[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI760477B - Schottky-cmos asynchronous logic cells - Google Patents

Schottky-cmos asynchronous logic cells Download PDF

Info

Publication number
TWI760477B
TWI760477B TW107112301A TW107112301A TWI760477B TW I760477 B TWI760477 B TW I760477B TW 107112301 A TW107112301 A TW 107112301A TW 107112301 A TW107112301 A TW 107112301A TW I760477 B TWI760477 B TW I760477B
Authority
TW
Taiwan
Prior art keywords
type
transistor
integrated circuit
coupled
gate
Prior art date
Application number
TW107112301A
Other languages
Chinese (zh)
Other versions
TW201904198A (en
Inventor
葳春 張
皮耶 德爾米
Original Assignee
美商肖特基Lsi公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/484,040 external-priority patent/US9853643B2/en
Application filed by 美商肖特基Lsi公司 filed Critical 美商肖特基Lsi公司
Publication of TW201904198A publication Critical patent/TW201904198A/en
Application granted granted Critical
Publication of TWI760477B publication Critical patent/TWI760477B/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/01Modifications for accelerating switching
    • H03K19/017Modifications for accelerating switching in field-effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • H03K19/0948Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET using CMOS or complementary insulated gate field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0956Schottky diode FET logic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

Integrated circuits described herein implement an x-input logic gate. The integrated circuit includes a plurality of Schottky diodes that includes x Schottky diodes and a plurality of source-follower transistors that includes x source-follower transistors. Each respective source-follower transistor of the plurality of source-follower transistors includes a respective gate node that is coupled to a respective Schottky diode. A first source-follower transistor of the plurality of source-follower transistors is connected serially to a second source-follower transistor of the plurality of source-follower transistors.

Description

肖特基互補金氧半非同步邏輯胞Schottky Complementary Metal-Oxygen Semi-Asynchronous Logic Cell

本申請案係關於半導體裝置及電路,且更特定而言係關於類比、數位及混合信號積體電路(IC),該等類比、數位及混合信號積體電路(IC)採用超級互補金氧半(SCMOSTM )裝置且藉此展現歸因於電力消耗、操作速度、電路面積及裝置密度之改良之經改良裝置效能。This application relates to semiconductor devices and circuits, and more particularly to analog, digital, and mixed-signal integrated circuits (ICs) employing supercomplementary metal-oxide-semiconductor (SCMOS ) devices and thereby exhibit improved device performance due to improvements in power consumption, operating speed, circuit area, and device density.

自從引入積體電路(IC),工程師一直在試圖增加IC上之電路之密度,此會降低製造該等IC之成本。一種方法係將較多組件/功能置於一晶片上。一第二方法係在一較大晶圓上構建較多晶片以降低IC成本。舉例而言,矽晶圓大小已自20世紀60年代之平均3英吋之直徑增長至現在的12英吋。 過去進行了各種嘗試來改良IC功能性、效能及成本數。早期IC實施方案使用雙極接面電晶體(BJT),該等雙極接面電晶體(BJT)具有垂直堆疊之各種擴散區之層及含有三個切換端子(基極、射極及集極)之隔離電晶體袋以及其他電阻性(R)及電容性(C)電路元件。然而,對於近十年來之IC實施方案,其使用V-I信號及PHY參數比例縮放來將較多組件裝納於一晶片上。 CMOS技術出現在BJT技術之後且超越BJT技術,BJT技術相對較龐大、提供不良電晶體良率且展現高DC電力使用。裝置複雜性已增長為超過數十億個具有互補MOS (CMOS)構造之電路元件。30多年來已藉由縮小CMOS電晶體之實體尺寸而達成了CMOS技術之成本之一降低及效能之增加。此等尺寸已被縮小至臨界裝置參數係幾個分子層厚之一大小。然而,CMOS之進一步縮小正違物理定律所強加之限制。除了試圖製造數百億個具有「分子」尺寸之此等CMOS電路元件之外,此等顯著較小電路以極低信號(電壓)位準操作,使其信號完整性易受雜訊影響且致使速度降級及或電力/熱量流出。Since the introduction of integrated circuits (ICs), engineers have been trying to increase the density of circuits on ICs, which reduces the cost of manufacturing such ICs. One approach is to place more components/functions on one wafer. A second approach is to build more chips on a larger wafer to reduce IC cost. For example, silicon wafer size has grown from an average of 3 inches in diameter in the 1960s to 12 inches today. Various attempts have been made in the past to improve IC functionality, performance and cost figures. Early IC implementations used bipolar junction transistors (BJTs) with vertically stacked layers of various diffusion regions and containing three switching terminals (base, emitter, and collector). ) and other resistive (R) and capacitive (C) circuit elements. However, IC implementations from the last decade have used V-I signal and PHY parameter scaling to fit more components on a single chip. CMOS technology emerged after and surpassed BJT technology, which is relatively bulky, provides poor transistor yields, and exhibits high DC power usage. Device complexity has grown to exceed billions of circuit elements with complementary MOS (CMOS) configurations. One of the cost reductions and increases in performance of CMOS technology has been achieved for more than 30 years by shrinking the physical size of CMOS transistors. These dimensions have been scaled down to a size where the critical device parameter is one of several molecular layer thicknesses. However, further shrinking of CMOS is violating the constraints imposed by the laws of physics. In addition to attempting to fabricate tens of billions of these CMOS circuit elements with "molecular" dimensions, these significantly smaller circuits operate at very low signal (voltage) levels, making their signal integrity susceptible to noise and causing Speed degradation and or power/heat outflow.

在各種實施例中,採用肖特基CMOS (本文中亦稱為「超級CMOS」及SCMOSTM )技術使用肖特基障壁二極體(SBD) (諸如低臨限值肖特基障壁二極體(LtSBDTM ))來構建電路區塊,藉此解決上文之缺點及與對較高半導體效率之一增加之需求及即將到來的對CMOS電晶體尺寸之實體限制相關聯之問題。在某些實施例中,一種積體電路實施一NAND閘系統。該積體電路包含:一第一輸入,其耦合至一第一p型肖特基二極體之一陰極;及x個額外輸入,其耦合至x個額外p型肖特基二極體之x個各別陰極。該積體電路額外包含一第一n型電晶體,該第一n型電晶體包含一閘極節點,該閘極節點耦合至該第一肖特基二極體之一陽極及該x個額外肖特基二極體之x個各別陽極。該積體電路額外包含一p型電晶體,該p型電晶體包含一閘極節點,該閘極節點耦合至該第一肖特基二極體之該陽極及該x個額外肖特基二極體之x個各別陽極。該積體電路額外包含:一第二n型電晶體,其包含一閘極節點,該閘極節點耦合至該第一p型肖特基二極體之該陰極;及x個額外n型電晶體,其包含x個各別閘極節點,該x個各別閘極節點耦合至該x個額外p型肖特基二極體之該x個各別陰極。一輸出耦合至該第一n型電晶體之一非閘極節點及該p型電晶體之一非閘極節點。 在某些實施例中,一種積體電路實施一NOR閘系統。該積體電路包含:一第一輸入,其耦合至一第一n型肖特基二極體之一陽極;及x個額外輸入,其耦合至x個額外n型肖特基二極體之x個各別陽極。該積體電路額外包含一第一p型電晶體,該第一p型電晶體包含耦合至該第一n型肖特基二極體之一陰極及該x個額外n型肖特基二極體之一陰極之一閘極節點。該積體電路額外包含一n型電晶體,該n型電晶體包含耦合至該第一n型肖特基二極體之該陰極及該x個額外n型肖特基二極體之該等陰極之一閘極節點。該積體電路額外包含:一第二p型電晶體,其包含耦合至該第一n型肖特基二極體之該陽極之一閘極節點;及x個額外p型電晶體,其包含耦合至該x個額外n型肖特基二極體之該x個各別陽極之x個各別閘極節點。一輸出耦合至該第一p型電晶體之一非閘極節點及該n型電晶體之一非閘極節點。 在某些實施例中,一積體電路實施一x輸入邏輯閘。該積體電路包含:複數個肖特基二極體,其包含x個肖特基二極體;及複數個源極隨耦器電晶體,其包含x個源極隨耦器電晶體。該複數個源極隨耦器電晶體中之每一各別源極隨耦器電晶體包含耦合至一各別肖特基二極體之一各別閘極節點。該複數個源極隨耦器電晶體中之一第一源極隨耦器電晶體串聯連接至該複數個源極隨耦器電晶體中之一第二源極隨耦器電晶體。 鑒於下文之說明將明瞭所揭示之技術之各種優點。