image001
(甲基二氫茚) 二氫茚、丙基甲苯、二乙苯、乙基甲苯、丁苯、正丙苯、異丙苯、乙苯、二甲苯、甲苯
Figure 02_image003
(甲基二氫茚)
乙基甲苯、乙基二甲苯、三甲苯、丁基甲苯、丙基甲苯、二甲苯
Figure 02_image005
(四氫萘)
丙基甲苯、二乙苯、丁苯、正丙苯、異丙苯、乙基甲苯、二甲苯、乙苯、甲苯
"Alkyl-demethylation" refers to the removal of (i) from a Cm (m ≥ 2) alkyl group attached to an aromatic ring in the presence of an alkyl-demethylation catalyst and molecular hydrogen an or multiple carbon atoms to leave Cm' residual alkyl attached to the aromatic ring, where 1≤m'≤m-1, preferably m'=1; or (ii) from fused to the aromatic ring The Cn aliphatic ring removes one or more carbon atoms to leave one or more residual alkyl groups (preferably methyl) containing a total of n' carbon atoms, where 1≤n'≤n-2. In this disclosure, reactions (i) and (ii) are collectively referred to as "alkyl-demethylation reactions". Thus, alkyl-demethylation of C2+-hydrocarbyl-substituted aromatic hydrocarbons containing Cm(m≧2) alkyl groups attached to the aromatic ring therein can result in Cm-1 alkyl, or Cm-2 alkanes Alkyl, ..., or methyl-substituted aromatic hydrocarbons become alkyl-demethylated hydrocarbons. Alkyl-demethylation of C2+-hydrocarbyl-substituted aromatic hydrocarbons comprising n-membered (n≥5) aliphatic rings of the aromatic ring fused to them can result in a total of n-2, n-3, n -4, ..., or an aromatic hydrocarbon substituted with at least one substituent (preferably two methyl groups) of 1 carbon atom. The removed methyl groups form light hydrocarbons (preferably methane) in the presence of molecular hydrogen. For C2+-hydrocarbyl-substituted aromatic hydrocarbons, alkyl-demethylation catalysts are desirable for the above-mentioned alkyl-demethylation due to (i) removal of all Cn attached to the aromatic ring ( n > 2) groups leave no residual substituents and (ii) removal of the methyl group attached to the aromatic ring leaves no residual substituents. Thus, further alkyl-demethylation of alkyl-demethylated hydrocarbons (also C2+-hydrocarbyl-substituted aromatics) can result in the formation of methylated aromatic hydrocarbons (eg, tetratoluene, mesitylene, xylene, and toluene) volume increase. Without intending to be bound by a particular theory, such methylated aromatic hydrocarbons can be prepared from C2+-hydrocarbyl arenes with or without the formation of alkyl-demethylated hydrocarbons as intermediate C2+-hydrocarbyl arenes. Ideally, treating an aromatic feed mixture comprising C2+-hydrocarbyl substituted aromatics by alkyl-demethylation produces an aromatic product mixture having a higher molar ratio of methyl to aromatic rings than the feed mixture. Examples of alkyl-demethylation reactions of C2+-hydrocarbyl-substituted aromatic hydrocarbons to obtain alkyl-demethylated hydrocarbons include, but are not limited to, the following: C2+-hydrocarbyl-substituted aromatic hydrocarbons Alkyl-Demethylated Hydrocarbons Ethylbenzene Toluene n-Propylbenzene Ethylbenzene, Toluene Cumene Ethylbenzene, Toluene ethyl toluene Xylene Dihydroindene Ethyltoluene, n-propylbenzene, cumene, ethylbenzene, xylene, toluene
Figure 02_image001
(methyldihydroindene)
Dihydroindene, propyltoluene, diethylbenzene, ethyltoluene, butylbenzene, n-propylbenzene, cumene, ethylbenzene, xylene, toluene
Figure 02_image003
(methyldihydroindene)
Ethyltoluene, ethylxylene, trimethylbenzene, butyltoluene, propyltoluene, xylene
Figure 02_image005
(Tetralin)
Propyltoluene, diethylbenzene, butylbenzene, n-propylbenzene, cumene, ethyltoluene, xylene, ethylbenzene, toluene

附接至芳族環之烷基的「脫烷基化」是指移除全部烷基不留下附接至芳族環之殘餘基團。因此,將在甲苯中甲基脫甲基化以形成苯、將在乙苯中乙基脫乙基化以形成苯、將在乙基甲苯中乙基脫乙基化以形成甲苯、及將在異丙苯中異丙基脫丙基化以形成苯是脫烷基化的特異形式。烷基化芳烴之脫烷基化典型上是在上述烷基脫甲基化期間在對脫烷基化具選擇性之脫烷基化觸媒存在下在分子氫存在下實現。在脫烷基化反應中經移除之烷基在分子氫存在下形成輕烴。"Dealkylation" of an alkyl group attached to an aromatic ring refers to the removal of all alkyl groups without leaving residual groups attached to the aromatic ring. Thus, the methyl group will be demethylated in toluene to form benzene, the ethyl group will be deethylated in ethylbenzene to form benzene, the ethyl group will be deethylated in ethyltoluene to form toluene, and the Depropylation of isopropyl in cumene to form benzene is a specific form of dealkylation. Dealkylation of alkylated aromatics is typically accomplished in the presence of molecular hydrogen in the presence of a dealkylation catalyst selective for dealkylation during the above-described alkyl demethylation. The alkyl groups removed in the dealkylation reaction form light hydrocarbons in the presence of molecular hydrogen.

在本揭露中有時也將流出物或進料稱為流。在二或更多個流被顯示形成聯合流而後供應給槽情況下,應當解釋為包括在適當情況下將上述流分別供應給槽之替代方案。同樣地,在將二或更多個流分別供應給槽情況下,應當解釋為包括在適當情況下在進入槽前將上述流混合成聯合流之替代方案。 本揭露之烷基-脫甲基化方法The effluent or feed is also sometimes referred to as a stream in this disclosure. Where two or more streams are shown to form a combined stream and then supplied to a tank, this should be construed to include the alternative of supplying the aforementioned streams separately to the tank where appropriate. Likewise, where two or more streams are supplied separately to the tank, it should be construed to include the alternative of mixing the aforementioned streams into a combined stream prior to entering the tank where appropriate. Alkyl-demethylation methods of the present disclosure

烷基-脫甲基化方法在烷基-脫甲基化觸媒存在下在一組烷基-脫甲基化條件下在烷基-脫甲基化區中發生。在接觸烷基-脫甲基化觸媒時,附接至芳族環(例如苯環、萘環等等)之Cm+(m≥2)烷基失去一或多個末端碳原子(亦即從芳族環上的烷基失去碳原子)以較佳地形成具有附接至芳族環之甲基的甲基化芳烴。較佳地,在烷基-脫甲基化條件下烷基-脫甲基化觸媒對附接至芳族環之Cm(m≥2)烷基的烷基-脫甲基化比對附接至芳族環之甲基的脫甲基化更有利。因此,乙苯的烷基-脫甲基化(亦即乙基-脫甲基化)導致甲苯之淨產生,不利於進一步脫甲基化以製造苯。乙基甲苯之烷基-脫甲基化導致二甲苯的淨產生,不利於進一步脫甲基化以製造甲苯與苯。類似地,C3-烷基苯(亦即經一個C3-烷基取代之苯)的烷基-脫甲基化較佳地產生甲苯。C3-烷基甲苯之烷基-脫甲基化較佳地導致二甲苯的淨產生。因此,烷基-脫甲基化方法對產生甲基化芳烴(甲苯、二甲苯、三甲苯等等)比對產生苯更有利。本揭露之轉化芳烴方法可以有利地包含一或多個烷基-脫甲基化方法步驟。The alkyl-demethylation process occurs in the alkyl-demethylation zone under a set of alkyl-demethylation conditions in the presence of an alkyl-demethylation catalyst. Cm+(m≥2) alkyl groups attached to aromatic rings (eg, benzene rings, naphthalene rings, etc.) lose one or more terminal carbon atoms (i.e., from The alkyl group on the aromatic ring loses a carbon atom) to preferably form a methylated aromatic hydrocarbon with a methyl group attached to the aromatic ring. Preferably, the alkyl-demethylation ratio of alkyl-demethylation catalysts to Cm (m ≥ 2) alkyl groups attached to aromatic rings under alkyl-demethylation conditions Demethylation of the methyl group attached to the aromatic ring is more favorable. Thus, alkyl-demethylation (ie, ethyl-demethylation) of ethylbenzene results in a net production of toluene, which is not conducive to further demethylation to produce benzene. Alkyl-demethylation of ethyltoluene results in a net production of xylenes, which is not conducive to further demethylation to produce toluene and benzene. Similarly, alkyl-demethylation of C3-alkylbenzenes (ie, benzenes substituted with one C3-alkyl group) preferably yields toluene. Alkyl-demethylation of C3-alkyltoluenes preferably results in a net production of xylenes. Therefore, the alkyl-demethylation process is more favorable for the production of methylated aromatics (toluene, xylenes, mesitylene, etc.) than for the production of benzene. The process for converting aromatics of the present disclosure may advantageously comprise one or more alkyl-demethylation process steps.

在烷基-脫甲基化觸媒存在下與在烷基-脫甲基化條件下,包含稠合至芳族環之脂族環的芳烴(例如二氫茚、甲基二氫茚、四氫萘、甲基四氫萘等等)可經受切斷脂族環以形成一或多個附接至芳族環之直鏈或支鏈殘餘基團(在有或無先從脂族環失去一個碳原子下)。任何C2+直鏈或支鏈殘餘烷基可經受一或多個烷基-脫甲基化反應步驟以最後轉化成附接至芳族環的甲基,不利於進一步脫甲基化。因此,在烷基-脫甲基化方法中可以將C2+-烴基取代之芳烴(比如二氫茚、甲基二氫茚、四氫萘、與甲基四氫萘)轉化成甲基化芳烴。在包括在烷基-脫甲基化區中的烷基-脫甲基化步驟之本揭露的方法中,較佳地烷基-脫甲基化觸媒能夠催化切斷稠合至芳族環之脂族環。在烷基-脫甲基化觸媒活性不足以催化切斷脂族環情況下,在烷基-脫甲基化區中也可包括另外的對切斷脂族環具選擇性之觸媒。Aromatics containing an aliphatic ring fused to an aromatic ring in the presence of an alkyl-demethylation catalyst and under alkyl-demethylation conditions (eg indene, methylindene, tetra hydronaphthalene, methyltetrahydronaphthalene, etc.) may undergo cleavage of the aliphatic ring to form one or more linear or branched residue groups attached to the aromatic ring (with or without prior loss from the aliphatic ring) one carbon atom). Any C2+ linear or branched residual alkyl groups can undergo one or more alkyl-demethylation reaction steps for eventual conversion to methyl groups attached to the aromatic ring, detrimental to further demethylation. Thus, C2+-hydrocarbyl-substituted aromatics (such as indene, methylindene, tetralin, and methyltetralin) can be converted to methylated aromatics in an alkyl-demethylation process. In the methods of the present disclosure including an alkyl-demethylation step in the alkyl-demethylation zone, preferably the alkyl-demethylation catalyst is capable of catalyzing the cleavage of fusion to the aromatic ring the aliphatic ring. In cases where the activity of the alkyl-demethylation catalyst is insufficient to catalyze the cleavage of the aliphatic ring, additional catalysts selective for the cleavage of the aliphatic ring may also be included in the alkyl-demethylation zone.

儘管在本揭露之烷基-脫甲基化方法中如上述之烷基-脫甲基化反應是有利的,但應當理解烷基-脫甲基化反應以外之某些副反應在烷基-脫甲基化觸媒存在下在烷基-脫甲基化反應條件下在烷基-脫甲基化區中在某種程度上可能發生。Although alkyl-demethylation reactions such as those described above are advantageous in the alkyl-demethylation processes of the present disclosure, it should be understood that certain side reactions other than alkyl-demethylation reactions are It is possible to some extent in the alkyl-demethylation zone under alkyl-demethylation reaction conditions in the presence of a demethylation catalyst.

在本揭露之方法中供應給烷基-脫甲基化區的烴進料包含C2+-烴基取代之芳烴。在進料中C2+-烴基取代的芳烴之濃度可為以在該區的進料中C6+芳烴總重量為基準計在c1至c2重量%範圍內,其中c1與c2可以獨立地是例如2、4、5、6、8、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90,只要c1<c2。因此,視進料來源而定,經受烷基-脫甲基化之進料可以包含相對低至非常高濃度的這類C2+-烴基取代之芳烴。The hydrocarbon feed to the alkyl-demethylation zone in the process of the present disclosure comprises C2+-hydrocarbyl substituted aromatic hydrocarbons. The concentration of C2+-hydrocarbyl substituted aromatics in the feed may range from c1 to c2 wt % based on the total weight of C6+ aromatics in the feed to the zone, where c1 and c2 may independently be, for example, 2, 4 , 5, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, as long as c1 < c2. Thus, depending on the source of the feed, feeds subjected to alkyl-demethylation may contain relatively low to very high concentrations of such C2+-hydrocarbyl-substituted aromatic hydrocarbons.

在某些實施方式中,供應給烷基-脫甲基化區之烴進料可以包含C8芳烴,其包括乙苯與各種濃度的二甲苯。在某些實施方式中,在烷基-脫甲基化區之進料(例如在與圖式有關的下述方法中由對二甲苯分離次系統製得之對二甲苯耗盡進料)中乙苯濃度可為以在進料中含有的C8芳烴總重量為基準計在c(EB)1至c(EB)2重量%範圍內,其中c(EB)1與c(EB)2可以獨立地是例如2、4、5、6、8、10、15、20、25、30、35、40、45、或50,只要c(EB)1<c(EB)2。本揭露之方法可以特別有利地用於加工這類流以製造甲苯,這類流包含高濃度乙苯,比如以進料中全部C8芳烴重量為基準計≥10重量%、≥20重量%、或≥30重量%。透過加甲醇和/或二甲醚甲基化、甲苯歧化、與加C9+芳烴(特別是甲基化芳烴,比如三甲苯與四甲苯)轉烷基化可以將甲苯轉化成額外數量的二甲苯(特別是對二甲苯)。In certain embodiments, the hydrocarbon feed to the alkyl-demethylation zone may comprise C8 aromatics including ethylbenzene and various concentrations of xylenes. In certain embodiments, in the feed to the alkyl-demethylation zone (eg, the para-xylene depleted feed produced from the para-xylene separation subsystem in the process described below in relation to the scheme) The ethylbenzene concentration can be in the range of c(EB)1 to c(EB)2 wt % based on the total weight of C8 aromatics contained in the feed, wherein c(EB)1 and c(EB)2 can be independently Ground is, for example, 2, 4, 5, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, or 50, as long as c(EB)1 < c(EB)2. The methods of the present disclosure may be particularly advantageous for processing streams containing high concentrations of ethylbenzene, such as > 10 wt %, > 20 wt %, or ≥ 30% by weight. Toluene can be converted to additional amounts of xylenes ( especially p-xylene).

在某些實施方式中,供應給烷基-脫甲基化區之烴進料可以包含C9+芳烴,其包括各種濃度的甲基乙苯、C3-烷基取代之苯、二氫茚、三甲苯、C4-烷基取代之苯、甲基二氫茚、四甲苯、四氫萘、甲基四氫萘等等。在某些實施方式中,在烷基-脫甲基化區的進料(例如在與圖式有關之下述方法中所述的由二甲苯分離器製得之富C9+芳烴流)中C9+C2+-烴基取代的芳烴濃度可為以在進料中含有之C9+芳烴總重量為基準計在cx1至cx2重量%範圍內,其中cx1與cx2可以獨立地是例如10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、或90,只要cx1<cx2。本揭露之方法可以特別有利地用於加工這類流,其包含高濃度C9+C2+-烴基取代之芳烴,比如以進料中全部C8芳烴重量為基準計≥30重量%、≥40重量%、或≥40重量%、≥50重量%、≥60重量%、≥70重量%、≥80重量%。可以將大量C9+C2+-烴基取代之芳烴方便地轉化成有用的甲基化芳烴,比如甲苯、二甲苯、與三甲苯。透過加甲醇和/或二甲醚甲基化、甲苯歧化、與加C9+芳烴(特別是甲基化芳烴,比如三甲苯與四甲苯)轉烷基化可以將甲苯轉化成額外數量的二甲苯(特別是對二甲苯)。透過加苯和/或甲苯轉烷基化可以將C9+甲基化芳烴(包括三甲苯、四甲苯等等)轉化成額外數量的二甲苯(特別是對二甲苯)。In certain embodiments, the hydrocarbon feed to the alkyl-demethylation zone may comprise C9+ aromatics including methylethylbenzene, C3-alkyl substituted benzene, dihydroindene, trimethylbenzene at various concentrations , C4-alkyl substituted benzene, methyldihydroindene, tetramethylbenzene, tetrahydronaphthalene, methyltetrahydronaphthalene and the like. In certain embodiments, C9+ in the feed to the alkyl-demethylation zone (eg, in the C9+ rich aromatics stream produced from the xylene separator as described in the following process in relation to the scheme) The C2+-hydrocarbyl-substituted aromatics concentration may be in the range of cx1 to cx2 wt % based on the total weight of C9+ aromatics contained in the feed, where cx1 and cx2 may independently be, for example, 10, 15, 20, 25, 30 , 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, or 90, as long as cx1 < cx2. The methods of the present disclosure can be particularly advantageously used to process streams containing high concentrations of C9+C2+-hydrocarbyl substituted aromatics, such as ≥30 wt%, ≥40 wt%, based on the weight of all C8 aromatics in the feed, Or ≥40 wt%, ≥50 wt%, ≥60 wt%, ≥70 wt%, ≥80 wt%. A large number of C9+C2+-hydrocarbyl-substituted aromatics can be conveniently converted into useful methylated aromatics, such as toluene, xylene, and trimethylbenzene. Toluene can be converted to additional amounts of xylenes ( especially p-xylene). C9+ methylated aromatics (including tritoluene, tetratoluene, etc.) can be converted to additional amounts of xylenes (particularly para-xylene) by benzene addition and/or toluene transalkylation.

烷基-脫甲基化步驟較佳為在共進料至烷基-脫甲基化區的分子氫存在下進行。將在烷基-脫甲基化步驟中移除之甲基在分子氫存在下轉化成輕烴(比如甲烷)。The alkyl-demethylation step is preferably carried out in the presence of molecular hydrogen co-fed to the alkyl-demethylation zone. The methyl groups removed in the alkyl-demethylation step are converted to light hydrocarbons (such as methane) in the presence of molecular hydrogen.

本揭露之方法可以包括一或多個烷基-脫甲基化區。烷基-脫甲基化區可以包括一部分反應器、全部反應器、或多個反應器。在多個烷基-脫甲基化區係存在於本揭露之方法中的情況下,烷基-脫甲基化觸媒與其中的條件可為相同或不同。The methods of the present disclosure can include one or more alkyl-demethylation regions. The alkyl-demethylation zone can include a portion of the reactors, all of the reactors, or multiple reactors. Where multiple alkyl-demethylation regions are present in the methods of the present disclosure, the alkyl-demethylation catalyst and the conditions therein may be the same or different.

在烷基-脫甲基化區中,烷基-脫甲基化條件(例如第一、第二、第三、第四、第五、第六、與第七烷基-脫甲基化條件)視經受烷基-脫甲基化之進料組成而定可以很不相同。即使在一個烷基-脫甲基化區中,在一個生產階段中或從一個生產階段至另一個生產階段,烷基-脫甲基化條件可以很不相同。因此,烷基-脫甲基化條件可以包括在從t1至t2℃範圍內之溫度,其中t1與t2可以獨立地是例如200、220、240、250、260、280、300、320、340、350、360、380、400、420、440、450、460、480、或500,只要t1<t2。烷基-脫甲基化條件可以包括在烷基-脫甲基化區中在從p1至p2千帕範圍內的絕對壓力,其中p1與p2可以獨立地是例如350、400、450、500、550、600、650、700、750、800、850、900、950、1000、1200、1400、1500、1600、1800、2000、2200、2400、或2500,只要p1<p2。因此,烷基-脫甲基化條件可以使得在烷基-脫甲基化區中芳烴是實質上汽相、實質上液相、或混合相。烷基-脫甲基化條件可以包括在從r1至r2範圍內之分子氫對烴的莫耳比,其中r1與r2可以獨立地是例如0.5、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20,只要r1<r2。烷基-脫甲基化條件可以另外包括在從w1至w2範圍內的液體重量時空速度(「WHSV」),其中w1與w2可以獨立地是例如0.1、0.2、0.4、0.5、0.6、0.8、1、2、4、5、6、8、10、12、14、15、16、18、或20,只要w1<w2。In the alkyl-demethylation zone, alkyl-demethylation conditions (eg, first, second, third, fourth, fifth, sixth, and seventh alkyl-demethylation conditions ) can vary widely depending on the composition of the feed undergoing alkyl-demethylation. Even within an alkyl-demethylation zone, the alkyl-demethylation conditions can vary widely within one production stage or from one production stage to another. Thus, alkyl-demethylation conditions may include temperatures ranging from t1 to t2°C, where t1 and t2 may independently be, for example, 200, 220, 240, 250, 260, 280, 300, 320, 340, 350, 360, 380, 400, 420, 440, 450, 460, 480, or 500, as long as t1 < t2. The alkyl-demethylation conditions may include absolute pressures in the alkyl-demethylation zone in the range from p1 to p2 kPa, where p1 and p2 may independently be, for example, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1200, 1400, 1500, 1600, 1800, 2000, 2200, 2400, or 2500, as long as p1 < p2. Thus, the alkyl-demethylation conditions can be such that the aromatics are in a substantially vapor phase, a substantially liquid phase, or a mixed phase in the alkyl-demethylation zone. Alkyl-demethylation conditions can include molar ratios of molecular hydrogen to hydrocarbons ranging from r1 to r2, where r1 and r2 can independently be, for example, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, as long as r1 < r2. Alkyl-demethylation conditions may additionally include a liquid weight hourly space velocity ("WHSV") in the range from w1 to w2, where w1 and w2 may independently be, for example, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 1, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, or 20, as long as w1 < w2.

具體地說,就主要包含或基本組成為二甲苯與乙苯之C8芳烴流(比如與圖式有關的由下述對二甲苯分離次系統製得之對二甲苯耗盡流)而言,烷基-脫甲基化條件可以包括在從t3至t4℃範圍內之溫度,其中t3與t4可以獨立地是例如200、220、240、250、260、280、300、320、340、350、360、380、400、420、440、450、460、480、或500,只要t3<t4。烷基-脫甲基化條件可以包括在烷基-脫甲基化區中在從p3至p4千帕範圍內的絕對壓力,其中p3與p4可以獨立地是例如350、400、450、500、550、600、650、700、750、800、850、900、950、1000、1200、1400、1500、1600、1800、2000、2200、2400、或2500,只要p3<p4。因此,烷基-脫甲基化條件可以使得在烷基-脫甲基化區中C8芳烴是實質上汽相、實質上液相、或混合相。烷基-脫甲基化條件可以包括在從r1至r2範圍內之分子氫對烴的莫耳比,其中r1與r2可以獨立地是例如0.5、1、2、3、4、5、6、7、8、9、10、12、14、15、16、18、20,只要r1<r2。烷基-脫甲基化條件可以另外包括在從w1至w2範圍內的重量時空速度(「WHSV」),其中w1與w2可以獨立地是例如0.1、0.2、0.4、0.5、0.6、0.8、1、2、4、5、6、8、10、12、14、15、16、18、或20,只要w1<w2。Specifically, for a C8 aromatics stream consisting essentially of or consisting essentially of xylenes and ethylbenzene (such as the paraxylene depleted stream produced by the paraxylene separation subsystem described below in relation to the scheme), alkanes Radical-demethylation conditions can include temperatures ranging from t3 to t4°C, where t3 and t4 can independently be, for example, 200, 220, 240, 250, 260, 280, 300, 320, 340, 350, 360 , 380, 400, 420, 440, 450, 460, 480, or 500, as long as t3 < t4. Alkyl-demethylation conditions can include absolute pressures in the alkyl-demethylation zone in the range from p3 to p4 kPa, where p3 and p4 can independently be, for example, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1200, 1400, 1500, 1600, 1800, 2000, 2200, 2400, or 2500, as long as p3 < p4. Thus, the alkyl-demethylation conditions can be such that the C8 aromatics are in a substantially vapor phase, a substantially liquid phase, or a mixed phase in the alkyl-demethylation zone. Alkyl-demethylation conditions can include molar ratios of molecular hydrogen to hydrocarbons ranging from r1 to r2, where r1 and r2 can independently be, for example, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, as long as r1 < r2. Alkyl-demethylation conditions may additionally include a weight hourly space velocity ("WHSV") in the range from w1 to w2, where w1 and w2 may independently be, for example, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 1 , 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, or 20, as long as w1 < w2.

具體地說,就主要包含或基本組成為C9+芳烴之富C9+芳烴流(比如與圖式有關的由下述對二甲苯分離器製得之富C9+芳烴流)而言,烷基-脫甲基化條件可以包括在從t5至t6℃範圍內之溫度,其中t5與t6可以獨立地是例如200、220、240、250、260、280、300、320、340、350、360、380、400、420、440、450、460、480、或500,只要t5<t6。烷基-脫甲基化條件可以包括在烷基-脫甲基化區中在從p5至p6千帕範圍內的絕對壓力,其中p5與p6可以獨立地是例如350、400、450、500、550、600、650、700、750、800、850、900、950、1000、1200、1400、1500、1600、1800、2000、2200、2400、或2500,只要p5<p6。因此,烷基-脫甲基化條件可以使得在烷基-脫甲基化區中C8芳烴是實質上汽相、實質上液相、或混合相。烷基-脫甲基化條件可以包括在從r1至r2範圍內之分子氫對烴的莫耳比,其中r1與r2可以獨立地是例如0.5、1、2、3、4、5、6、7、8、9、10、12、14、15、16、18、20,只要r1<r2。烷基-脫甲基化條件可以另外包括在從w1至w2範圍內的重量時空速度(「WHSV」),其中w1與w2可以獨立地是例如0.1、0.2、0.4、0.5、0.6、0.8、1、2、4、5、6、8、10、12、14、15、16、18、或20,只要w1<w2。 本揭露之烷基-脫甲基化觸媒Specifically, for a C9+ aromatics-rich stream containing or consisting essentially of C9+ aromatics (such as a C9+ aromatics-rich stream produced by the paraxylene separator described below in relation to the scheme), alkyl-demethylation The temperature conditions can include temperatures ranging from t5 to t6°C, wherein t5 and t6 can independently be, for example, 200, 220, 240, 250, 260, 280, 300, 320, 340, 350, 360, 380, 400, 420, 440, 450, 460, 480, or 500, as long as t5<t6. The alkyl-demethylation conditions can include absolute pressures in the alkyl-demethylation zone in the range from p5 to p6 kPa, where p5 and p6 can independently be, for example, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1200, 1400, 1500, 1600, 1800, 2000, 2200, 2400, or 2500, as long as p5 < p6. Thus, the alkyl-demethylation conditions can be such that the C8 aromatics are in a substantially vapor phase, a substantially liquid phase, or a mixed phase in the alkyl-demethylation zone. Alkyl-demethylation conditions may include molar ratios of molecular hydrogen to hydrocarbons ranging from r1 to r2, where r1 and r2 may independently be, for example, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, as long as r1 < r2. Alkyl-demethylation conditions may additionally include a weight hourly space velocity ("WHSV") in the range from w1 to w2, where w1 and w2 may independently be, for example, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 1 , 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, or 20, as long as w1 < w2. Alkyl-demethylation catalysts of the present disclosure

在本揭露之方法中能用於烷基-脫甲基化區的烷基-脫甲基化觸媒包含選自第7、8、9、與10族金屬及其組合物之第一金屬元素、選自第11、12、13、與14族之隨意第二金屬元素、及支撐體。較佳地,第一金屬元素係選自:Fe、Co、Ni、Ru、Rh、Re、Os、Ir、及其組合物及混合物。第一金屬元素之濃度可為以烷基-脫甲基化觸媒總重量為基準計在c(m1)1至c(m1)2重量%範圍內,其中c(m1)1與c(m1)2可以獨立地是例如0.01、0.02、0.04、0.05、0.06、0.08、0.1、0.2、0.4、0.5、0.6、0.8、1、2、4、5、6、8、10,只要c(m1)1<c(m1)2。無意受具體理論之束縛,據信第一金屬元素催化附接至芳族環的烷基氫解以實現烷基-脫甲基化。較佳地,隨意第二金屬係選自:Cu、Ag、Au、Zn、Al、Ga、Sn、及其組合物及混合物。第二金屬元素之濃度可為以烷基-脫甲基化觸媒總重量為基準計在c(m2)1至c(m2)2重量%範圍內,其中c(m2)1與c(m2)2可以獨立地是例如0.01、0.02、0.04、0.05、0.06、0.08、0.1、0.2、0.4、0.5、0.6、0.8、1、2、4、5、6、8、10,只要c(m2)1<c(m2)2。無意受具體理論之束縛,據信第二金屬元素當合併第一金屬元素時可以使非所欲的甲基化芳烴脫甲基化和/或芳族環飽和和/或加氫裂解反應最小化,以達到對烷基-脫甲基化有高選擇性。The alkyl-demethylation catalyst that can be used in the alkyl-demethylation zone in the methods of the present disclosure comprises a first metal element selected from the group consisting of Groups 7, 8, 9, and 10 metals and combinations thereof , an optional second metal element selected from Groups 11, 12, 13, and 14, and a support. Preferably, the first metal element is selected from Fe, Co, Ni, Ru, Rh, Re, Os, Ir, and combinations and mixtures thereof. The concentration of the first metal element may be in the range of c(m1)1 to c(m1)2 wt % based on the total weight of the alkyl-demethylation catalyst, wherein c(m1)1 and c(m1 )2 can be independently e.g. 0.01, 0.02, 0.04, 0.05, 0.06, 0.08, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 1, 2, 4, 5, 6, 8, 10, as long as c(m1) 1<c(m1)2. Without intending to be bound by a particular theory, it is believed that the first metal element catalyzes the hydrogenolysis of the alkyl group attached to the aromatic ring to achieve the alkyl-demethylation. Preferably, the optional second metal system is selected from: Cu, Ag, Au, Zn, Al, Ga, Sn, and combinations and mixtures thereof. The concentration of the second metal element may be in the range of c(m2)1 to c(m2)2 wt % based on the total weight of the alkyl-demethylation catalyst, wherein c(m2)1 and c(m2 )2 can be independently e.g. 0.01, 0.02, 0.04, 0.05, 0.06, 0.08, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 1, 2, 4, 5, 6, 8, 10, as long as c(m2) 1<c(m2)2. Without intending to be bound by a particular theory, it is believed that the second metal element, when combined with the first metal element, can minimize undesired methylated aromatic demethylation and/or aromatic ring saturation and/or hydrocracking reactions , to achieve high selectivity for alkyl-demethylation.

在烷基-脫甲基化觸媒中支撐體可為例如氧化矽、氧化鋁、高嶺土、氧化鋯、任何分子篩(例如任何沸石)、與其混合物及組合物。較佳支撐體材料是高表面積材料(≥100 m2 /g)。較佳為弱至中酸度以促進金屬分散在支撐體上,同時仍可對所欲脫甲基化反應有高選擇性。可用之支撐體的例子包括氧化矽、氧化鋁(較佳為γ與θ相)、低酸度沸石、氧化矽-氧化鋁、經鑭系元素(例如La、Ce)和/或第IVB族金屬(例如Zr)改質之氧化鋁。添加劑(比如鹼和/或鹼土金屬和/或氯化物)可用於調整支撐體的酸度至所欲程度。在需要轉烷基化/異構化與脫甲基化化學之組合物的情況下,可提高支撐體的酸度。在烷基-脫甲基化觸媒中支撐體之量可以在c(s)1至c(s)2重量%範圍內,其中c(s)1與c(s2)2可以獨立地是例如2、4、5、6、8、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、96、97、98、或99,只要c(s)1<c(s)2。The support in an alkyl-demethylation catalyst can be, for example, silica, alumina, kaolin, zirconia, any molecular sieve (eg, any zeolite), mixtures and compositions thereof. Preferred support materials are high surface area materials (≧100 m 2 /g). Mild to moderate acidity is preferred to facilitate metal dispersion on the support while still allowing high selectivity for the desired demethylation reaction. Examples of supports that can be used include silica, alumina (preferably in the gamma and theta phases), low acidity zeolites, silica-alumina, lanthanides (eg La, Ce) and/or Group IVB metals ( For example, Zr) modified alumina. Additives such as alkalis and/or alkaline earth metals and/or chlorides can be used to adjust the acidity of the support to a desired level. The acidity of the support can be increased where a combination of transalkylation/isomerization and demethylation chemistry is desired. The amount of support in the alkyl-demethylation catalyst can range from c(s)1 to c(s)2 wt %, where c(s)1 and c(s2)2 can independently be, for example, 2, 4, 5, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, or 99, as long as c(s)1<c(s)2.

烷基-脫甲基化觸媒可以另外包含選自第1與2族金屬元素、及其組合物及混合物之隨意促進劑。促進劑的量可為以烷基-脫甲基化觸媒總重量為基準計在c(p)1至c(p)2重量%範圍內,其中c(p)1與c(p)2可以獨立地是例如0.01、0.02、0.04、0.05、0.06、0.08、0.1、0.2、0.4、0.5、0.6、0.8、1、2、4、5、6、8、10,只要c(p)1<c(p)2。較佳地,隨意促進劑金屬係選自:Li、Na、K、Cs、Mg、Ca、Ba。當和第一金屬元素與隨意之第二金屬元素併用時,第1與2族促進劑可以加強烷基-脫甲基化觸媒的性能,特別是關於活性與對烷基-脫甲基化之選擇性。The alkyl-demethylation catalyst may additionally comprise an optional promoter selected from Group 1 and 2 metal elements, and compositions and mixtures thereof. The amount of accelerator may be in the range of c(p)1 to c(p)2 wt % based on the total weight of the alkyl-demethylation catalyst, wherein c(p)1 and c(p)2 may independently be, for example, 0.01, 0.02, 0.04, 0.05, 0.06, 0.08, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 1, 2, 4, 5, 6, 8, 10, as long as c(p)1< c(p)2. Preferably, the optional promoter metal is selected from: Li, Na, K, Cs, Mg, Ca, Ba. Groups 1 and 2 promoters can enhance the performance of alkyl-demethylation catalysts, especially with respect to activity and para-alkyl-demethylation, when used in combination with a first metal element and an optional second metal element. of selectivity.

製造擔載型金屬觸媒之領域中已知的任何方法可用於製造本揭露中之烷基-脫甲基化觸媒。在一個示範性方法中,可使金屬元素之前驅物化合物與促進劑之前驅物材料的溶液(例如水溶液)滲入支撐體,接著乾燥與鍛燒以獲得包含支撐體、金屬元素、與隨意促進劑之烷基-脫甲基化觸媒。或者,可將支撐體之前驅物材料、金屬元素之前驅物材料、與隨意的促進劑之前驅物材料混合以形成摻合物,接著將其乾燥與煅燒以獲得烷基-脫甲基化觸媒。Any method known in the art of making supported metal catalysts can be used to make the alkyl-demethylation catalysts of the present disclosure. In one exemplary method, a solution (eg, an aqueous solution) of an elemental metal precursor compound and an accelerator precursor material may be infiltrated into the support, followed by drying and calcination to obtain a support containing the elemental metal, and optional accelerator The alkyl-demethylation catalyst. Alternatively, the support precursor material, the metallic elemental precursor material, and the optional promoter precursor material can be mixed to form a blend, which is then dried and calcined to obtain the alkyl-demethylation compound. media.

在烷基-脫甲基化方法中在使用烷基-脫甲基化觸媒之前,最好或者離位(亦即預期用途的烷基-脫甲基化區外面)或者原位(亦即預期用途的烷基-脫甲基化區裡面)活化觸媒。活化可以包括例如在例如含有分子氫之氣流存在下加熱觸媒。 本揭露之C8芳烴異構化方法Prior to the use of an alkyl-demethylation catalyst in an alkyl-demethylation process, it is preferred to either ex-situ (i.e. outside the intended use of the alkyl-demethylation zone) or in-situ (i.e. inside the alkyl-demethylation region of the intended use) to activate the catalyst. Activation can include, for example, heating the catalyst in the presence of, for example, a gas stream containing molecular hydrogen. C8 Aromatic Isomerization Process of the Present Disclosure

在芳烴製造廠中在製造對二甲苯之方法中,典型上在對二甲苯分離次系統中從除對二甲苯外還包含間二甲苯、鄰二甲苯、與乙苯的C8芳烴混合物中分離出對二甲苯。視C8芳烴混合物之組成(特別是在其中的對二甲苯濃度)而定,可以將各種技術用於分離對二甲苯產物,例如以結晶化為基礎之技術與以吸附層析法為基礎的技術。在分離對二甲苯產物時,製得殘餘對二甲苯耗盡流(在以吸附層析法為基礎之方法中稱為萃餘物及在以結晶化為基礎之技術中稱為濾液,在本文中統稱為「萃餘物」)。萃餘物富含間二甲苯、鄰二甲苯與乙苯。為了製得更多對二甲苯,典型上後來在異構化觸媒存在下在異構化條件下操作之異構化區中將萃餘物異構化。一部分比進料至異構化區中的對二甲苯耗盡流更富含對二甲苯之異構化流出物可以再循環至對二甲苯分離回收次系統,形成二甲苯回路。在異構化區中,將乙苯直接轉化成二甲苯(特別是對二甲苯)是困難的。因此,除非將乙苯轉化成其他烴類和/或導走,否則會在二甲苯回路中累積。典型上,在先前技術方法中,異構化觸媒與異構化條件被選定以使得進料至異構化區之對二甲苯耗盡流中的至少一部分乙苯在分子氫存在下經受脫烷基化(亦即脫乙基化),由此製得苯與輕烴。為了促進脫乙基化,典型上異構化條件被選定以使得存在於異構化區中的C8芳烴是實質上汽相。在不同之先前技術方法版本中,異構化觸媒與異構化條件被選定以使得進料至異構化區之對二甲苯耗盡流中的至少一部分乙苯轉化成二甲苯。為了促進乙苯轉化成二甲苯,典型上異構化條件被選定以使得存在於異構化區中的C8芳烴是實質上汽相。儘管本揭露集中論述烷基-脫甲基化與將乙苯轉化成苯之先前技術方法一起使用,但應注意的是烷基-脫甲基化可以與任一先前技術方法版本一起施用。In a process for the manufacture of para-xylene in an aromatics manufacturing plant, a C8 aromatics mixture comprising meta-xylene, ortho-xylene, and ethylbenzene in addition to para-xylene is typically separated in a para-xylene separation sub-system paraxylene. Depending on the composition of the C8 aromatic mixture (especially the paraxylene concentration in it), various techniques can be used to separate the paraxylene product, such as crystallization-based techniques and adsorption chromatography-based techniques . In separating the paraxylene product, a residual paraxylene depletion stream (referred to as raffinate in adsorption chromatography-based methods and filtrate in crystallization-based techniques, referred to herein as collectively referred to as the "raffinate"). The raffinate is rich in meta-xylene, ortho-xylene and ethylbenzene. To make more para-xylene, the raffinate is typically isomerized later in an isomerization zone operating under isomerization conditions in the presence of an isomerization catalyst. A portion of the isomerization effluent that is richer in paraxylene than the paraxylene depleted stream fed to the isomerization zone may be recycled to the paraxylene separation and recovery subsystem to form a xylene loop. In the isomerization zone, the direct conversion of ethylbenzene to xylenes (particularly para-xylene) is difficult. Therefore, unless converted to other hydrocarbons and/or conducted away, ethylbenzene will accumulate in the xylene loop. Typically, in prior art processes, the isomerization catalyst and isomerization conditions are selected such that at least a portion of the ethylbenzene in the para-xylene depleted stream fed to the isomerization zone undergoes removal in the presence of molecular hydrogen. Alkylation (ie, deethylation), thereby producing benzene and light hydrocarbons. To facilitate deethylation, isomerization conditions are typically selected such that the C8 aromatics present in the isomerization zone are in a substantially vapor phase. In various prior art process versions, the isomerization catalyst and isomerization conditions were selected such that at least a portion of the ethylbenzene in the para-xylene depleted stream fed to the isomerization zone was converted to xylenes. To facilitate the conversion of ethylbenzene to xylenes, the isomerization conditions are typically selected such that the C8 aromatics present in the isomerization zone are in a substantially vapor phase. Although this disclosure focuses on the use of alkyl-demethylation with the prior art method of converting ethylbenzene to benzene, it should be noted that alkyl-demethylation can be applied with either version of the prior art method.

在本揭露之C8芳烴異構化方法中,至少一部分對二甲苯耗盡流在乙基-脫甲基化區中在乙基-脫甲基化條件下經受經乙基取代的苯(亦即乙苯)之乙基-脫甲基化以將一部分乙苯轉化成甲苯。乙基-脫甲基化區可為異構化區的上游,或者部分地或全部地與異構化區重疊。當乙基-脫甲基化區與異構化區重疊時,在共同區中,異構化觸媒與乙基-脫甲基化區皆可存在。或者,在重疊區中,一種觸媒組成物可表現異構化與乙基-脫甲基化雙功能。In the C8 aromatics isomerization process of the present disclosure, at least a portion of the para-xylene depleted stream is subjected to ethyl-substituted benzene (ie, ethyl-substituted benzene) under ethyl-demethylation conditions in the ethyl-demethylation zone. ethyl-demethylation of ethylbenzene) to convert a portion of the ethylbenzene to toluene. The ethyl-demethylation zone can be upstream of the isomerization zone, or partially or completely overlapping the isomerization zone. When the ethyl-demethylation region and the isomerization region overlap, both the isomerization catalyst and the ethyl-demethylation region can exist in the common region. Alternatively, in the overlapping region, one catalyst composition can exhibit the dual function of isomerization and ethyl-demethylation.

由於一或多個乙基-脫甲基化區存在於二甲苯回路中,和沒有乙基-脫甲基化區存在於二甲苯回路中的先前技術方法比較,可以使進入異構化之乙苯的量減少。乙苯的量減少使對透過脫乙基化減少乙苯之需要減少。因此,可以減少對二甲苯耗盡進料的汽相異構化之需要。在某些實施方式中,可以將乙基-脫甲基化流出物實質上全部供應給液相異構化區,其中二甲苯的異構化在明顯低於典型汽相異構化方法之溫度下發生。液相異構化比汽相異構化更不耗能從而較佳。 本揭露之轉烷基化方法Since one or more ethyl-demethylation zones are present in the xylene loop, compared to prior art processes in which no ethyl-demethylation zones are present in the xylene loop, the ethyl acetate entering the isomerization can be The amount of benzene decreased. The reduced amount of ethylbenzene reduces the need to reduce ethylbenzene through deethylation. Thus, the need for vapor phase isomerization of the paraxylene depleted feed can be reduced. In certain embodiments, substantially all of the ethyl-demethylation effluent can be supplied to the liquid phase isomerization zone, wherein the isomerization of xylenes is performed at temperatures significantly lower than typical vapor phase isomerization processes happen below. Liquid phase isomerization is less energy intensive than vapor phase isomerization and is therefore preferred. Transalkylation Methods of the Present Disclosure

本揭露之一態樣係關於轉烷基化方法,該方法包含:(A)提供富C9+芳烴流,其包含C2+-烴基取代之芳烴,其中該C2+-烴基取代之芳烴具有(i)附接至在其中的芳族環之C2+烷基取代基和/或(ii)稠合至在其中的芳族環之脂族環;(B)將至少一部分的富C9+芳烴流與第一烷基-脫甲基化觸媒在第一烷基-脫甲基化區中在第一組烷基-脫甲基化條件下隨意地接觸以將至少一部分的在富C9+芳烴流中含有之C2+-烴基取代的芳烴轉化成烷基-脫甲基化烴,以製造離開第一烷基-脫甲基化區的第一烷基-脫甲基化流出物;(C)在第一分離裝置中將富C9+芳烴流和/或第一烷基-脫甲基化流出物隨意地分離,以獲得富C9至C10芳烴流與富C11+芳烴流;(D)將至少一部分之第一烷基-脫甲基化流出物和/或至少一部分之富C9至C10芳烴流與第二烷基-脫甲基化觸媒在第二烷基-脫甲基化區中在第二組烷基-脫甲基化條件下隨意地接觸以將至少一部分的C2+-烴基取代之芳烴(若在第一烷基-脫甲基化流出物和/或富C9至C10芳烴流中含有的話)轉化成烷基-脫甲基化烴,以製造離開第二烷基-脫甲基化區之第二烷基-脫甲基化流出物;(E)將至少一部分的富C9+芳烴流、和/或至少一部分之第一烷基-脫甲基化流出物、和/或至少一部分的富C9至C10芳烴流、和/或至少一部分之第二烷基-脫甲基化流出物、與苯/甲苯流進料至轉烷基化區;(F)將C9+芳烴與苯/甲苯在轉烷基化觸媒存在下在轉烷基化區中在轉烷基化條件下接觸,以製造離開轉烷基化區之轉烷基化流出物;及(G)在第二分離裝置中將轉烷基化流出物分離,以獲得隨意苯產物流、富甲苯流、與富C8+芳烴流;其中步驟(B)與(D)的至少一者被進行。One aspect of the present disclosure pertains to a transalkylation process comprising: (A) providing a C9+ aromatics-rich stream comprising C2+-hydrocarbyl-substituted aromatics, wherein the C2+-hydrocarbyl-substituted aromatics have (i) attached to a C2+ alkyl substituent of an aromatic ring therein and/or (ii) an aliphatic ring fused to an aromatic ring therein; (B) combining at least a portion of the C9+ rich aromatic hydrocarbon stream with the first alkyl- The demethylation catalyst is optionally contacted in the first alkyl-demethylation zone under a first set of alkyl-demethylation conditions to convert at least a portion of the C2+-hydrocarbyl groups contained in the C9+-rich aromatics stream The substituted aromatics are converted to alkyl-demethylated hydrocarbons to produce a first alkyl-demethylation effluent leaving the first alkyl-demethylation zone; (C) in a first separation unit the The C9+ aromatics-rich stream and/or the first alkyl-demethylation effluent are optionally separated to obtain a C9 to C10-rich aromatics stream and a C11+ aromatics-rich stream; (D) demethylating at least a portion of the first alkyl-demethylation The alkylation effluent and/or at least a portion of the C9 to C10 rich aromatics stream is combined with a second alkyl-demethylation catalyst in a second alkyl-demethylation zone in a second set of alkyl-demethylation optionally contacted under chemical conditions to convert at least a portion of the C2+-hydrocarbyl-substituted aromatics (if contained in the first alkyl-demethylation effluent and/or C9 to C10-rich aromatics stream) into alkyl-demethylation effluents. Methylated hydrocarbons to produce a second alkyl-demethylation effluent leaving the second alkyl-demethylation zone; (E) converting at least a portion of the C9+ rich aromatics stream, and/or at least a portion of the first The monoalkyl-demethylation effluent, and/or at least a portion of the C9 to C10-rich aromatics stream, and/or at least a portion of the second alkyl-demethylation effluent, is fed with the benzene/toluene stream to Transalkylation zone; (F) contacting C9+ aromatics with benzene/toluene in the presence of a transalkylation catalyst under transalkylation conditions in the transalkylation zone to produce a and (G) separating the transalkylation effluent in a second separation unit to obtain a random benzene product stream, a toluene-rich stream, and a C8+ aromatics-rich stream; wherein steps (B) and ( At least one of D) is performed.

在某些實施方式中,轉烷基化方法可以另外包含:(H)在第三分離裝置中將至少一部分的富C8+芳烴流分離,以獲得富二甲苯流與富C9+芳烴流;及(I)提供至少一部分的富C9+芳烴流作為步驟(A)中至少一部分的富C9+芳烴流。此外及或者,在步驟(A)中富C9+芳烴流可以由在二甲苯分離器中將富C8+芳烴流分離而得到,其進而可以由從重組器接受C6+烴流之重組油分離器製得。當然,在步驟(A)中第三分離裝置可為接受兩個C8+芳烴來源之二甲苯分離器。In certain embodiments, the transalkylation process may additionally comprise: (H) separating at least a portion of the C8+ aromatics-rich stream in a third separation unit to obtain a xylene-rich stream and a C9+ aromatics-rich stream; and (I) ) provides at least a portion of the C9+ aromatics stream as at least a portion of the C9+ aromatics stream in step (A). Additionally and alternatively, the C9+ aromatics stream in step (A) can be obtained from separating the C8+ aromatics stream in a xylene separator, which in turn can be produced from a reformed oil separator that receives the C6+ hydrocarbon stream from the reformer. Of course, the third separation unit in step (A) may be a xylene separator that accepts two sources of C8+ aromatics.

在某些實施方式中,在隨意步驟(B)中富C9+芳烴流可經受烷基-脫甲基化。若進行此步驟,在第一烷基-脫甲基化區中,透過烷基-脫甲基化可以將其中含有之一部分C11+C2+-烴基取代的芳烴轉化成四甲苯、三甲苯、二甲苯、甲苯、與C8+C2+-烴基取代之芳烴,烷基-脫甲基化在例如後續隨意烷基-脫甲基化步驟(D)與轉烷基化步驟(F)中可以用於製造另外之有價值且有用的產物(比如二甲苯與苯),不管是否進行隨意分離步驟(C)。In certain embodiments, the C9+ aromatics stream may be subjected to alkyl-demethylation in optional step (B). If this step is carried out, in the first alkyl-demethylation zone, aromatic hydrocarbons containing a part of C11+C2+-hydrocarbyl group substitution can be converted into tetratoluene, trimethylbenzene and xylene through alkyl-demethylation , toluene, and C8+C2+-hydrocarbyl-substituted aromatic hydrocarbons, and alkyl-demethylation can be used, for example, in the subsequent optional alkyl-demethylation step (D) and transalkylation step (F) to produce additional valuable and useful products such as xylenes and benzene, regardless of whether or not optional isolation step (C) is performed.

步驟(C)是隨意的。若進行步驟(C)與不進行步驟(B),則存在於富C9+芳烴流中的C11+C2+-烴基取代之芳烴會主要分離成富C11+芳烴流。若進行步驟(C)也進行步驟(B),則如上文所討論,存在於富C9+芳烴流中的C11+C2+-烴基取代之芳烴至少部分地轉化成富甲基的C10-芳烴,其可以用於製造另外之有價值且有用的產物。在進行步驟(B)與(C)之實施方式中,人們要求的是在步驟(C)中所製得之富C9至C10烴流也包含至少一部分(較佳為全部)的在步驟(B)中在第一烷基-脫甲基化區中可製得之C8-芳烴,特別是若富C9+芳烴流包含高比例的C11+C2+-烴基取代之芳烴。儘管在步驟(C)中從第一分離裝置可以將在步驟(B)中所製得之C8-芳烴分離成一或多個另外的流,但其可以被進一步分離以製造一或多個富苯流、富甲苯流、和/或富C8芳烴流,由其可製得額外的二甲苯產物。Step (C) is optional. If step (C) is performed with or without step (B), the C11+C2+-hydrocarbyl substituted aromatics present in the C9+ aromatics-rich stream will separate primarily into a C11+ aromatics-rich stream. If step (C) is performed as well as step (B), then as discussed above, the C11+C2+-hydrocarbyl-substituted aromatics present in the C9+ aromatics stream are at least partially converted to methyl-rich C10-aromatics, which can be used with for the manufacture of other valuable and useful products. In embodiments where steps (B) and (C) are carried out, it is required that the C9 to C10 rich hydrocarbon stream produced in step (C) also contains at least a portion (preferably all) of the C9 to C10 hydrocarbon stream produced in step (C) ) in the first alkyl-demethylation zone, especially if the C9+ aromatics-rich stream contains a high proportion of C11+C2+-hydrocarbyl-substituted aromatics. Although the C8-aromatics produced in step (B) may be separated into one or more additional streams from the first separation unit in step (C), they may be further separated to produce one or more benzene-rich stream, toluene-rich stream, and/or C8 aromatics-rich stream from which additional xylene product can be produced.

步驟(D)是隨意的。若進行隨意步驟(D),則將在供應給第二烷基-脫甲基化區之進料中含有的C2+-烴基取代之芳烴至少部分地轉化以製造烷基-脫甲基化烴,其全體包含比供應給第二烷基-脫甲基化區的C2+-烴基取代之芳烴更多的附接至芳族環之甲基。Step (D) is optional. If optional step (D) is carried out, the C2+-hydrocarbyl-substituted aromatic hydrocarbons contained in the feed to the second alkyl-demethylation zone are at least partially converted to produce alkyl-demethylated hydrocarbons, Its entirety contains more methyl groups attached to the aromatic ring than the C2+-hydrocarbyl-substituted aromatics supplied to the second alkyl-demethylation zone.

在本揭露之轉烷基化方法中,步驟(B)與(D)的至少一者被進行。In the transalkylation method of the present disclosure, at least one of steps (B) and (D) is performed.

在進行步驟(B)與不進行步驟(C)與(D)情況下,將離開烷基-脫甲基化區之第一烷基-脫甲基化流出物部分地或全部地(較佳為全部地)供應給步驟(E)中的轉烷基化區。在這種情況下,從第一烷基-脫甲基化區到轉烷基化區之進料可以包含一部分的被供應給第一烷基-脫甲基化區之未轉化的C9+芳烴及在第一烷基-脫甲基化區中所製得之C8-芳烴。With and without steps (C) and (D), the first alkyl-demethylation effluent leaving the alkyl-demethylation zone will be partially or fully (preferably to the transalkylation zone in step (E). In this case, the feed from the first alkyl-demethylation zone to the transalkylation zone may comprise a portion of the unconverted C9+ aromatics supplied to the first alkyl-demethylation zone and C8-aromatic hydrocarbons produced in the first alkyl-demethylation zone.

在不進行步驟(B)與進行步驟(C)與(D)情況下,較佳地第二烷基-脫甲基化區的至少一部分之烴進料(較佳為全部烴進料)是至少一部分的(較佳為全部)在步驟(C)中所製得之富C9至C10芳烴流。在第二烷基-脫甲基化區的烴進料全部是從在步驟(C)中所製得之富C9至C10芳烴流得到的情況下,在步驟(C)中存在於供應給第一分離裝置之富C9+芳烴流中的C11+芳烴大多未用於在轉烷基化步驟中製造二甲苯。In the absence of step (B) and steps (C) and (D) being performed, preferably at least a portion of the hydrocarbon feed (preferably the entire hydrocarbon feed) of the second alkyl-demethylation zone is At least a portion, preferably all, of the C9 to C10 rich aromatics stream produced in step (C). In the case where the hydrocarbon feed to the second alkyl-demethylation zone is entirely derived from the C9 to C10 rich aromatics stream produced in step (C), the presence of the second alkyl-demethylation zone in step (C) is present in the supply to the first Most of the C11+ aromatics in the C9+ aromatics-rich stream of a separation unit are not used to make xylenes in the transalkylation step.

在進行全部步驟(B)、(C)、與(D)情況下,透過烷基-脫甲基化將一部分之供應給第二烷基-脫甲基化區的C2+-烴基取代之芳烴進一步轉化以在第二烷基-脫甲基化流出物中製造額外的甲基化烴。較佳地,第二烷基-脫甲基化區之進料包含至少一部分(較佳為全部)的步驟(C)中所製得之富C9至C10芳烴流。較佳地,第二烷基-脫甲基化區的全部進料包含至少一部分(較佳為全部)的富C9至C10芳烴流。在步驟(D)中供應給第二烷基-脫甲基化區之富C9至C10烴流中含有的C2+-烴基取代之芳烴(其包含例如乙苯、C3-烷基苯、乙基甲苯、二氫茚、乙基二甲苯、二乙苯、甲基二氫茚、四氫萘、與C4-烷基苯的一或多者)可以透過一或多個烷基-脫甲基化步驟被至少部分地轉化成甲苯、二甲苯、三甲苯。進行步驟(B)與(D)可以使供應給第二烷基-脫甲基化區至轉烷基化區之第二烷基-脫甲基化流出物中的甲基化芳烴(包括甲苯、二甲苯、三甲苯、與四甲苯)之濃度明顯地增加,其在轉烷基化區中可以被有利地與方便地轉化成二甲苯。With all steps (B), (C), and (D) carried out, a portion of the C2+-hydrocarbyl-substituted aromatic hydrocarbons supplied to the second alkyl-demethylation zone is further supplied by alkyl-demethylation Converted to produce additional methylated hydrocarbons in the second alkyl-demethylation effluent. Preferably, the feed to the second alkyl-demethylation zone comprises at least a portion (preferably all) of the C9 to C10 rich aromatics stream produced in step (C). Preferably, the entire feed to the second alkyl-demethylation zone comprises at least a portion (preferably all) of the C9 to C10 rich aromatics stream. C2+-hydrocarbyl-substituted aromatic hydrocarbons (which include e.g. ethylbenzene, C3-alkylbenzene, ethyltoluene) contained in the C9 to C10 rich hydrocarbon stream supplied to the second alkyl-demethylation zone in step (D) , dihydroindene, ethylxylene, diethylbenzene, methyldihydroindene, tetrahydronaphthalene, and one or more of C4-alkylbenzenes) can be passed through one or more alkyl-demethylation steps At least partially converted into toluene, xylene, trimethylbenzene. Carrying out steps (B) and (D) can result in methylated aromatics (including toluene) in the second alkyl-demethylation effluent supplied to the second alkyl-demethylation zone to the transalkylation zone , xylenes, trimethylbenzenes, and tetratoluenes), which can be advantageously and conveniently converted to xylenes in the transalkylation zone, are significantly increased.

在某些實施方式中,第二烷基-脫甲基化區可位於轉烷基化區的上游。在這種情況下,將至少一部分(理想為全部)的第二烷基-脫甲基化流出物供應給轉烷基化區。在一個實施方式中,烷基-脫甲基化區與轉烷基化區位於不同槽中。在另一個實施方式中,烷基-脫甲基化區與轉烷基化區可位於共用槽(比如反應器槽)中,其中烷基-脫甲基化觸媒被配置於上游床層中,及轉烷基化觸媒被配置於下游床層中。In certain embodiments, the second alkyl-demethylation zone can be located upstream of the transalkylation zone. In this case, at least a portion (ideally all) of the second alkyl-demethylation effluent is supplied to the transalkylation zone. In one embodiment, the alkyl-demethylation zone and the transalkylation zone are located in separate tanks. In another embodiment, the alkyl-demethylation zone and the transalkylation zone may be located in a common tank (such as a reactor tank) with the alkyl-demethylation catalyst disposed in the upstream bed , and the transalkylation catalyst is configured in the downstream bed.

在某些實施方式中,第二烷基-脫甲基化區可至少部分地與轉烷基化區重疊。因此,兩個區可存在於共用槽(比如反應器槽)中。在兩個區之重疊中,轉烷基化觸媒與烷基-脫甲基化觸媒可皆以例如物理狀態混合物形式存在。在另一個實施方式中,轉烷基化觸媒表現催化非烷基-脫甲基化取代之芳烴的轉烷基化反應與烷基-脫甲基化反應雙功能。In certain embodiments, the second alkyl-demethylation zone can at least partially overlap the transalkylation zone. Thus, the two zones may exist in a common tank, such as a reactor tank. In the overlap of the two regions, both the transalkylation catalyst and the alkyl-demethylation catalyst may be present, for example, as a mixture of physical states. In another embodiment, the transalkylation catalyst exhibits the dual function of catalyzing the transalkylation and alkyl-demethylation reactions of non-alkyl-demethylated substituted aromatics.

在第二烷基-脫甲基化區存在且位於轉烷基化區之上游的實施方式中,該方法可另外包含將至少一部分之第二烷基-脫甲基化流出物和/或至少一部分之富C9至C10芳烴流與第三烷基-脫甲基化觸媒在第三烷基-脫甲基化區中在第三組烷基-脫甲基化條件下接觸以將至少一部分的C2+-烴基取代之芳烴(若在第二烷基-脫甲基化流出物和/或富C9至C10芳烴流中含有的話)轉化成烷基-脫甲基化芳烴,其中第三烷基-脫甲基化區至少部分地與轉烷基化區重疊。第三烷基-脫甲基化區可以被認為等同於至少部分地與轉烷基化區重疊的第二烷基-脫甲基化區,如上述。In embodiments where a second alkyl-demethylation zone exists and is located upstream of the transalkylation zone, the process may additionally comprise subjecting at least a portion of the second alkyl-demethylation effluent and/or at least a A portion of the C9 to C10 rich aromatics stream is contacted with a third alkyl-demethylation catalyst in a third alkyl-demethylation zone under a third set of alkyl-demethylation conditions to convert at least a portion of the Conversion of C2+-hydrocarbyl-substituted aromatics (if contained in the second alkyl-demethylation effluent and/or C9 to C10-rich aromatics stream) to alkyl-demethylated aromatics, where the third alkyl - the demethylation zone at least partially overlaps the transalkylation zone. The third alkyl-demethylation zone can be considered equivalent to the second alkyl-demethylation zone at least partially overlapping the transalkylation zone, as described above.

第一、第二、與第三烷基-脫甲基化觸媒可為相同或不同。在本揭露之轉烷基化方法中可將前面本揭露中所述之任何烷基-脫甲基化觸媒作為第一、第二、與第三烷基-脫甲基化觸媒的一或多者。The first, second, and third alkyl-demethylation catalysts can be the same or different. Any of the alkyl-demethylation catalysts previously described in the present disclosure can be used as one of the first, second, and third alkyl-demethylation catalysts in the transalkylation process of the present disclosure. or more.

在第一、第二、第三烷基-脫甲基化區中第一組、第二組、與第三組烷基-脫甲基化條件可為相同或不同。彼等可包括在從t5至t6℃範圍內的烷基-脫甲基化溫度,其中t5與t6可以獨立地是例如200、220、240、250、260、280、300、320、340、350、360、380、400、420、440、450、460、480、或500,只要t5<t6。烷基-脫甲基化條件可以包括在烷基-脫甲基化區中在從p5至p6千帕範圍內的絕對壓力,其中p5與p6可以獨立地是例如350、400、450、500、550、600、650、700、750、800、850、900、950、1000、1200、1400、1500、1600、1800、2000、2200、2400、2600、2800、3000、3200、3400或3500,只要p5<p6。The first, second, and third sets of alkyl-demethylation conditions may be the same or different in the first, second, and third alkyl-demethylation zones. These can include alkyl-demethylation temperatures ranging from t5 to t6°C, where t5 and t6 can independently be, for example, 200, 220, 240, 250, 260, 280, 300, 320, 340, 350 , 360, 380, 400, 420, 440, 450, 460, 480, or 500, as long as t5<t6. The alkyl-demethylation conditions can include absolute pressures in the alkyl-demethylation zone in the range from p5 to p6 kPa, where p5 and p6 can independently be, for example, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1200, 1400, 1500, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3200, 3400 or 3500, as long as p5 <p6.

視存在於供應給轉烷基化區之第二烷基-脫甲基化流出物中的甲苯量而定,在步驟(E)中還可將額外數量之在苯/甲苯流中的苯/甲苯供應給轉烷基化區。若將額外之苯/甲苯供應給烷基化區,則苯/甲苯流可以包含任何比例的苯與甲苯。較佳地,苯/甲苯流包含以在苯/甲苯流中之苯與甲苯總重量為基準計≥50重量%、≥60重量%、≥70重量%、≥80重量%、≥90重量%、≥95重量%、≥98重量%、或≥99重量%的甲苯。在轉烷基化區之烴進料中適當的甲苯對C9+芳烴比可以根據C9+芳烴之組成而決定以使二甲苯產量最大化。在某些實施方式中,將步驟(G)中所製得之至少一部分的苯產物流和/或至少一部分的富甲苯流供應給轉烷基化區作為步驟(E)中之至少一部分的苯/甲苯流。Depending on the amount of toluene present in the second alkyl-demethylation effluent supplied to the transalkylation zone, additional amounts of benzene/toluene in the benzene/toluene stream may also be added in step (E). Toluene is supplied to the transalkylation zone. If additional benzene/toluene is supplied to the alkylation zone, the benzene/toluene stream may contain any ratio of benzene to toluene. Preferably, the benzene/toluene stream comprises ≥ 50 wt %, ≥ 60 wt %, ≥ 70 wt %, ≥ 80 wt %, ≥ 90 wt %, based on the total weight of benzene and toluene in the benzene/toluene stream, > 95 wt %, > 98 wt %, or > 99 wt % toluene. The appropriate ratio of toluene to C9+ aromatics in the hydrocarbon feed to the transalkylation zone can be determined based on the composition of the C9+ aromatics to maximize xylene production. In certain embodiments, at least a portion of the benzene product stream and/or at least a portion of the toluene-rich stream produced in step (G) is supplied to a transalkylation zone as at least a portion of the benzene in step (E) /toluene stream.

轉烷基化區包含配置於其中的轉烷基化觸媒。在本揭露之方法中可將本領域中已知的轉烷基化觸媒用於轉烷基化區。轉烷基化觸媒可以包含一或多種沸石,比如MFI、MEL、MTW、MOR、BEA、MEI、MWW架構沸石。轉烷基化觸媒可另外包含選自第6、7、8、9、與10族金屬之第一金屬元素,較佳為Mo、Ru、Rh、Ru、Pd、Re、Os、Ir、Pt、與其二或多者的組合物或混合物。轉烷基化觸媒可另外包含選自第11、12、13、與14族金屬之第二金屬元素,較佳為Ag、Cu、Zn、Ga、In、Sn、與其二或多者的組合物或混合物。轉烷基化觸媒可另外包含黏合劑,比如氧化鋁、氧化矽、氧化鋯、氧化鈦、及其組合物及混合物。對用於本揭露之方法的轉烷基化觸媒而言,第一金屬元素之濃度可為理想地低,例如以轉烷基化觸媒總重量為基準計在c1至c2重量%範圍內,其中c1與c2可為0.001、0.004、0.005、0.008、0.01、0.04、0.05、0.08、0.1、0.4、0.5、1,只要c1<c2。此外,對用於本揭露之方法的轉烷基化觸媒而言,第二金屬元素之濃度可為理想地低,例如以轉烷基化觸媒總重量為基準計在c1至c2重量%範圍內,其中c1與c2可為0.001、0.004、0.005、0.008、0.01、0.04、0.05、0.08、0.1、0.4、0.5、1、2、3、4、5,只要c1<c2。在一個特別有利的實施方式中,轉烷基化觸媒實質上沒有第8、9、或10族金屬元素。The transalkylation zone includes a transalkylation catalyst disposed therein. Transalkylation catalysts known in the art can be used in the transalkylation zone in the methods of the present disclosure. The transalkylation catalyst may comprise one or more zeolites, such as MFI, MEL, MTW, MOR, BEA, MEI, MWW framework zeolites. The transalkylation catalyst may additionally comprise a first metal element selected from the group 6, 7, 8, 9, and 10 metals, preferably Mo, Ru, Rh, Ru, Pd, Re, Os, Ir, Pt , a composition or mixture of two or more thereof. The transalkylation catalyst may additionally comprise a second metal element selected from Groups 11, 12, 13, and 14 metals, preferably Ag, Cu, Zn, Ga, In, Sn, or a combination of two or more thereof substance or mixture. The transalkylation catalyst may additionally contain binders such as alumina, silica, zirconia, titania, and combinations and mixtures thereof. For the transalkylation catalyst used in the methods of the present disclosure, the concentration of the first metal element can be desirably low, eg, in the range of c1 to c2 wt % based on the total weight of the transalkylation catalyst , where c1 and c2 can be 0.001, 0.004, 0.005, 0.008, 0.01, 0.04, 0.05, 0.08, 0.1, 0.4, 0.5, 1, as long as c1<c2. Furthermore, for the transalkylation catalyst used in the method of the present disclosure, the concentration of the second metal element can be desirably low, eg, c1 to c2 wt % based on the total weight of the transalkylation catalyst range, wherein c1 and c2 can be 0.001, 0.004, 0.005, 0.008, 0.01, 0.04, 0.05, 0.08, 0.1, 0.4, 0.5, 1, 2, 3, 4, 5, as long as c1<c2. In a particularly advantageous embodiment, the transalkylation catalyst is substantially free of Group 8, 9, or 10 metal elements.

在轉烷基化區中轉烷基化條件可實現汽相轉烷基化,例如其中存在於轉烷基化區中的芳烴全部是汽相。轉烷基化條件可實現液相轉烷基化,例如其中存在於轉烷基化區中的芳烴全部是液相。轉烷基化條件可實現混合相轉烷基化,其中芳烴之液相與汽相共存於轉烷基化區中。分子氫可被共進料至轉烷基化區中。The transalkylation conditions in the transalkylation zone can achieve vapor phase transalkylation, eg, where all aromatics present in the transalkylation zone are in the vapor phase. The transalkylation conditions can achieve liquid phase transalkylation, eg, where all aromatics present in the transalkylation zone are in the liquid phase. The transalkylation conditions allow for mixed-phase transalkylation in which the liquid and vapor phases of aromatics coexist in the transalkylation zone. Molecular hydrogen can be co-fed to the transalkylation zone.

在先前技術轉烷基化方法中,為了在轉烷基化區中將C2+-烴基取代之芳烴轉化成更有價值的產物,典型上轉烷基化觸媒與條件被選定以使得至少一部分之附接至芳族環的C2+烷基全部經受脫烷基化而未留下附接至芳族環之殘餘烷基。為了促進C2+烷基脫烷基化,典型上轉烷基化觸媒包括貴金屬,及典型上使用能實現汽相轉烷基化之高轉烷基化溫度。為了避免再烷基化反應,脫烷基化的C2+烷基之氫化需要進料至轉烷基化區的分子氫存在。汽相轉烷基化需要將烴進料加熱至高溫,隨後為了蒸餾分離而冷卻與冷凝轉烷基化流出物,因此是高耗能的。此外,典型上在分子氫存在下將供應給轉烷基化區之C2+-烴基取代的芳烴中C2+烷基與稠合至芳族環之脂族環轉化成低價值輕烴。In prior art transalkylation processes, in order to convert C2+-hydrocarbyl substituted aromatics to more valuable products in the transalkylation zone, typically the transalkylation catalyst and conditions are selected such that at least a portion of The C2+ alkyl groups attached to the aromatic ring all undergo dealkylation without leaving residual alkyl groups attached to the aromatic ring. To facilitate dealkylation of C2+ alkyl groups, typically up-transalkylation catalysts include noble metals, and typically high transalkylation temperatures that enable vapor-phase transalkylation are used. Hydrogenation of dealkylated C2+ alkyl groups requires the presence of molecular hydrogen fed to the transalkylation zone in order to avoid realkylation reactions. Vapor phase transalkylation requires heating of the hydrocarbon feed to high temperature followed by cooling and condensation of the transalkylation effluent for distillative separation and is therefore energy intensive. In addition, the C2+ alkyl groups and aliphatic rings fused to the aromatic rings in the C2+-hydrocarbyl substituted aromatic hydrocarbons supplied to the transalkylation zone are typically converted to low value light hydrocarbons in the presence of molecular hydrogen.

由於在本揭露之轉烷基化方法中第一、第二、與第三轉烷基化區的一或多者之存在及烷基-脫甲基化步驟的至少一者之性能,和根本沒有烷基-脫甲基化步驟的先前技術轉烷基化方法比較,可以使供應給轉烷基化區之C2+烷基取代的芳烴濃度明顯減少。因此,可以使在C2+烷基與脂族環之轉烷基化區中對脫烷基化的需要明顯減少。因此本揭露之轉烷基化方法的轉烷基化觸媒可以沒有金屬元素(尤其是昂貴之貴金屬元素),使成本減少。對脫烷基化的需要減少能夠在比汽相轉烷基化方法所需要之明顯更低的溫度下實現液相轉烷基化,這樣大幅節能並大幅提高能源效率。對脫烷基化之需要減少可在沒有共進料的分子氫下實現汽相、液相、或混合相轉烷基化,進一步簡化方法、系統、與設備。此外,將C2+烷基與脂族環部分地轉化成附接至芳族環之殘餘甲基,其可以用於製造額外數量的有用產物(比如二甲苯)。Due to the presence of one or more of the first, second, and third transalkylation zones and the performance of at least one of the alkyl-demethylation steps in the transalkylation process of the present disclosure, and fundamentally Compared to prior art transalkylation processes without an alkyl-demethylation step, the concentration of C2+ alkyl substituted aromatics supplied to the transalkylation zone can be significantly reduced. Thus, the need for dealkylation in the transalkylation zone of C2+ alkyl groups and aliphatic rings can be significantly reduced. Therefore, the transalkylation catalyst of the transalkylation method of the present disclosure can be free of metal elements (especially expensive precious metal elements), thereby reducing the cost. The reduced need for dealkylation enables liquid phase transalkylation to be achieved at significantly lower temperatures than required by vapor phase transalkylation processes, resulting in substantial energy savings and substantial improvements in energy efficiency. Reduced Need for Dealkylation Vapor, liquid, or mixed phase transalkylation can be accomplished without co-feeding molecular hydrogen, further simplifying the process, system, and equipment. In addition, C2+ alkyl groups and aliphatic rings are partially converted to residual methyl groups attached to aromatic rings, which can be used to make additional quantities of useful products such as xylenes.

以參照附圖方式在下文更詳細描述本揭露。 圖1:先前技術方法The present disclosure is described in more detail below with reference to the accompanying drawings. Figure 1: Prior Art Approach

圖1圖示由重組油流製造二甲苯(特別是對二甲苯產物)的先前技術方法101。在圖1中,將由原油煉製法製得之重石油腦流103(其具有在例如100至240℃,比如120至220℃、或140至200℃、或140至180℃範圍內的正常沸點)供應給重組區105。重石油腦流103可包含大量石蠟與環烷、及少量芳烴。重組區105可以包括本領域中已知之任何傳統石油腦觸媒重組反應器(例如用於半再生法的固定床反應器或用於連續再生法的移動床反應器)之一或多者。重組觸媒被配置於重組區中。在重組條件(比如本領域中眾所周知者)下接觸重組觸媒時,重石油腦流103中的烴經受一系列化學反應(包括但不限於異構化、芳化、脫氫環化等等),由此將至少一部分之石蠟與環烷轉化成芳烴。已知在典型重組操作中,可以製得各種量(有時大量)的C2+-烴基取代之芳烴,亦即包含(i)結合至在其中的芳族環之C2+烷基和/或(ii)稠合至在其中的芳族環之脂族環的芳烴。從重組區可以獲得重組流出物107,其包含包括C2+-烴基取代之芳烴的C6+芳烴(包括苯、甲苯、二甲苯、乙苯、與C9+芳烴)。除了芳烴之外,重組流出物107還可包含非芳烴,比如烷類與環烷類。較佳地,重組流出物107基本上由C6+芳烴組成。在本文中重組流出物107被交替稱為重組油流。從重組區也可以製得另外的流,比如氫流(未顯示)及包含輕烴(例如C5-烴)之廢氣流(未顯示)。Figure 1 illustrates a prior art process 101 for the production of xylenes, particularly para-xylene products, from a reconstituted oil stream. In Figure 1, a heavy petroleum naphtha stream 103 (which has a normal boiling point in the range of, for example, 100 to 240°C, such as 120 to 220°C, or 140 to 200°C, or 140 to 180°C) will be produced by a crude oil refining process. supplied to the reorganization zone 105 . The heavy petroleum naphtha stream 103 may contain large amounts of paraffins and naphthenes, and small amounts of aromatics. The reformation zone 105 may comprise one or more of any conventional naphtha catalyst reformation reactor known in the art (eg, a fixed bed reactor for semi-regenerative processes or a moving bed reactor for continuous regeneration processes). The recombination catalyst is arranged in the recombination zone. The hydrocarbons in the heavy petroleum naphtha stream 103 undergo a series of chemical reactions (including, but not limited to, isomerization, aromatization, dehydrocyclization, etc.) when contacted with the recombination catalyst under recombination conditions (such as those well known in the art) , thereby converting at least a portion of the paraffins and naphthenes into aromatic hydrocarbons. It is known that in a typical recombination operation, various amounts (sometimes large) of C2+-hydrocarbyl-substituted aromatic hydrocarbons can be produced, that is, containing (i) C2+ alkyl groups bound to an aromatic ring therein and/or (ii) Aromatic hydrocarbons fused to aliphatic rings of aromatic rings therein. A reformed effluent 107 can be obtained from the reformation zone, which comprises C6+ aromatics (including benzene, toluene, xylenes, ethylbenzene, and C9+ aromatics) including C2+-hydrocarbyl substituted aromatics. In addition to aromatic hydrocarbons, the reformed effluent 107 may also contain non-aromatic hydrocarbons, such as alkanes and naphthenes. Preferably, the reformed effluent 107 consists essentially of C6+ aromatics. The reconstituted effluent 107 is referred to interchangeably herein as the reconstituted oil stream. Additional streams may also be produced from the reforming zone, such as a hydrogen stream (not shown) and a waste gas stream (not shown) comprising light hydrocarbons (eg, C5-hydrocarbons).

如圖1顯示,接著將重組流出物107或其部分供應給重組油分離器109(例如單一蒸餾塔、或一系列蒸餾塔),製得富C6至C7烴流111與富C8+芳烴流113。富C6至C7烴流111包含苯、甲苯、與其共沸性石蠟與環烷等等。富C8+芳烴流113可以包含C8芳烴(例如二甲苯與乙苯)、C9芳烴(例如三甲苯、乙基甲苯、正丙苯、異丙苯、與二氫茚)、C10芳烴(例如四甲苯、二乙苯、乙基二甲苯、甲基正丙苯、甲基異丙苯、正丁苯、異丁苯、二級丁苯、三級丁苯、甲基二氫茚、四氫萘、與萘)、甚至C11+芳烴(例如甲萘、甲基四氫萘)。接著將富C8+芳烴流113隨意地合併其他富C8+芳烴流比如流145(如下所述)成為聯合流114供應給二甲苯分離器115(例如一或多個蒸餾塔),製得富二甲苯流117與富C9+芳烴流129。As shown in Figure 1, the reformed effluent 107, or a portion thereof, is then supplied to a reformed oil separator 109 (eg, a single distillation column, or a series of distillation columns), producing a C6 to C7 rich hydrocarbon stream 111 and a C8+ aromatics rich stream 113. The C6 to C7 rich hydrocarbon stream 111 contains benzene, toluene, paraffins and naphthenes azeotrope therewith, and the like. The C8+ aromatics-rich stream 113 may comprise C8 aromatics (eg, xylene and ethylbenzene), C9 aromatics (eg, trimethylbenzene, ethyltoluene, n-propylbenzene, cumene, and indene), C10 aromatics (eg, tetratoluene, Diethylbenzene, ethylxylene, methyl-n-propylbenzene, methyl cumene, n-butylbenzene, isobutylbenzene, secondary butylbenzene, tertiary butylbenzene, methyldihydroindene, tetrahydronaphthalene, and naphthalene), and even C11+ aromatics (eg methylnaphthalene, methyltetrahydronaphthalene). The C8+ aromatics-rich stream 113 is then optionally combined with other C8+ aromatics-rich streams such as stream 145 (described below) into a combined stream 114 that is supplied to a xylene separator 115 (eg, one or more distillation columns) to produce a xylene-rich stream 117 with C9+ aromatics stream 129.

和流107比較,聯合流114富含C8+芳烴且貧乏苯、甲苯、與其共沸物。較佳地,流114包含以其總重量為基準計總濃度≤5重量%之苯與甲苯,例如≤2重量%、≤1重量%、≤0.5重量%、或甚至≤0.1重量%。富二甲苯流117包含二甲苯與乙苯。在流117中乙苯濃度可為以流117中含有之C8芳烴總重量為基準計在c(EB)1至c(EB)2重量%範圍內,其中c(EB)1與c(EB)2可以獨立地是例如2、4、5、6、8、10、12、14、15、16、18、20、22、24、25、26、28、30、32、34、35、36、38、40、42、44、45、46、48、或50,只要c(EB)1<c(EB)2。在某些情況下,乙苯濃度可以很顯著以致於c(EB)1≥10、c(EB)1≥15、c(EB)1≥20、c(EB)1≥25、或c(EB)1≥30。流117可以包含各種濃度之對二甲苯,取決於供應給二甲苯分離器115的富C8+芳烴流之組成。例如,流117可以包含以流117中含有之C8芳烴總重量為基準計c(pX)1至c(pX)2重量%的濃度之對二甲苯,其中c(pX)1與c(pX)2可以獨立地是例如15、16、18、20、22、24、25、26、28、30、32、34、35、36、38、40、42、44、45、48、50、52、54、55、56、58、60,只要c(pX)1<c(pX)2。Compared to stream 107, combined stream 114 is rich in C8+ aromatics and depleted in benzene, toluene, and azeotropes thereof. Preferably, stream 114 comprises benzene and toluene in a total concentration of &lt; 5 wt%, based on their total weight, such as &lt; Xylene-rich stream 117 contains xylenes and ethylbenzene. The ethylbenzene concentration in stream 117 may be in the range of c(EB)1 to c(EB)2 wt % based on the total weight of C8 aromatics contained in stream 117, wherein c(EB)1 and c(EB) 2 can independently be e.g. 38, 40, 42, 44, 45, 46, 48, or 50, as long as c(EB)1 < c(EB)2. In some cases, ethylbenzene concentrations can be so significant that c(EB)1≥10, c(EB)1≥15, c(EB)1≥20, c(EB)1≥25, or c(EB)1≥25 )1≥30. Stream 117 may contain various concentrations of para-xylene, depending on the composition of the C8+ aromatics-rich stream supplied to xylene separator 115. For example, stream 117 may comprise paraxylene at a concentration of c(pX)1 to c(pX)2 wt % based on the total weight of C8 aromatics contained in stream 117, where c(pX)1 and c(pX) 2 can independently be e.g. 54, 55, 56, 58, 60, as long as c(pX)1<c(pX)2.

如圖1顯示,為了製造對二甲苯產物,典型上將富二甲苯流117供應給第一對二甲苯回收次系統119,製得富含對二甲苯之對二甲苯產物流121與對二甲苯耗盡流123。第一對二甲苯回收次系統119可為任何本領域中已知的以結晶化為基礎或以吸附層析法為基礎之對二甲苯分離系統。典型上將和流117比較富含間二甲苯、鄰二甲苯、與乙苯的第一對二甲苯耗盡流123至少部分地供應給異構化區125,其含有配置在其中且在異構化條件下操作之異構化觸媒。在異構化條件下接觸異構化觸媒時,將一部分供應給異構化區125之流125中的間二甲苯與鄰二甲苯轉化成對二甲苯。離開異構化區125之異構化流出物127包含比對二甲苯耗盡流123更高濃度的對二甲苯。接著將異構化流出物127或其一部分供應給二甲苯分離器115。二甲苯分離器115、對二甲苯回收次系統119、與異構化區125形成二甲苯回路。As shown in FIG. 1 , to produce a para-xylene product, typically a para-xylene-rich stream 117 is supplied to a first para-xylene recovery sub-system 119 to produce a para-xylene-rich product stream 121 and para-xylene Stream 123 is exhausted. The first paraxylene recovery sub-system 119 can be any paraxylene separation system known in the art based on crystallization or based on adsorption chromatography. Typically a first para-xylene depleted stream 123, which is relatively rich in meta-xylene, ortho-xylene, and ethylbenzene from stream 117, is at least partially supplied to isomerization zone 125, which contains disposed therein and in isomerization zone 125. Isomerization catalyst that operates under chemical conditions. A portion of the meta- and ortho-xylenes in stream 125 supplied to isomerization zone 125 are converted to para-xylene when contacted with the isomerization catalyst under isomerization conditions. Isomerization effluent 127 exiting isomerization zone 125 contains a higher concentration of para-xylene than para-xylene depletion stream 123 . The isomerization effluent 127, or a portion thereof, is then supplied to the xylene separator 115. Xylene separator 115, para-xylene recovery subsystem 119, and isomerization zone 125 form a xylene loop.