In various embodiments, Schottky CMOS (also referred to herein as "Super CMOS" and SCMOS ) technology is employed using Schottky barrier diodes (SBDs) such as low threshold Schottky barrier diodes (LtSBD )) to build circuit blocks, thereby addressing the above disadvantages and problems associated with an increased need for higher semiconductor efficiencies and upcoming physical limitations on CMOS transistor size. In certain embodiments, an integrated circuit implements a NAND gate system. The integrated circuit includes: a first input coupled to a cathode of a first p-type Schottky diode; and x additional inputs coupled to one of the x additional p-type Schottky diodes x respective cathodes. The integrated circuit additionally includes a first n-type transistor including a gate node coupled to an anode of the first Schottky diode and the x additional x individual anodes of the Schottky diode. The integrated circuit additionally includes a p-type transistor including a gate node coupled to the anode of the first Schottky diode and the x additional Schottky diodes x individual anodes of the polar body. The integrated circuit additionally includes: a second n-type transistor including a gate node coupled to the cathode of the first p-type Schottky diode; and x additional n-type transistors A crystal comprising x respective gate nodes coupled to the x respective cathodes of the x additional p-type Schottky diodes. An output is coupled to a non-gate node of the first n-type transistor and a non-gate node of the p-type transistor. In some embodiments, an integrated circuit implements a NOR gate system. The integrated circuit includes: a first input coupled to an anode of a first n-type Schottky diode; and x additional inputs coupled to one of the x additional n-type Schottky diodes x individual anodes. The integrated circuit additionally includes a first p-type transistor including a cathode coupled to the first n-type Schottky diode and the x additional n-type Schottky diodes A gate node of one of the cathodes of the body. The integrated circuit additionally includes an n-type transistor including the cathode coupled to the first n-type Schottky diode and the x additional n-type Schottky diodes A gate node of the cathode. The integrated circuit additionally includes: a second p-type transistor including a gate node coupled to the anode of the first n-type Schottky diode; and x additional p-type transistors including x respective gate nodes of the x respective anodes coupled to the x additional n-type Schottky diodes. An output is coupled to a non-gate node of the first p-type transistor and a non-gate node of the n-type transistor. In some embodiments, an integrated circuit implements an x-input logic gate. The integrated circuit includes: a plurality of Schottky diodes including x Schottky diodes; and a plurality of source follower transistors including x source follower transistors. Each respective source-follower transistor of the plurality of source-follower transistors includes a respective gate node coupled to a respective Schottky diode. A first source-follower transistor of the plurality of source-follower transistors is connected in series to a second source-follower transistor of the plurality of source-follower transistors. Various advantages of the disclosed techniques will become apparent in view of the following description.

現將詳細參考實施例,在附圖中圖解說明該等實施例之實例。在以下詳細說明中,陳述眾多特定細節以便提供對本文中所呈現之標的物之一透徹理解。然而,熟習此項技術者將明瞭,可在無此等具體細節之情況下實踐或設計標的物。在其他例項中,未詳細闡述眾所周知之方法、程式、組件、電路以免使實施例之態樣不必要地模糊。本文中用「TM」符號指定之商標係肖特基LSI有限公司之財產。 下文參考附圖將詳細且完整地闡述本發明之技術解決方案。顯而易見將要闡述之實施例係實例且僅係本發明之實施例之一部分而非所有本發明之實施例。由熟習此項技術者基於所闡述之本發明之實施例而獲得之所有其他實施例應歸屬於本發明之保護範疇內。 本文中所闡述之肖特基CMOS技術使用一肖特基障壁二極體(本文中亦稱為「SBD」及「肖特基二極體」)來實施邏輯。與先前CMOS實施方案相比,本文中所闡述之肖特基CMOS之各種實施例使用肖特基二極體來代替p型金氧半(PMOS)場效應電晶體及/或n型金氧半(NMOS)場效應電晶體。特定地,隨著至邏輯閘之邏輯輸入之數目增加,用肖特基二極體替代PMOS及NMOS電晶體可以各種方式增加所實施邏輯之效率,包含降低由電路佈局消耗之面積、降低傳播延遲及降低切換所需之電力。 呈現以下說明以使熟習此項技術者能夠製作並使用在一專利申請案及其要求之內容脈絡中提供之本發明。熟習此項技術者將易於明瞭對本文中所闡述之較佳實施例以及一般原理及特徵之各種修改。因此,本發明並非意欲限制於所展示之實施例而係欲被賦予與本文中所闡述之原理及特徵相一致之最寬廣範疇。 本領域具通常知識者可理解,在圖1至8和圖12A至12G中,VSS 係指示源極供應電壓、VDD 係指示汲極供應電壓、及VOUT 係指示輸出電壓。 圖1係根據某些實施例之一2輸入肖特基CMOS NAND閘之一電路圖。2輸入肖特基CMOS NAND閘包含兩個p型肖特基二極體102及104以及包含兩個n型電晶體108及110之一源極隨耦器樹106。源極隨耦器樹106中之電晶體串聯連接,如由連接112所指示。輸入A0耦合至p型肖特基障壁二極體(SBD) 102之一陰極且耦合至n型電晶體108之一閘極節點。輸入A1耦合至p型SBD 104之一陰極及n型電晶體110之一閘極節點。SBD 102之一陽極及SBD 104之一陽極耦合至結果電晶體114及116之閘極。結果電晶體114係一n型電晶體且結果電晶體116係一p型電晶體。輸出118耦合至結果電晶體114及116之非閘極節點。具體而言,輸出118耦合至n型電晶體114之汲極節點且輸出118耦合至p型電晶體116之汲極節點。 在某些實施例中,2輸入肖特基CMOS NAND閘包含回饋邏輯,該回饋邏輯接收輸出信號作為n型電晶體120及p型電晶體122之閘極節點處之一輸入。 而一2輸入NAND閘之一CMOS實施方案將使用耦合至NAND閘之每一輸入之一p型電晶體及一n型電晶體,在某些實施例中,2輸入NAND閘之肖特基CMOS實施方案使用耦合至每一輸入之一p型SBD及一n型電晶體(在肖特基CMOS實施方案中用一p型SBD替代CMOS實施方案之一p型電晶體)。隨著NAND閘中之輸入之數目增加,藉由用SBD替代電晶體而達成之效率增加,例如,如由圖9至圖11之CMOS與肖特基CMOS效能比較所圖解說明。 圖2係根據某些實施例之一8輸入肖特基CMOS NAND閘之一電路圖。8輸入肖特基CMOS NAND閘包含8個p型肖特基二極體202至216及包含8個n型電晶體220至234之一源極隨耦器樹218。源極隨耦器樹218中之電晶體220至234串聯連接(例如,電晶體220之汲極節點耦合至電晶體224之源極節點,電晶體224之汲極節點耦合至電晶體228之源極節點,等等)。輸入A0耦合至p型SBD 202之一陰極且耦合至n型電晶體220之一閘極節點。輸入A1耦合至p型SBD 204之一陰極及n型電晶體222之一閘極節點。輸入A2耦合至p型SBD 206之一陰極且耦合至n型電晶體224之一閘極節點。輸入A3耦合至p型SBD 208之一陰極及n型電晶體226之一閘極節點。輸入A4耦合至p型SBD 210之一陰極且耦合至n型電晶體228之一閘極節點。輸入A5耦合至p型SBD 212之一陰極及n型電晶體230之一閘極節點。輸入A6耦合至p型SBD 214之一陰極且耦合至n型電晶體232之一閘極節點。輸入A7耦合至p型SBD 216之一陰極及n型電晶體234之一閘極節點。 SBD 202至216之陽極耦合至結果電晶體236及238之閘極。結果電晶體236係一n型電晶體且結果電晶體238係一p型電晶體。輸出240耦合至結果電晶體236及238之非閘極節點。具體而言,輸出240耦合至n型電晶體236之汲極節點且輸出240耦合至p型電晶體238之汲極節點。 在某些實施例中,8輸入肖特基CMOS NAND閘包含回饋邏輯,該回饋邏輯接收輸出信號作為n型電晶體242及p型電晶體244之閘極節點處之一輸入。 將認識到,關於圖1至圖2所圖解說明之比例縮放可擴展至其他數目個NAND閘輸入。對於每一額外輸入,一額外SBD耦合至額外輸入,且與SBD互補之一額外源極隨耦器電晶體(例如,與一p型SBD互補之一n型電晶體)添加至源極隨耦器樹(例如,如由圖1之源極隨耦器樹106或圖2之源極隨耦器樹218所圖解說明)。額外輸入耦合至額外SBD (例如,耦合至一p型SBD之陰極)且耦合至額外源極隨耦器電晶體之閘極節點。額外SBD (例如,一p型SBD之陽極)耦合至一組結果電晶體之閘極節點(例如,由圖1之結果電晶體114至116或圖2之結果電晶體236至238所圖解說明)。 舉例而言,一4輸入肖特基CMOS NAND閘包含4個輸入A0至A3,四個p型SBD (例如,組態為由圖2之SBD 202至208所圖解說明)及4個n型電晶體(例如,以串聯連接的圖2之220、222、224及226所圖解說明之電晶體)。 在某些實施例中,一肖特基CMOS NAND閘包含介於2個輸入與16個輸入之間的若干個輸入,諸如12個輸入。 圖3係一8輸入CMOS NAND閘之一電路圖。CMOS 8輸入NAND閘需要3個NAND閘302、304及306、一NOR閘308以及反相器310及312。與關於圖2所闡述之肖特基CMOS 8輸入NAND閘相比,饋送至NOR閘308中之NAND閘302至306之堆疊組態(如圖3中所展示)需要增加之電力及增加之供應電流,且致使一增加之佈局面積、增加之切換時間及增加之傳播延遲(如下文關於圖9至圖12進一步闡述)。 圖4係根據某些實施例之一2輸入肖特基CMOS NOR閘之一電路圖。2輸入肖特基CMOS NOR閘包含兩個n型肖特基二極體402及404以及包含兩個p型電晶體408及410之一源極隨耦器樹406。源極隨耦器樹406中之電晶體串聯連接。輸入A0耦合至n型肖特基障壁二極體(SBD) 402之一陽極且耦合至p型電晶體408之一閘極節點。輸入A1耦合至n型SBD 404之一陽極及p型電晶體410之一閘極節點。SBD 402之一陰極及SBD 404之一陰極耦合至結果電晶體414及416之閘極。結果電晶體414係一n型電晶體且結果電晶體416係一p型電晶體。輸出418耦合至結果電晶體414及416之非閘極節點。具體而言,輸出418耦合至n型電晶體414之汲極節點且輸出118耦合至p型電晶體416之汲極節點。 在某些實施例中,2輸入肖特基CMOS NOR閘包含回饋邏輯,該回饋邏輯接收輸出信號作為n型電晶體420及p型電晶體422之閘極節點處之一輸入。 而一2輸入NOR閘之一CMOS實施方案將使用耦合至NOR閘之每一輸入之一p型電晶體及一n型電晶體,在某些實施例中,2輸入NOR閘之肖特基CMOS實施方案使用耦合至每一輸入之一n型SBD及一p型電晶體(在肖特基CMOS實施方案中用一n型SBD來替代先前CMOS實施方案之一n型電晶體)。隨著NOR閘中之輸入之數目增加,藉由用SBD替代電晶體而達成之效率增加。 圖5係根據某些實施例之一8輸入肖特基CMOS NOR閘之一電路圖。8輸入肖特基CMOS NOR閘包含8個n型肖特基二極體502至516及包含8個p型電晶體520至534之一源極隨耦器樹518。源極隨耦器樹518中之電晶體520至534串聯連接(例如,電晶體520之汲極節點耦合至電晶體524之源極節點,電晶體524之汲極節點耦合至電晶體528之源極節點,等等)。輸入A0耦合至n型SBD 502之一陽極且耦合至p型電晶體520之一閘極節點。輸入A1耦合至n型SBD 504之一陽極及p型電晶體522之一閘極節點。輸入A2耦合至n型SBD 506之一陽極且耦合至p型電晶體524之一閘極節點。輸入A3耦合至n型SBD 508之一陽極及p型電晶體526之一閘極節點。輸入A4耦合至n型SBD 510之一陽極且耦合至p型電晶體528之一閘極節點。輸入A5耦合至n型SBD 512之一陽極及p型電晶體530之一閘極節點。輸入A6耦合至n型SBD 514之一陽極且耦合至p型電晶體532之一閘極節點。輸入A7耦合至n型SBD 516之一陽極及p型電晶體534之一閘極節點。 SBD 502至516陰極耦合至結果電晶體536及538之閘極。結果電晶體536係一n型電晶體且結果電晶體538係一p型電晶體。輸出540耦合至結果電晶體536及538之非閘極節點。具體而言,輸出540耦合至n型電晶體536之汲極節點且輸出540耦合至p型電晶體538之汲極節點。 在某些實施例中,8輸入肖特基CMOS NOR閘包含回饋邏輯,該回饋邏輯接收輸出信號作為n型電晶體542及p型電晶體544之閘極節點處之一輸入。 將認識到,關於圖4至圖5所圖解說明之比例縮放可擴展至其他數目個NOR閘輸入。對於每一額外輸入,一額外SBD耦合至額外輸入,且與SBD互補之一額外源極隨耦器電晶體(例如,與一n型SBD互補之一p型電晶體)添加至源極隨耦器樹(例如,如由圖4之源極隨耦器樹406或圖5之源極隨耦器樹518所圖解說明)。額外輸入耦合至額外SBD (例如,耦合至一n型SBD之陰極)且耦合至額外源極隨耦器電晶體之閘極節點。額外SBD (例如,一p型SBD之陽極)耦合至一組結果電晶體之閘極節點(例如,如由圖4之結果電晶體414至416或圖5之結果電晶體536至538所圖解說明)。 舉例而言,一4輸入肖特基CMOS NOR閘包含4個輸入A0至A3、4個n型SBD (例如,組態為由圖5之SBD 502至508圖解說明)及4個p型電晶體(例如,如以串聯連接的圖5之520、522、524及526所圖解說明之電晶體)。 在某些實施例中,一肖特基CMOS NOR閘包含介於2個輸入與16個輸入之間的若干個輸入,諸如12個輸入。 圖6係一8輸入CMOS NOR閘之一電路圖。CMOS 8輸入NOR閘需要4個2輸入NOR閘602、604、606及608;兩個2輸入NAND閘610及612;2輸入NOR閘614;及反相器616及618。與關於圖5所闡述之肖特基CMOS 8輸入NOR閘相比,饋送至NAND閘610及612中繼而饋送至NOR閘614中之NOR閘602至608之堆疊組態(如圖6中所展示)需要增加之電力及增加之供應電流,且致使一增加之佈局面積、增加之切換時間及增加之傳播延遲。 圖7係根據某些實施例之一4對1多工器電路(MUX)之一肖特基CMOS實施方案之一電路圖。肖特基CMOS MUX將輸入I1耦合至一p型SBD 702及一n型電晶體704之一閘極節點。輸入I2、I3及I4類似地各自耦合至一p型SBD及一n型電晶體之一閘極節點。p型SBD 702之輸出及電晶體704耦合至n型SBD 706及一p型電晶體708。自I2、I3及I4接收輸入之SBD之輸出及電晶體類似地各自耦合至一n型SBD及一p型電晶體。n型SBD之輸出耦合至一p型結果電晶體710之一閘極節點及一n型結果電晶體712之一閘極節點。結果電晶體之輸出由輸出714接收(標示"Y")。 在圖7至8中,I31、I31N、I32、及I32N係指示各別電路之節點。S1及S2係源極電壓,其用於對節點I31、I31N、I32、及I32N提供參考電壓之電路。 圖8圖解說明一4對1多工器電路之一CMOS實施方案。 在某些實施例中,關於圖1、圖2、圖4、圖5及/或圖7所闡述之肖特基CMOS邏輯經組態以用於非同步(例如,靜態)操作。舉例而言,一或多個組件之一大小經選擇使得電路之操作係非同步的或實質上係非同步的。在某些實施例中,肖特基CMOS邏輯之一或多個組件之一大小經選擇以降低及/或最小化切換雜訊抗擾性。 在某些實施例中,關於圖1、圖2、圖4、圖5及/或圖7所闡述之肖特基CMOS邏輯之一或多個SBD具有一臨限正向電壓,該臨限正向電壓低於具有耦合至SBD之一閘極之一電晶體的臨限正向電壓(例如,其中電晶體及SBD兩者皆耦合至閘極之一輸入)。舉例而言,參考圖1,在某些實施例中,SBD 102具有低於電晶體108之臨限正向電壓之一臨限正向電壓且/或SBD 104具有低於電晶體110之臨限正向電壓之一臨限正向電壓。參考圖2,在某些實施例中,SBD 202具有低於電晶體220之臨限正向電壓之一臨限正向電壓,SBD 204具有低於電晶體222之臨限正向電壓之一臨限正向電壓,且/或SBD 206具有低於電晶體224之臨限正向電壓之一臨限正向電壓,等等。參考圖4,在某些實施例中,SBD 402具有低於電晶體408之臨限正向電壓之一臨限正向電壓且/或SBD 404具有低於電晶體410之臨限正向電壓之一臨限正向電壓。參考圖5,在某些實施例中,SBD 502具有低於電晶體520之臨限正向電壓之一臨限正向電壓,SBD 504具有低於電晶體522之臨限正向電壓之一臨限正向電壓,且/或SBD 506具有低於電晶體524之臨限正向電壓之一臨限正向電壓,等等。參考圖7,在某些實施例中,SBD 702具有低於電晶體704之臨限正向電壓之一臨限正向電壓。 圖9係根據某些實施例之比較使用肖特基CMOS實施之NAND閘之佈局面積(例如,如圖1至圖2中所展示)與使用CMOS實施之NAND閘之佈局面積(例如,如圖3中所展示)之一圖表。如自圖9可見,與CMOS NAND閘之面積隨著輸入之數目增加而增加相比,肖特基CMOS NAND閘之面積以一較低速率增加。圖9指示一4輸入肖特基CMOS NAND閘所需之一佈局面積小於2.0 µm2 ,此顯著小於一4輸入CMOS NAND閘所需之面積。具有三個或三個以上輸入之肖特基CMOS NAND閘與具有相同數目個輸入之CMOS NAND閘相比所需之面積之降低歸因於(例如)實施邏輯所需之信號線及/或電路網路之數目之一降低及與CMOS NAND閘(例如,如圖3及圖6處所展示)之佈局相比一源極隨耦器樹(例如,如以106、218、406及518所展示)之相對較小大小。 圖10係根據某些實施例之比較使用肖特基CMOS實施之NAND閘(例如,如圖1至圖2中所展示)之一均方根(RMS)電力消耗與使用CMOS實施之NAND閘(例如,如圖3中所展示)之電力消耗之一圖表。如自圖10可見,與CMOS NAND閘所需之電力隨著輸入之數目增加而增加相比,肖特基CMOS NAND閘所需之電力以一較低速率增加。圖10指示一4輸入肖特基CMOS NAND閘之RMS電力要求係小於50.0微瓦特,此顯著小於一4輸入CMOS NAND閘所需之電力。 圖11係根據某些實施例之使用肖特基CMOS實施之NAND閘(例如,如圖1至圖2中所展示)之傳播延遲與使用CMOS實施之NAND閘(例如,如圖3中所展示)之傳播延遲之一圖表。圖11指示一4輸入肖特基CMOS NAND閘具有小於80微微秒之一傳播延遲,此顯著小於一4輸入CMOS NAND閘之傳播延遲。 如自圖11可見,CMOS NAND閘之傳播延遲隨著輸入之數目自3個輸入增加至4個輸入及自6個輸入增加至7個輸入而展現尤其明顯增加。可參考圖12A至圖12G來理解NAND閘之CMOS實施方案中之所發生之隨著輸入之數目增加所需面積、電力消耗及傳播延遲之明顯增加。 圖12A至圖12G圖解說明具有各種數目個輸入之NAND閘之CMOS實施方案。 圖12A圖解說明使用一單個2輸入NAND閘1202實施之2輸入NAND邏輯。圖12B圖解說明使用一單個3輸入NAND閘1204實施之3輸入NAND邏輯。 圖12C圖解說明使用兩個NAND閘1206及1208以及一NOR閘1210實施之4輸入NAND邏輯。當NAND輸入之數目自3個輸入(如圖12B中所展示)增加至4個輸入(如圖12C中所展示)時,使用兩個NAND閘1206及1208 (而非圖12B之單個NAND閘1204)且添加NOR閘1210會增加通過電路之傳播延遲。此增加反映在自針對一3輸入CMOS NAND小於80微微秒之傳播延遲至針對一4輸入CMOS NAND多於120微微秒之一傳播延遲之跳躍,如圖11中所展示。 圖12D至圖12E分別圖解說明5輸入CMOS NAND閘及6輸入CMOS NAND閘。如同圖12C中所展示之4輸入CMOS NAND,5輸入CMOS NAND閘及6輸入CMOS NAND閘將兩個NAND閘之輸出饋送至一NOR閘。圖12D之CMOS NAND閘將NAND閘1212及1214之輸出饋送至NOR閘1216。圖12E之CMOS NAND閘將NAND閘1218及1220之輸出饋送至NOR閘1222。 圖12F圖解說明使用3個NAND閘1224、1226及1228以及一NOR閘1230實施之7輸入NAND邏輯。當NAND輸入之數目自6個輸入(如圖12E中所展示)增加至7個輸入(如圖12F中所展示)時,使用三個NAND閘(1224、1226及1228)而非圖12E之兩個NAND閘(1218、1220)會增加通過電路之傳播延遲。此增加反映在自針對一個6輸入CMOS NAND小於140微微秒之傳播延遲至針對一個7輸入CMOS NAND接近180微微秒之一傳播延遲之跳躍,如圖11中所展示。 圖12G圖解說明一8輸入CMOS NAND閘,其具有與關於圖3所闡述之8輸入CMOS NAND閘類似之一電路結構。圖12G之CMOS NAND閘將NAND閘1232、1234及1236之輸出饋送至NOR閘1238。 在圖12A至12G中,C2YN、C3YN、C4YN、C5YN、C6YN、C7YN及C8YN係指示各別電路之輸出,且C2Y、C3Y、C4Y、C5Y、C6Y、C7Y及C8Y係指示各別電路之反相輸出。 如上文關於圖12A至圖12G之CMOS NAND閘所闡述,增加CMOS NAND閘之輸入之數目需要增加若干個NAND閘及/或添加一NOR級。在某些實施例中(例如,如關於圖1至圖2及圖4至圖5所闡述),增加一肖特基CMOS NAND閘之輸入之數目包含增加SBD之一數目且增加一源極隨耦器樹中之對應電晶體之一數目。在某些實施例中,與CMOS方法相比,本文中所闡述之肖特基CMOS方法導致隨著邏輯輸入之一數目增加電路消耗、佈局面積及傳播延遲之較低增加。 雖然上文闡述特定實施例,但將理解其並非意欲將本發明限制於此等特定實施例。相反地,本發明包含歸屬於隨附申請專利範圍之精神及範疇內之替代形式、修改形式及等效形式。陳述眾多具體細節以便提供對本文中所呈現之標的物之一透徹理解。然而,熟習此項技術者將明瞭,可不利用此等具體細節來實踐本標的物。在其他例項中,未詳細闡述眾所周知之方法、程序、組件、電路以免使實施例之態樣不必要地模糊。 在本文中之本發明之說明中所使用之術語僅係出於闡述特定實施方案之目的,且並不意欲限制本發明。如在本發明及隨附申請專利範圍之說明中所使用,除非內容脈絡另外明確指示,否則單數形式「一(a/an)」及「該(the)」意欲亦包含複數形式。亦將理解,如本文中所使用之術語「及/或」係指且囊括相關聯所列物項中之一或多者之任何或所有可能組合。將進一步理解,當在此說明書中使用時,術語「包含(includes)」、「包含(including)」、「包括(comprises)」及/或「包括(comprising)」規定存在所陳述特徵、操作、元件及/或組件,但並不排除存在或添加一或多個其他特徵、操作、元件、組件及/或其群組。 如本文中所使用,取決於內容脈絡,用語「若一所陳述先決條件係正確的」可解釋為意指「當一所陳述先決條件係正確的時」或「在一所陳述先決條件係正確的之後旋即」或「回應於判定一所陳述先決條件係正確的」或「根據一所陳述先決條件係正確的之一判定」或「回應於偵測到一所陳述先決條件係正確的」。類似地,取決於內容脈絡,片語「若判定[一所陳述先決條件係正確的]」或「若[一所陳述先決條件自正確的]」或「當[一所陳述先決條件係正確的]時」可解釋為意指「在判定所陳述先決條件係正確的之後旋即」或「回應於判定所陳述先決條件係正確的」或「根據所陳述先決條件係正確的之一判定」或「在偵測到所陳述先決條件係正確的之後旋即」或「回應於偵測到所陳述先決條件係正確的」。 出於闡釋目的,已參考具體實施例闡述前述說明。然而,上文之說明性論述並非意欲係窮盡性的或將本發明限制於所揭示之精確形式。鑒於上文之教示,諸多修改形式及變化形式係可能的。選擇並闡述實施例以便最佳地闡釋本發明之原理及其實際應用,以藉此使熟習此項技術者能夠最佳地利用具有適合於所預期之特定用途之各種修改形式之本發明及各種實施例。Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of one of the subject matter presented herein. It will be apparent, however, to those skilled in the art that subject matter may be practiced or designed without these specific details. In other instances, well-known methods, procedures, components, circuits have not been described in detail so as not to unnecessarily obscure aspects of the embodiments. Trademarks designated by the "TM" symbol in this document are the property of Schottky LSI Co., Ltd. The technical solution of the present invention will be explained in detail and completely below with reference to the accompanying drawings. It will be apparent that the embodiments to be described are examples and only some but not all of the embodiments of the present invention. All other embodiments obtained by those skilled in the art based on the described embodiments of the present invention should fall within the scope of protection of the present invention. The Schottky CMOS technology described herein uses a Schottky barrier diode (also referred to herein as "SBD" and "Schottky diode") to implement logic. In contrast to previous CMOS implementations, the various embodiments of Schottky CMOS described herein use Schottky diodes in place of p-type metal oxide semiconductor (PMOS) field effect transistors and/or n-type metal oxide semiconductors (NMOS) field effect transistor. Specifically, as the number of logic inputs to logic gates increases, replacing PMOS and NMOS transistors with Schottky diodes can increase the efficiency of the implemented logic in various ways, including reducing area consumed by circuit layout, reducing propagation delays and reduce the power required for switching. The following description is presented to enable those skilled in the art to make and use the invention provided in the context of a patent application and its claims. Various modifications to the preferred embodiment and the general principles and features set forth herein will be readily apparent to those skilled in the art. Therefore, the present invention is not intended to be limited to the embodiments shown but is to be accorded the widest scope consistent with the principles and features set forth herein. As can be understood by those skilled in the art, in FIGS. 1-8 and 12A-12G, V SS indicates the source supply voltage, V DD indicates the drain supply voltage, and V OUT indicates the output voltage. 1 is a circuit diagram of a 2-input Schottky CMOS NAND gate in accordance with one of certain embodiments. The 2-input Schottky CMOS NAND gate includes two p-type Schottky diodes 102 and 104 and a source follower tree 106 including two n-type transistors 108 and 110 . The transistors in source follower tree 106 are connected in series, as indicated by connection 112 . Input A0 is coupled to a cathode of p-type Schottky barrier diode (SBD) 102 and to a gate node of n-type transistor 108 . Input A1 is coupled to a cathode of p-type SBD 104 and a gate node of n-type transistor 110 . An anode of SBD 102 and an anode of SBD 104 are coupled to the gates of result transistors 114 and 116 . The resulting transistor 114 is an n-type transistor and the resulting transistor 116 is a p-type transistor. Output 118 is coupled to the non-gate nodes of result transistors 114 and 116 . Specifically, output 118 is coupled to the drain node of n-type transistor 114 and output 118 is coupled to the drain node of p-type transistor 116 . In some embodiments, the 2-input Schottky CMOS NAND gate includes feedback logic that receives the output signal as one input at the gate nodes of n-type transistor 120 and p-type transistor 122 . While a CMOS implementation of a 2-input NAND gate would use a p-type transistor and an n-type transistor coupled to each input of the NAND gate, in some embodiments, a 2-input NAND gate Schottky CMOS Implementations use a p-type SBD coupled to each input and an n-type transistor (a p-type SBD in a Schottky CMOS implementation replaces one p-type transistor in a CMOS implementation). As the number of inputs in the NAND gate increases, the efficiency achieved by replacing transistors with SBDs increases, eg, as illustrated by the CMOS and Schottky CMOS performance comparisons of Figures 9-11. 2 is a circuit diagram of an 8-input Schottky CMOS NAND gate according to some embodiments. The 8-input Schottky CMOS NAND gate includes 8 p-type Schottky diodes 202-216 and a source follower tree 218 including 8 n-type transistors 220-234. Transistors 220-234 in source follower tree 218 are connected in series (eg, the drain node of transistor 220 is coupled to the source node of transistor 224, and the drain node of transistor 224 is coupled to the source of transistor 228 pole nodes, etc.). Input A0 is coupled to a cathode of p-type SBD 202 and to a gate node of n-type transistor 220 . Input A1 is coupled to a cathode of p-type SBD 204 and a gate node of n-type transistor 222 . Input A2 is coupled to a cathode of p-type SBD 206 and to a gate node of n-type transistor 224 . Input A3 is coupled to a cathode of p-type SBD 208 and a gate node of n-type transistor 226 . Input A4 is coupled to a cathode of p-type SBD 210 and to a gate node of n-type transistor 228 . Input A5 is coupled to a cathode of p-type SBD 212 and a gate node of n-type transistor 230 . Input A6 is coupled to a cathode of p-type SBD 214 and to a gate node of n-type transistor 232 . Input A7 is coupled to a cathode of p-type SBD 216 and a gate node of n-type transistor 234 . The anodes of SBDs 202-216 are coupled to the gates of result transistors 236 and 238. The resulting transistor 236 is an n-type transistor and the resulting transistor 238 is a p-type transistor. Output 240 is coupled to the non-gate nodes of result transistors 236 and 238 . Specifically, output 240 is coupled to the drain node of n-type transistor 236 and output 240 is coupled to the drain node of p-type transistor 238 . In some embodiments, the 8-input Schottky CMOS NAND gate includes feedback logic that receives the output signal as one input at the gate nodes of n-type transistor 242 and p-type transistor 244 . It will be appreciated that the scaling illustrated with respect to Figures 1-2 can be extended to other numbers of NAND gate inputs. For each additional input, an additional SBD is coupled to the additional input, and an additional source follower transistor complementary to the SBD (eg, an n-type transistor