在圖1之方法中,流113、145、114、117、與123可以包含顯著濃度的乙苯(例如以其中含有的C8芳烴總重量為基準計≥5重量%、≥10重量%、≥15重量%、≥20重量%、≥25重量%、≥30重量%)。若異構化區125沒有足夠能力將乙苯轉化,則乙苯會在二甲苯回路中超時累積,這是不理想的。為了防止乙苯在二甲苯回路中累積,典型上在區125中異構化觸媒與異構化條件被選定以使得透過脫乙基化將至少一部分之乙苯轉化成苯。為了實現脫乙基化,典型上異構化條件包括足以使C8芳烴在異構化區中保持實質上汽相的溫度與壓力(「汽相條件」、「汽相異構化」)。進行二甲苯實質上汽相異構化需要在異構化區中將烴類加熱至高溫,隨後為了蒸餾分離而將異構化流出物冷卻與冷凝成液態,因此是高耗能的。此外,由於芳族環飽和和/或環破裂,汽相異構化典型上製造由脫烷基化產生之輕烴與非芳烴,其典型上在異構化流出物127被供應給二甲苯分離器115之前在中間脫庚烷塔(未顯示)被移除,讓方法中的二甲苯回路更趨複雜。In the process of FIG. 1, streams 113, 145, 114, 117, and 123 may contain significant concentrations of ethylbenzene (eg, > 5 wt %, > 10 wt %, > 15 wt % based on the total weight of C8 aromatics contained therein % by weight, >=20% by weight, >=25% by weight, >=30% by weight). If isomerization zone 125 does not have sufficient capacity to convert ethylbenzene, ethylbenzene will accumulate in the xylene loop over time, which is undesirable. To prevent the accumulation of ethylbenzene in the xylene loop, the isomerization catalyst and isomerization conditions are typically selected in zone 125 such that at least a portion of the ethylbenzene is converted to benzene by deethylation. To effect deethylation, isomerization conditions typically include temperatures and pressures sufficient to maintain the C8 aromatics in a substantially vapor phase in the isomerization zone ("vapor phase conditions", "vapor phase isomerization"). Performing the substantial vapor phase isomerization of xylenes requires heating the hydrocarbons to high temperature in the isomerization zone, followed by cooling and condensation of the isomerization effluent to a liquid state for distillative separation, and is therefore energy intensive. Additionally, due to aromatic ring saturation and/or ring breakage, vapor phase isomerization typically produces light and non-aromatic hydrocarbons resulting from dealkylation, which are typically fed to xylene separation in isomerization effluent 127 115 was previously removed in an intermediate deheptanizer (not shown), further complicating the xylene loop in the process.

C8芳烴異構化方法、觸媒、與條件被揭露於例如美國專利號7,247,762與7,271,118,以引用方式將其全部內容併入本案。C8 aromatics isomerization processes, catalysts, and conditions are disclosed, for example, in US Pat. Nos. 7,247,762 and 7,271,118, which are hereby incorporated by reference in their entirety.

如圖1顯示,接著典型上在蒸餾塔131中將由二甲苯分離器115製得之富C9+芳烴流129(典型上含有C9、C10、與C11+芳烴)分離以獲得富C9至C10芳烴流133與富C11+芳烴流135。典型上將流135導走並作為例如動力汽油摻合料、燃料油等等。流133包含甲基化芳烴與C2+-烴基取代之芳烴。在流133中C2+-烴基取代的芳烴之總濃度可為顯著的,例如以流133中之芳烴總重量為基準計在c(A1)1至c(A1)2重量%範圍內,其中c(A1)1與c(A1)2可以獨立地是例如2、4、5、6、8、10、12、14、15、16、18、20、22、24、25、26、28、30、32、34、35、36、38、或40,只要c(A1)1<c(A1)2。接著將流133連同富苯/甲苯流146供應給具有配置於其中的轉烷基化觸媒之轉烷基化區147。在轉烷基化觸媒存在下與在轉烷基化條件下,C9至C10芳烴與苯/甲苯反應以製造二甲苯。在這樣的C9至C10 C2+-烴基取代之芳烴與苯/甲苯之間的直接轉烷基化會產生乙苯與其他C9+C2+-烴基取代之芳烴。為了使轉烷基化區147中二甲苯和/或苯/甲苯之產量增加,典型上轉烷基化觸媒與轉烷基化條件被選定以使得透過脫烷基化從C2+烷基之芳族環全部轉化得到至少一部分的轉烷基化區中C9+C2+-烴基取代之芳烴與乙苯(在不移除直接附接至芳族環的甲基下)。脫烷基化導致C2+烷基轉化成輕烴(典型上在分子氫與用於轉烷基化區之脫烷基化觸媒的氫化功能存在下)。因此,為了製造二甲苯而移除C2+烷基是一種損失。最好將C2+烷基轉化成附接至苯環之甲基-其後來透過例如異構化、轉烷基化、和/或歧化可以用於製造二甲苯。與乙苯的脫乙基化相似,在轉烷基化區中C9至C10 C2+-烴基取代之芳烴與乙苯的有效脫烷基化典型上需要要求高溫之汽相條件。因為流146與133在進入轉烷基化區之前必須被加熱至高溫以實現汽相異構化,隨後為了蒸餾分離而需要將轉烷基化區的蒸汽流出物149冷卻與冷凝成液相,所以這樣之汽相轉烷基化是高耗能的。此外,由於芳族環飽和和/或環破裂,汽相轉烷基化典型上製造由脫烷基化產生之輕烴與非芳烴,其典型上在異構化流出物127被供應給苯塔141之前在中間脫庚烷塔(未顯示)被移除,讓轉烷基化方法更趨複雜。As shown in FIG. 1 , C9+ aromatics stream 129 (typically containing C9, C10, and C11+ aromatics) produced by xylene separator 115 is then typically separated in distillation column 131 to obtain C9 to C10 rich aromatics stream 133 with C11+ aromatics stream 135 rich. Stream 135 is typically conducted away as, for example, a motor gasoline blend, fuel oil, and the like. Stream 133 contains methylated aromatics and C2+-hydrocarbyl substituted aromatics. The total concentration of C2+-hydrocarbyl-substituted aromatics in stream 133 can be significant, for example in the range of c(A1)1 to c(A1)2 wt % based on the total weight of aromatics in stream 133, where c( A1)1 and c(A1)2 can independently be, for example, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 25, 26, 28, 30, 32, 34, 35, 36, 38, or 40, as long as c(A1)1<c(A1)2. Stream 133, along with benzene/toluene rich stream 146, is then supplied to transalkylation zone 147 having a transalkylation catalyst disposed therein. C9 to C10 aromatics are reacted with benzene/toluene in the presence of a transalkylation catalyst and under transalkylation conditions to produce xylenes. Direct transalkylation between such C9 to C10 C2+-hydrocarbyl substituted aromatics and benzene/toluene yields ethylbenzene and other C9+C2+-hydrocarbyl substituted aromatics. In order to increase the production of xylene and/or benzene/toluene in transalkylation zone 147, typical upper transalkylation catalysts and transalkylation conditions are selected such that aromatics from C2+ alkyl groups are removed by dealkylation The complete conversion of the family rings yields at least a portion of the C9+C2+-hydrocarbyl substituted aromatics and ethylbenzene in the transalkylation zone (without removing the methyl groups attached directly to the aromatic rings). Dealkylation results in the conversion of C2+ alkyl groups to light hydrocarbons (typically in the presence of molecular hydrogen and the hydrogenation function of the dealkylation catalyst used in the transalkylation zone). Therefore, it is a loss to remove the C2+ alkyl groups in order to make xylenes. The C2+ alkyl group is preferably converted to a methyl group attached to the benzene ring - which can then be used to make xylenes via, for example, isomerization, transalkylation, and/or disproportionation. Similar to the deethylation of ethylbenzene, efficient dealkylation of C9 to C10 C2+-hydrocarbyl substituted aromatics with ethylbenzene in the transalkylation zone typically requires vapor phase conditions that require high temperatures. Because streams 146 and 133 must be heated to high temperatures to effect vapor phase isomerization prior to entering the transalkylation zone, subsequent cooling and condensation of the vapor effluent 149 from the transalkylation zone to a liquid phase for distillative separation, Therefore, such vapor-phase transalkylation is energy-intensive. Additionally, due to aromatic ring saturation and/or ring rupture, vapor phase transalkylation typically produces light and non-aromatic hydrocarbons resulting from dealkylation, which are typically supplied to the benzene column in isomerization effluent 127 141 was previously removed in an intermediate deheptanizer (not shown), further complicating the transalkylation process.

芳烴轉烷基化方法、觸媒、與條件被揭露於例如美國專利號5,763,720與8,183,424,將其全部內容併入本案。Aromatic transalkylation methods, catalysts, and conditions are disclosed, for example, in US Pat. Nos. 5,763,720 and 8,183,424, which are incorporated herein in their entirety.

如圖1顯示,典型上將富C6至C7烴流111供應給萃取蒸餾區137,其中製得富C6至C7芳烴流139與芳烴耗盡的萃餘物流138。接著將流139供應給苯塔141,製得苯產物流143、富甲苯流146、與富C8+芳烴流145。將富甲苯流146或其一部分連同富C9至C10芳烴流133供應給轉烷基化區147,如上述。接著將富C8+芳烴流145連同流113供應給二甲苯分離器115,如上述。As shown in FIG. 1 , C6 to C7 rich hydrocarbon stream 111 is typically supplied to extractive distillation zone 137 where C6 to C7 aromatics rich stream 139 and aromatics depleted raffinate stream 138 are produced. Stream 139 is then supplied to benzene column 141 to produce benzene product stream 143, toluene-rich stream 146, and C8+ aromatics-rich stream 145. Toluene-rich stream 146, or a portion thereof, is supplied to transalkylation zone 147 along with C9 to C10 aromatics-rich stream 133, as described above. C8+ aromatics-rich stream 145 is then fed to xylene separator 115 along with stream 113, as described above.

因此,如圖1所圖解由重石油腦流製造二甲苯(特別是對二甲苯)之傳統方法典型上需要:(i)進行對二甲苯耗盡流123或其至少一部分的汽相異構化以提供流123中含有之乙苯脫乙基化;(ii)在轉烷基化區147中進行在富C9至C10芳烴流133與苯/甲苯流之間的汽相轉烷基化以提供流133中含有之C2+-烴基取代的芳烴中之C2+烷基脫烷基化。這類汽相方法是高耗能的,讓芳烴製造廠更趨複雜且增加成本,及導致可另外用於製造更多二甲苯分子之有價值的甲基取代基來源之損失。 圖2:由石油腦重組法製造二甲苯之示範性本發明方法Thus, conventional processes for producing xylenes, particularly paraxylene, from a heavy petroleum naphtha stream, as illustrated in Figure 1, typically require: (i) performing vapor phase isomerization of paraxylene depleted stream 123 or at least a portion thereof to provide deethylation of ethylbenzene contained in stream 123; (ii) performing vapor phase transalkylation in transalkylation zone 147 between C9 to C10 rich aromatics stream 133 and the benzene/toluene stream to provide The C2+ alkyl groups in the C2+-hydrocarbyl substituted aromatics contained in stream 133 are dealkylated. Such vapor phase processes are energy intensive, complicate and increase the cost of aromatics manufacturing plants, and result in the loss of a source of valuable methyl substituents that could otherwise be used to make more xylene molecules. Figure 2: Exemplary inventive process for the production of xylenes from naphtha

圖2圖示由含C6+芳烴流製造二甲苯(特別是對二甲苯)產物之示範性本發明方法201,該含C6+芳烴流包含C2+-烴基取代的芳烴,比如重組油流或經加氫處理之蒸汽裂解石油腦流。儘管主要為了製造對二甲苯產物目的而圖解與描述此示範性方法,但本領域之具有普通技藝者容易了解為了製造鄰二甲苯、甲苯與其他芳烴產物目的可以修改此示範性方法。在圖2中,將由例如原油煉製法製得之重石油腦流103(具有在例如100至240℃,比如120至220℃、或140至200℃、或140至180℃範圍內的正常沸點)供應給重組區105。重石油腦流103可包含大量石蠟與環烷。重組區105可以包括本領域中已知的任何傳統石油腦觸媒重組反應器(例如用於半再生法之固定床反應器或用於連續再生法之移動床反應器)的一或多者。重組觸媒被配置於重組區中。在接觸重組觸媒時與在重組條件(比如本領域中眾所周知者)下,重石油腦流103中的烴經受一系列化學反應(包括但不限於異構化、芳化、脫氫環化等等),以將至少一部分石蠟與環烷轉化成芳烴。如上文所討論,在典型重組操作中,可以製得各種量(有時大量)的C2+-烴基取代之芳烴。在圖2中,在一部分重組區105內部,或鄰近重組區及重組區105的下游,安裝了隨意烷基-脫甲基化區(根據本揭露之第一態樣的第七烷基-脫甲基化區)203。在此隨意烷基-脫甲基化區203中,配置了烷基-脫甲基化觸媒(根據本揭露之第一態樣的第七烷基-脫甲基化觸媒)。在一個例子中,重組區105與烷基-脫甲基化區203部分地或全部地重疊。這樣之配置可以藉由將一部分或全部的烷基-脫甲基化區203中烷基-脫甲基化觸媒與一部分或全部的重組區105中重組觸媒混合以形成聚集觸媒混合物而實現。在這種情況下,在離開重組區105之前在接觸烷基-脫甲基化觸媒時可以將至少一部分重組區105產生的C2+-烴基取代之芳烴轉化成所欲烷基-脫甲基化芳烴。在另一個例子中,區105中重組觸媒可以形成上游觸媒床,及烷基-脫甲基化觸媒可以形成下游觸媒床,及兩個觸媒床可以位於相同或不同槽中。在這種情況下,區107中形成之C2+-烴基取代的芳烴流向烷基-脫甲基化區203,其中該芳烴被部分地轉化成烷基-脫甲基化芳烴,特別是所欲甲基化芳烴比如甲苯、二甲苯、與三甲苯。由於重組區105與烷基-脫甲基化區203(若存在的話)的物理鄰近或重疊性質,重組條件與烷基-脫甲基化條件(根據本揭露之第一態樣的第七組烷基-脫甲基化條件)可包括相似的或甚至實質上相同的溫度、壓力等等。離開烷基-脫甲基化區203(若存在的話)之烷基-脫甲基化流出物107(根據本揭露之第一態樣的第七烷基-脫甲基化流出物)包含C6+芳烴(包括苯、甲苯、二甲苯、乙苯、與C9+芳烴)。由於在區203中將一部分重組區105製得之C2+-烴基取代的芳烴轉化成烷基-脫甲基化芳烴,和沒有烷基-脫甲基化區203的方法比較,這樣之離開區203的流出物107中之C2+-烴基取代的芳烴之濃度減少。將烷基-脫甲基化區203安裝得非常靠近重組區105的一個優點是區105中存在或產生之全部C2+-烴基取代的芳烴(包括C8、C9、C10、與C11+C2+-烴基取代的芳烴)的烷基-脫甲基化可以經受在區203中烷基-脫甲基化,產生C2+-烴基取代之芳烴濃度減少的流出物107,因此使下游方法中C2+-烴基取代之芳烴的負荷減少。除了芳烴之外,流出物107還可包含非芳烴,比如烷類與環烷類,尤其是與芳烴共沸者。較佳地,流出物107基本上由C6+烴組成。由重組區105和/或烷基-脫甲基化區203也可製得額外的流,比如氫流(未顯示)、與包含輕烴(例如C5-烴)之廢氣流(未顯示)。Figure 2 illustrates an exemplary inventive process 201 for producing xylene (particularly para-xylene) product from a C6+ aromatics-containing stream comprising C2+-hydrocarbyl substituted aromatics, such as a reconstituted oil stream or hydrotreated The steam cracked petroleum brain stream. Although this exemplary process is illustrated and described primarily for the purpose of making para-xylene products, those of ordinary skill in the art will readily appreciate that this exemplary process can be modified for the purpose of making ortho-xylene, toluene, and other aromatic products. In Figure 2, a heavy petroleum brain stream 103 (having a normal boiling point in the range of, for example, 100 to 240°C, such as 120 to 220°C, or 140 to 200°C, or 140 to 180°C) will be produced by, for example, a crude oil refining process. supplied to the reorganization zone 105 . The heavy petroleum naphtha stream 103 may contain large amounts of paraffins and naphthenes. The reformation zone 105 may comprise one or more of any conventional naphtha catalyst reformation reactor known in the art (eg, a fixed bed reactor for semi-regenerative processes or a moving bed reactor for continuous regeneration processes). The recombination catalyst is arranged in the recombination zone. Upon contact with the recombination catalyst and under recombination conditions (such as those well known in the art), the hydrocarbons in the heavy petroleum naphtha stream 103 undergo a series of chemical reactions (including, but not limited to, isomerization, aromatization, dehydrocyclization, etc. etc.) to convert at least a portion of the paraffins and naphthenes to aromatics. As discussed above, in a typical recombination operation, various amounts (sometimes large) of C2+-hydrocarbyl-substituted aromatics can be produced. In Figure 2, within a portion of the recombination zone 105, or adjacent to the recombination zone and downstream of the recombination zone 105, an optional alkyl-demethylation zone (the seventh alkyl-demethylation zone according to the first aspect of the present disclosure) is installed methylated region) 203. In this optional alkyl-demethylation zone 203, an alkyl-demethylation catalyst (the seventh alkyl-demethylation catalyst according to the first aspect of the present disclosure) is configured. In one example, recombination region 105 partially or fully overlaps alkyl-demethylation region 203 . Such a configuration can be achieved by mixing a portion or all of the alkyl-demethylation catalyst in the alkyl-demethylation zone 203 with a portion or all of the recombination catalyst in the recombination zone 105 to form an aggregated catalyst mixture accomplish. In this case, at least a portion of the C2+-hydrocarbyl-substituted aromatics produced in recombination zone 105 may be converted to the desired alkyl-demethylation upon contact with an alkyl-demethylation catalyst prior to exiting recombination zone 105 Aromatic hydrocarbons. In another example, the recombined catalyst in zone 105 may form an upstream catalyst bed, and the alkyl-demethylation catalyst may form a downstream catalyst bed, and the two catalyst beds may be located in the same or different tanks. In this case, the C2+-hydrocarbyl-substituted aromatics formed in zone 107 flow to alkyl-demethylation zone 203, where the aromatics are partially converted to alkyl-demethylated aromatics, especially the desired methyl Alkylated aromatics such as toluene, xylene, and mesitylene. Due to the physically adjacent or overlapping nature of the recombination region 105 and the alkyl-demethylation region 203 (if present), the recombination conditions and the alkyl-demethylation conditions (according to the seventh set of the first aspect of the present disclosure) alkyl-demethylation conditions) may include similar or even substantially the same temperature, pressure, and the like. The alkyl-demethylation effluent 107 (the seventh alkyl-demethylation effluent according to the first aspect of the present disclosure) exiting the alkyl-demethylation zone 203 (if present) comprises C6+ Aromatics (including benzene, toluene, xylene, ethylbenzene, and C9+ aromatics). Since a portion of the C2+-hydrocarbyl-substituted aromatics produced in recombination zone 105 are converted to alkyl-demethylated aromatics in zone 203, as compared to the process without alkyl-demethylation zone 203, this leaves zone 203 The concentration of C2+-hydrocarbyl-substituted aromatic hydrocarbons in effluent 107 decreased. One advantage of locating alkyl-demethylation zone 203 very close to recombination zone 105 is that all C2+-hydrocarbyl-substituted aromatics (including C8, C9, C10, and C11+C2+-hydrocarbyl-substituted aromatics (including C8, C9, C10, and C11+C2+-hydrocarbyl substituted) present or produced in zone 105 have the advantage Alkyl-demethylation of aromatics) can be subjected to alkyl-demethylation in zone 203 to produce effluent 107 with a reduced concentration of C2+-hydrocarbyl substituted aromatics, thus allowing C2+-hydrocarbyl substituted aromatics in the downstream process load reduction. In addition to aromatic hydrocarbons, effluent 107 may also contain non-aromatic hydrocarbons, such as alkanes and naphthenes, especially azeotropes with aromatic hydrocarbons. Preferably, effluent 107 consists essentially of C6+ hydrocarbons. Additional streams such as a hydrogen stream (not shown), and a waste gas stream (not shown) containing light hydrocarbons (eg, C5-hydrocarbons) may also be produced from the reformation zone 105 and/or the alkyl-demethylation zone 203.

如圖2顯示,接著將重組流出物(其中隨意烷基-脫甲基化區203不存在)或烷基-脫甲基化流出物(其中隨意烷基-脫甲基化區203存在)107或其一部分供應給區105與203之下游的另一個下游隨意烷基-脫甲基化區205(根據本揭露之第一態樣的第一烷基-脫甲基化區)。在一個實施方式中,將區105/203之流出物107全部供應給烷基-脫甲基化區205。在另一個實施方式中,在將一部分區105/203之流出物107供應給烷基-脫甲基化區205之前,先將區105/203的流出物107分離(未顯示)例如以移除一部分或某些組分。在隨意烷基-脫甲基化區203不存在情況下,烷基-脫甲基化區205接受重組流出物107。在隨意烷基-脫甲基化區存在情況下,若區203中C2+-烴基取代之芳烴的轉化率夠高則理想地烷基-脫甲基化區205可不存在。或者,可將烷基-脫甲基化區205安裝在烷基-脫甲基化區203之下游以提供存在於烷基-脫甲基化流出物107中的C2+-烴基取代之芳烴的額外烷基-脫甲基化加工。類似於隨意區203,區205(若存在的話)包含配置於其中的烷基-脫甲基化觸媒(根據本揭露之第一態樣的第一烷基-脫甲基化觸媒)。區205中之脫甲基化觸媒與區203中的脫甲基化觸媒可為相同或不同,若兩者皆存在。區205中的操作條件(根據本揭露之第一態樣的第一組烷基-脫甲基化條件)與區203中的操作條件(根據本揭露之第一態樣的第七組烷基-脫甲基化條件)可為相似或不同。若將實質上全部C2+-烴基取代之芳烴供應給區205,則類似於區203,實質上全部C2+-烴基取代之芳烴(包括C8、C9、C10、與C11+C2+-烴基取代的芳烴)可以經受區205中的烷基-脫甲基化條件,及其一部分被轉化成烷基-脫甲基化芳烴。這可以是有利的,因為在這樣之上游位置各種分子量的C2+-烴基取代之芳烴的可能之高轉化率下,可以使在下游方法(比如C8芳烴異構化和/或加C6至C7芳烴將C9至C10芳烴轉烷基化)中加工高濃度之C2+-烴基取代的芳烴之負荷明顯減少,這能夠實現高度有利的下游方法比如唯液相異構化與唯液相轉烷基化,如在下文更詳細描述。烷基-脫甲基化流出物207離開烷基-脫甲基化區205。流出物207可以包含苯、甲苯、苯和/或甲苯之非芳族共沸物、二甲苯、三甲苯、與C2+-烴基取代之芳烴比如乙苯、甲基乙苯等等。和流出物107比較,流出物207理想地包含縮減量的C2+-烴基取代之芳烴。As shown in Figure 2, the recombination effluent (wherein the optional alkyl-demethylation zone 203 is absent) or the alkyl-demethylation effluent (wherein the optional alkyl-demethylation zone 203 is present) 107 or a portion thereof is supplied to another downstream optional alkyl-demethylation zone 205 downstream of zones 105 and 203 (the first alkyl-demethylation zone according to the first aspect of the present disclosure). In one embodiment, all of the effluent 107 of zone 105/203 is supplied to the alkyl-demethylation zone 205. In another embodiment, the effluent 107 of zone 105/203 is separated (not shown) prior to supplying a portion of the effluent 107 of zone 105/203 to the alkyl-demethylation zone 205, for example to remove part or some components. In the absence of optional alkyl-demethylation zone 203, alkyl-demethylation zone 205 receives reconstituted effluent 107. In the presence of an optional alkyl-demethylation zone, if the conversion of C2+-hydrocarbyl-substituted aromatics in zone 203 is high enough, then ideally the alkyl-demethylation zone 205 may not be present. Alternatively, alkyl-demethylation zone 205 can be installed downstream of alkyl-demethylation zone 203 to provide additional C2+-hydrocarbyl-substituted aromatics present in alkyl-demethylation effluent 107 Alkyl-demethylation processing. Similar to random zone 203, zone 205, if present, includes an alkyl-demethylation catalyst (a first alkyl-demethylation catalyst according to the first aspect of the present disclosure) disposed therein. The demethylation catalyst in zone 205 and the demethylation catalyst in zone 203 can be the same or different, if both are present. The operating conditions in zone 205 (the first set of alkyl-demethylation conditions according to the first aspect of the present disclosure) and the operating conditions in zone 203 (the seventh set of alkyl according to the first aspect of the present disclosure) - demethylation conditions) may be similar or different. If substantially all C2+-hydrocarbyl substituted aromatics are supplied to zone 205, then similar to zone 203, substantially all C2+-hydrocarbyl substituted aromatics (including C8, C9, C10, and C11+C2+-hydrocarbyl substituted aromatics) can be Subject to alkyl-demethylation conditions in zone 205, a portion thereof is converted to alkyl-demethylated aromatics. This can be advantageous because at the possible high conversions of C2+-hydrocarbyl-substituted aromatics of various molecular weights at such upstream positions, it is possible to make changes in downstream processes such as C8 aromatics isomerization and/or C6 to C7 aromatics addition. Significantly reduced loading of processing high concentrations of C2+-hydrocarbyl-substituted aromatics in C9 to C10 aromatic transalkylation) enables highly advantageous downstream processes such as liquid-phase-only isomerization and liquid-phase-only transalkylation, such as Described in more detail below. The alkyl-demethylation effluent 207 exits the alkyl-demethylation zone 205 . Effluent 207 may comprise benzene, toluene, non-aromatic azeotropes of benzene and/or toluene, xylenes, mesitylenes, aromatics substituted with C2+-hydrocarbyl groups such as ethylbenzene, methylethylbenzene, and the like. Compared to effluent 107, effluent 207 desirably contains a reduced amount of C2+-hydrocarbyl-substituted aromatic hydrocarbons.

在某些實施方式中,隨意烷基-脫甲基化區203存在,及烷基-脫甲基化區205不存在。這類實施方式在區203單獨存在就足以使流107中C2+-烴基取代之芳烴濃度減少到足夠低的程度方面可以有優勢。在某些其他實施方式中,區203不存在且區205存在。這類實施方式在下列方面可以有優勢:重組區105中重組觸媒與區205中烷基-脫甲基化觸媒具有實質上不同之觸媒週期時間,及/或區105中重組條件與區205中烷基-脫甲基化條件是實質上不同的,需要兩個不同反應器。在其他實施方式中,烷基-脫甲基化區203與205都存在。這類實施方式在下列方面可以有優勢:在區203與205中,將一部分C2+-烴基取代之芳烴轉化成烷基-脫甲基化芳烴,導致其高合併轉化率。這類實施方式在下列方面可以有優勢:重組觸媒可以表現重組與烷基-脫甲基化雙功能,及將專門處理烷基-脫甲基化而非重組之烷基-脫甲基化觸媒配置於區205中以將至少一部分存在於流107中的C2+-烴基取代之芳烴進一步轉化成烷基-脫甲基化芳烴。In certain embodiments, optional alkyl-demethylation zone 203 is present, and alkyl-demethylation zone 205 is absent. Such embodiments may be advantageous in that the presence of zone 203 alone is sufficient to reduce the concentration of C2+-hydrocarbyl-substituted aromatics in stream 107 to a sufficiently low level. In certain other embodiments, zone 203 is absent and zone 205 is present. Such embodiments may be advantageous in that the recombination catalyst in recombination zone 105 has substantially different catalyst cycle times than the alkyl-demethylation catalyst in zone 205, and/or the recombination conditions in zone 105 are different from those of the alkyl-demethylation catalyst in zone 205. The alkyl-demethylation conditions in zone 205 are substantially different, requiring two different reactors. In other embodiments, both alkyl-demethylation regions 203 and 205 are present. Such embodiments may be advantageous in that in zones 203 and 205 a portion of the C2+-hydrocarbyl-substituted aromatics are converted to alkyl-demethylated aromatics, resulting in their high combined conversions. Such embodiments may be advantageous in that the recombinant catalyst may perform both recombination and alkyl-demethylation bifunctionality, and will specifically handle alkyl-demethylation rather than recombination alkyl-demethylation A catalyst is configured in zone 205 to further convert at least a portion of the C2+-hydrocarbyl-substituted aromatics present in stream 107 to alkyl-demethylated aromatics.

如圖2顯示,接著將流出物107(其中隨意烷基-脫甲基化區205不存在)或流出物207(其中隨意烷基-脫甲基化區205存在)供應給重組油分離器109(例如單一蒸餾塔、或一系列蒸餾塔),製得富C6至C7烴流111與富C8+芳烴流113。富C6至C7烴流111包含苯、甲苯、與其共沸性石蠟與環烷。最好流111實質上沒有C8+芳烴。最好流111實質上沒有C2+-烴基取代之芳烴。富C8+芳烴流113可以包含C8芳烴(例如二甲苯與乙苯)、C9芳烴(例如三甲苯、乙基甲苯、正丙苯、異丙苯、與二氫茚)、C10芳烴(例如四甲苯、二乙苯、乙基二甲苯、甲基正丙苯、甲基異丙苯、正丁苯、異丁苯、二級丁苯、三級丁苯、甲基二氫茚、四氫萘、與萘)、甚至C11+芳烴(例如甲萘、甲基四氫萘)。接著將富C8+芳烴流113隨意地合併其他富C8+芳烴流比如流145(如下所述)成為聯合流114供應給隨意烷基-脫甲基化區209(根據本揭露之第一態樣的第二烷基-脫甲基化區)。類似於隨意烷基-脫甲基化區203與205(若存在的話),區209包含配置於其中的烷基-脫甲基化觸媒(根據本揭露之第一態樣的第二烷基-脫甲基化觸媒)。區209中的烷基-脫甲基化觸媒和區203和/或205中的烷基-脫甲基化觸媒可為相同或不同。在一組烷基-脫甲基化條件(根據本揭露之第一態樣的第二組烷基-脫甲基化條件)下操作區209,以實現在接觸在其中的烷基-脫甲基化觸媒時將至少一部分C2+-烴基取代之芳烴轉化成烷基-脫甲基化芳烴(特別是甲基化芳烴)。在方法中包括區209在流113和/或流145及流114包含顯著量之C2+-烴基取代的芳烴方面可以特別有優勢。As shown in Figure 2, either effluent 107 (where random alkyl-demethylation zone 205 is absent) or effluent 207 (where random alkyl-demethylation zone 205 is present) is then supplied to reformed oil separator 109 (eg, a single distillation column, or a series of distillation columns), a stream 111 rich in C6 to C7 hydrocarbons and a stream 113 rich in C8+ aromatics are produced. The C6 to C7 rich hydrocarbon stream 111 contains benzene, toluene, paraffins and naphthenes azeotrope thereof. Preferably stream 111 is substantially free of C8+ aromatics. Preferably stream 111 is substantially free of C2+-hydrocarbyl substituted aromatic hydrocarbons. The C8+ aromatics-rich stream 113 may comprise C8 aromatics (eg, xylene and ethylbenzene), C9 aromatics (eg, trimethylbenzene, ethyltoluene, n-propylbenzene, cumene, and indene), C10 aromatics (eg, tetratoluene, Diethylbenzene, ethylxylene, methyl-n-propylbenzene, methyl cumene, n-butylbenzene, isobutylbenzene, secondary butylbenzene, tertiary butylbenzene, methyldihydroindene, tetrahydronaphthalene, and naphthalene) and even C11+ aromatics (eg methylnaphthalene, methyltetrahydronaphthalene). The C8+ aromatics-rich stream 113 is then optionally combined with other C8+ aromatics-rich streams such as stream 145 (described below) into a combined stream 114 that is supplied to the optional alkyl-demethylation zone 209 (in accordance with the first aspect of the present disclosure). dialkyl-demethylation region). Similar to random alkyl-demethylation zones 203 and 205 (if present), zone 209 includes an alkyl-demethylation catalyst (the second alkyl group according to the first aspect of the present disclosure) disposed therein - demethylation catalyst). The alkyl-demethylation catalyst in zone 209 and the alkyl-demethylation catalyst in zone 203 and/or 205 can be the same or different. Zone 209 is operated under one set of alkyl-demethylation conditions (a second set of alkyl-demethylation conditions in accordance with the first aspect of the present disclosure) to effect alkyl-demethylation in contact therein At least a portion of the C2+-hydrocarbyl-substituted aromatic hydrocarbons are converted into alkyl-demethylated aromatic hydrocarbons (especially methylated aromatic hydrocarbons) when the catalyst is alkylated. Including zone 209 in the process can be particularly advantageous in that stream 113 and/or stream 145 and stream 114 contain significant amounts of C2+-hydrocarbyl substituted aromatic hydrocarbons.

聯合流114富含C8+芳烴且貧乏苯、甲苯、與其共沸物。較佳地,流114包含以其總重量為基準計總濃度≤5重量%之苯與甲苯,例如≤2重量%、≤1重量%、≤0.5重量%、或甚至≤0.1重量%。由於C2+-烴基取代之芳烴全部是C8+芳烴,和流207比較,流113富含C2+-烴基取代之芳烴。假如流145包含任何大量的C2+-烴基取代之芳烴,最好將流145與流113合併(如圖2顯示),接著供應給烷基-脫甲基化區209。然而,若流145實質上沒有C2+-烴基取代之芳烴,最好將流145繞過烷基-脫甲基化區209(若存在的話)直接供應給二甲苯分離器115(如下所述)。在方法中包括烷基-脫甲基化區209的優勢在於使後續方法(比如異構化與轉烷基化)中C2+-烴基取代之芳烴的負荷減少。在烷基-脫甲基化區203與205中,典型上烷基-脫甲基化方法是在顯著量之苯、甲苯、與其共沸物存在下進行。另一方面,區209中的烷基-脫甲基化可以在反應混合物中存在著更低許多量之苯與甲苯下進行,因為進料流114可以包含濃度比流107與207低得多的甲苯。由於烷基-脫甲基化方法之所欲產物是甲苯,流114的較低甲苯濃度可以有利於區209中的C2+-烴基取代之芳烴轉化率比區203與205中的轉化率更高。離開區209之流211(根據本揭露之第一態樣的第二烷基-脫甲基化流出物)除了C8+芳烴之外,還可以包含由烷基-脫甲基化反應產生的甲苯。Combined stream 114 is rich in C8+ aromatics and depleted in benzene, toluene, and azeotropes thereof. Preferably, stream 114 comprises benzene and toluene in a total concentration of &lt; 5 wt%, based on their total weight, such as &lt; 2 wt%, &lt; Since the C2+-hydrocarbyl substituted aromatics are all C8+ aromatics, compared to stream 207, stream 113 is rich in C2+-hydrocarbyl substituted aromatics. If stream 145 contains any significant amounts of C2+-hydrocarbyl-substituted aromatics, stream 145 is preferably combined with stream 113 (as shown in FIG. 2) and then fed to alkyl-demethylation zone 209. However, if stream 145 is substantially free of C2+-hydrocarbyl substituted aromatics, it is preferred to supply stream 145 directly to xylene separator 115 (described below) bypassing alkyl-demethylation zone 209 (if present). The advantage of including an alkyl-demethylation zone 209 in the process is to reduce the loading of C2+-hydrocarbyl substituted aromatics in subsequent processes such as isomerization and transalkylation. In alkyl-demethylation zones 203 and 205, a typical upper alkyl-demethylation process is carried out in the presence of significant amounts of benzene, toluene, and their azeotropes. On the other hand, the alkyl-demethylation in zone 209 can be carried out in the presence of much lower amounts of benzene and toluene in the reaction mixture because feed stream 114 can contain much lower concentrations than streams 107 and 207 Toluene. Since the desired product of the alkyl-demethylation process is toluene, the lower toluene concentration of stream 114 may favor a higher conversion of C2+-hydrocarbyl substituted aromatics in zone 209 than in zones 203 and 205. Stream 211 exiting zone 209 (the second alkyl-demethylation effluent according to the first aspect of the present disclosure) may contain, in addition to C8+ aromatics, toluene produced by the alkyl-demethylation reaction.

最好區203、205、與209的至少一者係存在於芳烴製造方法(包括重石油腦重組步驟)之方法流程中,因為,如上述,重石油腦重組有產生顯著量的C2+-烴基取代之芳烴的傾向。在烷基-脫甲基化步驟中,藉由將稠合至苯環之環中C2+烷基或碳原子轉化成一或多個附接至苯環的甲基,可以使甲基化苯和/或苯產量增加,如上述。在本揭露之第一態樣的方法之某些實施方式中,隨意烷基-脫甲基化區203、205、與209只有一者存在。這樣的單一烷基-脫甲基化區設置在單一區能夠將C2+-烴基取代之芳烴轉化到足夠的程度方面可以有優勢。在其他實施方式中,尤其在流145不包含顯著量之C2+-烴基取代之芳烴的實施方式中,區203與205皆可以存在以實現C2+-烴基取代之芳烴的足夠轉化率,而區209不存在。在其他實施方式中,尤其在流145包含顯著量的C2+-烴基取代之芳烴的實施方式中,區209和區203與205任一者(但不必兩者)可以存在。在其他實施方式中,尤其在顯著量的C2+-烴基取代之芳烴係在重組區製得或存在於流103中的實施方式中,為了使C2+-烴基取代之芳烴轉化率最大化,可以希望在方法流程中包括全部三個區203、205、與209。Preferably, at least one of regions 203, 205, and 209 is present in the process flow of the aromatics manufacturing process (including the heavy naphtha reformation step) because, as mentioned above, heavy naphtha reformation produces significant amounts of C2+-hydrocarbyl substitution the tendency of aromatic hydrocarbons. In the alkyl-demethylation step, methylated benzene and/or can be made by converting a C2+ alkyl or carbon atom in a ring fused to the benzene ring to one or more methyl groups attached to the benzene ring or increased benzene production, as described above. In certain embodiments of the method of the first aspect of the present disclosure, only one of the optional alkyl-demethylation regions 203, 205, and 209 is present. Such a single alkyl-demethylation zone may be advantageous in that the single zone is capable of converting C2+-hydrocarbyl substituted aromatics to a sufficient degree. In other embodiments, especially where stream 145 does not contain significant amounts of C2+-hydrocarbyl-substituted aromatics, both zones 203 and 205 may be present to achieve sufficient conversion of C2+-hydrocarbyl-substituted aromatics, while zone 209 does not exist. In other embodiments, particularly where stream 145 contains significant amounts of C2+-hydrocarbyl-substituted aromatic hydrocarbons, zone 209 and either (but not necessarily both) of zones 203 and 205 may be present. In other embodiments, especially in embodiments in which a significant amount of C2+-hydrocarbyl-substituted aromatics are produced in the recombination zone or present in stream 103, in order to maximize the conversion of C2+-hydrocarbyl-substituted aromatics, it may be desirable to All three zones 203, 205, and 209 are included in the method flow.

如圖2顯示,將離開烷基-脫甲基化區209(若存在的話)之流出物211和/或流114(若區209不存在和/或若流114部分繞過區209的話)或其一部分進料至二甲苯分離器115(例如蒸餾塔),製得富二甲苯流117與富C9+芳烴流129。在區209存在之實施方式中,透過一或多個烷基-脫甲基化步驟將流114中一部分C2+-烴基取代之芳烴(經C2+烷基單取代之芳烴,例如乙苯、正丙苯、異丙苯等等)轉化成甲苯。在這類實施方式中,由二甲苯分離器115也可製得C7-芳烴流(未顯示)。可將由115製得之C7-芳烴流供應給例如萃取區137。富二甲苯流117包含二甲苯與各種濃度之乙苯,這尤其取決於區203、205、與209的一或多者是否存在。如上文所討論,和區203、205、與209都不存在之圖1的方法中對應流比較,區203、205、與209的一或多者之存在使流117中乙苯的量減少。在圖2中流117中乙苯濃度可為以在流117中含有的C8芳烴總重量為基準計在c(EB)3至c(EB)4重量%範圍內,其中c(EB)3與c(EB)4可以獨立地是例如0.1、0.2、0.4、0.5、0.6、0.8、1、2、4、5、6、8、10、12、14、15、16、18、20、22、24、25、26、28、30、32、34、35、36、38、40,只要c(EB)3<c(EB)4。在某些情況下,乙苯濃度可為低的,以使得c(EB)4≤20、c(EB)4≤10、c(EB)4≤5、或甚至c(EB)4≤1。在圖2中流117可以包含各種濃度之對二甲苯,這取決於供應給二甲苯分離器115的富C8+芳烴流的組成。例如,流117可以包含以在流117中含有之C8芳烴總重量為基準計在c(pX)1至c(pX)2重量%的濃度之對二甲苯,其中c(pX)1與c(pX)2可以獨立地是例如15、16、18、20、22、24、25、26、28、30、32、34、35、36、38、40、42、44、45、48、50、52、54、55、56、58、60,只要c(pX)1 <c(pX)2。As shown in Figure 2, effluent 211 and/or stream 114 that would exit alkyl-demethylation zone 209 (if present) (if zone 209 was not present and/or if stream 114 partially bypassed zone 209) or A portion thereof is fed to a xylene separator 115 (eg, a distillation column), producing a xylene-rich stream 117 and a C9+ aromatics-rich stream 129. In embodiments where zone 209 exists, a portion of the C2+-hydrocarbyl substituted aromatics (C2+ alkyl monosubstituted aromatics, e.g. ethylbenzene, n-propylbenzene, e.g. , cumene, etc.) into toluene. In such embodiments, a C7-aromatics stream (not shown) may also be produced from xylene separator 115. The C7-aromatics stream produced from 115 may be supplied to extraction zone 137, for example. Xylene-rich stream 117 contains xylene and various concentrations of ethylbenzene, depending on whether one or more of zones 203, 205, and 209 are present, among others. As discussed above, the presence of one or more of zones 203 , 205 , and 209 reduces the amount of ethylbenzene in stream 117 as compared to the corresponding stream in the process of FIG. 1 where none of zones 203 , 205 , and 209 are present. The ethylbenzene concentration in stream 117 in FIG. 2 may be in the range of c(EB)3 to c(EB)4 wt % based on the total weight of C8 aromatics contained in stream 117, where c(EB)3 and c (EB)4 can independently be, for example, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 1, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24 , 25, 26, 28, 30, 32, 34, 35, 36, 38, 40, as long as c(EB)3<c(EB)4. In some cases, the ethylbenzene concentration may be low such that c(EB)4≤20, c(EB)4≤10, c(EB)4≤5, or even c(EB)4≤1. Stream 117 in FIG. 2 may contain various concentrations of para-xylene, depending on the composition of the C8+ aromatics-rich stream supplied to xylene separator 115. For example, stream 117 may comprise paraxylene at a concentration of c(pX)1 to c(pX)2 wt %, based on the total weight of C8 aromatics contained in stream 117, where c(pX)1 and c( pX)2 can independently be, for example, 15, 16, 18, 20, 22, 24, 25, 26, 28, 30, 32, 34, 35, 36, 38, 40, 42, 44, 45, 48, 50, 52, 54, 55, 56, 58, 60, as long as c(pX)1 <c(pX)2.

如圖2顯示,類似於圖1的傳統方法,接著將由二甲苯分離器115製得之富二甲苯流117供應給第一對二甲苯回收次系統119,製得富含對二甲苯的第一對二甲苯產物流121及第一對二甲苯耗盡流123。接著將和流117比較富含間二甲苯、鄰二甲苯、與乙苯之第一對二甲苯耗盡流123部分地(如流215顯示)或全部地供應給第一異構化區125,其中將間二甲苯和/或鄰二甲苯在第一異構化觸媒存在下在第一組異構化條件下異構化以形成額外對二甲苯。接著將異構化流出物217或其一部分(如流127顯示)供應給二甲苯分離器115。二甲苯分離器115、對二甲苯回收次系統119、與異構化區125形成二甲苯回路。As shown in FIG. 2, similar to the conventional process of FIG. 1, the xylene-rich stream 117 produced by the xylene separator 115 is then supplied to the first para-xylene recovery sub-system 119 to produce a first para-xylene-rich Para-xylene product stream 121 and first para-xylene depletion stream 123. The first paraxylene depleted stream 123, which is relatively rich in meta-xylene, ortho-xylene, and ethylbenzene with stream 117, is then partially (as shown by stream 215) or fully supplied to first isomerization zone 125, wherein meta-xylene and/or ortho-xylene is isomerized under a first set of isomerization conditions in the presence of a first isomerization catalyst to form additional para-xylene. The isomerization effluent 217 or a portion thereof (shown as stream 127 ) is then supplied to the xylene separator 115 . Xylene separator 115, para-xylene recovery subsystem 119, and isomerization zone 125 form a xylene loop.

在圖1之傳統方法中,若異構化區125沒有足夠能力將流123中含有的乙苯轉化,則非所欲地乙苯會在二甲苯回路中超時累積至高濃度。為了防止乙苯在二甲苯回路中累積,尤其在流113、145、117、與123包含顯著濃度之乙苯(例如以其中含有的C8芳烴總重量為基準計≥10重量%)情況下,典型上在圖1之傳統方法中在異構化區中異構化觸媒與異構化條件被選定以使得在汽相異構化條件下透過脫乙基化將至少一部分乙苯轉化成苯。脫乙基化導致乙苯分子中乙基轉化成乙烷(在分子氫與用於異構化區之脫乙基化觸媒的氫化功能存在下)。乙苯之脫乙基化的結果是失去了結合至苯環之乙基取代基。進行二甲苯實質上汽相異構化需要在異構化區中將烴類加熱至高溫,隨後為了在二甲苯分離器115中分離而將異構化流出物冷卻與冷凝成液態,因此是高耗能的。In the conventional process of Figure 1, if isomerization zone 125 does not have sufficient capacity to convert the ethylbenzene contained in stream 123, ethylbenzene undesirably accumulates to high concentrations over time in the xylene loop. To prevent ethylbenzene from accumulating in the xylene loop, especially where streams 113, 145, 117, and 123 contain significant concentrations of ethylbenzene (eg, ≥ 10 wt% based on the total weight of C8 aromatics contained therein), typically The isomerization catalyst and isomerization conditions in the isomerization zone above in the conventional process of Figure 1 are selected such that at least a portion of the ethylbenzene is converted to benzene by deethylation under vapor phase isomerization conditions. Deethylation results in the conversion of the ethyl groups in the ethylbenzene molecule to ethane (in the presence of molecular hydrogen and the hydrogenation function of the deethylation catalyst used in the isomerization zone). Deethylation of ethylbenzene results in the loss of the ethyl substituent bound to the benzene ring. Substantially vapor phase isomerization of xylenes requires heating the hydrocarbons to high temperature in the isomerization zone, followed by cooling and condensation of the isomerization effluent to a liquid state for separation in xylene separator 115, and is therefore expensive. can.

如圖2顯示,假如流123與215可包含顯著量的乙苯,在圖2中可在汽相條件下操作第一異構化區125以透過脫乙基化將至少一部分乙苯轉化,使得二甲苯回路中乙苯量不變得太高,類似於包括在汽相條件下操作之異構化區的圖1之傳統方法。As shown in Figure 2, provided that streams 123 and 215 may contain significant amounts of ethylbenzene, in Figure 2 the first isomerization zone 125 may be operated under vapor phase conditions to convert at least a portion of the ethylbenzene by deethylation such that The amount of ethylbenzene in the xylene loop is not too high, similar to the conventional process of Figure 1 including an isomerization zone operating under vapor phase conditions.

然而,在圖2之方法中,由於區203、205、與209的至少一者之存在,及因而產生的和圖1中對應流比較流117中乙苯量減少,使異構化區125中對乙苯脫乙基化之需要減少,因此使區205中對汽相異構化條件的需要減少。因此,在區125中在異構化條件下可以加工至少一部分,理想地大部分,及甚至全部之對二甲苯耗盡流123,以使得在其中的C8芳烴是實質上液相。因為這樣之液相異構化是在比圖1的方法中需要之傳統汽相異構化的操作溫度明顯更低之操作溫度下進行,因此是大幅節能並大幅提高能源效率的。如圖2顯示,將對二甲苯耗盡流123分為流213與215。將流215供應給異構化區125,其較佳地在液相異構化條件下操作。可以將流213或其一部分導走而後作為例如莫耳氣體摻合料之洗淨流。從二甲苯回路導走流213或其一部分可以使在回路中循環的乙苯量減少。此外或或者,可以將流213或其一部分再循環(未顯示)至區203、205、與209(若存在的話)之任一者,較佳為區205與209(若存在的話)中任一者及更佳為區209(若存在的話),特別是在流123中乙苯量已經達到非常高程度情況下。此外或或者,可以將流213或其一部分供應給第二異構化區(未顯示,其可在汽相條件下操作)以將二甲苯異構化及以傳統方式透過脫乙基化將乙苯轉化。在隨意分離輕烴和/或非芳烴之後也可以將第二異構化區的流出物或其一部分供應給二甲苯分離器115。However, in the process of FIG. 2, due to the presence of at least one of zones 203, 205, and 209, and the resulting reduction in the amount of ethylbenzene in stream 117 compared to the corresponding stream in FIG. The need for deethylation of ethylbenzene is reduced, thus reducing the need for vapor phase isomerization conditions in zone 205. Accordingly, at least a portion, ideally most, and even all of the paraxylene depleted stream 123 may be processed under isomerization conditions in zone 125 such that the C8 aromatics therein are substantially liquid phase. Because such liquid phase isomerization is carried out at significantly lower operating temperatures than the conventional vapor phase isomerization required in the process of Figure 1, there is substantial energy savings and a substantial increase in energy efficiency. As shown in FIG. 2 , the paraxylene depleted stream 123 is split into streams 213 and 215 . Stream 215 is supplied to isomerization zone 125, which preferably operates under liquid phase isomerization conditions. Stream 213, or a portion thereof, may be directed away as a purge stream of, for example, a molar gas admixture. Diverting stream 213, or a portion thereof, from the xylene loop can reduce the amount of ethylbenzene circulating in the loop. Additionally or alternatively, stream 213 or a portion thereof may be recycled (not shown) to any of zones 203, 205, and 209 (if present), preferably any of zones 205 and 209 (if present) or more preferably zone 209 (if present), especially if the amount of ethylbenzene in stream 123 has reached a very high level. Additionally or alternatively, stream 213, or a portion thereof, can be supplied to a second isomerization zone (not shown, which can be operated under vapor phase conditions) to isomerize xylenes and ethyl acetate by deethylation in a conventional manner Benzene conversion. The effluent of the second isomerization zone, or a portion thereof, may also be supplied to xylene separator 115 after optional separation of light and/or non-aromatic hydrocarbons.

和流215比較,離開第一異構化區125之第一異構化流出物217富含對二甲苯。接著為了從流217回收對二甲苯,將一部分(如流127顯示)或全部(未顯示)的流217供應給二甲苯分離器。若在汽相異構化條件下操作區125,流217除了芳烴(比如二甲苯與乙苯)之外,還可包含由脫乙基化產生之輕烴與非芳烴。在進料至二甲苯分離器115之前,可將流217和/或127分離以移除這類輕烴與非芳烴(未顯示)。若在液相異構化條件下操作區125而不將乙苯脫乙基化,流217傾向於包含明顯比離開在汽相條件下之異構化區(若有的話)之對應流出物流更低的量之這類輕烴與非芳烴。因此,可以將離開液相異構化區125的流217或其一部分(如流127顯示)直接供應給二甲苯分離器115而沒有中間分離步驟(隨意加熱/冷卻等等)。只在液相異構化區中而不使用汽相異構化區將對二甲苯耗盡流123實質上全部異構化清楚地導致和需要汽相異構化區的圖1之傳統方法比較,更簡單、更不耗能、且更加節能的二甲苯回路。Compared to stream 215, first isomerization effluent 217 exiting first isomerization zone 125 is enriched in para-xylene. A portion (shown as stream 127) or all (not shown) of stream 217 is then supplied to a xylene separator in order to recover para-xylene from stream 217. If zone 125 is operated under vapor phase isomerization conditions, stream 217 may contain light and non-aromatic hydrocarbons resulting from deethylation in addition to aromatics such as xylenes and ethylbenzene. Streams 217 and/or 127 may be separated to remove such light and non-aromatic hydrocarbons (not shown) prior to feeding to xylene separator 115. If zone 125 is operated under liquid phase isomerization conditions without deethylating ethylbenzene, stream 217 tends to contain significantly more than the corresponding effluent stream leaving the isomerization zone (if any) under vapor phase conditions Lower amounts of such light and non-aromatic hydrocarbons. Thus, stream 217, or a portion thereof (as shown by stream 127) exiting liquid phase isomerization zone 125, can be supplied directly to xylene separator 115 without intermediate separation steps (optional heating/cooling, etc.). The isomerization of substantially all of the para-xylene depleted stream 123 in the liquid phase isomerization zone alone without the use of a vapor phase isomerization zone clearly results in a comparison of the conventional process of Figure 1 with the need for a vapor phase isomerization zone , a simpler, less energy-consuming, and more energy-efficient xylene circuit.

如圖2顯示,將第一異構化流出物217分為流127與219。在隨意進一步中間分離(視情況而定)之後,將流217或其一部分供應給二甲苯分離器115。可以將流219或其一部分導走作為洗淨流並用於例如動力汽油摻合料。此外或或者,可以將流219或其一部分再循環(未顯示)至區203、205、與209(若存在的話)之一或多者,較佳為區205與209(若存在的話)之一或多者,及較佳為區209(若存在的話),其中可以將含有之乙苯透過烷基-脫甲基化轉化成更有價值的分子。此外或或者,可以將流219或其一部分繞過二甲苯分離器115直接再循環(未顯示)至對二甲苯回收次系統119,以回收在其中的一部分對二甲苯。繞過二甲苯分離器可以進一步改善二甲苯回路之能量效率。汽相異構化區的異構化流出物典型上含有由例如脫烷基化產生之輕烴與其他非芳烴,因此在沒有中間分離步驟(例如在脫庚烷塔和/或二甲苯分離器115中)情況下不直接再循環至對二甲苯回收次系統。相反地,由液相異構化區製得之異構化流出物含有濃度比典型汽相異構化流出物(若有的話)低得多的這類輕烴與其他非芳烴,因此可以繞過二甲苯分離器直接再循環至對二甲苯回收次系統以回收在異構化區中形成之額外的對二甲苯。液相異構化區125隨意地合併將流213和/或217或其一部分再循環至烷基-脫甲基化區203、205、與209之一或多者可以完全地消除對二甲苯回路中汽相異構化區的需要,導致和如圖1所圖解之需要在二甲苯回路中使用汽相異構化區的傳統方法比較,總體上更高之能量效率,及更有價值的甲基化芳烴產量。在區203、205、和/或209中一部分C2+-烴基取代的芳烴轉化成甲基化芳烴能夠實現和在汽相異構化區中將至少一部分乙苯脫烷基化之圖1的傳統方法比較,更多之二甲苯產量。As shown in FIG. 2 , the first isomerization effluent 217 is split into streams 127 and 219 . After optional further intermediate separation (as the case may be), stream 217, or a portion thereof, is supplied to xylene separator 115. Stream 219, or a portion thereof, may be directed away as a wash stream and used, for example, for a motor gasoline blend. Additionally or alternatively, stream 219, or a portion thereof, may be recycled (not shown) to one or more of zones 203, 205, and 209 (if present), preferably one of zones 205 and 209 (if present) Alternatively, and preferably, zone 209 (if present), where the ethylbenzene contained can be converted to more valuable molecules via alkyl-demethylation. Additionally or alternatively, stream 219, or a portion thereof, may be recycled (not shown) directly to paraxylene recovery subsystem 119 bypassing xylene separator 115 to recover a portion of paraxylene therein. Bypassing the xylene separator can further improve the energy efficiency of the xylene loop. The isomerization effluent from the vapor phase isomerization zone typically contains light hydrocarbons and other non-aromatic hydrocarbons resulting from, for example, dealkylation, and therefore does not have intermediate separation steps (eg, in a deheptanizer and/or xylene separator). 115) is not directly recycled to the p-xylene recovery sub-system. Conversely, the isomerization effluent from the liquid phase isomerization zone contains much lower concentrations of such light hydrocarbons and other non-aromatic hydrocarbons than typical vapor phase isomerization effluents, if any, and therefore can The additional para-xylene formed in the isomerization zone is recycled directly to the para-xylene recovery subsystem, bypassing the xylene separator. Liquid phase isomerization zone 125 is optionally combined to recycle streams 213 and/or 217 or a portion thereof to one or more of alkyl-demethylation zones 203, 205, and 209 or can completely eliminate the paraxylene loop The need for a vapor-phase isomerization zone in the system results in an overall higher energy efficiency, and a more valuable formaldehyde, compared to conventional processes that require the use of a vapor-phase isomerization zone in the xylene loop as illustrated in Figure 1. Alkylated aromatics yield. Conversion of a portion of C2+-hydrocarbyl-substituted aromatics to methylated aromatics in zones 203, 205, and/or 209 enables the implementation of the conventional process of Figure 1 and dealkylation of at least a portion of ethylbenzene in a vapor phase isomerization zone In comparison, more xylene yields.

如圖2顯示,類似於圖1,接著在蒸餾塔131中將由二甲苯分離器115製得之和流211比較富含C9、C10、與C11+芳烴的富C9+芳烴流129分離以獲得富C9至C10芳烴流133與富C11+芳烴流135。可以將流135導走並作為例如動力汽油摻合料、燃料油等等。富C9至C10芳烴流133富含例如甲基化芳烴(比如三甲苯與四甲苯)、與C2+-烴基取代之芳烴(比如乙基甲苯、二氫茚、乙基二甲苯、二乙苯、甲基二氫茚、四氫萘、甲基四氫萘等等)。接著將流133連同富苯/甲苯流146供應給其中配置了轉烷基化觸媒的轉烷基化區147。或者,可將一部分或全部流129供應給轉烷基化區147。在轉烷基化觸媒存在下與在轉烷基化條件下,C9+芳烴與苯/甲苯反應以製造二甲苯。典型上,如圖1所圖解的由重組油流製得之流129與133含有大量C2+-烴基取代的芳烴。在這類C9至C10 C2+-烴基取代的芳烴與苯/甲苯之間的直接轉烷基化會產生乙苯與其他C9+C2+-烴基取代之芳烴。為了增加轉烷基化區147中二甲苯和/或苯/甲苯的產量,典型上在圖1的方法中轉烷基化觸媒與轉烷基化條件被選定以使得在轉烷基化區中透過C2+烷基之芳族環全部脫烷基化將至少一部分C9至C10 C2+-烴基取代的芳烴與乙苯轉化成甲苯和/或苯。脫烷基化導致C2+烷基轉化成輕烴(典型上在分子氫與用於轉烷基化區之脫烷基化觸媒的氫化功能存在下)。因此,為了製造二甲苯而移除C2+烷基是一種損失。最好將C2+烷基轉化成附接至苯環之甲基-其後來透過例如異構化、轉烷基化、和/或歧化可以用於製造二甲苯。與乙苯的脫乙基化相似,在轉烷基化區中C9至C10 C2+-烴基取代之芳烴與乙苯的有效脫烷基化典型上需要要求高溫之汽相條件。因為為了蒸餾分離而需要將轉烷基化區的蒸汽流出物冷卻與冷凝成液體,所以這樣之汽相轉烷基化是高耗能的。As shown in FIG. 2, similar to FIG. 1, the sum stream 211 produced by the xylene separator 115 is then separated in distillation column 131 to obtain a C9+aromatics stream 129 rich in C9, C10, and C11+aromatics to obtain C9-rich to C11+aromatics C10 aromatics stream 133 and C11+ aromatics stream 135 . Stream 135 may be directed away and used, for example, as a motor gasoline blend, fuel oil, or the like. C9 to C10 rich aromatics stream 133 is rich in, for example, methylated aromatics (such as tritoluene and tetratoluene), and C2+-hydrocarbyl substituted aromatics (such as ethyltoluene, dihydroindene, ethylxylene, diethylbenzene, methylbenzene indane, tetrahydronaphthalene, methyltetrahydronaphthalene, etc.). Stream 133 is then supplied along with benzene/toluene rich stream 146 to transalkylation zone 147 in which the transalkylation catalyst is disposed. Alternatively, a portion or all of stream 129 may be supplied to transalkylation zone 147 . In the presence of a transalkylation catalyst and under transalkylation conditions, C9+ aromatics are reacted with benzene/toluene to produce xylenes. Typically, streams 129 and 133 produced from the reconstituted oil stream as illustrated in Figure 1 contain substantial amounts of C2+-hydrocarbyl substituted aromatics. Direct transalkylation between such C9 to C10 C2+-hydrocarbyl substituted aromatics and benzene/toluene yields ethylbenzene and other C9+C2+-hydrocarbyl substituted aromatics. To increase xylene and/or benzene/toluene production in transalkylation zone 147, typically in the process of Figure 1 the transalkylation catalyst and transalkylation conditions are selected such that in the transalkylation zone At least a portion of the C9 to C10 C2+-hydrocarbyl-substituted aromatic hydrocarbons and ethylbenzene are converted to toluene and/or benzene through the complete dealkylation of the aromatic rings of the C2+ alkyl group. Dealkylation results in the conversion of C2+ alkyl groups to light hydrocarbons (typically in the presence of molecular hydrogen and the hydrogenation function of the dealkylation catalyst used in the transalkylation zone). Therefore, it is a loss to remove the C2+ alkyl groups in order to make xylenes. The C2+ alkyl group is preferably converted to a methyl group attached to the benzene ring - which can then be used to make xylenes via, for example, isomerization, transalkylation, and/or disproportionation. Similar to the deethylation of ethylbenzene, efficient dealkylation of C9 to C10 C2+-hydrocarbyl substituted aromatics with ethylbenzene in the transalkylation zone typically requires vapor phase conditions that require high temperatures. Such vapor phase transalkylation is energy intensive because of the need to cool and condense the vapor effluent of the transalkylation zone to a liquid for distillative separation.

然而,在圖2的本發明方法中,由於區203、205、與209之一或多者的存在,和圖1之方法中對應流比較,流129與133中C2+-烴基取代的芳烴量明顯減少,因為在區203、205、和/或209中可以將很大一部分這類C9+C2+-烴基取代之芳烴轉化成甲基化芳烴。流129與133中低濃度的C2+-烴基取代之芳烴使對轉烷基化區147中脫烷基化的需要明顯減少。對脫烷基化之需要減少能夠在區147中在明顯低於需要脫烷基化的傳統汽相轉烷基化方法之溫度下實現轉烷基化,以使得一部分或甚至全部之存在於區147中的C8芳烴是液相。這樣之部分液相或完全液相轉烷基化和傳統的為脫烷基化而需要之完全汽相轉烷基化比較可以大幅節能並大幅提高能源效率。在區203、205、和/或209中一部分C2+-烴基取代之芳烴轉化成甲基化芳烴也能夠實現和在轉烷基化區中將至少一部分C2+-烴基取代的芳烴脫烷基化之圖1的傳統方法比較,更多的二甲苯產量。However, in the inventive process of Figure 2, due to the presence of one or more of zones 203, 205, and 209, the amount of C2+-hydrocarbyl-substituted aromatics in streams 129 and 133 is significant compared to the corresponding streams in the process of Figure 1 Reduced because a significant portion of such C9+C2+-hydrocarbyl substituted aromatics can be converted to methylated aromatics in zones 203, 205, and/or 209. The low concentrations of C2+-hydrocarbyl-substituted aromatics in streams 129 and 133 significantly reduce the need for dealkylation in transalkylation zone 147. The reduced need for dealkylation enables transalkylation to be achieved in zone 147 at temperatures significantly lower than conventional vapor phase transalkylation processes requiring dealkylation such that some or even all of it is present in zone 147. The C8 aromatics in 147 are in the liquid phase. Such partial liquid phase or full liquid phase transalkylation can result in substantial energy savings and a substantial increase in energy efficiency compared to conventional full vapor phase transalkylation required for dealkylation. Conversion of a portion of the C2+-hydrocarbyl substituted aromatics to methylated aromatics in zones 203, 205, and/or 209 can also be achieved and dealkylation of at least a portion of the C2+-hydrocarbyl substituted aromatics in the transalkylation zone. 1 compared to the traditional method, more xylene yield.

在包括C2+-烴基取代的芳烴之脫烷基化的傳統轉烷基化方法中,將一部分C2+烷基和/或稠合至芳族環的脂族環轉化成輕烴,及由於芳族環損失而可能製得非芳烴。因此,在供應給芳烴分離塔(例如圖1中苯塔141)之前,可能需要先分離轉烷基化流出物以移除這類輕烴與非芳烴(例如透過脫庚烷塔,未顯示)。在圖2之本發明方法的實施方式中,恰恰相反,因為流133中少量之C2+-烴基取代之芳烴,使C2+-烴基取代的芳烴之脫烷基化最小化或消除,轉烷基化流出物149包含輕烴與這樣少量的非芳烴(若有的話),在沒有中間分離步驟下可將流出物149直接供應給苯塔141以移除輕烴與非芳烴(在隨意加熱/冷卻等等下,視情況而定)。因此,圖2之方法中一或多個烷基-脫甲基化區的存在能夠實現需要更少設備與步驟也大幅節能並大幅提高能源效率之更簡單的轉烷基化方法。圖2中流149可以包含例如苯、甲苯、二甲苯、三甲苯、四甲苯、及理想地少量C8、C9、C10、與C11+C2+-烴基取代之芳烴。In traditional transalkylation processes involving dealkylation of C2+-hydrocarbyl-substituted aromatics, a portion of the C2+ alkyl groups and/or aliphatic rings fused to the aromatic ring are converted to light hydrocarbons, and due to the aromatic ring Loss of non-aromatic hydrocarbons may be produced. Therefore, it may be necessary to separate the transalkylation effluent to remove such light and non-aromatic hydrocarbons (eg, through a deheptanizer, not shown) prior to supplying it to an aromatics separation column (eg, benzene column 141 in Figure 1 ) . In the embodiment of the process of the invention of Figure 2, the opposite is true because the small amount of C2+-hydrocarbyl substituted aromatics in stream 133 minimizes or eliminates dealkylation of the C2+-hydrocarbyl substituted aromatics, and the transalkylation effluent Product 149 contains light hydrocarbons and such small amounts of non-aromatic hydrocarbons (if any) that effluent 149 can be supplied directly to benzene column 141 without an intermediate separation step to remove light and non-aromatic hydrocarbons (on optional heating/cooling etc. wait, as the case may be). Thus, the presence of one or more alkyl-demethylation zones in the process of Figure 2 enables a simpler transalkylation process that requires less equipment and steps but also significantly saves energy and improves energy efficiency. Stream 149 in Figure 2 may contain, for example, benzene, toluene, xylenes, mesitylenes, tetratoluenes, and desirably small amounts of C8, C9, C10, and C11+C2+-hydrocarbyl substituted aromatic hydrocarbons.

在某些實施方式中,≥50重量%、或≥60重量%、或≥70重量%、或≥80重量%、或≥90重量%、或≥95重量%、或≥98重量%的流133是甲基化芳烴。因此,轉烷基化區147中大部分反應可為在芳烴(比如苯、甲苯、三甲苯、與四甲苯)之間交換甲基,導致二甲苯的淨產生及C9至C10甲基化芳烴、和苯和/或甲苯之消耗。較佳地,這樣的轉烷基化是在液相中進行,其中(i)存在於轉烷基化區中之C8芳烴是實質上液相;及/或(ii)存在於轉烷基化區中的芳烴(包括苯)是實質上液相。轉烷基化流出物149可以包含苯、甲苯、二甲苯、C9+甲基化芳烴、與少量C8+C2+-烴基取代的芳烴。In certain embodiments, > 50 wt%, or > 60 wt %, or > 70 wt %, or > 80 wt %, or > 90 wt %, or > 95 wt %, or > 98 wt % of stream 133 are methylated aromatic hydrocarbons. Thus, most of the reactions in transalkylation zone 147 may be the exchange of methyl groups between aromatics (such as benzene, toluene, trimethylbenzene, and tetratoluene), resulting in a net production of xylenes and C9 to C10 methylated aromatics, and benzene and/or toluene consumption. Preferably, such transalkylation is carried out in the liquid phase, wherein (i) the C8 aromatics present in the transalkylation zone are substantially liquid phase; and/or (ii) are present in the transalkylation Aromatics (including benzene) in the zone are in a substantially liquid phase. Transalkylation effluent 149 may contain benzene, toluene, xylenes, C9+ methylated aromatics, and minor amounts of C8+C2+-hydrocarbyl substituted aromatics.

如圖2顯示,接著將流149供應給苯塔141以分離在其中含有的芳烴,以獲得苯產物流143、富含甲苯和/或苯之富甲苯流146(其被部分或全部地進料至轉烷基化區147)、及富C8+芳烴流145(包含二甲苯、C9+甲基化芳烴、與少量C8+C2+-烴基取代的芳烴),其被供應給二甲苯分離器115,如上述。As shown in Figure 2, stream 149 is then supplied to benzene column 141 to separate the aromatics contained therein to obtain benzene product stream 143, toluene-rich and/or benzene-rich stream 146 (which is partially or fully fed to transalkylation zone 147), and C8+ aromatics-rich stream 145 (comprising xylenes, C9+ methylated aromatics, and small amounts of C8+C2+-hydrocarbyl-substituted aromatics), which is fed to xylene separator 115, as described above .

因此,在本揭露之圖2的本發明方法中,藉由利用方法中烷基-脫甲基化區203、205、與209之一或多者,可以使進入二甲苯回路和/或轉烷基化區的C2+-烴基取代之芳烴量明顯減少。二甲苯回路中乙苯量減少使對乙苯脫乙基化的需要減少,使對汽相異構化之需要減少或消除,及能夠實現僅液相異構化,導致(i)較少需要設備、較低操作溫度、較低能量強度、與較高能量效率之更簡單的二甲苯回路,及(ii)在二甲苯回路中更高之二甲苯生產率。轉烷基化區的進料中C9+C2+-烴基取代之芳烴量減少使對C9+C2+-烴基取代的芳烴脫烷基化之需要減少,使對汽相轉烷基化的需要減少或消除,及能夠實現僅液相轉烷基化,導致(i)較少需要設備、較低操作溫度、較低能量強度、與較高能量效率之更簡單的轉烷基化方法,及(ii)在轉烷基化區中更高之甲基化芳烴(特別是二甲苯)生產率。Thus, in the inventive process of Figure 2 of the present disclosure, by utilizing one or more of the alkyl-demethylation zones 203, 205, and 209 in the process, it is possible to allow access to the xylene loop and/or transalkylation The amount of aromatics substituted by C2+-hydrocarbyl groups in the alkylation zone is significantly reduced. The reduction in the amount of ethylbenzene in the xylene loop reduces the need for ethylbenzene deethylation, reduces or eliminates the need for vapor phase isomerization, and enables only liquid phase isomerization, resulting in (i) less need for Equipment, lower operating temperature, lower energy intensity, simpler xylene loop with higher energy efficiency, and (ii) higher xylene productivity in the xylene loop. The reduction in the amount of C9+C2+-hydrocarbyl substituted aromatics in the feed to the transalkylation zone reduces the need for dealkylation of C9+C2+-hydrocarbyl substituted aromatics and reduces or eliminates the need for vapor phase transalkylation , and the ability to achieve only liquid phase transalkylation, resulting in (i) a simpler transalkylation process that requires less equipment, lower operating temperatures, lower energy intensity, and higher energy efficiency, and (ii) Higher production rates of methylated aromatics (especially xylenes) in the transalkylation zone.

如圖2顯示,類似於圖1,將富C6至C7烴流111供應給萃取蒸餾區137,其中製得富C6至C7芳烴流139與芳烴耗盡之萃餘物流138。可以將和流111比較富含非芳烴的流138導走並作為例如動力汽油摻合料。接著將流139供應給苯塔141,製得苯產物流143、富甲苯流146、與富C8+芳烴流145。將富甲苯流146(或其一部分)連同富C9至C10芳烴流133供應給轉烷基化區147,如上述。接著將富C8+芳烴流145連同流113供應給二甲苯分離器115,如上述。As shown in FIG. 2 , similar to FIG. 1 , a C6 to C7 rich hydrocarbon stream 111 is supplied to an extractive distillation zone 137 where a C6 to C7 aromatics rich stream 139 and an aromatics depleted raffinate stream 138 are produced. Stream 138, which is richer in non-aromatic hydrocarbons than stream 111, can be directed away and used as, for example, a motor gasoline blendstock. Stream 139 is then supplied to benzene column 141 to produce benzene product stream 143, toluene-rich stream 146, and C8+ aromatics-rich stream 145. Toluene-rich stream 146 (or a portion thereof) is supplied to transalkylation zone 147 along with C9 to C10 aromatics-rich stream 133, as described above. C8+ aromatics-rich stream 145 is then fed to xylene separator 115 along with stream 113, as described above.

在圖2之本發明方法中,若區203與205中一者或兩者存在的話,將一部分區105中製得的和/或存在於流107中的C2+-烴基取代之芳烴轉化成甲基化芳烴(包括甲苯)。例如,將乙苯至少部分地轉化成甲苯,及可以將經一個C2+烷基取代之C9+芳烴烷基-脫甲基化以製得甲苯。和區203與205都不存在的情況比較,可以使這類實施方式中流207中甲苯量增加。因此,包括區203與205中一者或兩者的本發明方法之一個實施方式可以在流111、139、與146中產生更高甲苯量。如上文所討論,在區209存在情況下,流211含有由例如乙苯轉化之甲苯與經C3+烷基單取代的C9+芳烴。在二甲苯分離器115(未顯示)中可將存在於流211中之甲苯分離,接著供應給芳烴萃取區137,導致流139與146中甲苯量增加。可以將流146中增加的甲苯產量至少部分地用於轉烷基化區147以製造額外數量之二甲苯,如圖2所圖解。然而,在圖1顯示的及上文討論之比較的方法中,在區203、205、與209之任一者不存在下,典型上在汽相異構化區125和/或汽相轉烷基化區147中透過脫烷基化將存在於流107中的C2+-烴基取代之芳烴轉化成苯。因此,在圖2的方法中苯產物流143之量可以比在圖1之傳統方法中的更低。儘管苯是有價值工業化學品,但可以由流146中增加的甲苯量製得之對二甲苯會是比流143中減少的苯產量明顯更高之經濟價值。In the process of the invention of Figure 2, a portion of the C2+-hydrocarbyl-substituted aromatics produced in zone 105 and/or present in stream 107 are converted to methyl groups if one or both of zones 203 and 205 are present Aromatic hydrocarbons (including toluene). For example, ethylbenzene is at least partially converted to toluene, and C9+ arenes substituted with one C2+ alkyl group can be alkyl-demethylated to produce toluene. The amount of toluene in stream 207 can be increased in such embodiments as compared to the absence of zones 203 and 205. Accordingly, one embodiment of the present process that includes one or both of zones 203 and 205 can produce higher amounts of toluene in streams 111 , 139 , and 146 . As discussed above, in the presence of zone 209, stream 211 contains toluene converted from, for example, ethylbenzene and C9+ aromatics monosubstituted with C3+ alkyl groups. Toluene present in stream 211 may be separated in xylene separator 115 (not shown) and then supplied to aromatics extraction zone 137, resulting in an increase in the amount of toluene in streams 139 and 146. The increased toluene production in stream 146 may be used at least in part in transalkylation zone 147 to produce additional quantities of xylenes, as illustrated in FIG. 2 . However, in the comparative process shown in Figure 1 and discussed above, in the absence of any of zones 203, 205, and 209, typically in the vapor phase isomerization zone 125 and/or vapor phase transparaffin The C2+-hydrocarbyl-substituted aromatic hydrocarbons present in stream 107 are converted to benzene in the alkylation zone 147 by dealkylation. Therefore, the amount of benzene product stream 143 may be lower in the process of FIG. 2 than in the conventional process of FIG. 1 . Although benzene is a valuable industrial chemical, the paraxylene that can be produced from the increased amount of toluene in stream 146 would be of significantly higher economic value than the reduced benzene production in stream 143.

或者或此外,可以將至少一部分富甲苯流146供應給甲苯歧化區(未顯示),其中甲苯在歧化條件下接觸配置於其中的歧化觸媒以製造富含二甲苯之歧化流出物。任何甲苯歧化觸媒與反應條件可用於轉化至少一部分流146。歧化觸媒較佳地對於對二甲苯產量高於間二甲苯與鄰二甲苯產量具形狀選擇性,能夠實現以歧化流出物中全部C8芳烴為基準計高對二甲苯濃度。使用例如本領域中已知的高效結晶化技術從高對二甲苯濃度C8芳烴混合物方便地分離出高純度對二甲苯產物。在圖2中,可將一部分歧化流出物(比如結晶化分離步驟的濾液)供應給對二甲苯回收次系統119以製造對二甲苯產物流121。甲苯歧化方法、觸媒、與條件在例如美國專利號5,476,823與6,486,373中有描述,以引用方式將其全部內容併入本案。Alternatively or additionally, at least a portion of the toluene-rich stream 146 may be supplied to a toluene disproportionation zone (not shown), where the toluene contacts a disproportionation catalyst disposed therein under disproportionation conditions to produce a xylene-rich disproportionation effluent. Any toluene disproportionation catalyst and reaction conditions can be used to convert at least a portion of stream 146. The disproportionation catalyst preferably has a shape selectivity for the yield of para-xylene over the yield of meta-xylene and ortho-xylene, and can achieve a high para-xylene concentration based on all C8 aromatics in the disproportionation effluent. The high purity paraxylene product is conveniently isolated from the high paraxylene concentration C8 aromatic mixture using, for example, efficient crystallization techniques known in the art. In FIG. 2 , a portion of the disproportionation effluent, such as the filtrate of the crystallization separation step, may be supplied to para-xylene recovery subsystem 119 to produce para-xylene product stream 121 . Toluene disproportionation methods, catalysts, and conditions are described, for example, in US Pat. Nos. 5,476,823 and 6,486,373, which are hereby incorporated by reference in their entirety.

或者或此外,可以將至少一部分富甲苯流146和/或一部分苯產物流143連同甲基化劑進料(未顯示)供應給甲基化區。在甲基化條件下接觸配置於甲基化區中的甲基化觸媒時,苯/甲苯與甲基化劑反應以製造包含二甲苯之甲基化流出物。較佳甲基化劑是甲醇、二甲醚、與其混合物。甲基化區可以包括固定床反應器、流體床反應器、移動床反應器等等。可以將甲基化區中製得之與存在於甲基化流出物中的二甲苯與其他組分(苯/甲苯、甲基化劑等等)分離,接著至少部分地供應給對二甲苯回收次系統119,從119製得流121中額外數量的對二甲苯產物。甲基化方法、觸媒、與條件在例如美國專利號5,939,597與6,423,879中有描述,以引用方式將其全部內容併入本案。 圖4:由經加氫處理的蒸汽裂解石油腦(「SCN」)製造二甲苯之示範性本發明方法Alternatively or additionally, at least a portion of the toluene-rich stream 146 and/or a portion of the benzene product stream 143 may be supplied to the methylation zone along with a methylating agent feed (not shown). Upon contacting the methylation catalyst disposed in the methylation zone under methylation conditions, the benzene/toluene reacts with the methylating agent to produce a methylation effluent comprising xylenes. Preferred methylating agents are methanol, dimethyl ether, and mixtures thereof. The methylation zone may include fixed bed reactors, fluid bed reactors, moving bed reactors, and the like. The xylene produced in the methylation zone and present in the methylation effluent can be separated from other components (benzene/toluene, methylating agent, etc.) and then at least partially supplied to para-xylene recovery Subsystem 119, produces an additional amount of para-xylene product in stream 121 from 119. Methylation methods, catalysts, and conditions are described, for example, in US Pat. Nos. 5,939,597 and 6,423,879, which are hereby incorporated by reference in their entirety. Figure 4: Exemplary inventive process for the production of xylenes from hydrotreated steam cracked naphtha ("SCN")

在石化廠中,可以將原油煉製產生之輕石油腦進料至稱為蒸汽裂解器的熱解反應器(包含位於加熱爐中的捲繞管段),其中先在捲繞管之對流區中將輕石油腦中烴類加熱至中溫,接著在輻射區中簡短地加熱至高溫以實現熱解,製造蒸汽裂解混合物,其包含氫、高價值化學品比如烯烴類(例如乙烯、丙烯、丁烯等等)、蒸汽裂解石油腦、製氣油與焦油。在離開蒸汽裂解器時可以將快速淬熄之蒸汽裂解混合物分離以獲得各種烯烴類產物、氫產物、燃料氣、SCN流、製氣油流與焦油流。接著典型上將SCN流(包含芳烴與非芳烴)加氫處理使雙烯屬與烯屬非芳烴和/或烯屬芳烴上的烯烴取代基飽和。加氫處理SCN也可以使存在於SCN中之某些化合物中的雜原子(例如硫與氮)減少以減少或防止下游方法中使用之觸媒(例如用於本揭露之方法的烷基-脫甲基化觸媒)中毒。可以從經加氫處理之SCN流萃取出和/或製得有價值芳烴。In petrochemical plants, light naphtha from crude oil refining can be fed to a pyrolysis reactor called a steam cracker (comprising a coiled tube section located in a heating furnace), where first in the convection zone of the coiled tube Heating hydrocarbons in light petroleum naphtha to medium temperature followed by brief heating to high temperature in a radiant zone to achieve pyrolysis, producing a steam cracking mixture containing hydrogen, high value chemicals such as olefins (e.g. ethylene, propylene, butylene) alkene, etc.), steam cracked naphtha, gas oil and tar. The rapidly quenched steam cracked mixture can be separated upon exiting the steam cracker to obtain various olefinic products, hydrogen products, fuel gas, SCN stream, gas oil stream, and tar stream. The SCN stream (containing aromatics and non-aromatics) is then typically hydrotreated to saturate the olefinic substituents on the diolefinic and olefinic non-aromatics and/or olefinic arenes. Hydrotreating the SCN can also reduce heteroatoms (eg, sulfur and nitrogen) present in certain compounds in the SCN to reduce or prevent catalysts used in downstream processes (eg, alkyl-dealkylation used in the methods of the present disclosure). methylation catalyst) poisoning. Valuable aromatics can be extracted and/or produced from the hydrotreated SCN stream.