complementary to a p-type SBD) is added to the source follower A tree (eg, as illustrated by source-follower tree 106 of FIG. 1 or source-follower tree 218 of FIG. 2 ). The additional input is coupled to the additional SBD (eg, to the cathode of a p-type SBD) and to the gate node of the additional source follower transistor. An additional SBD (eg, the anode of a p-type SBD) is coupled to the gate nodes of a set of resultant transistors (eg, as illustrated by resultant transistors 114-116 of FIG. 1 or resultant transistors 236-238 of FIG. 2) . For example, a 4-input Schottky CMOS NAND gate includes 4 inputs A0-A3, four p-type SBDs (eg, configured as illustrated by SBDs 202-208 of FIG. 2), and 4 n-type transistors A crystal (eg, the transistors illustrated at 220, 222, 224, and 226 of FIG. 2 connected in series). In some embodiments, a Schottky CMOS NAND gate includes between 2 and 16 inputs, such as 12 inputs. Figure 3 is a circuit diagram of an 8-input CMOS NAND gate. A CMOS 8-input NAND gate requires three NAND gates 302 , 304 and 306 , a NOR gate 308 and inverters 310 and 312 . The stacked configuration of NAND gates 302 - 306 fed into NOR gate 308 (as shown in FIG. 3 ) requires increased power and increased supply compared to the Schottky CMOS 8-input NAND gates described with respect to FIG. 2 current, and results in an increased layout area, increased switching time, and increased propagation delay (as described further below with respect to FIGS. 9-12). 4 is a circuit diagram of a 2-input Schottky CMOS NOR gate according to some embodiments. The 2-input Schottky CMOS NOR gate includes two n-type Schottky diodes 402 and 404 and a source follower tree 406 including two p-type transistors 408 and 410 . The transistors in the source follower tree 406 are connected in series. Input A0 is coupled to an anode of n-type Schottky barrier diode (SBD) 402 and to a gate node of p-type transistor 408 . Input A1 is coupled to an anode of n-type SBD 404 and a gate node of p-type transistor 410 . A cathode of SBD 402 and a cathode of SBD 404 are coupled to the gates of result transistors 414 and 416 . The resulting transistor 414 is an n-type transistor and the resulting transistor 416 is a p-type transistor. Output 418 is coupled to the non-gate nodes of result transistors 414 and 416 . Specifically, output 418 is coupled to the drain node of n-type transistor 414 and output 118 is coupled to the drain node of p-type transistor 416 . In some embodiments, the 2-input Schottky CMOS NOR gate includes feedback logic that receives the output signal as one input at the gate nodes of n-type transistor 420 and p-type transistor 422 . While a CMOS implementation of a 2-input NOR gate would use a p-type transistor and an n-type transistor coupled to each input of the NOR gate, in some embodiments, a 2-input NOR gate Schottky CMOS Implementations use an n-type SBD coupled to each input and a p-type transistor (in Schottky CMOS implementations an n-type SBD is used to replace one of the n-type transistors in previous CMOS implementations). As the number of inputs in the NOR gate increases, the efficiency achieved by replacing transistors with SBDs increases. 5 is a circuit diagram of an 8-input Schottky CMOS NOR gate according to some embodiments. The 8-input Schottky CMOS NOR gate includes 8 n-type Schottky diodes 502-516 and a source follower tree 518 including 8 p-type transistors 520-534. Transistors 520-534 in source follower tree 518 are connected in series (eg, the drain node of transistor 520 is coupled to the source node of transistor 524, and the drain node of transistor 524 is coupled to the source of transistor 528 pole nodes, etc.). Input A0 is coupled to an anode of n-type SBD 502 and to a gate node of p-type transistor 520 . Input A1 is coupled to an anode of n-type SBD 504 and a gate node of p-type transistor 522 . Input A2 is coupled to an anode of n-type SBD 506 and to a gate node of p-type transistor 524 . Input A3 is coupled to an anode of n-type SBD 508 and a gate node of p-type transistor 526 . Input A4 is coupled to an anode of n-type SBD 510 and to a gate node of p-type transistor 528 . Input A5 is coupled to an anode of n-type SBD 512 and a gate node of p-type transistor 530 . Input A6 is coupled to an anode of n-type SBD 514 and to a gate node of p-type transistor 532 . Input A7 is coupled to an anode of n-type SBD 516 and a gate node of p-type transistor 534 . SBDs 502-516 are cathode coupled to the gates of result transistors 536 and 538. The resulting transistor 536 is an n-type transistor and the resulting transistor 538 is a p-type transistor. Output 540 is coupled to the non-gate nodes of result transistors 536 and 538 . Specifically, output 540 is coupled to the drain node of n-type transistor 536 and output 540 is coupled to the drain node of p-type transistor 538 . In some embodiments, the 8-input Schottky CMOS NOR gate includes feedback logic that receives the output signal as one input at the gate nodes of n-type transistor 542 and p-type transistor 544 . It will be appreciated that the scaling illustrated with respect to Figures 4-5 can be extended to other numbers of NOR gate inputs. For each additional input, an additional SBD is coupled to the additional input, and an additional source follower transistor complementary to the SBD (eg, a p-type transistor complementary to an n-type SBD) is added to the source follower A tree (eg, as illustrated by source-follower tree 406 of FIG. 4 or source-follower tree 518 of FIG. 5 ). The additional input is coupled to the additional SBD (eg, to the cathode of an n-type SBD) and to the gate node of the additional source follower transistor. An additional SBD (eg, the anode of a p-type SBD) is coupled to the gate nodes of a set of resultant transistors (eg, as illustrated by resultant transistors 414-416 of FIG. 4 or resultant transistors 536-538 of FIG. 5 ) ). For example, a 4-input Schottky CMOS NOR gate includes 4 inputs A0-A3, 4 n-type SBDs (eg, configured as illustrated by SBDs 502-508 of Figure 5), and 4 p-type transistors (eg, as the transistors illustrated in 520, 522, 524, and 526 of FIG. 5 connected in series). In some embodiments, a Schottky CMOS NOR gate includes between 2 and 16 inputs, such as 12 inputs. Figure 6 is a circuit diagram of an 8-input CMOS NOR gate. A CMOS 8-input NOR gate requires four 2-input NOR gates 602, 604, 606 and 608; two 2-input NAND gates 610 and 612; a 2-input NOR gate 614; and inverters 616 and 618. Compared to the Schottky CMOS 8-input NOR gates described with respect to FIG. 5, the stacked configuration of NOR gates 602-608 fed to NAND gates 610 and 612 relayed to NOR gate 614 (as shown in FIG. 6) ) requires increased power and increased supply current, and results in an increased layout area, increased switching time, and increased propagation delay. 