圖3圖示加工典型經加氫處理的SCN流之先前技術方法。在此圖中,先將經加氫處理的SCN流303供應給分離系統305(例如一或多個蒸餾塔)以獲得富C5-烴流307、富C7+烴或富C8+烴流309、與富苯或富C6至C7芳烴流311。接著將流311(包含苯與其非芳烴共沸物及隨意甲苯與其非芳烴共沸物)供應給萃取分離區313以獲得基本上由苯與隨意甲苯組成之富芳烴流317及非芳烴萃餘物流315。可以將流315導走並作為例如動力汽油摻合料、燃料油等等。可以將流317(若含有大量甲苯的話)供應給苯塔319以製得基本上由苯組成之苯產物流321與富甲苯流323。典型上將由分離次系統305製得之富含C7+芳烴或C8+芳烴的流309導走並作為例如動力汽油摻合料。Figure 3 illustrates a prior art method of processing a typical hydrotreated SCN stream. In this figure, the hydrotreated SCN stream 303 is first supplied to a separation system 305 (eg, one or more distillation columns) to obtain a C5-rich stream 307, a C7+ hydrocarbon-rich or C8+ hydrocarbon-rich stream 309, and Benzene or C6 to C7 rich aromatics stream 311. Stream 311 (comprising benzene and its non-aromatics azeotrope and optional toluene and its non-aromatics azeotrope) is then supplied to extractive separation zone 313 to obtain an aromatics-rich stream 317 consisting essentially of benzene and optional toluene and a non-aromatic raffinate stream 315. Stream 315 may be directed away and used, for example, as a motor gasoline blend, fuel oil, or the like. Stream 317 (if containing substantial amounts of toluene) can be supplied to benzene column 319 to produce a benzene product stream 321 consisting essentially of benzene and a toluene-rich stream 323. The C7+ aromatics or C8+ aromatics rich stream 309 produced by the separation sub-system 305 is typically directed away as, for example, a motor gasoline blendstock.

流309(類似於由重石油腦流製得的重組油流)中含有的C7+芳烴或C8+芳烴除了甲苯、二甲苯、與C9+甲基化芳烴之外還可以包含大量C2+-烴基取代之芳烴。由於對二甲苯、鄰二甲苯、甲苯、與苯產物可以有比動力汽油摻合料更高的經濟價值,所以由經加氫處理的SCN流製造一或多種上述芳烴產物對操作石油腦流裂解器之石化廠會有重大經濟利益。和由重石油腦重組製得之典型重組油比較,經加氫處理的SCN流可以包含以其中含有之C8+芳烴總重量為基準計更高重量百分率的C2+-烷基取代之芳烴。此外,經加氫處理的SCN流可以包含濃度顯著高於重組油流之二氫茚與二氫茚衍生物,其很難透過較輕芳烴轉烷基化以轉化成二甲苯。由於典型經加氫處理的SCN流中高濃度之C2+-烴基取代的芳烴,其在傳統上已經被認為是不理想的且甚至是不經濟之製造二甲苯產物的來源。The C7+ aromatics or C8+ aromatics contained in stream 309 (similar to a reconstituted oil stream made from a heavy petroleum naphtha stream) can contain substantial amounts of C2+-hydrocarbyl substituted aromatics in addition to toluene, xylenes, and C9+ methylated aromatics. Since para-xylene, ortho-xylene, toluene, and benzene products can have higher economic value than motor gasoline blendstocks, the production of one or more of the above-mentioned aromatic products from a hydrotreated SCN stream is critical to operating petroleum brain stream cracking A petrochemical plant would have significant economic benefits. The hydrotreated SCN stream may contain a higher weight percent of C2+-alkyl substituted aromatics, based on the total weight of C8+ aromatics contained therein, as compared to typical reconstituted oils made from heavy petroleum naphtha. In addition, the hydrotreated SCN stream may contain significantly higher concentrations of dihydroindene and dihydroindene derivatives than the reconstituted oil stream, which are difficult to convert to xylenes by transalkylation of lighter aromatics. Due to the high concentration of C2+-hydrocarbyl substituted aromatics in a typical hydrotreated SCN stream, it has traditionally been considered an undesirable and even uneconomical source of xylene products.

圖4圖示由經加氫處理的SCN流403製造對二甲苯產物和/或苯產物之本發明方法401。在此圖中,先將經加氫處理的SCN流403供應給分離次系統405,獲得富含C5-烴之輕烴流407與富含C6+烴的流107。流107可以類似於圖2中對應流,因此可以藉由圖2中相同下游方法與設備而類似地加工,如圖4顯示。因此,在包含蒸汽裂解器與重石油腦重組器之石化廠中,在圖4中由分離經加氫處理的SCN製得之流107可以與由重組區製得之重組油合併,隨意在第一烷基-脫甲基化區205中一起處理,接著供應給重組油分離器109。藉由本揭露之本發明方法可以由重石油腦流與經加氫處理的SCN流製得之對二甲苯(與隨意鄰二甲苯)、苯、與其他可能芳烴產物。在脫甲基化區205和/或209中,來自經加氫處理的SCN流403的流107中含有之很大一部分的C2+-烴基取代的芳烴可以被轉化成甲基化芳烴,其進而可以被轉化成對二甲苯產物(和/或鄰二甲苯產物)。在圖4之方法中包括區205和/或209使二甲苯回路中C2+-烴基取代的芳烴和/或進料至轉烷基化區的C9+芳烴之量明顯減少,能夠在低溫和/或液相下實現異構化和/或轉烷基化,使對複雜且高耗能的汽相異構化和/或汽相轉烷基化的需要減少或消除,及導致和圖3之先前技術方法比較更高價值的產物之產出,其中富C7+烴或富C8+烴流309係用於動力汽油摻合料。假如流107含有比圖2中對應流更大的量之C2+-烴基取代的芳烴,對於加工經加氫處理之SCN流而言,在圖4的方法中包括區205和/或209可以在圖4的方法中甚至更明顯。FIG. 4 illustrates the present process 401 for producing para-xylene product and/or benzene product from hydrotreated SCN stream 403 . In this figure, the hydrotreated SCN stream 403 is first supplied to the separation subsystem 405, resulting in a light hydrocarbon stream 407 rich in C5- hydrocarbons and a stream 107 rich in C6+ hydrocarbons. Stream 107 may be similar to the corresponding stream in FIG. 2 and thus may be similarly processed by the same downstream methods and equipment in FIG. 2 , as shown in FIG. 4 . Thus, in a petrochemical plant comprising a steam cracker and a heavy petroleum naphtha reformer, stream 107 produced from the separation of the hydrotreated SCN in Figure 4 can be combined with the reformed oil produced from the reformation zone, optionally at Co-processed in an alkyl-demethylation zone 205 and then supplied to a reformed oil separator 109. Para-xylene (and optionally ortho-xylene), benzene, and possibly other aromatic products can be produced by the inventive process of the present disclosure from heavy petroleum naphtha streams and hydrotreated SCN streams. In demethylation zones 205 and/or 209, a substantial portion of the C2+-hydrocarbyl-substituted aromatics contained in stream 107 from hydrotreated SCN stream 403 may be converted to methylated aromatics, which in turn may is converted to para-xylene product (and/or ortho-xylene product). Inclusion of zones 205 and/or 209 in the process of Figure 4 results in a significant reduction in the amount of C2+-hydrocarbyl substituted aromatics in the xylene loop and/or C9+ aromatics fed to the transalkylation zone, enabling low temperature and/or liquid Implementing isomerization and/or transalkylation off-phase reduces or eliminates the need for complex and energy-intensive vapor phase isomerization and/or vapor phase transalkylation, and results in and prior art of Figure 3 The method compares the yield of higher value products, with C7+ hydrocarbon-rich or C8+ hydrocarbon-rich stream 309 being used for the motor gasoline blendstock. If stream 107 contains a greater amount of C2+-hydrocarbyl-substituted aromatics than the corresponding stream in FIG. 2, the inclusion of zones 205 and/or 209 in the process of FIG. 4 for processing the hydrotreated SCN stream may be shown in FIG. 4's method is even more obvious.

可以修改圖4之本發明方法以消除烷基-脫甲基化區205與209。在這樣的情況下,假如流107可以包含大量C2+-烴基取代之芳烴,流117可以包含大量乙苯,及流129/133可以包含大量C9+C2+-烴基取代之芳烴,需要在異構化區125中使用汽相異構化以實現乙苯脫乙基化及在轉烷基化區147中使用汽相轉烷基化以實現C9+芳烴脫烷基化,導致(i)更耗能且更不節能的二甲苯回路;(ii)更耗能且更不節能之轉烷基化方法;及(iii)和包括烷基-脫甲基化區205與209之一或二者的圖4所圖解之方法比較,產出較少量的有價值產物(比如對二甲苯)。The inventive method of Figure 4 can be modified to eliminate alkyl-demethylation regions 205 and 209. In such a case, if stream 107 can contain large amounts of C2+-hydrocarbyl substituted aromatics, stream 117 can contain large amounts of ethylbenzene, and streams 129/133 can contain large amounts of C9+C2+-hydrocarbyl substituted aromatics, it will The use of vapor phase isomerization to achieve ethylbenzene deethylation in 125 and vapor phase transalkylation to achieve C9+ aromatics dealkylation in transalkylation zone 147 results in (i) more energy and an energy-inefficient xylene loop; (ii) a more energy-intensive and less energy-intensive transalkylation process; and (iii) and as shown in FIG. 4 including either or both alkyl-demethylation zones 205 and 209 Compared to the method shown in the diagram, smaller quantities of valuable products (eg, para-xylene) are produced.

重石油腦與事實上甚至原油或其餾分(例如使用閃蒸桶分離之餾分)可經受熱解(比如蒸汽裂解)以製造包含C6+芳烴(包括C8芳烴)之烴混合物。在圖4所圖解的方法與本揭露之類似方法中,烴混合物中任何C6+芳烴可用於代替或合併經加氫處理之SCN流401,即使這類C6+芳烴可能包含大量C2+-烴基取代之芳烴。 圖5:將C8芳烴異構化之示範性本發明方法Heavy naphtha and indeed even crude oil or fractions thereof (eg fractions separated using flash drums) can be subjected to pyrolysis (eg, steam cracking) to produce hydrocarbon mixtures comprising C6+ aromatics, including C8 aromatics. In the process illustrated in Figure 4 and similar processes of the present disclosure, any C6+ aromatics in the hydrocarbon mixture can be used in place of or combined with the hydrotreated SCN stream 401, even though such C6+ aromatics may contain substantial amounts of C2+-hydrocarbyl substituted aromatics. Figure 5: Exemplary inventive process for the isomerization of C8 aromatics

本揭露之另一態樣係關於C8芳烴異構化方法,其之實施例501在圖5中圖示,為圖1所顯示的先前技術方法之修正。Another aspect of the present disclosure pertains to a C8 aromatics isomerization process, an example 501 of which is illustrated in FIG. 5 , which is a modification of the prior art process shown in FIG. 1 .

在圖5中,類似於圖1,將流114(流113與145的組合物)進料至二甲苯分離器115,製得富二甲苯流117與富C9+芳烴流129。富二甲苯流117包含二甲苯與乙苯。在圖5中在流117中乙苯濃度可為以流117中含有之C8芳烴總重量為基準計在c(EB)5至c(EB)6重量%範圍內,其中c(EB)5與c(EB)6可以獨立地是例如2、4、5、6、8、10、12、14、15、16、18、20、22、24、25、26、28、30、32、34、35、36、38、40,只要c(EB)5<c(EB)6。在某些情況下,乙苯濃度可以高以使得c(EB)5≥10、c(EB)5≥15、c(EB)5≥20、或甚至c(EB)5≥25。在圖5中流117可以包含各種濃度之對二甲苯,取決於供應給二甲苯分離器115的富C8+芳烴流之組成。例如,流117可以包含以流117中含有之C8芳烴總重量為基準計c(pX)5至c(pX)6重量%的濃度之對二甲苯,其中c(pX)6與c(pX)7可以獨立地是例如15、16、18、20、22、24、25、26、28、30、32、34、35、36、38、40、42、44、45、48、50、52、54、55、56、58、60,只要c(pX)6<c(pX)7。In Figure 5, similar to Figure 1, stream 114 (the combination of streams 113 and 145) is fed to xylene separator 115, producing xylene-rich stream 117 and C9+ aromatics-rich stream 129. Xylene-rich stream 117 contains xylenes and ethylbenzene. In Figure 5 the ethylbenzene concentration in stream 117 may be in the range of c(EB)5 to c(EB)6 wt % based on the total weight of C8 aromatics contained in stream 117, where c(EB)5 and c(EB)6 can independently be e.g. 35, 36, 38, 40, as long as c(EB)5<c(EB)6. In some cases, the ethylbenzene concentration can be high such that c(EB)5≥10, c(EB)5≥15, c(EB)5≥20, or even c(EB)5≥25. Stream 117 in FIG. 5 may contain various concentrations of para-xylene, depending on the composition of the C8+ aromatics-rich stream supplied to xylene separator 115. For example, stream 117 may comprise paraxylene at a concentration of c(pX)5 to c(pX)6 wt % based on the total weight of C8 aromatics contained in stream 117, where c(pX)6 and c(pX) 7 can independently be e.g. 54, 55, 56, 58, 60, as long as c(pX)6<c(pX)7.

如圖5顯示,類似於圖1的傳統方法,接著將由二甲苯分離器115製得之富二甲苯流117供應給第一對二甲苯回收次系統119,製得富含對二甲苯之第一對二甲苯產物流121與第一對二甲苯耗盡流123。接著將和流117比較富含間二甲苯、鄰二甲苯、與乙苯的第一對二甲苯耗盡流123部分地(如流511顯示)或全部地供應給隨意烷基-脫甲基化(亦即主要是乙基-脫甲基化)區503,其具有配置在其中的烷基-脫甲基化觸媒(亦即乙基-脫甲基化觸媒)。圖5顯示將流123分為流509與511。可以將流509或其一部分(尤其若含有非常高濃度之乙苯)導走成為洗淨流並作為例如動力汽油摻合料。此外或或者,可將流509或其一部分直接供應給隨意異構化區(未顯示),比如包含容納於其中的異構化觸媒的汽相異構化區。在接觸異構化觸媒時與在異構化條件下,存在於流509中之二甲苯異構化以形成額外的對二甲苯,及在其中的一部分乙苯可被脫乙基化以減少二甲苯回路中乙苯量。接著可將這樣之隨意異構化區的異構化流出物或其一部分供應給二甲苯分離器115。As shown in FIG. 5, similar to the conventional process of FIG. 1, the xylene-rich stream 117 produced by the xylene separator 115 is then supplied to the first para-xylene recovery sub-system 119 to produce a first para-xylene-rich Para-xylene product stream 121 and first para-xylene depletion stream 123. The first para-xylene depleted stream 123, which is richer in meta-, ortho-, and ethylbenzene than stream 117, is then partially (as shown by stream 511) or fully supplied to random alkyl-demethylation (ie, primarily ethyl-demethylation) region 503, which has an alkyl-demethylation catalyst (ie, an ethyl-demethylation catalyst) disposed therein. FIG. 5 shows the splitting of stream 123 into streams 509 and 511. Stream 509, or a portion thereof, especially if it contains very high concentrations of ethylbenzene, can be directed away as a wash stream and as, for example, a motor gasoline admixture. Additionally or alternatively, stream 509, or a portion thereof, may be supplied directly to an optional isomerization zone (not shown), such as a vapor phase isomerization zone containing an isomerization catalyst contained therein. Upon contact with the isomerization catalyst and under isomerization conditions, the xylenes present in stream 509 are isomerized to form additional para-xylene, and a portion of the ethylbenzene therein may be deethylated to reduce The amount of ethylbenzene in the xylene loop. The isomerization effluent of such an optional isomerization zone, or a portion thereof, may then be supplied to xylene separator 115.

在接觸烷基-脫甲基化觸媒時與在烷基-脫甲基化條件下,將流511中含有的一部分乙苯脫甲基化以形成甲苯。因此,和流511比較,離開區503之烷基-脫甲基化流出物505耗盡乙苯。接著將流505在另一組烷基-脫甲基化條件下供應給有另一種烷基-脫甲基化觸媒配置於其中的隨意烷基-脫甲基化區507以實現額外之乙苯的乙基-脫甲基化。在區503與507中烷基-脫甲基化觸媒與烷基-脫甲基化條件可為相同或不同,若兩區都存在的話。儘管區503與507其中一者可不存在,但至少一者係存在於二甲苯回路中以實現乙苯之乙基-脫甲基化。烷基-脫甲基化區507與異構化區125可存在於不同槽中。或者,區507與125可為不同的但是容納在相同槽中(例如其中在共同反應器槽中區507中乙基-脫甲基化觸媒床位於區125中異構化觸媒床之上游)。或者,區507與125在相同槽中可以部分地重疊(例如其中將一部分但不是全部的區207中乙基-脫甲基化觸媒與一部分但不是全部的區125中異構化觸媒混合)。或者,區507與125可實質上為相同區(例如其中在共同反應器槽中將全部區507中乙基-脫甲基化觸媒與全部區125中異構化觸媒摻合;或其中常見觸媒能夠同時表現異構化與乙基-脫甲基化功能)。在異構化區125中,將間二甲苯和/或鄰二甲苯在第一異構化觸媒存在下在第一組異構化條件下異構化以形成額外的對二甲苯。異構化區125可在液相條件、汽相條件、或混合相條件下操作。On contact with the alkyl-demethylation catalyst and under alkyl-demethylation conditions, a portion of the ethylbenzene contained in stream 511 is demethylated to form toluene. Thus, compared to stream 511, the alkyl-demethylation effluent 505 exiting zone 503 is depleted of ethylbenzene. Stream 505 is then supplied to optional alkyl-demethylation zone 507 with another alkyl-demethylation catalyst disposed therein under another set of alkyl-demethylation conditions to achieve additional ethyl acetate Ethyl-demethylation of benzene. The alkyl-demethylation catalyst and alkyl-demethylation conditions in zones 503 and 507 can be the same or different, if both zones are present. Although one of zones 503 and 507 may not be present, at least one is present in the xylene loop to effect ethyl-demethylation of ethylbenzene. The alkyl-demethylation zone 507 and the isomerization zone 125 may exist in different tanks. Alternatively, zones 507 and 125 may be different but housed in the same tank (eg, where the ethyl-demethylation catalyst bed in zone 507 is located upstream of the isomerization catalyst bed in zone 125 in a common reactor tank ). Alternatively, zones 507 and 125 may partially overlap in the same tank (eg, where a portion but not all of the ethyl-demethylation catalyst in zone 207 is mixed with a portion but not all of the isomerization catalyst in zone 125 ). Alternatively, zones 507 and 125 can be substantially the same zone (eg, wherein all of the ethyl-demethylation catalyst in zone 507 is blended with all of the isomerization catalyst in zone 125 in a common reactor tank; or wherein Common catalysts can exhibit both isomerization and ethyl-demethylation functions). In isomerization zone 125, meta-xylene and/or ortho-xylene is isomerized under a first set of isomerization conditions in the presence of a first isomerization catalyst to form additional para-xylene. Isomerization zone 125 may operate under liquid phase conditions, vapor phase conditions, or mixed phase conditions.

接著將異構化流出物127或其一部分(如流513顯示)供應給二甲苯分離器115。二甲苯分離器115、對二甲苯回收次系統119、與異構化區125形成二甲苯回路。The isomerization effluent 127 or a portion thereof (shown as stream 513 ) is then supplied to the xylene separator 115 . Xylene separator 115 , para-xylene recovery subsystem 119 , and isomerization zone 125 form a xylene loop.

在圖1之傳統方法中,若異構化區125沒有足夠能力將流123中含有的乙苯轉化,則非所欲地乙苯會在二甲苯回路中超時累積至高濃度。為了防止乙苯在二甲苯回路中累積,尤其在流113、145、117、與123包含顯著濃度之乙苯(例如以其中含有的C8芳烴總重量為基準計≥10重量%)情況下,典型上在圖1之傳統方法中在異構化區中異構化觸媒與異構化條件被選定以使得在汽相異構化條件下透過脫乙基化將至少一部分乙苯轉化成苯。脫乙基化導致乙苯分子中乙基轉化成乙烷(在分子氫與用於異構化區之脫乙基化觸媒的氫化功能存在下)。乙苯之脫乙基化的結果是失去了結合至苯環之乙基取代基。進行二甲苯實質上汽相異構化需要在異構化區中將烴類加熱至高溫,隨後為了在二甲苯分離器115中分離而將異構化流出物冷卻與冷凝成液態,因此是高耗能的。In the conventional process of Figure 1, if isomerization zone 125 does not have sufficient capacity to convert the ethylbenzene contained in stream 123, ethylbenzene undesirably accumulates to high concentrations over time in the xylene loop. To prevent ethylbenzene from accumulating in the xylene loop, especially where streams 113, 145, 117, and 123 contain significant concentrations of ethylbenzene (eg, ≥ 10 wt% based on the total weight of C8 aromatics contained therein), typically The isomerization catalyst and isomerization conditions in the isomerization zone above in the conventional process of Figure 1 are selected such that at least a portion of the ethylbenzene is converted to benzene by deethylation under vapor phase isomerization conditions. Deethylation results in the conversion of the ethyl groups in the ethylbenzene molecule to ethane (in the presence of molecular hydrogen and the hydrogenation function of the deethylation catalyst used in the isomerization zone). Deethylation of ethylbenzene results in the loss of the ethyl substituent bound to the benzene ring. Substantially vapor phase isomerization of xylenes requires heating the hydrocarbons to high temperature in the isomerization zone, followed by cooling and condensation of the isomerization effluent to a liquid state for separation in xylene separator 115, and is therefore expensive. can.

如圖5顯示,假如流123與505可包含顯著量之乙苯(例如在區503不存在情況下),在圖5中可在汽相條件下操作第一異構化區125以透過脫乙基化將至少一部分乙苯轉化,使得二甲苯回路中乙苯量不變得太高,類似於包括在汽相條件下操作之異構化區的圖1之傳統方法。因此,在一個實施方式中,區503不存在,區507存在於區125附近或與區125部分地或全部地重疊,及區125是在汽相異構化條件下操作。As shown in Figure 5, if streams 123 and 505 can contain significant amounts of ethylbenzene (eg, in the absence of zone 503), in Figure 5 the first isomerization zone 125 can be operated under vapor phase conditions to permeate the deethylation Alkylation converts at least a portion of the ethylbenzene so that the amount of ethylbenzene in the xylene loop is not too high, similar to the conventional process of Figure 1 including an isomerization zone operating under vapor phase conditions. Thus, in one embodiment, zone 503 is absent, zone 507 is present near or partially or completely overlapping zone 125, and zone 125 is operated under vapor phase isomerization conditions.

在乙基-脫甲基化區503存在的實施方式中,可將一部分流505再循環(未顯示)返回區503以能夠實現區503中乙苯之高轉化率。In embodiments where ethyl-demethylation zone 503 exists, a portion of stream 505 may be recycled (not shown) back to zone 503 to enable high conversion of ethylbenzene in zone 503.

在另一個實施方式中,乙基-脫甲基化區503存在,區507不存在,在供應給異構化區125之前先將流505分離以移除區503中製得之輕烴,及區125是在液相條件下操作。在這類實施方式中,因為在區503中透過乙基-脫甲基化將流511中一部分乙苯轉化成甲苯,所以流505耗盡乙苯。因此使對異構化區125中乙苯之脫乙基化的需要減少,及因此使對區205中汽相異構化條件之需要減少。因此,可以在區125中在液相異構化條件下加工至少一部分,理想地大部分,與甚至全部的對二甲苯耗盡流123。因為這樣的液相異構化是在明顯低於圖1之方法中要求的傳統汽相異構化之操作溫度下進行,所以是大幅節能並大幅提高能源效率的。In another embodiment, ethyl-demethylation zone 503 is present, zone 507 is absent, stream 505 is separated to remove light hydrocarbons produced in zone 503 before being supplied to isomerization zone 125, and Zone 125 operates under liquid phase conditions. In such embodiments, stream 505 is depleted of ethylbenzene because a portion of the ethylbenzene in stream 511 is converted to toluene in zone 503 via ethyl-demethylation. Thus, the need for deethylation of ethylbenzene in isomerization zone 125, and thus the need for vapor phase isomerization conditions in zone 205, is reduced. Accordingly, at least a portion, ideally most, and even all of the paraxylene depletion stream 123 may be processed in zone 125 under liquid phase isomerization conditions. Because such liquid phase isomerization is carried out at significantly lower operating temperatures than conventional vapor phase isomerization required in the process of FIG. 1, there is substantial energy savings and a substantial increase in energy efficiency.

和流505比較,離開第一異構化區125之第一異構化流出物127富含對二甲苯。接著為了從流217回收對二甲苯,將一部分(如流127顯示)或全部(未顯示)的流217供應給二甲苯分離器。若在汽相異構化條件下操作區125,流217除了芳烴(比如二甲苯與乙苯)之外,還可包含由脫乙基化產生之輕烴與非芳烴。在進料至二甲苯分離器115之前,可將流217和/或127分離以移除這類輕烴與非芳烴(未顯示)。若在液相異構化條件下操作區125而不將乙苯脫乙基化,流217傾向於包含明顯比離開在汽相條件下之異構化區(若有的話)之對應流出物流更低的量之這類輕烴與非芳烴。因此,可以將離開液相異構化區125的流217或其一部分(如流127顯示)直接供應給二甲苯分離器115而沒有中間分離步驟(隨意加熱/冷卻等等)。只在液相異構化區中而不使用汽相異構化區將對二甲苯耗盡流123實質上全部異構化清楚地導致和需要汽相異構化區的圖1之傳統方法比較,更簡單、更不耗能、且更加節能的二甲苯回路。Compared to stream 505, first isomerization effluent 127 exiting first isomerization zone 125 is enriched in para-xylene. A portion (shown as stream 127) or all (not shown) of stream 217 is then supplied to a xylene separator in order to recover para-xylene from stream 217. If zone 125 is operated under vapor phase isomerization conditions, stream 217 may contain light and non-aromatic hydrocarbons resulting from deethylation in addition to aromatics such as xylenes and ethylbenzene. Streams 217 and/or 127 may be separated to remove such light and non-aromatic hydrocarbons (not shown) prior to feeding to xylene separator 115. If zone 125 is operated under liquid phase isomerization conditions without deethylating ethylbenzene, stream 217 tends to contain significantly more than the corresponding effluent stream leaving the isomerization zone (if any) under vapor phase conditions Lower amounts of such light and non-aromatic hydrocarbons. Thus, stream 217, or a portion thereof (as shown by stream 127) exiting liquid phase isomerization zone 125, can be supplied directly to xylene separator 115 without intermediate separation steps (optional heating/cooling, etc.). The isomerization of substantially all of the para-xylene depleted stream 123 in the liquid phase isomerization zone alone without the use of a vapor phase isomerization zone clearly results in a comparison of the conventional process of Figure 1 with the need for a vapor phase isomerization zone , a simpler, less energy-consuming, and more energy-efficient xylene circuit.

如圖5顯示,將第一異構化流出物127分為流513與515。在隨意進一步中間分離(視情況而定)之後,將流513或其一部分供應給二甲苯分離器115。可以將流515或其一部分導走作為洗淨流並用於例如動力汽油摻合料,尤其在流515包含高濃度乙苯情況下。此外或或者,可以將流515或其一部分再循環(未顯示)至區503與507(若存在的話)之一或多者,及較佳為區503(若存在的話),其中將可以含有之乙苯透過乙基-脫甲基化進一步轉化。此外或或者,可以將流515或其一部分繞過二甲苯分離器115直接再循環(未顯示)至對二甲苯回收次系統119,以回收在其中的一部分對二甲苯。繞過二甲苯分離器可以進一步改善二甲苯回路之能量效率。汽相異構化區的異構化流出物典型上含有由例如脫烷基化產生之輕烴與其他非芳烴,因此在沒有中間分離步驟(例如在脫庚烷塔和/或二甲苯分離器115中)情況下不直接再循環至對二甲苯回收次系統。相反地,由液相異構化區125製得之異構化流出物含有濃度比典型汽相異構化流出物(若有的話)低得多的這類輕烴與其他非芳烴,因此可以繞過二甲苯分離器直接再循環至對二甲苯回收次系統以回收異構化區中形成之額外的對二甲苯。液相異構化區125合併乙基-脫甲基化區503與507之一或二者可以完全地消除對二甲苯回路中汽相異構化區的需要,導致和如圖1所圖解之需要在二甲苯回路中使用汽相異構化區的傳統方法比較,總體上更高之能量效率,及更有價值的甲基化芳烴產量。在區503和/或507中一部分C2+-烴基取代的芳烴轉化成甲基化芳烴能夠實現和在汽相異構化區中將至少一部分乙苯脫烷基化之圖1的傳統方法比較,更多之二甲苯產量。As shown in FIG. 5 , the first isomerization effluent 127 is split into streams 513 and 515 . After optional further intermediate separation (as the case may be), stream 513, or a portion thereof, is supplied to xylene separator 115. Stream 515, or a portion thereof, may be directed away as a wash stream and used, for example, in a motor gasoline blend, especially if stream 515 contains high concentrations of ethylbenzene. Additionally or alternatively, stream 515 or a portion thereof may be recycled (not shown) to one or more of zones 503 and 507 (if present), and preferably zone 503 (if present), which will contain the Ethylbenzene is further converted via ethyl-demethylation. Additionally or alternatively, stream 515 or a portion thereof may be recycled (not shown) directly to paraxylene recovery subsystem 119 bypassing xylene separator 115 to recover a portion of paraxylene therein. Bypassing the xylene separator can further improve the energy efficiency of the xylene loop. The isomerization effluent from the vapor phase isomerization zone typically contains light hydrocarbons and other non-aromatic hydrocarbons resulting from, for example, dealkylation, and therefore does not have intermediate separation steps (eg, in a deheptanizer and/or xylene separator). 115) is not directly recycled to the p-xylene recovery sub-system. Conversely, the isomerization effluent produced from liquid phase isomerization zone 125 contains much lower concentrations of such light hydrocarbons and other non-aromatic hydrocarbons than typical vapor phase isomerization effluents, if any, and therefore The additional para-xylene formed in the isomerization zone can be recycled directly to the para-xylene recovery subsystem, bypassing the xylene separator. Combining one or both of ethyl-demethylation zones 503 and 507 in liquid phase isomerization zone 125 can completely eliminate the need for a vapor phase isomerization zone in the paraxylene loop, resulting in and as illustrated in Figure 1 An overall higher energy efficiency, and more valuable methylated aromatics yield, is required compared to conventional processes using a vapor phase isomerization zone in the xylene loop. Conversion of a portion of the C2+-hydrocarbyl substituted aromatics to methylated aromatics in zones 503 and/or 507 can be achieved compared to the conventional process of Figure 1 in which at least a portion of the ethylbenzene is dealkylated in the vapor phase isomerization zone, and more more xylene production.

儘管圖5中方法不包括在圖2或3之方法中在區203、205、與209的位置之烷基-脫甲基化區,但在某些實施方式中,最好額外地提供在圖2或3的方法中在區203、205、與209之一或多者中的烷基-脫甲基化區給圖5的方法。在這類實施方式中,可以產生在包括液相異構化之二甲苯回路中的高能量效率,在包括液相轉烷基化之轉烷基化方法中的高能量效率,及高二甲苯產量。 圖6:示範性本發明轉烷基化方法Although the method of Figure 5 does not include the alkyl-demethylation regions at the positions of regions 203, 205, and 209 in the methods of Figures 2 or 3, in certain embodiments it is desirable to additionally provide The alkyl-demethylation zone in one or more of zones 203, 205, and 209 in the method of 2 or 3 gives the method of Figure 5. In such embodiments, high energy efficiency in a xylene loop including liquid phase isomerization, high energy efficiency in a transalkylation process including liquid phase transalkylation, and high xylene production can result . Figure 6: Exemplary inventive transalkylation process

本揭露之另一態樣係關於轉烷基化方法,其之實施例在圖6中有圖示。Another aspect of the present disclosure relates to a transalkylation method, an example of which is illustrated in FIG. 6 .

如圖6顯示,類似於圖1,由二甲苯分離器115製得之和流114比較,富含C9、C10、與C11+芳烴的富C9+芳烴流129除了甲基化芳烴之外還可以包含大量C2+-烴基取代的芳烴。在圖6中,可以先將流129供應給包含配置於其中的烷基-脫甲基化觸媒之隨意烷基-脫甲基化區603(若存在的話)。在接觸烷基-脫甲基化觸媒時與在烷基-脫甲基化條件下,C2+-烴基取代之芳烴經受烷基-脫甲基化反應。因此,和流129比較,離開區603的烷基-脫甲基化流出物130耗盡C2+-烴基取代之芳烴與富含甲基化芳烴。區603的存在能夠實現將存在於流129中的某些C11+C2+-烴基取代之芳烴轉化成流129與133中有用的C9至C10芳烴。在沒有區603情況下,在區603中轉化之C11+C2+-烴基取代之芳烴會大多數進入流135並浪費掉。區603中C9+C2+-烴基取代之芳烴轉化導致形成輕烴、C8芳烴、甲苯、與隨意苯。As shown in FIG. 6, similar to FIG. 1, the C9+ aromatics-rich stream 129 rich in C9, C10, and C11+ aromatics compared to the sum stream 114 produced by the xylene separator 115 may contain substantial amounts of methylated aromatics C2+-hydrocarbyl-substituted aromatic hydrocarbons. In Figure 6, stream 129 may first be supplied to an optional alkyl-demethylation zone 603 (if present) containing an alkyl-demethylation catalyst disposed therein. C2+-hydrocarbyl-substituted aromatic hydrocarbons undergo an alkyl-demethylation reaction upon contact with an alkyl-demethylation catalyst and under alkyl-demethylation conditions. Thus, compared to stream 129, the alkyl-demethylation effluent 130 exiting zone 603 is depleted of C2+-hydrocarbyl substituted aromatics and rich in methylated aromatics. The presence of zone 603 enables conversion of some of the C11+C2+-hydrocarbyl substituted aromatics present in stream 129 to useful C9 to C10 aromatics in streams 129 and 133. Without zone 603, most of the C11+C2+-hydrocarbyl substituted aromatics converted in zone 603 would enter stream 135 and be wasted. Conversion of C9+C2+-hydrocarbyl substituted aromatics in zone 603 results in the formation of light hydrocarbons, C8 aromatics, toluene, and optional benzene.

在隨意移除輕烴之後,接著在蒸餾塔131中將流130分離以獲得富C9至C10芳烴流133(也含有在區603(若存在的話)中形成之C6至C8芳烴)與富C11+芳烴流135。可以將流135導走並作為例如動力汽油摻合料、燃料油等等。富C9至C10芳烴流133包含例如甲基化芳烴(比如三甲苯與四甲苯)、與C2+-烴基取代之芳烴(比如乙基甲苯、二氫茚、乙基二甲苯、二乙苯、四氫萘、甲基二氫茚、與甲基四氫萘)。接著將流133供應給包含配置於其中的烷基-脫甲基化觸媒之隨意烷基-脫甲基化區605。在區605中在接觸烷基-脫甲基化觸媒時與在烷基-脫甲基化條件下,C2+-烴基取代之芳烴經受烷基-脫甲基化反應以製得額外數量的甲基化芳烴和/或苯。因此,和流133比較,離開區605的流出物607耗盡C2+-烴基取代之芳烴與富含甲基化芳烴。After optional light hydrocarbon removal, stream 130 is then separated in distillation column 131 to obtain C9 to C10 rich aromatics stream 133 (which also contains C6 to C8 aromatics formed in zone 603 (if present)) and C11+ aromatics rich Stream 135. Stream 135 may be directed away and used, for example, as a motor gasoline blend, fuel oil, or the like. The C9 to C10 rich aromatics stream 133 comprises, for example, methylated aromatics (such as trimethylbenzene and tetratoluene), and C2+-hydrocarbyl substituted aromatics (such as ethyltoluene, dihydroindene, ethylxylene, diethylbenzene, tetrahydrobenzene) naphthalene, methylindene, and methyltetrahydronaphthalene). Stream 133 is then supplied to an optional alkyl-demethylation zone 605 containing an alkyl-demethylation catalyst disposed therein. C2+-hydrocarbyl-substituted aromatics undergo an alkyl-demethylation reaction in zone 605 to produce additional amounts of methyl methacrylate while in contact with an alkyl-demethylation catalyst and under alkyl-demethylation conditions Alkylated aromatics and/or benzene. Thus, compared to stream 133, effluent 607 exiting zone 605 is depleted of C2+-hydrocarbyl substituted aromatics and rich in methylated aromatics.

如圖6顯示,接著將流607供應給包含配置於其中的烷基-脫甲基化觸媒之隨意烷基-脫甲基化區609。在區609中在接觸烷基-脫甲基化觸媒時在烷基-脫甲基化條件下,接著將流607中的一部分殘餘C2+-烴基取代之芳烴轉化成甲基化芳烴和/或苯。隨意區609可為上游且與轉烷基化區147分開(例如其中區609中烷基-脫甲基化觸媒與區147中轉烷基化觸媒位於不同槽中,或位於共用槽中的不同床中)。或者,隨意區609可以部分地與區147重疊(例如其中將區609中烷基-脫甲基化觸媒與區147中轉烷基化觸媒在共用槽中部分地摻合)。或者,區609與147是相同區(例如其中將烷基-脫甲基化觸媒與轉烷基化觸媒在單一混合觸媒床全部地摻合,或一種觸媒表現烷基-脫甲基化與轉烷基化雙功能)。區609的烷基-脫甲基化流出物可以在轉烷基化區147中直接用於轉烷基化。As shown in Figure 6, stream 607 is then supplied to an optional alkyl-demethylation zone 609 containing an alkyl-demethylation catalyst disposed therein. A portion of the residual C2+-hydrocarbyl substituted aromatics in stream 607 is then converted to methylated aromatics and/or in zone 609 under alkyl-demethylation conditions upon contact with the alkyl-demethylation catalyst benzene. Optional zone 609 may be upstream and separate from transalkylation zone 147 (eg, where the alkyl-demethylation catalyst in zone 609 and the transalkylation catalyst in zone 147 are in different tanks, or in a shared tank in different beds). Alternatively, random zone 609 may partially overlap zone 147 (eg, where the alkyl-demethylation catalyst in zone 609 is partially blended with the transalkylation catalyst in zone 147 in a common tank). Alternatively, zones 609 and 147 are the same zone (eg, where the alkyl-demethylation catalyst and the transalkylation catalyst are all blended in a single mixed catalyst bed, or where one catalyst exhibits an alkyl-demethylation catalyst alkylation and transalkylation bifunctional). The alkyl-demethylation effluent from zone 609 can be used directly for transalkylation in transalkylation zone 147.

烷基-脫甲基化區603、605、與609的一或多者係存在於本揭露之轉烷基化方法中。One or more of alkyl-demethylation regions 603, 605, and 609 are present in the transalkylation methods of the present disclosure.

也將富甲苯流146供應給轉烷基化區147。在轉烷基化觸媒存在下與在轉烷基化條件下,C9+芳烴與苯/甲苯反應以製得二甲苯。由如圖1所圖解之重組油流和/或經加氫處理的SCN製得之流129與133可以含有大量C2+-烴基取代的芳烴。在這類C9至C10 C2+-烴基取代的芳烴與苯/甲苯之間的直接轉烷基化會產生乙苯與其他C9+C2+-烴基取代之芳烴。為了增加轉烷基化區147中二甲苯和/或苯/甲苯的產量,典型上在圖1之方法中轉烷基化觸媒與轉烷基化條件被選定以使得在轉烷基化區中透過C2+烷基的芳族環全部脫烷基化將至少一部分C9至C10 C2+-烴基取代之芳烴與乙苯轉化成甲苯和/或苯。脫烷基化導致C2+烷基轉化成輕烴(典型上在分子氫與用於轉烷基化區之脫烷基化觸媒的氫化功能存在下)。因此,為了製造二甲苯而移除C2+烷基是一種損失。最好將C2+烷基轉化成附接至苯環之甲基-其後來透過例如異構化、轉烷基化、和/或歧化可以用於製造二甲苯。與乙苯之脫乙基化相似,在轉烷基化區中C9至C10 C2+-烴基取代之芳烴與乙苯的有效脫烷基化典型上需要要求高溫之汽相條件。因為為了蒸餾分離而需要將轉烷基化區的蒸汽流出物冷卻與冷凝成液體,所以這樣之汽相轉烷基化是高耗能的。Toluene-rich stream 146 is also supplied to transalkylation zone 147 . C9+ aromatics are reacted with benzene/toluene in the presence of a transalkylation catalyst and under transalkylation conditions to produce xylenes. Streams 129 and 133 produced from the reconstituted oil stream as illustrated in Figure 1 and/or hydrotreated SCN may contain substantial amounts of C2+-hydrocarbyl substituted aromatics. Direct transalkylation between such C9 to C10 C2+-hydrocarbyl substituted aromatics and benzene/toluene yields ethylbenzene and other C9+C2+-hydrocarbyl substituted aromatics. To increase xylene and/or benzene/toluene production in transalkylation zone 147, typically in the process of Figure 1 the transalkylation catalyst and transalkylation conditions are selected such that in the transalkylation zone At least a portion of the C9 to C10 C2+-hydrocarbyl-substituted aromatics and ethylbenzene are converted to toluene and/or benzene through complete dealkylation of the aromatic rings of the C2+ alkyl group. Dealkylation results in the conversion of C2+ alkyl groups to light hydrocarbons (typically in the presence of molecular hydrogen and the hydrogenation function of the dealkylation catalyst used in the transalkylation zone). Therefore, it is a loss to remove the C2+ alkyl groups in order to make xylenes. The C2+ alkyl group is preferably converted to a methyl group attached to the benzene ring - which can then be used to make xylenes via, for example, isomerization, transalkylation, and/or disproportionation. Similar to the deethylation of ethylbenzene, efficient dealkylation of C9 to C10 C2+-hydrocarbyl substituted aromatics with ethylbenzene in the transalkylation zone typically requires vapor phase conditions that require elevated temperatures. Such vapor phase transalkylation is energy intensive because of the need to cool and condense the vapor effluent of the transalkylation zone to a liquid for distillative separation.

在圖5之本發明方法中,由於區603、605、與609的一或多者的存在,和圖1之方法比較,進入或存在於轉烷基化區147中的C2+-烴基取代之芳烴量明顯減少,因為在區603、605、和/或609中可以將流129中很大一部分的這類C9+C2+-烴基取代的芳烴轉化成甲基化芳烴。在轉烷基化區中低濃度之C2+-烴基取代的芳烴使對轉烷基化區147中脫烷基化之需要明顯減少。對脫烷基化的需要減少能夠在區147中在明顯低於需要脫烷基化之傳統汽相轉烷基化方法的溫度下實現轉烷基化,以使得一部分或甚至全部之存在於區147中的芳烴是液相。這樣之部分液相或完全液相轉烷基化和傳統的為脫烷基化而需要之完全汽相轉烷基化比較可以大幅節能並大幅提高能源效率。在區603、605、和/或609中一部分C2+-烴基取代之芳烴轉化成甲基化芳烴也能夠實現和在轉烷基化區中將至少一部分C2+-烴基取代的芳烴脫烷基化之圖1的傳統方法比較,更多之二甲苯產量。在圖1的傳統方法中在區603不存在下,存在於流129中的C11+C2+-烴基取代之芳烴在流135中離開分離塔131,因此不會用於轉烷基化來製造二甲苯。在包括區603的本揭露之轉烷基化方法的實施方式中,如上文所討論,將存在於流129中之一部分C11+C2+-烴基取代的芳烴烷基-脫甲基化以製造C10-芳烴,其會在流133中離開分離塔131,最後可以透過隨意區605與609及最後轉烷基化區147轉化成有用之二甲苯和/或苯產物。因此,若流113、114、和/或129包含大量的C11+C2+-烴基取代的芳烴,則包括烷基-脫甲基化區603之本揭露的本發明轉烷基化方法是高度有利的,因為其中可以製得更多甲基化芳烴,比如二甲苯和/或苯。In the inventive process of Figure 5, due to the presence of one or more of zones 603, 605, and 609, and compared to the process of Figure 1, C2+-hydrocarbyl-substituted aromatics entering or present in transalkylation zone 147 The amount is significantly reduced because a significant portion of such C9+C2+-hydrocarbyl substituted aromatics in stream 129 can be converted to methylated aromatics in zones 603, 605, and/or 609. The low concentration of C2+-hydrocarbyl substituted aromatics in the transalkylation zone significantly reduces the need for dealkylation in the transalkylation zone 147. The reduced need for dealkylation enables transalkylation to be accomplished in zone 147 at significantly lower temperatures than conventional vapor phase transalkylation processes requiring dealkylation such that some or even all of it is present in zone 147 The aromatics in 147 are in the liquid phase. Such partial liquid phase or full liquid phase transalkylation can result in substantial energy savings and a substantial increase in energy efficiency compared to conventional full vapor phase transalkylation required for dealkylation. The conversion of a portion of the C2+-hydrocarbyl substituted aromatics to methylated aromatics in zones 603, 605, and/or 609 can also be accomplished and the diagram of dealkylation of at least a portion of the C2+-hydrocarbyl substituted aromatics in the transalkylation zone 1. Compared with the traditional method, more xylene yields. In the conventional process of Figure 1 in the absence of zone 603, the C11+C2+-hydrocarbyl substituted aromatic hydrocarbons present in stream 129 leave separation column 131 in stream 135 and thus will not be used for transalkylation to produce xylenes . In an embodiment of the transalkylation process of the present disclosure that includes zone 603, as discussed above, a portion of the C11+C2+-hydrocarbyl-substituted arene alkyls present in stream 129 is demethylated to produce C10- Aromatics, which exit separation column 131 in stream 133, can finally be converted to useful xylene and/or benzene products via random zones 605 and 609 and finally transalkylation zone 147. Thus, the presently disclosed transalkylation process including alkyl-demethylation zone 603 is highly advantageous if streams 113, 114, and/or 129 contain substantial amounts of C11+C2+-hydrocarbyl-substituted aromatics , as more methylated aromatics such as xylene and/or benzene can be produced.

在包括C2+-烴基取代的芳烴之脫烷基化的傳統轉烷基化方法中,將一部分C2+烷基和/或稠合至芳族環的脂族環轉化成輕烴,及由於芳族環損失而可能製得非芳烴。因此,在供應給芳烴分離塔(例如圖1中苯塔141)之前,可能需要先分離轉烷基化流出物以移除這類輕烴與非芳烴(例如透過脫庚烷塔,在圖1中未顯示)。在圖6的本發明方法之實施方式中,恰恰相反,因為在流607和/或轉烷基化區147中少量之C2+-烴基取代之芳烴,使C2+-烴基取代的芳烴之脫烷基化最小化或消除,轉烷基化流出物149包含輕烴與這樣少量的非芳烴(若有的話),在沒有中間分離步驟下可將流出物149直接供應給苯塔141以移除輕烴與非芳烴(在隨意加熱/冷卻等等下,視情況而定)。因此,在圖6之方法中一或多個烷基-脫甲基化區603、605、與609的存在能夠實現需要更少設備與步驟也大幅節能並大幅提高能源效率之更簡單的轉烷基化方法。圖6中流149可以包含例如苯、甲苯、二甲苯、三甲苯、四甲苯、及理想地少量C8、C9、C10、與C11+C2+-烴基取代的芳烴。In traditional transalkylation processes involving dealkylation of C2+-hydrocarbyl substituted aromatics, a portion of the C2+ alkyl and/or aliphatic rings fused to the aromatic ring is converted to light hydrocarbons, and due to the aromatic ring Loss of non-aromatic hydrocarbons may be produced. Therefore, it may be necessary to separate the transalkylation effluent to remove such light and non-aromatic hydrocarbons (eg, through a deheptanizer, in Figure 1) before feeding it to an aromatics separation column (eg, benzene column 141 in Figure 1). not shown). In the embodiment of the process of the invention of Figure 6, the opposite is true because the small amount of C2+-hydrocarbyl substituted aromatics in stream 607 and/or transalkylation zone 147 dealkylates the C2+-hydrocarbyl substituted aromatics Minimized or eliminated, transalkylation effluent 149 contains light hydrocarbons with such small amounts of non-aromatic hydrocarbons, if any, that effluent 149 can be supplied directly to benzene column 141 to remove light hydrocarbons without an intermediate separation step With non-aromatic hydrocarbons (with optional heating/cooling etc., as appropriate). Thus, the presence of one or more alkyl-demethylation zones 603, 605, and 609 in the process of Figure 6 enables simpler transalkanes that require less equipment and steps and also provide substantial energy savings and greatly improved energy efficiency base method. Stream 149 in Figure 6 may contain, for example, benzene, toluene, xylenes, mesitylenes, tetratoluenes, and desirably small amounts of C8, C9, C10, and C11+C2+-hydrocarbyl substituted aromatic hydrocarbons.

在某些實施方式中,≥50重量%、或≥60重量%、或≥70重量%、或≥80重量%、或≥90重量%、或≥95重量%、或≥98重量%的流607是甲基化芳烴。因此,轉烷基化區147中大部分反應可為在芳烴(比如苯、甲苯、三甲苯、與四甲苯)之間交換甲基,導致二甲苯的淨產生及C9至C10甲基化芳烴、和苯和/或甲苯之消耗。較佳地,這樣的轉烷基化是在液相中進行,其中(i)存在於轉烷基化區中之C8芳烴是實質上液相;及/或(ii)存在於轉烷基化區中的芳烴(包括苯)是實質上液相。轉烷基化流出物149可以包含苯、甲苯、二甲苯、C9+甲基化芳烴、與少量C8+C2+-烴基取代的芳烴。In certain embodiments, > 50 wt%, or > 60 wt %, or > 70 wt %, or > 80 wt %, or > 90 wt %, or > 95 wt %, or > 98 wt % of stream 607 are methylated aromatic hydrocarbons. Thus, most of the reactions in transalkylation zone 147 may be the exchange of methyl groups between aromatics (such as benzene, toluene, trimethylbenzene, and tetratoluene), resulting in a net production of xylenes and C9 to C10 methylated aromatics, and benzene and/or toluene consumption. Preferably, such transalkylation is carried out in the liquid phase, wherein (i) the C8 aromatics present in the transalkylation zone are substantially liquid phase; and/or (ii) are present in the transalkylation Aromatics (including benzene) in the zone are in a substantially liquid phase. Transalkylation effluent 149 may contain benzene, toluene, xylenes, C9+ methylated aromatics, and minor amounts of C8+C2+-hydrocarbyl substituted aromatics.

如圖6顯示,接著將流149供應給苯塔141(連同其他流,比如流139)以分離在其中含有的芳烴,以獲得苯產物流143、富含甲苯和/或苯之富甲苯流146(其被部分或全部地進料至轉烷基化區147)、及富C8+芳烴流145(包含二甲苯、C9+甲基化芳烴、與較佳地少量C8+C2+-烴基取代的芳烴),其被供應給二甲苯分離器115,如上述。As shown in Figure 6, stream 149 is then supplied to benzene column 141 (along with other streams, such as stream 139) to separate aromatics contained therein to obtain benzene product stream 143, toluene-rich and/or benzene-rich toluene-rich stream 146 (which is partially or fully fed to transalkylation zone 147), and C8+ aromatics-rich stream 145 (comprising xylenes, C9+ methylated aromatics, and preferably small amounts of C8+C2+-hydrocarbyl-substituted aromatics), It is supplied to the xylene separator 115, as described above.

下列非限定性實施例是用來進一步說明本揭露。 [實施例] A部分:製造烷基-脫甲基化觸媒The following non-limiting examples are provided to further illustrate the present disclosure. [Example] Part A: Manufacture of Alkyl-Demethylation Catalysts

用於製備觸媒之氧化鋁支撐體係購自Sasol (SBa-200,γ相氧化鋁)。使用下列方法製備觸媒A1、A2、A3、A4、A5、與A6:將氧化鋁支撐體在500℃在空氣中前煅燒6小時。藉由來自BASF的硝酸銠(III)之水溶液的初濕含浸法(IWI)將Rh金屬加到支撐體。將硝酸銠(III)溶液加到各支撐體之初濕含浸點(0.5至1.0 g溶液/g支撐體)以給出指定金屬含量。接著將樣本在120℃乾燥16小時,然後在空氣中在600℃煅燒6小時。使用類似上述的方法製備觸媒A7,不同之處在於在500℃在空氣中前煅燒6小時之前,先用3至5莫耳%硝酸鑭(III)水溶液處理氧化鋁支撐體以將La加到氧化鋁支撐體內。類似觸媒A7地製備觸媒A8,不同之處在於在用3至5莫耳%硝酸鑭(III)水溶液處理氧化鋁支撐體後,將氧化鋁支撐體經受在1200℃在空氣中前煅燒8小時以將γ相氧化鋁轉化成θ相氧化鋁。假設摻雜在氧化鋁中的La可以幫助穩定與促進達到最佳化物性與化性之所欲θ相形成。La摻雜劑據信是存在於氧化鋁晶格內的八面體空位中,因此穩定氧化鋁與防止由於1200℃高溫處理引起之非所欲的孔隙容積與表面積損失。下文列舉觸媒A1至A8之組成,其中Rh濃度表示為以觸媒組成物總重量為基準計Rh百分率: A1 Rh(0.1%)/氧化鋁(γ) A2 Rh(0.7%)/氧化鋁(γ) A3 Rh(0.9%)/氧化鋁(γ) A4 Rh(1.8%)/氧化鋁(γ) A5 Rh(2.0%)/氧化鋁(γ) A6 Rh(3.5%)/氧化鋁(γ) A7 Rh(3.5%)/La-氧化鋁(γ) A8 Rh(3.5%)/La-氧化鋁(θ) B部分:製造對二甲苯之方法 在這些實施例中,「C2-A」是指包含附接至苯環之乙基的芳烴;「C2-A轉化」是指如上述藉由脫乙基化和/或乙基-脫甲基化將包含附接至苯環之乙基的芳烴轉化;「C3-A」是指包含附接至苯環之C3烷基的芳烴;「C3-烷基-芳烴轉化」是指如上述藉由脫烷基化和/或烷基-脫甲基化將包含附接至苯環之C3烷基的芳烴轉化。TMZ是指三甲苯。 實施例B1(比較的):在任何烷基-脫甲基化區不存在下之圖1的傳統方法The alumina support system used to prepare the catalyst was purchased from Sasol (SBa-200, gamma-phase alumina). Catalysts A1, A2, A3, A4, A5, and A6 were prepared using the following method: The alumina support was pre-calcined at 500°C in air for 6 hours. Rh metal was added to the support by incipient wetness impregnation (IWI) with an aqueous solution of rhodium (III) nitrate from BASF. Rhodium(III) nitrate solution was added to the initial wet impregnation point of each support (0.5 to 1.0 g solution/g support) to give the specified metal content. The samples were then dried at 120°C for 16 hours and then calcined in air at 600°C for 6 hours. Catalyst A7 was prepared using a method similar to that described above, except that the alumina support was treated with 3 to 5 molar % aqueous lanthanum (III) nitrate to add La to the alumina prior to pre-calcination at 500°C for 6 hours in air. Alumina support body. Catalyst A8 was prepared similarly to Catalyst A7, except that after treatment of the alumina support with a 3 to 5 molar % aqueous solution of lanthanum (III) nitrate, the alumina support was subjected to pre-calcination at 1200°C in air 8 hours to convert gamma-phase alumina to theta-phase alumina. It is hypothesized that La doped in alumina can help stabilize and promote the desired θ phase formation to achieve optimal physical and chemical properties. The La dopant is believed to be present in octahedral vacancies within the alumina lattice, thus stabilizing the alumina and preventing undesired loss of pore volume and surface area due to high temperature treatment at 1200°C. The compositions of catalysts A1 to A8 are listed below, wherein the Rh concentration is expressed as the percentage of Rh based on the total weight of the catalyst composition: A1 Rh(0.1%)/Alumina(γ) A2 Rh(0.7%)/Alumina(γ) A3 Rh(0.9%)/Alumina(γ) A4 Rh(1.8%)/Alumina(γ) A5 Rh(2.0%)/Alumina(γ) A6 Rh(3.5%)/Alumina(γ) A7 Rh(3.5%)/La-alumina(γ) A8 Rh(3.5%)/La-alumina (θ) Part B: Process for Making Para-Xylene In these examples, "C2-A" refers to aromatic hydrocarbons comprising an ethyl group attached to a benzene ring; "C2-A conversion" refers to deethylation as described above and/or ethyl-demethylation to convert aromatics containing an ethyl group attached to a benzene ring; "C3-A" refers to aromatics containing a C3 alkyl group attached to a benzene ring; "C3-alkyl- Aromatic conversion" refers to the conversion of aromatics comprising C3 alkyl groups attached to the benzene ring by dealkylation and/or alkyl-demethylation as described above. TMZ means trimethylbenzene. Example B1 (comparative): Traditional method of Figure 1 in the absence of any alkyl-demethylation regions

進行在任何烷基-脫甲基化區不存在下的圖1之由石油腦重組法製造對二甲苯的方法之模擬。顯著量的C2+-烴基取代之芳烴係存在於流107、113、114、117、與123、129、123中。本方法利用汽相異構化區以加工50重量%的對二甲苯耗盡流123及利用與汽相異構化區平行運作之液相異構化區以加工剩餘的50重量%。供應給汽相異構化區123之流123中乙苯在其中經受脫乙基化。此外,本方法利用汽相轉烷基化區以加工流133(重芳烴)連同流146(甲苯)以製造混合之二甲苯與苯。供應給汽相轉烷基化區的流133中C9+C2+-烴基取代之芳烴在其中經受脫烷基化。方法假設與模擬結果在下表I中報告。 實施例B2(本發明的):在烷基-脫甲基化區209存在下之圖2的本發明方法A simulation of the process for the production of para-xylene from naphtha of Figure 1 in the absence of any alkyl-demethylation regions was performed. Significant amounts of C2+-hydrocarbyl substituted aromatics are present in streams 107, 113, 114, 117, and 123, 129, 123. The process utilizes a vapor phase isomerization zone to process 50 wt% of the paraxylene depleted stream 123 and a liquid phase isomerization zone running in parallel with the vapor phase isomerization zone to process the remaining 50 wt%. The ethylbenzene in stream 123 supplied to vapor phase isomerization zone 123 undergoes deethylation therein. Additionally, the process utilizes a vapor phase inversion alkylation zone to process stream 133 (heavy aromatics) along with stream 146 (toluene) to produce mixed xylenes and benzene. The C9+C2+-hydrocarbyl substituted aromatics in stream 133 supplied to the vapor phase transalkylation zone are subjected to dealkylation therein. Method assumptions and simulation results are reported in Table I below. Example B2 (Inventive): Inventive Process of Figure 2 in the Presence of Alkyl-Demethylation Zone 209

進行圖2之由石油腦重組法製造對二甲苯的方法之模擬,不同之處在於將流145直接進料至二甲苯分離器115而不是進料至烷基-脫甲基化區209,其中烷基-脫甲基化區203與205不存在,及烷基-脫甲基化區209存在。在本實施例B2中,流113的量與其組成與上文實施例B1的相同。在本實施例B2之方法中,在區209中,將一部分乙苯與C9+C2+-烴基取代的芳烴轉化成甲苯、二甲苯、三甲苯、與其他甲基化芳烴。因此,圖2中二甲苯流117與對二甲苯耗盡流123包含和其在圖1中的對應流比較,濃度減少之乙苯。在區209中在足夠高的乙苯轉化率下,流123之汽相異構化及在其中的乙苯脫乙基化變得沒必要。因此,在本實施例中,將流123全部進料至液相異構化區125。進而將異構化流出物217全部供應給二甲苯分離器115。可隨意地將洗淨流213再循環回區209。此外,圖2中C9+流129與產生之流133包含和其在圖1中的對應流比較,濃度減少的C9+C2+-烴基取代之芳烴。在區147中汽相轉烷基化影響任何剩餘的C9+C2+-烴基取代之芳烴的脫烷基化。儘管在本實施例中未假定,據推測流144之汽相轉烷基化與其中C9+C2+-烴基取代之芳烴的脫烷基化可能變得沒必要使用液相轉烷基化區147合併或置換汽相轉烷基化區147。額外之方法假設與模擬結果在下表I中報告。 實施例B3(比較的):上文實施例B2之經修改的方法,其中區209被脫烷基化區置換A simulation of the process for the production of para-xylene from a naphtha process of Figure 2 was performed, except that stream 145 was fed directly to xylene separator 115 rather than to alkyl-demethylation zone 209, where Alkyl-demethylation zones 203 and 205 are absent, and alkyl-demethylation zone 209 is present. In this example B2, the amount of stream 113 and its composition are the same as in Example B1 above. In the method of this example B2, in zone 209, a portion of ethylbenzene and C9+C2+-hydrocarbyl-substituted aromatics are converted into toluene, xylenes, mesitylenes, and other methylated aromatics. Thus, xylene stream 117 and para-xylene depleted stream 123 in FIG. 2 contain a reduced concentration of ethylbenzene compared to their corresponding streams in FIG. 1 . At sufficiently high ethylbenzene conversion in zone 209, vapor phase isomerization of stream 123 and deethylation of ethylbenzene therein becomes unnecessary. Therefore, in this example, all of stream 123 is fed to liquid phase isomerization zone 125. In turn, the entirety of the isomerization effluent 217 is supplied to the xylene separator 115 . Optionally, the purge stream 213 can be recycled back to zone 209. In addition, C9+ stream 129 and produced stream 133 in Figure 2 contain reduced concentrations of C9+C2+-hydrocarbyl substituted aromatics compared to their corresponding streams in Figure 1 . Vapor phase transalkylation in zone 147 affects the dealkylation of any remaining C9+C2+-hydrocarbyl substituted aromatics. Although not assumed in this example, it is speculated that the vapor phase transalkylation of stream 144 combined with the dealkylation of C9+C2+-hydrocarbyl substituted aromatics therein may become unnecessary using liquid phase transalkylation zone 147 Or replace vapor phase transalkylation zone 147. Additional methodological assumptions and simulation results are reported in Table I below. Example B3 (comparative): Modified method of Example B2 above, wherein region 209 is replaced by a dealkylation region

在本實施例B3中模擬之方法不同於在實施例B2中模擬的方法之處只在於在相同位置用脫烷基化區置換烷基-脫甲基化區209。因此,在本實施例B3中,在區209中,將一部分乙苯與C9+C2+-烴基取代之芳烴轉化成苯與甲苯。因此,在本實施例中二甲苯流117與對二甲苯耗盡流123包含和其在圖1中的對應流比較,濃度減少之乙苯。流123的脫乙基化與汽相異構化變得沒必要。因此,在本實施例B3中,類似於實施例B2,將流123全部進料至液相異構化區125。類似於實施例B2,在本實施例B3中,進而將異構化流出物217全部供應給二甲苯分離器115。額外之方法假設與模擬結果在下表I中報告。 I 實施例 B1 B2 B3 區209中產率假設 乙基轉化率(%) n/a 90 85 C3-烷基轉化率(%) n/a 100 100 甲基轉化率 n/a 3 0 區209中方法假設 再循環至區209的流213(%的流123) n/a 4 4 性能 標稱對二甲苯產量(KTA) 1 1.09 1 對二甲苯/進料(重量%) 57 62 57 苯/進料(重量%) 20 16 20 (對二甲苯+苯)/進料(重量%) 77 78 77 (液體產物)/進料(重量%) 94 96 94 The method simulated in this Example B3 differs from that simulated in Example B2 only in that the alkyl-demethylation region 209 is replaced at the same position with a dealkylation region. Therefore, in this example B3, in zone 209, a portion of ethylbenzene and C9+C2+-hydrocarbyl-substituted aromatics are converted to benzene and toluene. Thus, in this example xylene stream 117 and para-xylene depleted stream 123 contain a reduced concentration of ethylbenzene compared to their corresponding streams in FIG. 1 . Deethylation and vapor phase isomerization of stream 123 becomes unnecessary. Thus, in this Example B3, similar to Example B2, all of stream 123 is fed to liquid phase isomerization zone 125. Similar to Example B2, in this Example B3, the isomerization effluent 217 was further supplied to the xylene separator 115 in its entirety. Additional methodological assumptions and simulation results are reported in Table I below. Table I Example B1 B2 B3 Yield assumptions in District 209 Ethyl conversion rate (%) n/a 90 85 C3-alkyl conversion rate (%) n/a 100 100 methyl conversion n/a 3 0 Method Assumptions in District 209 Stream 213 recirculated to zone 209 (% of stream 123) n/a 4 4 performance Nominal paraxylene production (KTA) 1 1.09 1 Paraxylene/Feed (wt%) 57 62 57 Benzene/Feed (wt%) 20 16 20 (para-xylene + benzene)/feed (wt%) 77 78 77 (Liquid product)/Feed (wt%) 94 96 94

表I中的資料清楚地顯示實施例B2之本發明方法優於比較的實施例B1與B3中比較的方法。關於標稱對二甲苯產量,對實施例B1與B3中生產的每年每1千噸(「KTA」)而言,在實施例B2之本發明方法中由相同量的具有相同組成之進料生產1.09 KTA的對二甲苯,這表示增加9%。藉由苯產量減少來部分地達到對二甲苯產量增加。在實施例B2之本發明方法中,對二甲苯與苯相對於進料的總重量百分率,及液體產物相對於進料的總重量百分率都增加。相應地,和實施例B1與B3中典型上低價值氣體產物之總百分率比較,在實施例B2之本發明方法中的總百分率減少。這些資料清楚地表明烷基-脫甲基化區比或在二甲苯回路之前或在二甲苯回路中的汽相異構化步驟中使用脫烷基化更有優勢與更高之經濟價值。 實施例B4至B7:在異構化基礎上乙苯之乙基-脫甲基化The data in Table I clearly show that the inventive method of Example B2 is superior to the methods of Comparative Examples B1 and B3. Regarding nominal para-xylene production, for every 1 kiloton per year ("KTA") produced in Examples B1 and B3, the process of the invention in Example B2 is produced from the same amount of feed having the same composition 1.09 KTA of paraxylene, which represents a 9% increase. The increase in para-xylene production is partly achieved by a reduction in benzene production. In the inventive process of Example B2, the total weight percent of para-xylene and benzene relative to the feed, and the total weight percent of liquid product relative to the feed were increased. Accordingly, the overall percentage in the inventive process of Example B2 is reduced compared to the overall percentage of typically low value gaseous products in Examples B1 and B3. These data clearly demonstrate the advantages and higher economic value of the alkyl-demethylation zone than using dealkylation either before the xylene loop or in the vapor phase isomerization step in the xylene loop. Examples B4 to B7: Ethyl-demethylation of ethylbenzene based on isomerization

在這些實施例中,將包含87重量%二甲苯與13重量%乙苯之進料(模擬圖5中對二甲苯耗盡流123)與乙基-脫甲基化觸媒在乙基-脫甲基化反應器503中接觸。分析乙基-脫甲基化反應器之流出物的組成。在這些實施例中測試在實施例A1、A3、A4與A6中製得之觸媒。方法條件與測試結果在下表II中報告。

Figure 02_image007
In these examples, a feed comprising 87 wt% xylene and 13 wt% ethylbenzene (simulating para-xylene depletion stream 123 in Figure 5) was combined with an ethyl-demethylation catalyst at ethyl-demethylation contact in the methylation reactor 503. The composition of the ethyl-demethylation reactor effluent was analyzed. The catalysts prepared in Examples A1, A3, A4 and A6 were tested in these examples. Method conditions and test results are reported in Table II below.
Figure 02_image007

表II中之資料顯示實施例B4至B7中的烷基-脫甲基化觸媒與方法達到乙苯(所欲的)之轉化率明顯高於二甲苯(非所欲的)。達到對甲苯(所欲產物)之高產物選擇性,及使甲苯進一步脫甲基化成苯及芳族環損失最小化。因此,這些實施例B4至B7中的觸媒與方法條件可以用於圖5之方法中的乙基-脫甲基化區503和/或507。The data in Table II show that the alkyl-demethylation catalysts and processes in Examples B4 to B7 achieve significantly higher conversions of ethylbenzene (desirable) than xylenes (undesired). High product selectivity to toluene (the desired product) is achieved and further demethylation of toluene to benzene and loss of aromatic rings is minimized. Therefore, the catalysts and process conditions in these Examples B4 to B7 can be used in the ethyl-demethylation zones 503 and/or 507 in the process of FIG. 5 .

這與美國專利號4,331,825揭露的相反,在該案中觀測到二甲苯(非所欲的)之大轉化率及對甲烷(非所欲的)之高選擇性。 實施例B8:包含C9+C2+-烴基取代的芳烴之轉烷基化進料的烷基-脫甲基化This is in contrast to what is disclosed in US Patent No. 4,331,825, in which large conversions of xylenes (undesirable) and high selectivity to methane (undesirable) were observed. Example B8: Alkyl-Demethylation of Transalkylation Feeds Containing C9+C2+- Hydrocarbyl-Substituted Aromatics

在本實施例中,將包含約80% C9+芳烴(圖6之方法中進料133的代表)與20%甲苯(圖6之方法中進料146的代表)之進料混合物(轉烷基化區之進料的代表)進料至烷基-脫甲基化反應器(圖6中的區605)以接觸上文實施例A6中製得之烷基-脫甲基化觸媒。方法條件包括:在從380至405℃範圍內的溫度,103 psig之壓力,WHSV:在從2.5至20小時-1 範圍內,及在從2至6範圍內之H2 /烴莫耳比。在實驗期間改變方法條件以達到不同程度的C9+芳烴組分轉化率。分析反應器的流出物之組成。部分測試條件與結果在下表III中報告。我們發現在流出物中甲烷存在,而乙烷與丙烷不存在,這表示乙基-芳烴與C3-烷基-芳烴之轉化是藉由烷基-脫甲基化反應而不是脫烷基化反應。In this example, a feed mixture (transalkylation) comprising about 80% C9+ aromatics (representative of feed 133 in the process of Figure 6) and 20% toluene (representative of feed 146 in the process of Figure 6) was A representative of the feed to the zone) was fed to the alkyl-demethylation reactor (zone 605 in Figure 6) to contact the alkyl-demethylation catalyst prepared in Example A6 above. Process conditions included: temperature in the range from 380 to 405°C, pressure of 103 psig, WHSV: in the range from 2.5 to 20 hours -1 , and H2 /hydrocarbon mole ratio in the range from 2 to 6. Process conditions were varied during the experiments to achieve varying degrees of conversion of the C9+ aromatic components. The composition of the effluent from the reactor was analyzed. Some of the test conditions and results are reported in Table III below. We found the presence of methane in the effluent, but the absence of ethane and propane, indicating that the conversion of ethyl-aromatics to C3-alkyl-aromatics is by alkyl-demethylation rather than dealkylation .

表III中之資料顯示在本實施例B8中烷基-脫甲基化觸媒與方法達到乙基-芳烴與丙基-芳烴(所欲的)之轉化率明顯高於三甲苯(非所欲的)之轉化率。因此,本實施例中的觸媒與方法條件可以用於圖6之方法中的烷基-脫甲基化區603、605、和/或609。 實施例B9至B10:C9+C2+-烴基取代的芳烴轉烷基化進料之烷基-脫甲基化The data in Table III show that the conversion of ethyl-aromatics to propyl-aromatics (desired) by the alkyl-demethylation catalyst and method in Example B8 is significantly higher than that of trimethylbenzene (undesired). ) conversion rate. Thus, the catalysts and process conditions of this example can be used in the alkyl-demethylation zones 603, 605, and/or 609 in the process of FIG. 6 . Examples B9 to B10: Alkyl-Demethylation of C9+C2+-hydrocarbyl-Substituted Aromatic Transalkylation Feeds

實施例B8中的相同步驟係在這些實施例中進行,不同之處在於在實施例B9與B10中分別以實施例A7與A8中製得的觸媒置換實施例B8中用的烷基-脫甲基化觸媒。在實施例B9至B10中,類似於實施例B8,觀測到乙基-芳烴轉化率與C3-烷基-芳烴轉化率明顯高於三甲苯轉化率。部分實施例B9與B10的測試結果也在下表III中報告。我們發現在流出物中甲烷存在,而乙烷與丙烷不存在,這表示乙基-芳烴與C3-烷基-芳烴之轉化是藉由烷基-脫甲基化反應而不是脫烷基化反應。

Figure 02_image009
The same steps as in Example B8 were carried out in these examples, except that the alkyl-de-alkylation used in Example B8 was replaced in Examples B9 and B10 with the catalysts prepared in Examples A7 and A8, respectively. methylation catalyst. In Examples B9 to B10, similar to Example B8, the conversion of ethyl-aromatics and conversion of C3-alkyl-aromatics was observed to be significantly higher than the conversion of trimethylbenzene. Test results for some of the Examples B9 and B10 are also reported in Table III below. We found the presence of methane in the effluent, but the absence of ethane and propane, indicating that the conversion of ethyl-aromatics to C3-alkyl-aromatics is by alkyl-demethylation rather than dealkylation .
Figure 02_image009

本揭露可以另外包括下列非限定性實施例:The present disclosure may additionally include the following non-limiting examples:

A1. 一種製造二甲苯之方法,該方法包含: (I)提供含C6+芳烴流,其包含C2+-烴基取代之芳烴,其中該C2+-烴基取代之芳烴具有(i)附接至在其中的芳族環之C2+烷基取代基和/或(ii)稠合至在其中的芳族環之脂族環; (II)將該含C6+芳烴流與第一烷基-脫甲基化觸媒在第一烷基-脫甲基化區中在第一組烷基-脫甲基化條件下隨意地接觸以將至少一部分的該C2+-烴基取代之芳烴轉化成烷基-脫甲基化芳烴,以獲得離開該第一烷基-脫甲基化區的隨意第一烷基-脫甲基化流出物; (III)在第一分離裝置中將至少一部分的該含C6+芳烴流和/或該第一烷基-脫甲基化流出物分離,以獲得富C6至C7烴流與第一富C8+芳烴流; (IV)將該第一富C8+芳烴流與第二烷基-脫甲基化觸媒在第二烷基-脫甲基化區中在第二組烷基-脫甲基化條件下隨意地接觸以將至少一部分的該C2+-烴基取代之芳烴(若在該第一富C8+芳烴流中含有的話)轉化成烷基-脫甲基化芳烴,以獲得離開該第二烷基-脫甲基化區之隨意第二烷基-脫甲基化流出物; (V)在第二分離裝置中將至少一部分的該第一富C8+芳烴流和/或該第二烷基-脫甲基化流出物分離,以獲得富二甲苯流與富C9+芳烴流;及 (VI)在第一對二甲苯回收次系統中將該富二甲苯流隨意地分離,以獲得第一對二甲苯產物流與第一對二甲苯耗盡流; 其中步驟(II)與(IV)的至少一者被進行。A1. A method of manufacturing xylene, the method comprising: (I) providing a C6+ aromatic hydrocarbon-containing stream comprising C2+-hydrocarbyl-substituted aromatic hydrocarbons, wherein the C2+-hydrocarbyl-substituted aromatic hydrocarbon has (i) a C2+ alkyl substituent attached to an aromatic ring therein and/or (ii) ) an aliphatic ring fused to an aromatic ring therein; (II) optionally contacting the C6+ aromatics-containing stream with a first alkyl-demethylation catalyst in a first alkyl-demethylation zone under a first set of alkyl-demethylation conditions to converting at least a portion of the C2+-hydrocarbyl-substituted aromatics to alkyl-demethylated aromatics to obtain an optional first alkyl-demethylation effluent leaving the first alkyl-demethylation zone; (III) Separating at least a portion of the C6+ aromatics-containing stream and/or the first alkyl-demethylation effluent in a first separation unit to obtain a C6 to C7 hydrocarbon-rich stream and a first C8+ aromatics-rich stream ; (IV) The first C8+ aromatics stream is optionally combined with a second alkyl-demethylation catalyst in a second alkyl-demethylation zone under a second set of alkyl-demethylation conditions contacting to convert at least a portion of the C2+-hydrocarbyl-substituted aromatics (if contained in the first C8+ aromatics-rich stream) to alkyl-demethylated aromatics to obtain exiting the second alkyl-demethylated aromatics Optional second alkyl-demethylation effluent from the chemistry zone; (v) separating at least a portion of the first C8+ aromatics-rich stream and/or the second alkyl-demethylation effluent in a second separation unit to obtain a xylene-rich stream and a C9+ aromatics-rich stream; and (VI) optionally separating the xylene-rich stream in the first paraxylene recovery sub-system to obtain a first paraxylene product stream and a first paraxylene depleted stream; wherein at least one of steps (II) and (IV) is performed.

A2. 如A1之方法,其中: 該C2+-烴基取代的芳烴包含乙苯、乙基甲苯、正丙苯、異丙苯、二乙苯、正丙基甲苯、異丙基甲苯、乙基二甲苯、正丁苯、二級丁苯、異丁苯、三級丁苯、二氫茚、茚、甲基二氫茚、四氫萘、與其混合物。A2. The method of A1, wherein: The C2+-hydrocarbyl-substituted aromatic hydrocarbons include ethylbenzene, ethyltoluene, n-propylbenzene, cumene, diethylbenzene, n-propyltoluene, cumene, ethylxylene, n-butylbenzene, secondary butylbenzene , Isobutylbenzene, tertiary butylbenzene, dihydroindene, indene, methyldihydroindene, tetrahydronaphthalene, and mixtures thereof.

A3. 如A1或A2之方法,其中該C2+-烴基取代的芳烴具有以在該含C6+芳烴流中含有之該C6+芳烴總重量為基準計在2至70重量%範圍內的總濃度。A3. The method of A1 or A2, wherein the C2+-hydrocarbyl-substituted aromatics have a total concentration in the range of 2 to 70% by weight based on the total weight of the C6+ aromatics contained in the C6+ aromatics-containing stream.

A4. 如A2或A3之方法,其中該C2+-烴基取代的芳烴包含以在該含C6+芳烴流中含有之該C8芳烴總重量為基準計在2%至50重量%範圍內的濃度之乙苯。A4. The method of A2 or A3, wherein the C2+-hydrocarbyl-substituted aromatics comprise ethylbenzene at a concentration in the range of 2% to 50% by weight based on the total weight of the C8 aromatics contained in the C6+ aromatics-containing stream .

A5. 如A2至A4中任一項之方法,其中該C2+-烴基取代的芳烴包含其C9芳烴部分,及該C9芳烴部分具有以在該含C6+芳烴流中含有之該C9芳烴總重量為基準計在30至90重量%範圍內的總濃度。A5. The method of any one of A2 to A4, wherein the C2+-hydrocarbyl-substituted aromatics comprises its C9 aromatics moiety, and the C9 aromatics moiety has the C9 aromatics total weight contained in the C6+ aromatics stream as a benchmark The total concentration is in the range of 30 to 90% by weight.

A6. 如A1至A5中任一項之方法,其中步驟(VI)被進行,並且該方法另外包含: (VII)將至少一部分的該第一對二甲苯耗盡流與第三烷基-脫甲基化觸媒在第三烷基-脫甲基化區中在第三組烷基-脫甲基化條件下隨意地接觸以將至少一部分的該C2+-烴基取代之芳烴(若在該第一對二甲苯耗盡流中含有的話)轉化成烷基-脫甲基化芳烴,以獲得離開該第三烷基-脫甲基化區之隨意第三烷基-脫甲基化流出物; (VIII)將至少一部分之該第一對二甲苯耗盡流和/或至少一部分之該第三烷基-脫甲基化流出物與異構化觸媒在第一異構化區中在異構化條件下接觸以製造離開該第一異構化區的第一異構化流出物,其包含濃度高於該第一對二甲苯耗盡流之對二甲苯;及 (IX)在第二對二甲苯回收次系統中將至少一部分之該第一異構化流出物分離,以獲得第二對二甲苯產物流與第二對二甲苯耗盡流。A6. The method of any one of A1 to A5, wherein step (VI) is carried out, and the method additionally comprises: (VII) Combining at least a portion of the first paraxylene depleted stream with a third alkyl-demethylation catalyst in a third alkyl-demethylation zone in a third set of alkyl-demethylation optionally contacted under stoichiometric conditions to convert at least a portion of the C2+-hydrocarbyl-substituted aromatics (if contained in the first para-xylene depleted stream) to alkyl-demethylated aromatics to obtain exiting the first para-xylene depleted stream. The optional third alkyl-demethylation effluent of the trialkyl-demethylation zone; (VIII) combining at least a portion of the first paraxylene depletion stream and/or at least a portion of the third alkyl-demethylation effluent with an isomerization catalyst in a first isomerization zone contacting under structuring conditions to produce a first isomerization effluent exiting the first isomerization zone comprising a higher concentration of paraxylene than the first paraxylene depletion stream; and (IX) Separating at least a portion of the first isomerization effluent in a second paraxylene recovery subsystem to obtain a second paraxylene product stream and a second paraxylene depletion stream.

A7. 如A6之方法,其中步驟(VII)被進行,並且該第一異構化區是該第三烷基-脫甲基化區的下游。A7. The method of A6, wherein step (VII) is performed and the first isomerization zone is downstream of the third alkyl-demethylation zone.

A8. 如A7之方法,其另外包含: (VIIIa)將至少一部分的該第一對二甲苯耗盡流和/或至少一部分之該第三烷基-脫甲基化流出物與第四烷基-脫甲基化觸媒在該第一異構化區中在第四組烷基-脫甲基化條件下接觸以將至少一部分的該C2+-烴基取代之芳烴(若在該第一對二甲苯耗盡流和/或該第三烷基-脫甲基化流出物中含有的話)轉化成烷基-脫甲基化芳烴。A8. The method of A7, which additionally includes: (VIIIa) combining at least a portion of the first paraxylene depletion stream and/or at least a portion of the third alkyl-demethylation effluent with a fourth alkyl-demethylation catalyst in the first Contact in the isomerization zone under a fourth set of alkyl-demethylation conditions to convert at least a portion of the C2+-hydrocarbyl-substituted aromatics (if in the first paraxylene depletion stream and/or the third alkane alkyl-demethylation effluent) into alkyl-demethylated aromatics.

A9. 如A6之方法,其中該第一異構化區至少部分地與該第三烷基-脫甲基化區重疊。A9. The method of A6, wherein the first isomerization zone at least partially overlaps the third alkyl-demethylation zone.

A10. 如A6之方法,其中該第二對二甲苯回收次系統是該第一對二甲苯回收次系統,該第一與第二對二甲苯產物流是聯合流之部分,及該第一與第二對二甲苯耗盡流是聯合流之部分。A10. The method of A6, wherein the second para-xylene recovery sub-system is the first para-xylene recovery sub-system, the first and second para-xylene product streams are part of a combined stream, and the first and The second paraxylene depletion stream is part of the combined stream.

A11. 如A6至A10中任一項之方法,其中液相異構化係在該第一異構化區中進行。A11. The method of any one of A6 to A10, wherein liquid phase isomerization is carried out in the first isomerization zone.

A12. 如A11之方法,其中在步驟(VIII)中,實質上全部的該第三烷基-脫甲基化流出物被進料至該第一異構化區。A12. The method of A11, wherein in step (VIII) substantially all of the third alkyl-demethylation effluent is fed to the first isomerization zone.

A13. 如A6至A10中任一項之方法,其中該異構化條件包含將二甲苯在該第一異構化區中保持實質上汽相。A13. The method of any one of A6 to A10, wherein the isomerization conditions comprise maintaining xylene in a substantially vapor phase in the first isomerization zone.