7 is a circuit diagram of a Schottky CMOS implementation of a 4-to-1 multiplexer circuit (MUX) in accordance with certain embodiments. A Schottky CMOS MUX couples input I1 to a p-type SBD 702 and a gate node of an n-type transistor 704 . Inputs I2, I3 and I4 are similarly each coupled to a p-type SBD and a gate node of an n-type transistor. The output of p-type SBD 702 and transistor 704 are coupled to n-type SBD 706 and a p-type transistor 708 . The outputs and transistors of the SBDs receiving inputs from I2, I3, and I4 are similarly coupled to an n-type SBD and a p-type transistor, respectively. The output of the n-type SBD is coupled to a gate node of a p-type result transistor 710 and a gate node of an n-type result transistor 712 . The output of the resulting transistor is received by output 714 (labeled "Y"). In FIGS. 7-8, I31, I31N, I32, and I32N denote nodes of respective circuits. S1 and S2 are source voltages, which are used for circuits that provide reference voltages to nodes I31, I31N, I32, and I32N. Figure 8 illustrates a CMOS implementation of a 4-to-1 multiplexer circuit. In certain embodiments, the Schottky CMOS logic described with respect to FIGS. 1, 2, 4, 5, and/or 7 is configured for asynchronous (eg, static) operation. For example, a size of one or more components is selected such that the operation of the circuit is asynchronous or substantially asynchronous. In certain embodiments, the size of one or more components of the Schottky CMOS logic is selected to reduce and/or minimize switching noise immunity. In certain embodiments, one or more SBDs of the Schottky CMOS logic described with respect to FIGS. 1, 2, 4, 5, and/or 7 have a threshold forward voltage that is positive The forward voltage is below the threshold forward voltage of a transistor with a gate coupled to a SBD (eg, where both the transistor and the SBD are coupled to an input of the gate). For example, referring to FIG. 1 , in some embodiments, SBD 102 has a threshold forward voltage that is lower than the threshold forward voltage of transistor 108 and/or SBD 104 has a threshold that is lower than transistor 110 Forward Voltage One of the threshold forward voltages. Referring to FIG. 2, in some embodiments, SBD 202 has a threshold forward voltage that is lower than the threshold forward voltage of transistor 220 and SBD 204 has a threshold forward voltage that is lower than that of transistor 222. limit forward voltage, and/or SBD 206 has a threshold forward voltage that is lower than the threshold forward voltage of transistor 224, and/or the like. 4, in some embodiments, SBD 402 has a threshold forward voltage that is lower than the threshold forward voltage of transistor 408 and/or SBD 404 has a threshold forward voltage that is lower than the threshold forward voltage of transistor 410. a threshold forward voltage. 5, in some embodiments, SBD 502 has a threshold forward voltage that is lower than the threshold forward voltage of transistor 520 and SBD 504 has a threshold forward voltage that is lower than the threshold forward voltage of transistor 522. limit forward voltage, and/or SBD 506 has a threshold forward voltage that is lower than the threshold forward voltage of transistor 524, and/or the like. Referring to FIG. 7 , in some embodiments, SBD 702 has a threshold forward voltage that is lower than the threshold forward voltage of transistor 704 . 9 is a comparison of the layout area of a NAND gate implemented using Schottky CMOS (eg, as shown in FIGS. 1-2 ) to the layout area of a NAND gate implemented using CMOS (eg, as shown in FIGS. 1-2 ), according to certain embodiments 3) one of the diagrams. As can be seen from Figure 9, the area of Schottky CMOS NAND gates increases at a lower rate than the area of CMOS NAND gates increases as the number of inputs increases. FIG. 9 indicates that a layout area required for a 4-input Schottky CMOS NAND gate is less than 2.0 μm 2 , which is significantly less than the area required for a 4-input CMOS NAND gate. The reduction in area required for a Schottky CMOS NAND gate with three or more inputs compared to a CMOS NAND gate with the same number of inputs is due, for example, to the signal lines and/or circuits required to implement the logic One of the reductions in the number of nets and a source follower tree (eg, as shown at 106, 218, 406, and 518) compared to the layout of CMOS NAND gates (eg, as shown at Figures 3 and 6) relatively small size. 10 is a comparison of root mean square (RMS) power consumption of a NAND gate implemented using Schottky CMOS (eg, as shown in FIGS. 1-2 ) with a NAND gate implemented using CMOS (eg, as shown in FIGS. 1-2 ), according to certain embodiments For example, as shown in Figure 3) a graph of power consumption. As can be seen from Figure 10, the power required for Schottky CMOS NAND gates increases at a lower rate than the power required for CMOS NAND gates increases as the number of inputs increases. Figure 10 indicates that the RMS power requirement for a 4-input Schottky CMOS NAND gate is less than 50.0 microwatts, which is significantly less than the power required for a 4-input CMOS NAND gate. 11 is the propagation delay of a NAND gate implemented using Schottky CMOS (eg, as shown in FIGS. 1-2 ) and a NAND gate implemented using CMOS (eg, as shown in FIG. 3 ), according to certain embodiments ) is a graph of the propagation delay. Figure 11 indicates that a 4-input Schottky CMOS NAND gate has a propagation delay of less than 80 picoseconds, which is significantly less than the propagation delay of a 4-input CMOS NAND gate. As can be seen from Figure 11, the propagation delay of CMOS NAND gates exhibits a particularly pronounced increase as the number of inputs increases from 3 to 4 inputs and from 6 to 7 inputs. The significant increase in required area, power consumption, and propagation delay that occurs in CMOS implementations of NAND gates as the number of inputs increases can be understood with reference to FIGS. 12A-12G. 12A-12G illustrate CMOS implementations of NAND gates with various numbers of inputs. 12A illustrates 2-input NAND logic implemented using a single 2-input NAND gate 1202. 12B illustrates 3-input NAND logic implemented using a single 3-input NAND gate 1204. FIG. 12C illustrates 4-input NAND logic implemented using two NAND gates 1206 and 1208 and one NOR gate 1210 . When the number of NAND inputs is increased from 3 inputs (as shown in FIG. 12B ) to 4 inputs (as shown in FIG. 12C ), two NAND gates 1206 and 1208 are used (instead of the single NAND gate 1204 of FIG. 12B ) ) and adding a NOR gate 1210 increases the propagation delay through the circuit. This increase is reflected in the jump from a propagation delay of less than 80 picoseconds for a 3-input CMOS NAND to a propagation delay of more than 120 picoseconds for a 4-input CMOS NAND, as shown in FIG. 11 . 12D-12E illustrate 5-input CMOS NAND gates and 6-input CMOS NAND gates, respectively. Like the 4-input CMOS NAND shown in Figure 12C, the 5-input CMOS NAND gate and the 6-input CMOS NAND gate feed the outputs of the two NAND gates to a NOR gate. The CMOS NAND gates of FIG. 12D feed the outputs of NAND gates 1212 and 1214 to NOR gate 1216 . The CMOS NAND gate of FIG. 12E feeds the outputs of NAND gates 1218 and 1220 to NOR gate 1222. 12F illustrates a 7-input NAND logic implemented using three NAND gates 1224, 1226 and 1228 and one NOR gate 1230. When the number of NAND inputs is increased from 6 inputs (as shown in Figure 12E) to 7 inputs (as shown in Figure 12F), three NAND gates (1224, 1226 and 1228) are used instead of the two of Figure 12E Multiple NAND gates (1218, 1220) increase the propagation delay through the circuit. This increase is reflected in the jump from a propagation delay of less than 140 picoseconds for a 6-input CMOS NAND to a propagation delay of nearly 180 picoseconds for a 7-input CMOS NAND, as shown in FIG. 11 . FIG. 12G illustrates an 8-input CMOS NAND gate having a circuit structure similar to the 8-input CMOS NAND gate described with respect to FIG. 3 . The CMOS NAND gates of FIG. 12G feed the outputs of NAND gates 1232 , 1234 and 1236 to NOR gate 1238 . 12A to 12G, C2YN, C3YN, C4YN, C5YN, C6YN, C7YN and C8YN indicate the outputs of the respective circuits, and C2Y, C3Y, C4Y, C5Y, C6Y, C7Y and C8Y indicate the inversions of the respective circuits output. As explained above with respect to the CMOS NAND gates of Figures 12A-12G, increasing the number of inputs of the CMOS NAND gates requires adding several NAND gates and/or adding a NOR stage. In certain embodiments (eg, as described with respect to FIGS. 1-2 and 4-5), increasing the number of inputs of a Schottky CMOS NAND gate includes increasing the number of SBDs and increasing a source follower A number of corresponding transistors in the coupler tree. In certain embodiments, the Schottky CMOS approach described herein results in a lower increase in circuit consumption, layout area, and propagation delay as the number of logic inputs increases compared to the CMOS approach. While specific embodiments are described above, it will be understood that it is not intended to limit the invention to these specific embodiments. On the contrary, the present invention includes alternatives, modifications and equivalents falling within the spirit and scope of the appended claims. Numerous specific details are set forth in order to provide a thorough understanding of one of the subject matter presented herein. It will be apparent to those skilled in the art, however, that the present subject matter may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits have not been described in detail so as not to unnecessarily obscure aspects of the embodiments. The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to limit the invention. As used in the description of the present disclosure and the appended claims, the singular forms "a/an" and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It will also be understood that the term "and/or" as used herein refers to and includes any and all possible combinations of one or more of the associated listed items. It will be further understood that when used in this specification, the terms "includes", "including", "comprises" and/or "comprising" specify the presence of stated features, operations, elements and/or components, but does not preclude the presence or addition of one or more other features, operations, elements, components and/or groups thereof. As used herein, depending on the context, the phrase "if a stated prerequisite is true" can be interpreted to mean "when a stated prerequisite is true" or "when a stated prerequisite is true""immediatelyafter" or "in response to a determination that a stated precondition is true" or "according to one of the stated preconditions to be true" or "in response to detecting that a stated precondition is true". Similarly, depending on context, the phrase "if it is determined that [a stated prerequisite is true]" or "if [a stated prerequisite is true]" or "when [a stated prerequisite is true]" ] can be construed to mean "immediately after it is determined that the stated preconditions are correct" or "in response to determining that the stated preconditions are correct" or "according to one of the stated preconditions to be correct" or " Immediately after detecting that the stated prerequisite is true" or "in response to detecting that the stated prerequisite is true". For purposes of illustration, the foregoing description has been set forth with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Numerous modifications and variations are possible in light of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable those skilled in the art to best utilize the invention and various modifications as are suited to the particular use contemplated. Example.