A14. 如A13之方法,其中在步驟(VIII)中,第一部分的對二甲苯耗盡流或一部分的第三烷基-甲基化流出物被進料至第一異構化區,並且該方法另外包含: (VIIIb)將第二部分的第三烷基-甲基化流出物與第二異構化觸媒在第二異構化區中在足以實現汽相異構化之第二組異構化條件下接觸以製造第二異構化流出物;及 (VIIIc)在第二對二甲苯回收次系統中將至少一部分之該第二異構化流出物分離,以獲得第二對二甲苯產物流與第二對二甲苯耗盡流。A14. The method of A13, wherein in step (VIII) a first portion of the paraxylene depleted stream or a portion of the third alkyl-methylation effluent is fed to the first isomerization zone, and the The method additionally contains: (VIIIb) Combining the second portion of the third alkyl-methylation effluent with the second isomerization catalyst in the second isomerization zone under a second set of isomerization conditions sufficient to effect vapor phase isomerization contacting down to produce a second isomerization effluent; and (VIIIc) Separating at least a portion of the second isomerization effluent in a second paraxylene recovery subsystem to obtain a second paraxylene product stream and a second paraxylene depletion stream.

A15. 如A1至A14中任一項之方法,其另外包含: (X)將至少一部分的該富C9+芳烴流與第五烷基-脫甲基化觸媒在第五烷基-脫甲基化區中在第五組烷基-脫甲基化條件下隨意地接觸以將至少一部分的該C2+-烴基取代之芳烴(若在該富C9+芳烴流中含有的話)轉化成烷基-脫甲基化烴,以製造離開該第五烷基-脫甲基化區之第五烷基-脫甲基化流出物; (XI)在第三分離裝置中將該富C9+芳烴流和/或該第五烷基-脫甲基化流出物隨意地分離,以獲得富C9至C10芳烴流與富C11+芳烴流; (XII)將至少一部分的該C9+芳烴流、和/或至少一部分之該第五烷基-脫甲基化流出物、和/或至少一部分的該富C9至C10芳烴流與第六烷基-脫甲基化觸媒在第六烷基-脫甲基化區中在第六組烷基-脫甲基化條件下隨意地接觸,以將至少一部分的該C2+-烴基取代之芳烴(若在該C9+芳烴流、和/或該第五烷基-脫甲基化流出物、和/或該富C9至C10芳烴流中含有的話)轉化成烷基-脫甲基化烴,以製造離開該第六烷基-脫甲基化區之第六烷基-脫甲基化流出物; (XIII)將至少一部分的該富C9+芳烴流、和/或至少一部分之該第五烷基-脫甲基化流出物、和/或至少一部分的該富C9至C10芳烴流、和/或至少一部分之該第六烷基-脫甲基化流出物、與隨意地苯/甲苯流進料至轉烷基化區; (XIV)將C9+芳烴與苯/甲苯在轉烷基化觸媒存在下在轉烷基化條件下接觸,以製造離開該轉烷基化區的轉烷基化流出物;及 (XV)在第四分離裝置中將該轉烷基化流出物分離,以獲得隨意第一苯產物流、富甲苯流、與第二富C8+芳烴流。A15. The method of any one of A1 to A14, further comprising: (X) Optionally combining at least a portion of this C9+ rich aromatics stream with a fifth alkyl-demethylation catalyst in a fifth alkyl-demethylation zone under a fifth set of alkyl-demethylation conditions contacting to convert at least a portion of the C2+-hydrocarbyl-substituted aromatics (if contained in the C9+ aromatics-rich stream) into alkyl-demethylated hydrocarbons to produce exiting the fifth alkyl-demethylation the fifth alkyl-demethylation effluent of the zone; (XI) optionally separating the C9+ aromatics stream and/or the fifth alkyl-demethylation effluent in a third separation unit to obtain a C9 to C10 aromatics stream and a C11+ aromatics stream; (XII) combining at least a portion of the C9+ aromatics stream, and/or at least a portion of the fifth alkyl-demethylation effluent, and/or at least a portion of the C9 to C10 rich aromatics stream with a sixth alkyl- The demethylation catalyst is optionally contacted in the sixth alkyl-demethylation zone under a sixth set of alkyl-demethylation conditions to convert at least a portion of the C2+-hydrocarbyl-substituted aromatic hydrocarbons (if in the The C9+ aromatics stream, and/or the fifth alkyl-demethylation effluent, and/or contained in the C9 to C10 rich aromatics stream) are converted into alkyl-demethylated hydrocarbons to produce the the sixth alkyl-demethylation effluent of the sixth alkyl-demethylation zone; (XIII) converting at least a portion of the C9+ aromatics-rich stream, and/or at least a portion of the fifth alkyl-demethylation effluent, and/or at least a portion of the C9- to C10-rich aromatics stream, and/or at least a A portion of this sixth alkyl-demethylation effluent, and optionally a benzene/toluene stream, is fed to the transalkylation zone; (XIV) contacting C9+ aromatics with benzene/toluene in the presence of a transalkylation catalyst under transalkylation conditions to produce a transalkylation effluent leaving the transalkylation zone; and (XV) Separating the transalkylation effluent in a fourth separation unit to obtain an optional first benzene product stream, a toluene-rich stream, and a second C8+ aromatics-rich stream.

A16. 如A15之方法,其另外包含: (XVI)將該第二富C8+芳烴流連同該第一富C8+芳烴流進料至該第二分離裝置。A16. The method of A15, which additionally includes: (XVI) Feeding the second C8+ aromatics stream together with the first C8+ aromatics stream to the second separation unit.

A17. 如A15或A16之方法,其另外包含: (XVII)將至少一部分的該第一苯產物流和/或至少一部分之該富甲苯流進料至該轉烷基化區作為至少一部分的該苯/甲苯流。A17. A method as in A15 or A16, which additionally comprises: (XVII) Feeding at least a portion of the first benzene product stream and/or at least a portion of the toluene-rich stream to the transalkylation zone as at least a portion of the benzene/toluene stream.

A18. 如A15至a17中任一項之方法,其中該第六烷基-脫甲基化區是該轉烷基化區的上游。A18. The method of any one of A15 to a17, wherein the sixth alkyl-demethylation zone is upstream of the transalkylation zone.

A19. 如A15至A17中任一項之方法,其中該第六烷基-脫甲基化區至少部分地與該轉烷基化區重疊。A19. The method of any one of A15 to A17, wherein the sixth alkyl-demethylation zone at least partially overlaps the transalkylation zone.

A20. 如A1至A19中任一項之方法,其另外包含: (XVIII)從該富C6至C7烴流獲得第一富C6至C7芳烴流;及 (XIX)在第五分離裝置中將該第一富C6至C7芳烴流分離,以獲得第二苯產物流、與第二富甲苯流。A20. The method of any one of A1 to A19, further comprising: (XVIII) obtaining a first C6 to C7 rich aromatics stream from the C6 to C7 rich hydrocarbon stream; and (XIX) Separating the first C6- to C7-enriched aromatics stream in a fifth separation unit to obtain a second benzene product stream, and a second toluene-enriched stream.

A21. 如A20之方法,其中該第五分離裝置是該第四分離裝置,該第一與該第二苯產物流是聯合流,及該第一與第二富甲苯流是聯合流。A21. The method of A20, wherein the fifth separation device is the fourth separation device, the first and the second benzene product streams are combined streams, and the first and second toluene-rich streams are combined streams.

A22. 如A15至A21中任一項之方法,其另外包含: (XX)將至少一部分的該第一富甲苯流和/或至少一部分之該第二富甲苯流與歧化觸媒在歧化區中在歧化條件下接觸以製造離開該歧化區之包含對二甲苯的歧化流出物; (XXI)在第六分離裝置中將至少一部分的該歧化流出物分離,以獲得第三富對二甲苯流與第三富甲苯流;及 (XXII)將至少一部分的該第三富甲苯流隨意地再循環至該歧化區。A22. The method of any one of A15 to A21, further comprising: (XX) contacting at least a portion of the first toluene-enriched stream and/or at least a portion of the second toluene-enriched stream with a disproportionation catalyst in a disproportionation zone under disproportionation conditions to produce para-xylene-containing paraxylene exiting the disproportionation zone disproportionation effluent; (XXI) separating at least a portion of the disproportionated effluent in a sixth separation unit to obtain a third para-xylene-rich stream and a third toluene-rich stream; and (XXII) Optionally recycling at least a portion of the third toluene-rich stream to the disproportionation zone.

A23. 如A15至A21中任一項之方法,其中該第六分離裝置和/或該第五分離裝置和/或該第四分離裝置是相同裝置,該第三富對二甲苯流、和/或該第一富C8+芳烴流、和/或該第二富C8+芳烴流是聯合流之部分,及該第一富甲苯流、和/或該第二富甲苯流、和/或該第三甲苯是聯合流之部分。A23. The method of any one of A15 to A21, wherein the sixth separation device and/or the fifth separation device and/or the fourth separation device are the same device, the third p-xylene-rich stream, and/ or the first C8+ aromatics-rich stream, and/or the second C8+ aromatics-rich stream are part of the combined stream, and the first toluene-rich stream, and/or the second toluene-rich stream, and/or the third toluene-rich stream is part of the combined stream.

A24. 如A22之方法,其另外包含: (XXIII)在第三對二甲苯回收次系統中將該第三富對二甲苯流分離,以獲得第三對二甲苯產物流與第三對二甲苯耗盡流。A24. The method of A22, which additionally comprises: (XXIII) Separating the third paraxylene rich stream in a third paraxylene recovery sub-system to obtain a third paraxylene product stream and a third paraxylene depleted stream.

A25. 如A15至A24中任一項之方法,其另外包含: (XXIV)將至少一部分的該第一苯產物流、和/或至少一部分之該第二苯產物流、和/或至少一部分的該第一富甲苯流、和/或至少一部分之該第二富甲苯流、和/或至少一部分的該第三富甲苯流與甲醇和/或二甲醚在烷基化觸媒存在下在烷基化區中在烷基化條件下接觸,以製造離開該烷基化區之包含對二甲苯的烷基化流出物; (XXV)將至少一部分的該烷基化流出物分離,以獲得第四富對二甲苯流與第四富甲苯流;及 (XXVI)在第四對二甲苯回收次系統中將該第四富對二甲苯流分離,以獲得第四對二甲苯產物流與第四對二甲苯耗盡流。A25. The method of any one of A15 to A24, further comprising: (XXIV) combining at least a portion of the first benzene product stream, and/or at least a portion of the second benzene product stream, and/or at least a portion of the first toluene-rich stream, and/or at least a portion of the second rich stream The toluene stream, and/or at least a portion of this third toluene-rich stream, is contacted with methanol and/or dimethyl ether in the presence of an alkylation catalyst in an alkylation zone under alkylation conditions to produce the alkane leaving the an alkylation effluent of the alkylation zone comprising para-xylene; (XXV) separating at least a portion of the alkylation effluent to obtain a fourth para-xylene-rich stream and a fourth toluene-rich stream; and (XXVI) Separating the fourth paraxylene rich stream in a fourth paraxylene recovery sub-system to obtain a fourth paraxylene product stream and a fourth paraxylene depleted stream.

A26. 如A23或A24之方法,其中該第三與第四對二甲苯回收次系統是相同次系統,及該第三與第四對二甲苯產物流是聯合流之部分。A26. The method of A23 or A24, wherein the third and fourth para-xylene recovery sub-systems are the same sub-system, and the third and fourth para-xylene product streams are part of a combined stream.

A27. 如A24或A25之方法,其中該第三對二甲苯回收次系統和/或第四對二甲苯回收系統包含結晶器。A27. The method of A24 or A25, wherein the third paraxylene recovery sub-system and/or the fourth paraxylene recovery system comprises a crystallizer.

A28. 如A1至A27中任一項之方法,其中步驟(I)包含: (Ia)提供重石油腦流; (Ib)將該重石油腦流與重組觸媒在重組區中在重組條件下接觸以獲得離開該重組區之包含C6+芳烴的重組流出物,其中在此步驟(Ib)中製造至少一部分的該C2+-烴基取代之芳烴;及 (Ic)提供至少一部分的該重組流出物作為至少一部分之該含C6+芳烴流。A28. The method of any one of A1 to A27, wherein step (1) comprises: (Ia) providing heavy petroleum encephalitis; (Ib) contacting the heavy petroleum naphtha stream with a recombination catalyst under recombination conditions in a recombination zone to obtain a recombination effluent containing C6+ aromatics leaving the recombination zone, wherein at least a portion of the recombination effluent is produced in this step (Ib) C2+-hydrocarbyl-substituted aromatic hydrocarbons; and (Ic) providing at least a portion of the reformed effluent as at least a portion of the C6+ aromatics-containing stream.

A29. 如A28之方法,其另外包含: (Id)將該重石油腦流和/或中間反應混合物與第七烷基-脫甲基化觸媒在重組區中在第七組烷基-脫甲基化條件下接觸以將至少一部分的該C2+-烴基取代之芳烴轉化成烷基-脫甲基化芳烴。A29. The method of A28, which additionally comprises: (Id) contacting the heavy petroleum naphtha stream and/or the intermediate reaction mixture with a seventh alkyl-demethylation catalyst in a recombination zone under a seventh set of alkyl-demethylation conditions to convert at least a portion of the The C2+-hydrocarbyl-substituted aromatics are converted to alkyl-demethylated aromatics.

A30. 如A28或A29之方法,其中該第一烷基-脫甲基化區是該重組區和/或第七烷基-脫甲基化區的下游。A30. The method of A28 or A29, wherein the first alkyl-demethylation zone is downstream of the recombination zone and/or the seventh alkyl-demethylation zone.

A31. 如A28或A29之方法,其中該第一烷基-脫甲基化區至少部分地與該重組區和/或該第七烷基-脫甲基化區重疊。A31. The method of A28 or A29, wherein the first alkyl-demethylation region at least partially overlaps the recombination region and/or the seventh alkyl-demethylation region.

A32. 如A1至A31中任一項之方法,其中至少一部分的該第一含C6+芳烴流係由經加氫處理之蒸汽裂解石油腦流衍生。A32. The method of any one of A1 to A31, wherein at least a portion of the first C6+ aromatics-containing stream is derived from a hydrotreated steam cracked petroleum naphtha.

A33. 如A32之方法,其中富C5-烴流是在步驟(III)中獲得。A33. The method of A32, wherein the C5-rich hydrocarbon stream is obtained in step (III).

A34. 如A1至A33中任一項之方法,其中該第一烷基-脫甲基化觸媒、和/或該第二烷基-脫甲基化觸媒、和/或該第三烷基-脫甲基化觸媒、和/或該第四烷基-脫甲基化觸媒、和/或該第五烷基-脫甲基化觸媒、和/或該第六烷基-脫甲基化觸媒、和/或該第七烷基-脫甲基化觸媒相同或不同地包含選自第7、8、9、與10族金屬及其組合物之第一金屬元素、及支撐體。A34. The method of any one of A1 to A33, wherein the first alkyl-demethylation catalyst, and/or the second alkyl-demethylation catalyst, and/or the third alkane Alkyl-demethylation catalyst, and/or the fourth alkyl-demethylation catalyst, and/or the fifth alkyl-demethylation catalyst, and/or the sixth alkyl- The demethylation catalyst, and/or the seventh alkyl-demethylation catalyst, identically or differently comprise a first metal element selected from the group consisting of Groups 7, 8, 9, and 10 metals and combinations thereof, and supports.

A35. 如A34之方法,其中該第一金屬元素係選自:Fe、Co、Ni、Cu、Ru、Rh、Pd、Re、Os、Ir、Pt、及其組合物。A35. The method of A34, wherein the first metal element is selected from the group consisting of Fe, Co, Ni, Cu, Ru, Rh, Pd, Re, Os, Ir, Pt, and combinations thereof.

A36. 如A34或A35之方法,其中在各烷基-脫甲基化觸媒中,該第一金屬元素的濃度是以該各烷基-脫甲基化觸媒總重量為基準計在0.1至10重量%範圍內。A36. The method of A34 or A35, wherein in each alkyl-demethylation catalyst, the concentration of the first metal element is based on the total weight of each alkyl-demethylation catalyst at 0.1 to within 10% by weight.

A37. 如A34至A36中任一項之方法,其中該第一烷基-脫甲基化觸媒、和/或該第二烷基-脫甲基化觸媒、和/或該第三烷基-脫甲基化觸媒、和/或該第四烷基-脫甲基化觸媒、和/或該第五烷基-脫甲基化觸媒、和/或該第六烷基-脫甲基化觸媒、和/或該第七烷基-脫甲基化觸媒相同或不同地另外包含選自第11、12、13、與14族金屬及其組合物之第二金屬元素。A37. The method of any one of A34 to A36, wherein the first alkyl-demethylation catalyst, and/or the second alkyl-demethylation catalyst, and/or the third alkane Alkyl-demethylation catalyst, and/or the fourth alkyl-demethylation catalyst, and/or the fifth alkyl-demethylation catalyst, and/or the sixth alkyl- The demethylation catalyst, and/or the seventh alkyl-demethylation catalyst, identically or differently, additionally comprises a second metal element selected from the group consisting of Groups 11, 12, 13, and 14 metals and combinations thereof .

A38. 如A37之方法,其中該第二金屬元素係選自:第11、12、13、與14族元素,比如Cu、Ag、Au、Zn、Al、Ga、Sn、及其組合物。A38. The method of A37, wherein the second metal element is selected from: Group 11, 12, 13, and Group 14 elements, such as Cu, Ag, Au, Zn, Al, Ga, Sn, and combinations thereof.

A39. 如A37或A38之方法,其中在各烷基-脫甲基化觸媒中,該第二金屬元素的濃度是以該各烷基-脫甲基化觸媒總重量為基準計在0.1至10重量%範圍內。A39. The method of A37 or A38, wherein in each alkyl-demethylation catalyst, the concentration of the second metal element is based on the total weight of each alkyl-demethylation catalyst at 0.1 to within 10% by weight.

A40. 如A34至A39中任一項之方法,其中該第一烷基-脫甲基化觸媒、和/或該第二烷基-脫甲基化觸媒、和/或該第三烷基-脫甲基化觸媒、和/或該第四烷基-脫甲基化觸媒、和/或該第五烷基-脫甲基化觸媒、和/或該第六烷基-脫甲基化觸媒、和/或該第七烷基-脫甲基化觸媒相同或不同地另外包含選自第1與2族金屬及其組合物之第三金屬元素。A40. The method of any one of A34 to A39, wherein the first alkyl-demethylation catalyst, and/or the second alkyl-demethylation catalyst, and/or the third alkane Alkyl-demethylation catalyst, and/or the fourth alkyl-demethylation catalyst, and/or the fifth alkyl-demethylation catalyst, and/or the sixth alkyl- The demethylation catalyst, and/or the seventh alkyl-demethylation catalyst, identically or differently, additionally comprises a third metal element selected from the group 1 and 2 metals and combinations thereof.

A41. 如A40之方法,其中該第三金屬元素係選自:Li、N、K、Rb、Cs、Mg、Ca、Ba、及其組合物。A41. The method of A40, wherein the third metal element is selected from the group consisting of: Li, N, K, Rb, Cs, Mg, Ca, Ba, and combinations thereof.

A42. 如A40或A41之方法,其中在各烷基-脫甲基化觸媒中,該第三金屬元素的濃度是以該各烷基-脫甲基化觸媒總重量為基準計在0.1至10重量%範圍內。A42. The method of A40 or A41, wherein in each alkyl-demethylation catalyst, the concentration of the third metal element is based on the total weight of each alkyl-demethylation catalyst at 0.1 to within 10% by weight.

A43. 如A34至A42中任一項之方法,其中各第一、第二、第三、第四、第五、第六、與第七烷基-脫甲基化觸媒的至少一者包含分子篩(較佳為沸石)作為至少一部分之支撐體。A43. The method of any one of A34 to A42, wherein at least one of each of the first, second, third, fourth, fifth, sixth, and seventh alkyl-demethylation catalysts comprises Molecular sieves, preferably zeolites, serve as at least a portion of the support.

A44. 如A1至A43中任一項之方法,其中該第一、第二、第三、第四、第五、第六、與第七組烷基-脫甲基化條件相同或不同地包含下列的至少一者: 在從200至500℃範圍內之溫度; 在從350至2500千帕範圍內的絕對壓力; 在從0.5至20範圍內之分子氫對烴的莫耳比;及 在從1至20小時-1 範圍內之液體重量時空速度。A44. The method of any one of A1 to A43, wherein the first, second, third, fourth, fifth, sixth, and seventh groups of alkyl-demethylation conditions are identically or differently comprising at least one of the following: a temperature in the range from 200 to 500°C; an absolute pressure in the range from 350 to 2500 kPa; the molar ratio of molecular hydrogen to hydrocarbon in the range from 0.5 to 20; Liquid weight hourly space velocity in the range 1 to 20 hours -1 .

B1. 一種C8芳烴異構化方法,該方法包含: (i)提供第一C8芳烴流,其包含乙苯、對二甲苯、間二甲苯、與隨意鄰二甲苯; (ii)在對二甲苯回收次系統中將該第一C8芳烴流分離,以獲得對二甲苯產物流與對二甲苯耗盡流; (iii)將至少一部分的該對二甲苯耗盡流與第一乙基-脫甲基化觸媒在第一乙基-脫甲基化區中接觸以將至少一部分的存在於該對二甲苯耗盡流中之乙苯轉化成甲苯,以獲得離開該第一乙基-脫甲基化區之第一乙基-脫甲基化流出物; (iv)將至少一部分的該對二甲苯耗盡流和/或至少一部分的該第一乙基-脫甲基化流出物與第一二甲苯異構化觸媒在第一二甲苯異構化區中在第一組二甲苯異構化條件下接觸,以獲得第一二甲苯異構化流出物;及 (v)將至少一部分的該第一二甲苯異構化流出物供應給對二甲苯回收次系統,以獲得該對二甲苯產物流與該對二甲苯耗盡流。 B1. A C8 aromatic hydrocarbon isomerization method, the method comprises: (i) providing a first C8 aromatics stream comprising ethylbenzene, para-xylene, meta-xylene, and optionally ortho-xylene; (ii) separating the first C8 aromatics stream in a para-xylene recovery subsystem to obtain a para-xylene product stream and a para-xylene depletion stream; (iii) contacting at least a portion of the para-xylene depleted stream with a first ethyl-demethylation catalyst in a first ethyl-demethylation zone to remove at least a portion of the para-xylene present in the para-xylene converting ethylbenzene in the depletion stream to toluene to obtain a first ethyl-demethylation effluent leaving the first ethyl-demethylation zone; (iv) isomerizing at least a portion of the para-xylene depleted stream and/or at least a portion of the first ethyl-demethylation effluent with a first xylene isomerization catalyst in a first xylene contacting in the zone under a first set of xylene isomerization conditions to obtain a first xylene isomerization effluent; and (v) supplying at least a portion of the first xylene isomerization effluent to a para-xylene recovery subsystem to obtain the para-xylene product stream and the para-xylene depletion stream.

B2.如B1之C8芳烴異構化方法,其中該第一二甲苯異構化區是該第一乙基-脫甲基化區的下游。 B2. The C8 aromatics isomerization process of B1, wherein the first xylene isomerization zone is downstream of the first ethyl-demethylation zone.

B2a.如B2之C8芳烴異構化方法,其另外包含:(iva)將至少一部分的該對二甲苯耗盡流和/或至少一部分的該第一乙基-脫甲基化流出物與第二乙基-脫甲基化觸媒在該第一二甲苯異構化區中在第二組乙基-脫甲基化條件下接觸,以將存在於第一異構化區中之至少一部分的乙苯轉化成甲苯。 B2a. The C8 aromatics isomerization process of B2, further comprising: (iva) combining at least a portion of the para-xylene depleted stream and/or at least a portion of the first ethyl-demethylation effluent with the first The diethyl-demethylation catalyst is contacted in the first xylene isomerization zone under a second set of ethyl-demethylation conditions to remove at least a portion of the catalyst present in the first isomerization zone of ethylbenzene is converted into toluene.

B3.如B1之C8芳烴異構化方法,其中該第一二甲苯異構化區至少部分地與該第一乙基-脫甲基化區重疊。 B3. The C8 aromatics isomerization process of B1, wherein the first xylene isomerization zone at least partially overlaps the first ethyl-demethylation zone.

B4.如B1至B3中任一項之C8芳烴異構化方法,其中液相異構化係在該第一二甲苯異構化區中進行。 B4. The C8 aromatics isomerization method according to any one of B1 to B3, wherein the liquid phase isomerization is carried out in the first xylene isomerization zone.

B5.如B4之C8芳烴異構化方法,其中實質上全部的該第一乙基-脫甲基化流出物被進料至該第一二甲苯異構化區。 B5. The C8 aromatics isomerization process of B4, wherein substantially all of the first ethyl-demethylation effluent is fed to the first xylene isomerization zone.

B6.如B4或B5之C8芳烴異構化方法,其中該第一組二甲苯異構化條件包含不存在共進料至第一異構化區的分子氫。 B6. The C8 aromatics isomerization process of B4 or B5, wherein the first set of xylene isomerization conditions comprises the absence of molecular hydrogen co-feed to the first isomerization zone.

B7.如B1至B3中任一項之C8芳烴異構化方法,其中汽相異構化係在該第一二甲苯異構化區中進行。 B7. The C8 aromatics isomerization process of any one of B1 to B3, wherein vapor phase isomerization is performed in the first xylene isomerization zone.

B8.如B7之C8芳烴異構化方法,其中第一 部分的該第一乙基-脫甲基化流出物被進料至該第一二甲苯異構化區,並且該方法另外包含:(vi)將第二部分的該第一乙基-脫甲基化流出物與第二二甲苯異構化觸媒在第二二甲苯異構化區中在第二組二甲苯異構化條件下接觸以製造第二二甲苯異構化流出物,其中液相異構化係在該第二二甲苯異構化區中進行;(vii)在對二甲苯回收次系統中將至少一部分之該第二二甲苯異構化流出物分離,以獲得對二甲苯產物流與對二甲苯耗盡流。 B8. The C8 aromatic hydrocarbon isomerization method of B7, wherein the first A portion of the first ethyl-demethylation effluent is fed to the first xylene isomerization zone, and the process additionally comprises: (vi) a second portion of the first ethyl-demethylation The alkylation effluent is contacted with a second xylene isomerization catalyst in a second xylene isomerization zone under a second set of xylene isomerization conditions to produce a second xylene isomerization effluent in which liquid Phase isomerization is performed in the second xylene isomerization zone; (vii) at least a portion of the second xylene isomerization effluent is separated in a paraxylene recovery subsystem to obtain paraxylene Product stream and para-xylene depletion stream.

B9.如B1至B8中任一項之C8芳烴異構化方法,其另外包含:(viii)將一部分的該對二甲苯耗盡流導走作為第一洗淨流。 B9. The C8 aromatics isomerization process of any one of B1 to B8, further comprising: (viii) directing a portion of the paraxylene depleted stream as a first wash stream.

B10.如B1至B7中任一項之C8芳烴異構化方法,其另外包含:(ix)將一部分的該第一異構化流出物和/或一部分的該第二異構化流出物導走作為第二洗淨流。 B10. The C8 aromatics isomerization process of any one of B1 to B7, further comprising: (ix) conducting a part of the first isomerization effluent and/or a part of the second isomerization effluent Walk as a second wash stream.

B11.如B1至B10中任一項之方法,其中該第一乙基-脫甲基化觸媒、和/或該第二乙基-脫甲基化觸媒相同或不同地包含選自第7、8、9、與10族金屬及其組合物之第一金屬元素、及支撐體。 B11. The method of any one of B1 to B10, wherein the first ethyl-demethylation catalyst and/or the second ethyl-demethylation catalyst identically or differently comprise a catalyst selected from the group consisting of The first metal element of Groups 7, 8, 9, and 10 metals and combinations thereof, and supports.

B12.如B11之方法,其中該第一金屬元素係選自:Fe、Co、Ni、Cu、Ru、Rh、Pd、Re、Os、Ir、Pt、及其組合物。B12. The method of B11, wherein the first metal element is selected from the group consisting of Fe, Co, Ni, Cu, Ru, Rh, Pd, Re, Os, Ir, Pt, and combinations thereof.

B13. 如B12或B13之方法,其中在各乙基-脫甲基化觸媒中,該第一金屬元素的濃度是以該各乙基-脫甲基化觸媒總重量為基準計在0.1至10重量%範圍內。B13. The method of B12 or B13, wherein in each ethyl-demethylation catalyst, the concentration of the first metal element is based on the total weight of each ethyl-demethylation catalyst at 0.1 to within 10% by weight.

B14. 如B11至B13中任一項之方法,其中該第一乙基-脫甲基化觸媒和/或該第二乙基-脫甲基化觸媒相同或不同地另外包含選自第11、12、13、與14族金屬及其組合物之第二金屬元素。B14. The method of any one of B11 to B13, wherein the first ethyl-demethylation catalyst and/or the second ethyl-demethylation catalyst, identically or differently, additionally comprise selected from the group consisting of The second metal element of Group 11, 12, 13, and 14 metals and combinations thereof.

B15. 如B14之方法,其中該第二金屬元素係選自:第11、12、13、與14族元素,比如Cu、Ag、Au、Zn、Al、Ga、Sn、及其組合物。B15. The method of B14, wherein the second metal element is selected from group 11, 12, 13, and 14 elements, such as Cu, Ag, Au, Zn, Al, Ga, Sn, and combinations thereof.

B16. 如B14或B15之方法,其中在各乙基-脫甲基化觸媒中,該第二金屬元素的濃度是以該各乙基-脫甲基化觸媒總重量為基準計在0.1至10重量%範圍內。B16. The method of B14 or B15, wherein in each ethyl-demethylation catalyst, the concentration of the second metal element is based on the total weight of each ethyl-demethylation catalyst at 0.1 to within 10% by weight.

B17. 如B11至B16中任一項之方法,其中該第一乙基-脫甲基化觸媒和/或該第二乙基-脫甲基化觸媒相同或不同地另外包含選自第1與2族金屬及其組合物之第三金屬元素。B17. The method of any one of B11 to B16, wherein the first ethyl-demethylation catalyst and/or the second ethyl-demethylation catalyst, identically or differently, additionally comprise selected from the group consisting of The third metal element of Group 1 and 2 metals and compositions thereof.

B18. 如B17之方法,其中該第三金屬元素係選自:Li、N、K、Rb、Cs、Mg、Ca、Ba、及其組合物。B18. The method of B17, wherein the third metal element is selected from the group consisting of: Li, N, K, Rb, Cs, Mg, Ca, Ba, and combinations thereof.

B19. 如B17或B18之方法,其中在各乙基-脫甲基化觸媒中,該第三金屬元素的濃度是以該各乙基-脫甲基化觸媒總重量為基準計在0.1至10重量%範圍內。B19. The method of B17 or B18, wherein in each ethyl-demethylation catalyst, the concentration of the third metal element is based on the total weight of each ethyl-demethylation catalyst at 0.1 to within 10% by weight.

B20. 如B1至B19中任一項之方法,其中該第一乙基-脫甲基化觸媒和/或該第二乙基-脫甲基化觸媒相同或不同地包含分子篩(較佳為沸石)作為至少一部分之支撐體。B20. The method of any one of B1 to B19, wherein the first ethyl-demethylation catalyst and/or the second ethyl-demethylation catalyst identically or differently comprise molecular sieves (preferably zeolite) as at least a part of the support.

B21. 如B1至B19中任一項之方法,其中該第一與第二組烷基-脫甲基化條件相同或不同地包含下列的至少一者: 在從200至500℃範圍內之溫度; 在從350至2500千帕範圍內的絕對壓力; 在從0.5至20範圍內之分子氫對烴的莫耳比;及 在從1至20小時-1 範圍內之液體重量時空速度。B21. The method of any one of B1 to B19, wherein the first and second sets of alkyl-demethylation conditions identically or differently comprise at least one of the following: a temperature in the range from 200 to 500°C ; absolute pressure in the range from 350 to 2500 kPa; molar ratio of molecular hydrogen to hydrocarbon in the range from 0.5 to 20; and liquid weight hourly space velocity in the range from 1 to 20 h -1 .

B22. 一種轉化C8芳烴之方法,該方法包含: (i)提供第一C8芳烴流,其包含乙苯、對二甲苯、間二甲苯、與隨意鄰二甲苯; (ii)在對二甲苯回收次系統中將該第一C8芳烴流分離,以獲得對二甲苯產物流與對二甲苯耗盡流; (iii)將至少一部分的該對二甲苯耗盡流與該第一乙基-脫甲基化觸媒在第一乙基-脫甲基化區中在第一組烷基-脫甲基化條件下接觸以將至少一部分的存在於該對二甲苯耗盡流中之乙苯轉化成甲苯,以獲得離開該第一乙基-脫甲基化區之第一乙基-脫甲基化流出物; (iv)將至少一部分的該第一乙基-脫甲基化流出物與隨意至少一部分的該對二甲苯耗盡流與第一二甲苯異構化觸媒在第一二甲苯異構化區中在第一組二甲苯異構化條件下接觸,以獲得第一二甲苯異構化流出物;及 (v)將至少一部分的該第一二甲苯異構化流出物供應給對二甲苯回收次系統,以獲得對二甲苯產物流與對二甲苯耗盡流; 其中: 該第一組乙基-脫甲基化條件包含:在從200至500℃範圍內之溫度;在從350至2500千帕範圍內的絕對壓力;在從0.5至20範圍內之分子氫對烴的莫耳比;及在從1至20小時-1 範圍內之液體重量時空速度;及該第一乙基-脫甲基化觸媒包含選自第7、8、9、與10族金屬及其組合物之第一金屬元素、及支撐體。B22. A method for converting C8 aromatics, the method comprising: (i) providing a first C8 aromatics stream comprising ethylbenzene, p-xylene, m-xylene, and optional o-xylene; (ii) recovering at p-xylene separating the first C8 aromatics stream in a secondary system to obtain a paraxylene product stream and a paraxylene depletion stream; (iii) separating at least a portion of the paraxylene depletion stream from the first ethyl-demethylation The alkylation catalyst is contacted in the first ethyl-demethylation zone under a first set of alkyl-demethylation conditions to convert at least a portion of the ethylbenzene present in the para-xylene depleted stream into toluene to obtain the first ethyl-demethylation effluent leaving the first ethyl-demethylation zone; (iv) combining at least a portion of the first ethyl-demethylation effluent with optional At least a portion of this para-xylene depleted stream is contacted with a first xylene isomerization catalyst in a first xylene isomerization zone under a first set of xylene isomerization conditions to obtain a first xylene isoform and (v) supplying at least a portion of the first xylene isomerization effluent to a para-xylene recovery subsystem to obtain a para-xylene product stream and a para-xylene depletion stream; wherein: the The first group of ethyl-demethylation conditions includes: temperatures in the range from 200 to 500°C; absolute pressures in the range from 350 to 2500 kPa; molecular hydrogen to hydrocarbons in the range from 0.5 to 20 and the liquid weight hourly space velocity in the range from 1 to 20 hours -1 ; and the first ethyl-demethylation catalyst comprises a metal selected from the group consisting of Groups 7, 8, 9, and 10 and their The first metal element of the composition, and the support.

C1. 一種轉烷基化方法,該方法包含: (A)提供C9+芳烴流,其包含C2+-烴基取代之芳烴,其中該C2+-烴基取代之芳烴具有(i)附接至在其中的芳族環之C2+烷基取代基和/或(ii)稠合至在其中的芳族環之脂族環; (B)將至少一部分的該C9+芳烴流與第一烷基-脫甲基化觸媒在第一烷基-脫甲基化區中在第一組烷基-脫甲基化條件下隨意地接觸以將至少一部分的在該C9+芳烴流中含有之該C2+-烴基取代的芳烴轉化成烷基-脫甲基化烴,以製造離開該第一烷基-脫甲基化區的第一烷基-脫甲基化流出物; (C)在第一分離裝置中將該C9+芳烴流和/或該第一烷基-脫甲基化流出物隨意地分離,以獲得富C9至C10芳烴流與富C11+芳烴流; (D)將至少一部分之該第一烷基-脫甲基化流出物和/或至少一部分之該富C9至C10芳烴流與第二烷基-脫甲基化觸媒在第二烷基-脫甲基化區中在第二組烷基-脫甲基化條件下隨意地接觸以將至少一部分的該C2+-烴基取代之芳烴(若在該第一烷基-脫甲基化流出物和/或該富C9至C10芳烴流中含有的話)轉化成烷基-脫甲基化烴,以製造離開該第二烷基-脫甲基化區之第二烷基-脫甲基化流出物; (E)將至少一部分的該C9+芳烴流、和/或至少一部分之該第一烷基-脫甲基化流出物、和/或至少一部分的該富C9至C10芳烴流、和/或至少一部分之該第二烷基-脫甲基化流出物、與隨意苯/甲苯流進料至轉烷基化區; (F)將C9+芳烴與苯/甲苯在轉烷基化觸媒存在下在轉烷基化區中在轉烷基化條件下接觸,以製造離開轉烷基化區之轉烷基化流出物;及 (G)在第二分離裝置中將該轉烷基化流出物分離,以獲得隨意苯產物流、富甲苯流、與富C8+芳烴流; 其中步驟(B)與(D)的至少一者被進行。C1. A method of transalkylation comprising: (A) providing a C9+ arene stream comprising C2+-hydrocarbyl-substituted arenes, wherein the C2+-hydrocarbyl-substituted arenes have (i) a C2+ alkyl substituent attached to an aromatic ring therein and/or (ii) Aliphatic rings fused to aromatic rings therein; (B) optionally combining at least a portion of the C9+ aromatics stream with a first alkyl-demethylation catalyst in a first alkyl-demethylation zone under a first set of alkyl-demethylation conditions contacting to convert at least a portion of the C2+-hydrocarbyl-substituted aromatics contained in the C9+ aromatics stream to alkyl-demethylated hydrocarbons to produce first alkanes exiting the first alkyl-demethylation zone base-demethylation effluent; (C) optionally separating the C9+ aromatics stream and/or the first alkyl-demethylation effluent in a first separation unit to obtain a C9 to C10 aromatics-rich stream and a C11+ aromatics-rich stream; (D) combining at least a portion of the first alkyl-demethylation effluent and/or at least a portion of the C9 to C10 rich aromatics stream with a second alkyl-demethylation catalyst in a second alkyl- Optional contact in the demethylation zone under a second set of alkyl-demethylation conditions to remove at least a portion of the C2+-hydrocarbyl-substituted aromatics (if in the first alkyl-demethylation effluent and and/or if contained in the C9 to C10 rich aromatics stream) is converted to alkyl-demethylated hydrocarbons to produce a second alkyl-demethylation effluent leaving the second alkyl-demethylation zone ; (E) converting at least a portion of the C9+ aromatics stream, and/or at least a portion of the first alkyl-demethylation effluent, and/or at least a portion of the C9 to C10 rich aromatics stream, and/or at least a portion the second alkyl-demethylation effluent, and the optional benzene/toluene stream are fed to the transalkylation zone; (F) contacting C9+ aromatics with benzene/toluene in the presence of a transalkylation catalyst in a transalkylation zone under transalkylation conditions to produce a transalkylation effluent leaving the transalkylation zone ;and (G) separating the transalkylation effluent in a second separation unit to obtain a random benzene product stream, a toluene-rich stream, and a C8+ aromatics-rich stream; wherein at least one of steps (B) and (D) is performed.

C2. 如C1之轉烷基化方法,其另外包含: (H)在第三分離裝置中將至少一部分的該富C8+芳烴流分離,以獲得富二甲苯流與富C9+芳烴流;及 (I)提供至少一部分的該富C9+芳烴流作為步驟(A)中至少一部分的該C9+芳烴流。C2. The transalkylation method of C1, which additionally comprises: (H) separating at least a portion of the C8+ aromatics-rich stream in a third separation unit to obtain a xylene-rich stream and a C9+ aromatics-rich stream; and (I) providing at least a portion of the C9+ aromatics-rich stream as at least a portion of the C9+ aromatics stream in step (A).

C3. 如C1之轉烷基化方法,其中步驟(B)被進行。C3. The transalkylation method of C1, wherein step (B) is carried out.

C4. 如C1至C3中任一項之轉烷基化方法,其中步驟(C)被進行。C4. The transalkylation process of any one of C1 to C3, wherein step (C) is carried out.

C5. 如C3之轉烷基化方法,其中步驟(C)被進行,及該富C9至C10芳烴流另外包含C7與C8芳烴。C5. The transalkylation process of C3, wherein step (C) is carried out and the C9 to C10 rich aromatics stream additionally comprises C7 and C8 aromatics.

C6. 如C1至C5中任一項之方法,其另外包含: (J)將至少一部分的苯產物流和/或至少一部分的富甲苯流進料至轉烷基化區作為步驟(E)中至少一部分的苯/甲苯流。C6. The method of any one of C1 to C5, further comprising: (J) Feeding at least a portion of the benzene product stream and/or at least a portion of the toluene-rich stream to a transalkylation zone as at least a portion of the benzene/toluene stream in step (E).

C7. 如C1至C6中任一項之方法,其中該第二烷基-脫甲基化區是該轉烷基化區的上游。C7. The method of any one of C1 to C6, wherein the second alkyl-demethylation zone is upstream of the transalkylation zone.

C8. 如C4之方法,其另外包含: 將至少一部分之該第二烷基-脫甲基化流出物和/或至少一部分之該富C9至C10芳烴流與第三烷基-脫甲基化觸媒在第三烷基-脫甲基化區中在第三組烷基-脫甲基化條件下接觸以將至少一部分的該C2+-烴基取代之芳烴(若在該第二烷基-脫甲基化流出物和/或該富C9至C10芳烴流中含有的話)轉化成烷基-脫甲基化烴,其中該第三烷基-脫甲基化區至少部分地與該轉烷基化區重疊。C8. A method as in C4, which additionally includes: Combining at least a portion of the second alkyl-demethylation effluent and/or at least a portion of the C9 to C10 rich aromatics stream with a third alkyl-demethylation catalyst in a third alkyl-demethylation Contacting in a third set of alkyl-demethylation conditions in the alkylation zone to convert at least a portion of the C2+-hydrocarbyl-substituted aromatics (if in the second alkyl-demethylation effluent and/or the C9-rich effluent) to alkyl-demethylated hydrocarbons, if contained in the C10 aromatics stream, wherein the third alkyl-demethylation zone at least partially overlaps the transalkylation zone.