102‧‧‧p型肖特基二極體 104‧‧‧p型肖特基二極體/p型肖特基障壁二極體/肖特基障壁二極體 106‧‧‧源極隨耦器樹 108‧‧‧n型電晶體/電晶體 110‧‧‧n型電晶體/電晶體 112‧‧‧連接 114‧‧‧結果電晶體/n型電晶體 116‧‧‧結果電晶體/p型電晶體 118‧‧‧輸出 120‧‧‧n型電晶體 122‧‧‧p型電晶體 202‧‧‧p型肖特基二極體/肖特基障壁二極體 204‧‧‧p型肖特基二極體/肖特基障壁二極體 206‧‧‧p型肖特基二極體/肖特基障壁二極體 208‧‧‧p型肖特基二極體/肖特基障壁二極體 210‧‧‧p型肖特基二極體/肖特基障壁二極體 212‧‧‧p型肖特基二極體/肖特基障壁二極體 214‧‧‧p型肖特基二極體/肖特基障壁二極體 216‧‧‧p型肖特基二極體/肖特基障壁二極體 218‧‧‧源極隨耦器樹 220‧‧‧n型電晶體/電晶體 222‧‧‧n型電晶體/電晶體 224‧‧‧n型電晶體/電晶體 226‧‧‧n型電晶體/電晶體 228‧‧‧n型電晶體/電晶體 230‧‧‧n型電晶體/電晶體 232‧‧‧n型電晶體/電晶體 234‧‧‧n型電晶體/電晶體 236‧‧‧結果電晶體/n型電晶體 238‧‧‧結果電晶體/p型電晶體 240‧‧‧輸出 242‧‧‧n型電晶體 244‧‧‧p型電晶體 302‧‧‧NAND閘 304‧‧‧NAND閘 306‧‧‧NAND閘 308‧‧‧NOR閘 310‧‧‧反相器 312‧‧‧反相器 402‧‧‧n型肖特基二極體/n型肖特基障壁二極體/肖特基障壁二極體 404‧‧‧n型肖特基二極體/n型肖特基障壁二極體/肖特基障壁二極體 406‧‧‧源極隨耦器樹 408‧‧‧p型電晶體/電晶體 410‧‧‧p型電晶體/電晶體 414‧‧‧結果電晶體/n型電晶體 416‧‧‧結果電晶體/p型電晶體 418‧‧‧輸出 420‧‧‧n型電晶體 422‧‧‧p型電晶體 502‧‧‧n型肖特基二極體/n型肖特基障壁二極體/肖特基障壁二極體 504‧‧‧n型肖特基二極體/n型肖特基障壁二極體/肖特基障壁二極體 506‧‧‧n型肖特基二極體/n型肖特基障壁二極體/肖特基障壁二極體 508‧‧‧n型肖特基二極體/n型肖特基障壁二極體/肖特基障壁二極體 510‧‧‧n型肖特基二極體/n型肖特基障壁二極體/肖特基障壁二極體 512‧‧‧n型肖特基二極體/n型肖特基障壁二極體/肖特基障壁二極體 514‧‧‧n型肖特基二極體/n型肖特基障壁二極體/肖特基障壁二極體 516‧‧‧n型肖特基二極體/n型肖特基障壁二極體/肖特基障壁二極體 518‧‧‧源極隨耦器樹 520‧‧‧p型電晶體/電晶體 522‧‧‧p型電晶體/電晶體 524‧‧‧p型電晶體/電晶體 526‧‧‧p型電晶體/電晶體 528‧‧‧p型電晶體/電晶體 530‧‧‧p型電晶體/電晶體 532‧‧‧p型電晶體/電晶體 534‧‧‧p型電晶體/電晶體 536‧‧‧結果電晶體/n型電晶體 538‧‧‧結果電晶體/p型電晶體 540‧‧‧輸出 542‧‧‧n型電晶體 544‧‧‧p型電晶體 602‧‧‧2輸入NOR閘 604‧‧‧2輸入NOR閘 606‧‧‧2輸入NOR閘 608‧‧‧2輸入NOR閘 610‧‧‧2輸入NAND閘/NAND閘 612‧‧‧2輸入NAND閘/NAND閘 614‧‧‧2輸入NOR閘/NOR閘 616‧‧‧反相器 618‧‧‧反相器 702‧‧‧p型肖特基障壁二極體/肖特基障壁二極體 704‧‧‧n型電晶體/電晶體 706‧‧‧n型肖特基障壁二極體 708‧‧‧p型電晶體 710‧‧‧p型結果電晶體 712‧‧‧n型結果電晶體 714‧‧‧輸出 1202‧‧‧2輸入NAND閘 1204‧‧‧3輸入NAND閘/NAND閘 1206‧‧‧NAND閘 1208‧‧‧NAND閘 1210‧‧‧NOR閘 1212‧‧‧NAND閘 1214‧‧‧NAND閘 1216‧‧‧NOR閘 1218‧‧‧NAND閘 1220‧‧‧NAND閘 1222‧‧‧NOR閘 1224‧‧‧NAND閘 1226‧‧‧NAND閘 1228‧‧‧NAND閘 1230‧‧‧NOR閘 1232‧‧‧NAND閘 1234‧‧‧NAND閘 1236‧‧‧NAND閘 1238‧‧‧NOR閘 A0‧‧‧輸入 A1‧‧‧輸入 A2‧‧‧輸入 A3‧‧‧輸入 A4‧‧‧輸入 A5‧‧‧輸入 A6‧‧‧輸入 A7‧‧‧輸入 C2Y‧‧‧反相輸出 C2YN‧‧‧輸出 C3Y‧‧‧反相輸出 C3YN‧‧‧輸出 C4Y‧‧‧反相輸出 C4YN‧‧‧輸出 C5Y‧‧‧反相輸出 C5YN‧‧‧輸出 C6Y‧‧‧反相輸出 C6YN‧‧‧輸出 C7Y‧‧‧反相輸出 C7YN‧‧‧輸出 C8Y‧‧‧反相輸出 C8YN‧‧‧輸出 I1‧‧‧輸入 I2‧‧‧輸入 I3‧‧‧輸入 I4‧‧‧輸入 I31‧‧‧節點 I31N‧‧‧節點 I32‧‧‧節點 I32N‧‧‧節點 S1‧‧‧源極電壓 S2‧‧‧源極電壓 VDD‧‧‧汲極供應電壓 VOUT‧‧‧輸出電壓 VSS‧‧‧源極供應電壓 102‧‧‧p-type Schottky diode104‧‧‧p-type Schottky diode/p-type Schottky barrier diode/Schottky barrier diode106‧‧‧source follower coupling Device Tree 108‧‧‧N-Type Transistor/Transistor 110‧‧‧N-Type Transistor/Transistor 112‧‧‧Connection 114‧‧‧Result Transistor/n-Type Transistor 116‧‧‧Result Transistor/p Type Transistor 118‧‧‧Output120‧‧‧N-Type Transistor122‧‧‧p-Type Transistor202‧‧‧p-Type Schottky Diode/Schottky Barrier Diode204‧‧‧p-Type Schottky Diode/Schottky Barrier Diode206‧‧‧p-Type Schottky Diode/Schottky Barrier Diode208‧‧‧p-Type Schottky Diode/Schottky Barrier Diode 210‧‧‧p-Type Schottky Diode/Schottky Barrier Diode 212‧‧‧p-Type Schottky Diode/Schottky Barrier Diode 214‧‧‧p-Type Schottky Diodes/Schottky Barrier Diodes 216‧‧‧p-Type Schottky Diodes/Schottky Barrier Diodes 218‧‧‧Source Follower Trees 220‧‧‧N-Type Transistor/Transistor 222‧‧‧N-Type Transistor/Transistor 224‧‧‧N-Type Transistor/Transistor 226‧‧‧N-Type Transistor/Transistor 228‧‧‧N-Type Transistor/Transistor 230 ‧‧‧n-type transistor/transistor 232‧‧‧n-type transistor/transistor 234‧‧‧n-type transistor/transistor 236‧‧‧resultant transistor/n-type transistor 238‧‧‧resultant transistor Crystal/p-type transistor 240‧‧‧Output 242‧‧‧n-type transistor 244‧‧‧p-type transistor 302‧‧‧NAND gate 304‧‧‧NAND gate 306‧‧‧NAND gate 308‧‧‧NOR Gate 310‧‧‧Inverter 312‧‧‧Inverter 402‧‧‧N-Type Schottky Diode/n-Type Schottky Barrier Diode/Schottky Barrier Diode 404‧‧‧n Type Schottky Diode/n-Type Schottky Barrier Diode/Schottky Barrier Diode 406‧‧‧Source Follower Tree 408‧‧‧p-Type Transistor/Transistor 410‧‧‧ p-type transistor/transistor 414‧‧‧resultant transistor/n-type transistor 416‧‧‧