C9. 如C1至C7中任一項之方法,其中該第二烷基-脫甲基化區至少部分地與該轉烷基化區重疊。C9. The method of any one of C1 to C7, wherein the second alkyl-demethylation zone at least partially overlaps the transalkylation zone.

C10. 如C1至C9中任一項之方法,其中該第一烷基-脫甲基化觸媒、和/或該第二烷基-脫甲基化觸媒、和/或該第三烷基-脫甲基化觸媒相同或不同地包含選自第7、8、9、與10族金屬及其組合物之第一金屬元素、及支撐體。C10. The method of any one of C1 to C9, wherein the first alkyl-demethylation catalyst, and/or the second alkyl-demethylation catalyst, and/or the third alkane The radical-demethylation catalysts, identically or differently, comprise a first metal element selected from the group consisting of Groups 7, 8, 9, and 10 metals and combinations thereof, and a support.

C11. 如C10之方法,其中該第一金屬元素係選自:Fe、Co、Ni、Cu、Ru、Rh、Pd、Re、Os、Ir、Pt、及其組合物。C11. The method of C10, wherein the first metal element is selected from the group consisting of Fe, Co, Ni, Cu, Ru, Rh, Pd, Re, Os, Ir, Pt, and combinations thereof.

C12. 如C10或C11之方法,其中在各烷基-脫甲基化觸媒中,該第一金屬元素的濃度是以該各烷基-脫甲基化觸媒總重量為基準計在0.1至10重量%範圍內。C12. The method of C10 or C11, wherein in each alkyl-demethylation catalyst, the concentration of the first metal element is based on the total weight of each alkyl-demethylation catalyst at 0.1 to within 10% by weight.

C13. 如C10至C12中任一項之方法,其中該第一烷基-脫甲基化觸媒、和/或該第二烷基-脫甲基化觸媒、和/或該第三烷基-脫甲基化觸媒相同或不同地另外包含選自第11、12、13、與14族金屬及其組合物之第二金屬元素。C13. The method of any one of C10 to C12, wherein the first alkyl-demethylation catalyst, and/or the second alkyl-demethylation catalyst, and/or the third alkane The radical-demethylation catalyst, identically or differently, additionally comprises a second metal element selected from the group consisting of Groups 11, 12, 13, and 14 metals and combinations thereof.

C14. 如C13之方法,其中該第二金屬元素係選自:第11、12、13、與14族元素,比如Cu、Ag、Au、Zn、Al、Ga、Sn、及其組合物。C14. The method of C13, wherein the second metal element is selected from group 11, 12, 13, and 14 elements, such as Cu, Ag, Au, Zn, Al, Ga, Sn, and combinations thereof.

C15. 如C13或C14之方法,其中在各烷基-脫甲基化觸媒中,該第二金屬元素的濃度是以該各烷基-脫甲基化觸媒總重量為基準計在0.1至10重量%範圍內。C15. The method of C13 or C14, wherein in each alkyl-demethylation catalyst, the concentration of the second metal element is based on the total weight of each alkyl-demethylation catalyst at 0.1 to within 10% by weight.

C16. 如C10至C15中任一項之方法,其中該第一烷基-脫甲基化觸媒和/或該第二烷基-脫甲基化觸媒相同或不同地另外包含選自第1與2族金屬及其組合物之第三金屬元素。C16. The method of any one of C10 to C15, wherein the first alkyl-demethylation catalyst and/or the second alkyl-demethylation catalyst, identically or differently, additionally comprise selected from the group consisting of The third metal element of Group 1 and 2 metals and compositions thereof.

C17. 如C16之方法,其中該第三金屬元素係選自:Li、N、K、Rb、Cs、Mg、Ca、Ba、及其組合物。C17. The method of C16, wherein the third metal element is selected from the group consisting of: Li, N, K, Rb, Cs, Mg, Ca, Ba, and combinations thereof.

C18. 如C16或C17之方法,其中在各烷基-脫甲基化觸媒中,該第三金屬元素的濃度是以該各烷基-脫甲基化觸媒總重量為基準計在0.1至10重量%範圍內。C18. The method of C16 or C17, wherein in each alkyl-demethylation catalyst, the concentration of the third metal element is based on the total weight of each alkyl-demethylation catalyst at 0.1 to within 10% by weight.

C19. 如C10至C18中任一項之方法,其中該第一烷基-脫甲基化觸媒、和/或該第二烷基-脫甲基化觸媒、和/或該第三烷基-脫甲基化觸媒相同或不同地包含分子篩作為至少一部分的支撐體。C19. The method of any one of C10 to C18, wherein the first alkyl-demethylation catalyst, and/or the second alkyl-demethylation catalyst, and/or the third alkane The radical-demethylation catalysts, identically or differently, comprise molecular sieves as at least a portion of the support.

C20. 如C1至C19中任一項之方法,其中該第一組烷基-脫甲基化條件、該第二組烷基-脫甲基化條件、與該第三組烷基-脫甲基化條件相同或不同地包含下列的至少一者: 在從200至500℃範圍內之溫度; 在從350至2500千帕範圍內的絕對壓力; 在從0.5至20範圍內之分子氫對烴的莫耳比;及 在從1至20小時-1 範圍內之液體重量時空速度。C20. The method of any one of C1 to C19, wherein the first group of alkyl-demethylation conditions, the second group of alkyl-demethylation conditions, and the third group of alkyl-demethylation conditions The alkylation conditions comprise identically or differently at least one of the following: a temperature in the range from 200 to 500°C; an absolute pressure in the range from 350 to 2500 kPa; molecular hydrogen to hydrocarbon in the range from 0.5 to 20 and the liquid weight hourly space velocity in the range from 1 to 20 h -1 .

C21. 如C20之方法,其中液相轉烷基化係在該轉烷基化區中進行。C21. The process of C20, wherein liquid phase transalkylation is carried out in the transalkylation zone.

C22. 如C21之方法,其中該轉烷基化條件包含不存在共進料至該轉烷基化區的分子氫流。C22. The process of C21, wherein the transalkylation conditions comprise the absence of a molecular hydrogen stream co-fed to the transalkylation zone.

C23. 一種轉化芳烴之方法,該方法包含: (A)提供C9+芳烴流,其包含C2+-烴基取代之芳烴,其中該C2+-烴基取代之芳烴具有(i)附接至在其中的芳族環之C2+烷基取代基和/或(ii)稠合至在其中的芳族環之脂族環; (B)將至少一部分的該C9+芳烴流與第一烷基-脫甲基化觸媒在第一烷基-脫甲基化區中在第一組烷基-脫甲基化條件下隨意地接觸以將至少一部分的在該C9+芳烴流中含有之該C2+-烴基取代的芳烴轉化成烷基-脫甲基化烴,以製造離開該第一烷基-脫甲基化區的第一烷基-脫甲基化流出物; (C)在第一分離裝置中將該C9+芳烴流和/或該第一烷基-脫甲基化流出物隨意地分離,以獲得富C9至C10芳烴流與富C11+芳烴流; (D)將至少一部分之該第一烷基-脫甲基化流出物和/或至少一部分之該富C9至C10芳烴流與第二烷基-脫甲基化觸媒在第二烷基-脫甲基化區中在第二組烷基-脫甲基化條件下隨意地接觸以將至少一部分的該C2+-烴基取代之芳烴(若在該第一烷基-脫甲基化流出物和/或該富C9至C10芳烴流中含有的話)轉化成烷基-脫甲基化烴,以製造離開該第二烷基-脫甲基化區之第二烷基-脫甲基化流出物; (E)將至少一部分的該C9+芳烴流、和/或至少一部分之該第一烷基-脫甲基化流出物、和/或至少一部分的該富C9至C10芳烴流、和/或至少一部分之該第二烷基-脫甲基化流出物、與隨意苯/甲苯流進料至轉烷基化區; (F)將C9+芳烴與苯/甲苯在轉烷基化觸媒存在下在轉烷基化區中在轉烷基化條件下接觸,以製造離開轉烷基化區之轉烷基化流出物;及 (G)在第二分離裝置中將該轉烷基化流出物分離,以獲得隨意苯產物流、富甲苯流、與富C8+芳烴流; 其中: 步驟(B)與(D)的至少一者被進行; 該第一組烷基-脫甲基化條件與該第二組烷基-脫甲基化條件相同或不同地包含下列的至少一者:在從200至500℃範圍內之溫度;在從350至2500千帕範圍內的絕對壓力;在從0.5至20範圍內之分子氫對烴的莫耳比;及在從1至20小時-1 範圍內之液體重量時空速度;及 該第一烷基-脫甲基化觸媒和/或該第二烷基-脫甲基化觸媒相同或不同地包含:選自第7、8、9、與10族金屬及其組合物之第一金屬元素、及支撐體。C23. A method of converting aromatics, the method comprising: (A) providing a C9+ aromatics stream comprising C2+-hydrocarbyl-substituted aromatics, wherein the C2+-hydrocarbyl-substituted aromatics have (i) an aromatic ring attached to therein C2+ alkyl substituents and/or (ii) an aliphatic ring fused to an aromatic ring therein; (B) combining at least a portion of the C9+ aromatic hydrocarbon stream with a first alkyl-demethylation catalyst Optional contact in the first alkyl-demethylation zone under a first set of alkyl-demethylation conditions to convert at least a portion of the C2+-hydrocarbyl-substituted aromatics contained in the C9+ aromatics stream to alkanes C9+ aromatics stream and /or the first alkyl-demethylation effluent is optionally separated to obtain a C9 to C10 aromatics-rich stream and a C11+ aromatics-rich stream; (D) separating at least a portion of the first alkyl-demethylation effluent and/or at least a portion of the C9 to C10 rich aromatics stream with a second alkyl-demethylation catalyst in a second alkyl-demethylation zone under a second set of alkyl-demethylation conditions optionally contacted to convert at least a portion of the C2+-hydrocarbyl-substituted aromatics (if contained in the first alkyl-demethylation effluent and/or the C9 to C10-rich aromatics stream) into alkyl- Demethylated hydrocarbons to produce a second alkyl-demethylation effluent leaving the second alkyl-demethylation zone; (E) demethylating at least a portion of the C9+ aromatics stream, and/or at least a portion The first alkyl-demethylation effluent, and/or at least a portion of the C9 to C10-rich aromatics stream, and/or at least a portion of the second alkyl-demethylation effluent, and optional benzene /toluene stream is fed to the transalkylation zone; (F) contacting C9+ aromatics with benzene/toluene in the presence of a transalkylation catalyst under transalkylation conditions in the transalkylation zone to produce leaving a transalkylation effluent from the transalkylation zone; and (G) separating the transalkylation effluent in a second separation unit to obtain a random benzene product stream, a toluene-rich stream, and a C8+ aromatics-rich stream; wherein: at least one of steps (B) and (D) is performed; the first set of alkyl-demethylation conditions is the same or different from the second set of alkyl-demethylation conditions comprising at least one of the following One: temperature in the range from 200 to 500°C; absolute pressure in the range from 350 to 2500 kPa; molar ratio of molecular hydrogen to hydrocarbon in the range from 0.5 to 20; and in the range from 1 to 20 The liquid weight hourly space velocity in the range of hours -1 ; and the first alkyl-demethylation catalyst and/or the second alkyl-demethylation catalyst, identically or differently, comprise: selected from the group consisting of: The first metal element of Groups 8, 9, and 10 metals and combinations thereof, and supports.

D1. 一種用於使芳烴烷基-脫甲基化的觸媒組成物,該芳烴具有(i)附接至在其中的芳族環之C2+烷基取代基和/或(ii)稠合至在其中的芳族環之脂族環,該觸媒組成物包含選自第7、8、9、與10族金屬及其組合物之第一金屬元素、及支撐體。D1. A catalyst composition for the alkyl-demethylation of an aromatic hydrocarbon having (i) a C alkyl substituent attached to an aromatic ring therein and/or (ii) fused to In the aliphatic ring of the aromatic ring, the catalyst composition comprises the first metal element selected from the group 7, 8, 9, and 10 metals and combinations thereof, and a support.

D2. 如D1之觸媒組成物,其中該第一金屬元素係選自:Fe、Co、Ni、Ru、Rh、Pd、Re、Os、Ir、Pt、及其組合物。D2. The catalyst composition of D1, wherein the first metal element is selected from the group consisting of Fe, Co, Ni, Ru, Rh, Pd, Re, Os, Ir, Pt, and combinations thereof.

D3. 如D1或D2之觸媒組成物,其中在該觸媒組成物中,該第一金屬元素的濃度是以該觸媒組成物總重量為基準計在0.1至10重量%範圍內。D3. The catalyst composition of D1 or D2, wherein in the catalyst composition, the concentration of the first metal element is in the range of 0.1 to 10% by weight based on the total weight of the catalyst composition.

D4. 如D3之觸媒組成物,其另外包含選自第11、12、13、與14族金屬及其組合物之第二金屬元素。D4. The catalyst composition of D3, further comprising a second metal element selected from the group consisting of Groups 11, 12, 13, and 14 metals and combinations thereof.

D5. 如D4之觸媒組成物,其中該第二金屬元素係選自:第11、12、13、與14族元素,比如Cu、Ag、Au、Zn、Al、Ga、Sn、及其組合物。D5. The catalyst composition of D4, wherein the second metal element is selected from: Group 11, 12, 13, and Group 14 elements, such as Cu, Ag, Au, Zn, Al, Ga, Sn, and combinations thereof thing.

D6. 如D4或D4之觸媒組成物,其中在各烷基-脫甲基化觸媒中,該第二金屬元素的濃度是以該各烷基-脫甲基化觸媒總重量為基準計在0.1至10重量%範圍內。D6. The catalyst composition of D4 or D4, wherein in each alkyl-demethylation catalyst, the concentration of the second metal element is based on the total weight of each alkyl-demethylation catalyst Calculated in the range of 0.1 to 10% by weight.

D7. 如D1至D6中任一項之觸媒組成物,其另外包含選自第1與2族金屬及其組合物之第三金屬元素。D7. The catalyst composition of any one of D1 to D6, further comprising a third metal element selected from the group consisting of Groups 1 and 2 metals and combinations thereof.

D8. 如D7之觸媒組成物,其中該第三金屬元素係選自:Li、N、K、Rb、Cs、Mg、Ca、Ba、及其組合物。D8. The catalyst composition of D7, wherein the third metal element is selected from the group consisting of: Li, N, K, Rb, Cs, Mg, Ca, Ba, and combinations thereof.

D9. 如D7或D8之觸媒組成物,其中該第三金屬元素的濃度是以該觸媒組成物總重量為基準計在0.1至10重量%範圍內。D9. The catalyst composition of D7 or D8, wherein the concentration of the third metal element is in the range of 0.1 to 10% by weight based on the total weight of the catalyst composition.

D10. 如D1至D9中任一項之觸媒組成物,其包含分子篩作為至少一部分的支撐體。D10. The catalyst composition of any one of D1 to D9, comprising molecular sieves as at least a part of the support.

D11. 如D10之觸媒組成物,其中該分子篩包含沸石。D11. The catalyst composition of D10, wherein the molecular sieve comprises zeolite.

D12. 如D10或D11之觸媒組成物,其中該分子篩具有≥100 m2 /g的比表面積。D12. The catalyst composition of D10 or D11, wherein the molecular sieve has a specific surface area of ≥100 m 2 /g.

101:先前技術方法 103:重石油腦流 105:重組區 107:重組流出物,烷基-脫甲基化流出物 109:重組油分離器 111:富C6至C7烴流 113:富C8+芳烴流 114:聯合流 115:二甲苯分離器 117:富二甲苯流 119:對二甲苯回收次系統 121:對二甲苯產物流 123:對二甲苯耗盡流 125:異構化區 127:異構化流出物 129:富C9+芳烴流 131:蒸餾塔 133:富C9至C10芳烴流 135:富C11+芳烴流 137:萃取蒸餾區 138:芳烴耗盡的萃餘物流 139:富C6至C7芳烴流 141:苯塔 143:苯產物流 145:富C8+芳烴流 146:富苯/甲苯流 147:轉烷基化區 149:蒸汽流出物,轉烷基化流出物 201:示範性本發明方法 203:烷基-脫甲基化區 205:烷基-脫甲基化區 207:烷基-脫甲基化流出物 209:烷基-脫甲基化區 211:流 213:洗淨流 215:流 217:異構化流出物 219:流 303:經加氫處理的SCN流 305:分離系統 307:富C5-烴流 309:富C7+烴或富C8+烴流 311:富苯或富C6至C7芳烴流 313:萃取分離區 315:非芳烴萃餘物流 317:富芳烴流 319:苯塔 321:苯產物流 323:富甲苯流 401:經加氫處理的SCN流 403:經加氫處理的SCN流 405:分離次系統 407:輕烴流 501:實施例 503:乙基-脫甲基化區 505:烷基-脫甲基化流出物 507:烷基-脫甲基化區 509:流 511:流 603:烷基-脫甲基化區 605:烷基-脫甲基化區 607:流 609:烷基-脫甲基化區101: Prior art methods 103: Heavy oil brain flow 105: Recombination zone 107: Recombination effluent, alkyl-demethylation effluent 109: Reconstituted Oil Separator 111: C6 to C7 rich hydrocarbon stream 113: rich C8+ aromatics stream 114: Combined Streams 115: Xylene separator 117: Xylene rich stream 119: Paraxylene Recovery Subsystem 121: paraxylene product stream 123: paraxylene depletion stream 125: Isomerization zone 127: Isomerization effluent 129: rich C9+ aromatics stream 131: Distillation column 133: C9 to C10 rich aromatics stream 135: rich C11+ aromatics stream 137: Extractive distillation zone 138: Aromatic-depleted raffinate stream 139: C6 to C7 rich aromatics stream 141: Benzene Tower 143: Benzene product stream 145: rich C8+ aromatics stream 146: Rich benzene/toluene stream 147: Transalkylation zone 149: Steam effluent, transalkylation effluent 201: Exemplary inventive method 203: alkyl-demethylation region 205: alkyl-demethylation region 207: Alkyl-demethylation effluent 209: Alkyl-demethylation region 211: Stream 213: Clean Flow 215: Stream 217: Isomerization effluent 219: Stream 303: Hydrotreated SCN stream 305: Separation System 307: C5-rich hydrocarbon stream 309: C7+ hydrocarbon-rich or C8+ hydrocarbon-rich stream 311: Benzene-rich or C6 to C7 aromatics stream 313: Extraction and separation zone 315: Non-aromatic raffinate stream 317: Aromatic-rich stream 319: Benzene Tower 321: Benzene product stream 323: Toluene-rich stream 401: Hydrotreated SCN stream 403: Hydrotreated SCN stream 405: Detach Subsystem 407: Light Hydrocarbon Stream 501: Example 503: ethyl-demethylation region 505: Alkyl-demethylation effluent 507: Alkyl-demethylation region 509: Stream 511: Stream 603: Alkyl-demethylation region 605: Alkyl-demethylation region 607: Stream 609: Alkyl-demethylation region

[圖1]是顯示由包括二甲苯回路與轉烷基化步驟之石油腦重組法製造對二甲苯的先前技術方法之示意圖。[ FIG. 1 ] is a schematic diagram showing a prior art method for producing para-xylene by a naphtha method including a xylene loop and a transalkylation step.

[圖2]是顯示由包括二甲苯回路與轉烷基化步驟及一或多個烷基-脫甲基化步驟之石油腦重組法製造對二甲苯的本揭露方法之示意圖。[ FIG. 2 ] is a schematic diagram showing the method of the present disclosure for producing para-xylene by a naphtha process including a xylene loop and a transalkylation step and one or more alkyl-demethylation steps.

[圖3]是顯示加工經加氫處理之蒸汽裂解石油腦流的先前技術方法之示意圖。[FIG. 3] is a schematic diagram showing a prior art method of processing hydrotreated steam cracked petroleum naphtha.

[圖4]是顯示由經加氫處理之蒸汽裂解石油腦流製造對二甲苯的本揭露方法之示意圖。[ FIG. 4 ] is a schematic diagram showing the method of the present disclosure for producing para-xylene from hydrotreated steam cracked petroleum naphtha.

[圖5]是顯示包括一或多個乙基-脫甲基化步驟之將C8芳烴混合物異構化的本揭露之C8芳烴異構化方法的示意圖。[FIG. 5] is a schematic diagram showing the C8 aromatics isomerization process of the present disclosure including one or more ethyl-demethylation steps to isomerize a C8 aromatics mixture.

[圖6]是顯示包括一或多個烷基-脫甲基化步驟之將C9+芳烴與苯和/或甲苯轉烷基化的本揭露之轉烷基化方法的示意圖。[FIG. 6] is a schematic diagram showing the transalkylation process of the present disclosure including one or more alkyl-demethylation steps to transalkylate C9+ aromatics with benzene and/or toluene.

103:重石油腦流 103: Heavy oil brain flow

105:重組區 105: Recombination zone

107:重組流出物,烷基-脫甲基化流出物 107: Recombination effluent, alkyl-demethylation effluent

109:重組油分離器 109: Reconstituted Oil Separator

111:富C6至C7烴流 111: C6 to C7 rich hydrocarbon stream

113:富C8+芳烴流 113: rich C8+ aromatics stream

114:聯合流 114: Combined Streams

115:二甲苯分離器 115: Xylene separator

117:富二甲苯流 117: Xylene rich stream

119:對二甲苯回收次系統 119: Paraxylene Recovery Subsystem

121:對二甲苯產物流 121: paraxylene product stream

123:對二甲苯耗盡流 123: paraxylene depletion stream

125:異構化區 125: Isomerization zone

127:異構化流出物 127: Isomerization effluent

129:富C9+芳烴流 129: rich C9+ aromatics stream

131:蒸餾塔 131: Distillation column

133:富C9至C10芳烴流 133: C9 to C10 rich aromatics stream

135:富C11+芳烴流 135: rich C11+ aromatics stream

137:萃取蒸餾區 137: Extractive distillation zone

138:芳烴耗盡的萃餘物流 138: Aromatic-depleted raffinate stream

139:富C6至C7芳烴流 139: C6 to C7 rich aromatics stream

141:苯塔 141: Benzene Tower

143:苯產物流 143: Benzene product stream

145:富C8+芳烴流 145: rich C8+ aromatics stream

146:富苯/甲苯流 146: Rich benzene/toluene stream

147:轉烷基化區 147: Transalkylation zone

149:蒸汽流出物,轉烷基化流出物 149: Steam effluent, transalkylation effluent

201:示範性本發明方法 201: Exemplary inventive method

203:烷基-脫甲基化區 203: alkyl-demethylation region

205:烷基-脫甲基化區 205: alkyl-demethylation region

207:烷基-脫甲基化流出物 207: Alkyl-demethylation effluent

209:烷基-脫甲基化區 209: Alkyl-demethylation region

211:流 211: Stream

213:洗淨流 213: Clean Flow

215:流 215: Stream

217:異構化流出物 217: Isomerization effluent

219:流 219: Stream

Claims (22)

一種異構化C8芳烴之方法,該方法包含:(i)提供第一C8芳烴流,其包含乙苯、對二甲苯、間二甲苯、與隨意鄰二甲苯;(ii)在對二甲苯回收次系統中將該第一C8芳烴流分離,以獲得對二甲苯產物流與對二甲苯耗盡流;(iii)將至少一部分的該對二甲苯耗盡流與第一乙基-脫甲基化觸媒在第一乙基-脫甲基化區中接觸以將存在於該對二甲苯耗盡流中之至少一部分的乙苯轉化成甲苯,以獲得離開該第一乙基-脫甲基化區之第一乙基-脫甲基化流出物;(iv)將至少一部分的該第一乙基-脫甲基化流出物和隨意至少一部分的該對二甲苯耗盡流與第一二甲苯異構化觸媒在第一二甲苯異構化區中在第一組二甲苯異構化條件下接觸,以獲得第一二甲苯異構化流出物;及(v)將至少一部分的該第一二甲苯異構化流出物供應至該對二甲苯回收次系統,以獲得該對二甲苯產物流與該對二甲苯耗盡流,其中該第一二甲苯異構化區是該第一乙基-脫甲基化區的下游。 A method of isomerizing C8 aromatics, the method comprising: (i) providing a first C8 aromatics stream comprising ethylbenzene, para-xylene, meta-xylene, and optional ortho-xylene; (ii) recovering at para-xylene separating the first C8 aromatics stream in a secondary system to obtain a paraxylene product stream and a paraxylene depletion stream; (iii) separating at least a portion of the paraxylene depletion stream from the first ethyl-demethylation stream A catalyst is contacted in the first ethyl-demethylation zone to convert at least a portion of the ethylbenzene present in the p-xylene depleted stream to toluene to obtain exiting the first ethyl-demethylation the first ethyl-demethylation effluent of the chemistry zone; (iv) combining at least a portion of the first ethyl-demethylation effluent and optionally at least a portion of the paraxylene depletion stream with the first two contacting a toluene isomerization catalyst under a first set of xylene isomerization conditions in a first xylene isomerization zone to obtain a first xylene isomerization effluent; and (v) subjecting at least a portion of the A first xylene isomerization effluent is supplied to the paraxylene recovery subsystem to obtain the paraxylene product stream and the paraxylene depletion stream, wherein the first xylene isomerization zone is the first Downstream of the ethyl-demethylation zone. 如請求項1之方法,其另外包含:(iva)將至少一部分的該對二甲苯耗盡流和/或至少一部分的該第一乙基-脫甲基化流出物與第二乙基-脫甲基化觸媒在該第一二甲苯異構化區中在第二組乙基-脫甲基化 條件下接觸以將存在於該第一異構化區中之至少一部分的乙苯轉化成甲苯。 The method of claim 1, further comprising: (iva) combining at least a portion of the paraxylene depleted stream and/or at least a portion of the first ethyl-demethylation effluent with a second ethyl-demethylation stream Methylation catalyst in the second set of ethyl-demethylation in the first xylene isomerization zone contacting under conditions to convert at least a portion of the ethylbenzene present in the first isomerization zone to toluene. 如請求項1至2項中任一項之方法,其中該第一二甲苯異構化區至少部分地與該第一乙基-脫甲基化區重疊。 The method of any one of claims 1 to 2, wherein the first xylene isomerization zone at least partially overlaps the first ethyl-demethylation zone. 如請求項1至2項中任一項之方法,其中液相異構化作用是在該第一二甲苯異構化區中進行。 The method of any one of claims 1 to 2, wherein liquid phase isomerization is carried out in the first xylene isomerization zone. 如請求項4之方法,其中實質上全部的該第一乙基-脫甲基化流出物被進料至該第一二甲苯異構化區中。 The method of claim 4, wherein substantially all of the first ethyl-demethylation effluent is fed to the first xylene isomerization zone. 如請求項4之方法,其中該第一組二甲苯異構化條件不包含被共進料至該第一異構化區中的分子氫。 The method of claim 4, wherein the first set of xylene isomerization conditions excludes molecular hydrogen co-fed to the first isomerization zone. 如請求項1至2項中任一項之方法,其中汽相異構化作用是在該第一二甲苯異構化區中進行。 The method of any one of claims 1 to 2, wherein vapor phase isomerization is carried out in the first xylene isomerization zone. 如請求項7之方法,其中該第一乙基-脫甲基化流出物的第一部分被進料至該第一二甲苯異構化區中,並且該方法另外包含:(vi)將該第一乙基-脫甲基化流出物的第二部分與第二二甲苯異構化觸媒在第二二甲苯異構化區中在第二組二甲苯異構化條件下接觸,以製造第二二甲苯異構化流出物,其中液相異構化作用是在該第二二甲苯異構化區中進行;(vii)在該對二甲苯回收次系統中將至少一部分之該第二二甲苯異構化流出物分離,以獲得該對二甲苯產物流與 該對二甲苯耗盡流。 The method of claim 7, wherein the first portion of the first ethyl-demethylation effluent is fed into the first xylene isomerization zone, and the method additionally comprises: (vi) the first xylene isomerization zone A second portion of the monoethyl-demethylation effluent is contacted with a second xylene isomerization catalyst in a second xylene isomerization zone under a second set of xylene isomerization conditions to produce a second xylene isomerization catalyst. Xylene isomerization effluent, wherein liquid phase isomerization is performed in the second xylene isomerization zone; (vii) at least a portion of the second xylene is recovered in the para-xylene recovery subsystem The toluene isomerization effluent is separated to obtain the paraxylene product stream with The paraxylene depletion stream. 如請求項1至2項中任一項之方法,其另外包含:(viii)將一部分的該對二甲苯耗盡流導走作為第一洗淨流。 The method of any one of claims 1 to 2, further comprising: (viii) directing a portion of the paraxylene depleted stream as a first wash stream. 如請求項8之方法,其另外包含:(ix)將一部分的該第一異構化流出物和/或一部分的該第二異構化流出物導走作為第二洗淨流。 The method of claim 8, further comprising: (ix) directing a portion of the first isomerization effluent and/or a portion of the second isomerization effluent as a second wash stream. 如請求項1至2項中任一項之方法,其中該第一乙基-脫甲基化觸媒和/或該第二乙基-脫甲基化觸媒相同或不同地包含:選自第7、8、9、和10族金屬及其組合物之第一金屬元素、及支撐體。 The method of any one of claims 1 to 2, wherein the first ethyl-demethylation catalyst and/or the second ethyl-demethylation catalyst, identically or differently, comprise: selected from The first metal element of Groups 7, 8, 9, and 10 metals and compositions thereof, and a support. 如請求項11之方法,其中該第一金屬元素係選自:Fe、Co、Ni、Cu、Ru、Rh、Pd、Re、Os、Ir、Pt、及其組合物。 The method of claim 11, wherein the first metal element is selected from the group consisting of Fe, Co, Ni, Cu, Ru, Rh, Pd, Re, Os, Ir, Pt, and combinations thereof. 如請求項11之方法,其中以該各乙基-脫甲基化觸媒總重量為基準計,在該各乙基-脫甲基化觸媒中的該第一金屬元素之濃度是在從0.1至10重量%範圍內。 The method of claim 11, wherein based on the total weight of each ethyl-demethylation catalyst, the concentration of the first metal element in each ethyl-demethylation catalyst is in the range from In the range of 0.1 to 10% by weight. 如請求項11之方法,其中該第一乙基-脫甲基化觸媒和/或該第二乙基-脫甲基化觸媒相同或不同地另外包含選自第11、12、13、和14族金屬及其組合物之第二金屬元素。 The method of claim 11, wherein the first ethyl-demethylation catalyst and/or the second ethyl-demethylation catalyst, identically or differently, additionally comprise the group selected from 11, 12, 13, and the second metal element of Group 14 metals and their compositions. 如請求項14之方法,其中該第二金屬元 素係選自:Cu、Ag、Au、Zn、Al、Ga、Sn、及其組合物。 The method of claim 14, wherein the second metal element The element is selected from: Cu, Ag, Au, Zn, Al, Ga, Sn, and combinations thereof. 如請求項14之方法,其中以該各乙基-脫甲基化觸媒總重量為基準計,在該各乙基-脫甲基化觸媒中的該第二金屬元素之濃度是在從0.1至10重量%範圍內。 The method of claim 14, wherein based on the total weight of each ethyl-demethylation catalyst, the concentration of the second metal element in each ethyl-demethylation catalyst is in the range from In the range of 0.1 to 10% by weight. 如請求項11之方法,其中該第一乙基-脫甲基化觸媒和/或該第二乙基-脫甲基化觸媒相同或不同地另外包含選自第1與2族金屬及其組合物之第三金屬元素。 The method of claim 11, wherein the first ethyl-demethylation catalyst and/or the second ethyl-demethylation catalyst, identically or differently, additionally comprise metals selected from Groups 1 and 2 and The third metal element of its composition. 如請求項17之方法,其中該第三金屬元素係選自:Li、N、K、Rb、Cs、Mg、Ca、Ba、及其組合物。 The method of claim 17, wherein the third metal element is selected from the group consisting of: Li, N, K, Rb, Cs, Mg, Ca, Ba, and combinations thereof. 如請求項17之方法,其中以該各乙基-脫甲基化觸媒總重量為基準計,在該各乙基-脫甲基化觸媒中的該第三金屬元素之濃度是在從0.1至10重量%範圍內。 The method of claim 17, wherein based on the total weight of each ethyl-demethylation catalyst, the concentration of the third metal element in each ethyl-demethylation catalyst is in the range from In the range of 0.1 to 10% by weight. 如請求項11之方法,其中該第一乙基-脫甲基化觸媒和/或該第二乙基-脫甲基化觸媒相同或不同地包含分子篩作為至少一部分的該支撐體。 The method of claim 11, wherein the first ethyl-demethylation catalyst and/or the second ethyl-demethylation catalyst identically or differently comprise molecular sieves as at least a part of the support. 如請求項1至2項中任一項之方法,其中該第一與第二組烷基-脫甲基化條件相同或不同地包含下列的至少一者:在從200至500℃範圍內之溫度; 在從350至2500千帕範圍內的絕對壓力;在從0.5至20範圍內之分子氫對烴的莫耳比;及在從1至20小時-1範圍內之液體重量時空速度。 The method of any one of claims 1 to 2, wherein the first and second sets of alkyl-demethylation conditions, the same or different, comprise at least one of the following: a temperature in the range from 200 to 500°C temperature; absolute pressure in the range from 350 to 2500 kPa; molar ratio of molecular hydrogen to hydrocarbon in the range from 0.5 to 20; and liquid weight hourly space velocity in the range from 1 to 20 h -1 . 一種轉化C8芳烴之方法,該方法包含:(i)提供第一C8芳烴流,其包含乙苯、對二甲苯、間二甲苯、與隨意鄰二甲苯;(ii)在對二甲苯回收次系統中將該第一C8芳烴流分離,以獲得對二甲苯產物流與對二甲苯耗盡流;(iii)將至少一部分的該對二甲苯耗盡流與第一乙基-脫甲基化觸媒在第一乙基-脫甲基化區中在第一組烷基-脫甲基化條件下接觸以將存在於該對二甲苯耗盡流中之至少一部分的乙苯轉化成甲苯,以獲得離開該第一乙基-脫甲基化區之第一乙基-脫甲基化流出物;(iv)將至少一部分的該第一乙基-脫甲基化流出物和隨意至少一部分的該對二甲苯耗盡流與第一二甲苯異構化觸媒在第一二甲苯異構化區中在第一組二甲苯異構化條件下接觸,以獲得第一二甲苯異構化流出物;及(v)將至少一部分的該第一二甲苯異構化流出物供應至該對二甲苯回收次系統,以獲得該對二甲苯產物流與該對二甲苯耗盡流;其中:該第一組乙基-脫甲基化條件包含:在從200至500℃範圍內之溫度;在從350至2500千帕範圍內的絕對壓力;在從0.5至20範圍內之分子氫對烴的莫耳比;及在從1至20 小時-1範圍內之液體重量時空速度;及該第一乙基-脫甲基化觸媒包含:選自第7、8、9、和10族金屬及其組合物之第一金屬元素、及支撐體,及其中該第一二甲苯異構化區是該第一乙基-脫甲基化區的下游。A method of converting C8 aromatics, the method comprising: (i) providing a first C8 aromatics stream comprising ethylbenzene, para-xylene, meta-xylene, and optional ortho-xylene; (ii) in a para-xylene recovery sub-system (iii) contacting at least a portion of the paraxylene depleted stream with the first ethyl-demethylation The medium is contacted in a first ethyl-demethylation zone under a first set of alkyl-demethylation conditions to convert at least a portion of the ethylbenzene present in the para-xylene depleted stream to toluene, to obtaining a first ethyl-demethylation effluent leaving the first ethyl-demethylation zone; (iv) combining at least a portion of the first ethyl-demethylation effluent and optionally at least a portion of the The paraxylene depleted stream is contacted with a first xylene isomerization catalyst in a first xylene isomerization zone under a first set of xylene isomerization conditions to obtain a first xylene isomerization effluent and (v) supplying at least a portion of the first xylene isomerization effluent to the paraxylene recovery subsystem to obtain the paraxylene product stream and the paraxylene depletion stream; wherein: the The first group of ethyl-demethylation conditions includes: temperatures in the range from 200 to 500°C; absolute pressures in the range from 350 to 2500 kPa; molecular hydrogen to hydrocarbons in the range from 0.5 to 20 and a liquid weight hourly space velocity in the range from 1 to 20 hours -1 ; and the first ethyl-demethylation catalyst comprises: a metal selected from the group consisting of Groups 7, 8, 9, and 10, and The first metal element of its composition, and the support, and wherein the first xylene isomerization zone is downstream of the first ethyl-demethylation zone.
TW109121159A 2019-07-19 2020-06-22 Isomerization processes for converting aromatic hydrocarbons comprising alkyl-demethylation TWI765284B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962876426P 2019-07-19 2019-07-19
US62/876,426 2019-07-19
EP19199461 2019-09-25
EP19199461.5 2019-09-25

Publications (2)

Publication Number Publication Date
TW202114970A TW202114970A (en) 2021-04-16
TWI765284B true TWI765284B (en) 2022-05-21

Family

ID=71143772

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109121159A TWI765284B (en) 2019-07-19 2020-06-22 Isomerization processes for converting aromatic hydrocarbons comprising alkyl-demethylation

Country Status (2)

Country Link
TW (1) TWI765284B (en)
WO (1) WO2021015900A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115215721B (en) * 2021-04-14 2024-09-27 中国石油天然气股份有限公司 Method for co-production of durene and xylene based on modification of C9+ heavy aromatic hydrocarbon

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919339A (en) * 1974-03-18 1975-11-11 Chevron Res Hydrogenolysis/isomerization process
TW518316B (en) * 1998-08-25 2003-01-21 Mobil Oil Corp Para-xylene production process

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0011476B1 (en) 1978-11-16 1982-04-07 Imperial Chemical Industries Plc Production of methane by hydrogenolysis of hydrocarbons; a process for the production of a supported ruthenium catalyst; a catalyst comprising ruthenium
US5476823A (en) 1993-05-28 1995-12-19 Mobil Oil Corp. Method of preparation of ex situ selectivated zeolite catalysts for enhanced shape selective applications and method to increase the activity thereof
US5939597A (en) 1994-11-10 1999-08-17 Mobil Oil Corporation Fluid bed process for para-xylene production
TW504501B (en) 1995-02-10 2002-10-01 Mobil Oil Corp Process for converting feedstock comprising C9+ aromatic hydrocarbons to lighter aromatic products
US6486373B1 (en) 1996-11-05 2002-11-26 Mobil Oil Corporation Shape selective zeolite catalyst and its use in aromatic compound conversion
US6423879B1 (en) 1997-10-02 2002-07-23 Exxonmobil Oil Corporation Selective para-xylene production by toluene methylation
US7247762B2 (en) 2003-09-12 2007-07-24 Exxonmobil Chemical Patents Inc. Process for xylene isomerization and ethylbenzene conversion
US7271118B2 (en) 2004-07-29 2007-09-18 Exxonmobil Chemical Patents Inc. Xylenes isomerization catalyst system and use thereof
US8183424B2 (en) 2010-02-03 2012-05-22 Exxonmobil Chemical Patents Inc. Transalkylation of heavy aromatic hydrocarbon feedstocks
US9708233B2 (en) * 2014-08-15 2017-07-18 Exxonmobil Chemical Patents Inc. Aromatics production process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919339A (en) * 1974-03-18 1975-11-11 Chevron Res Hydrogenolysis/isomerization process
TW518316B (en) * 1998-08-25 2003-01-21 Mobil Oil Corp Para-xylene production process

Also Published As

Publication number Publication date
TW202114970A (en) 2021-04-16
WO2021015900A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
TWI666194B (en) Processes and apparatuses for methylation of aromatics in an aromatics complex
CN110177859B (en) Integrated process for producing benzene and xylenes from heavy aromatics
TWI413683B (en) Methods of making xylene isomers
RU2354640C2 (en) Xylene isomerisation process for mixtures containing aromatic compounds c9
EA018886B1 (en) Process for the conversion of ethane or mixed lower alkanes to aromatic hydrocarbons
JP2019529511A (en) Transalkylation of heavy aromatic hydrocarbons.
US11407696B2 (en) Apparatus and process for converting aromatic compounds by benzene alkylation with ethanol
TWI765284B (en) Isomerization processes for converting aromatic hydrocarbons comprising alkyl-demethylation
US11198659B2 (en) Processes for converting aromatic hydrocarbons via alkyl-demethylation
CN110997602A (en) Hydrogenolysis method for improving p-xylene production
JP2022545883A (en) Isomerization of C8 aromatic hydrocarbons
US10975005B2 (en) Transalkylation processes for converting aromatic hydrocarbons comprising alkyl-demethylation
KR20180069909A (en) Improved catalyst for ethylbenzene conversion in xylene isomerization process
US20210387928A1 (en) Isomerization Processes for Converting Aromatic Hydrocarbons Comprising Alkyl-Demethylation
TW202120461A (en) Transalkylation processes for converting aromatic hydrocarbons comprising alkyl-demethylation
TW202114971A (en) Processes for converting aromatic hydrocarbons via alkyl-demethylation
US20230021410A1 (en) Alkyl-Demethylation Processes and Catalyst Compositions Therefor
US10927057B1 (en) Two bed liquid phase isomerization process
US11247950B2 (en) Apparatus and process for converting aromatic compounds by benzene alkylation with ethylene
Molinier et al. ExxonMobil PxMax SM Process: Production of Paraxylene (Case Study)
TW202413313A (en) Production of p-xylene by liquid-phase isomerization in the presence of c9+ aromatic hydrocarbons and separation thereof
WO2021126514A1 (en) Alkyl-demethylation processes and catalyst compositions therefor
TW202413314A (en) Production of p-xylene by liquid-phase isomerization and separation thereof
US7812204B2 (en) Process for the production of 2,6-dimethylnaphthalene

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees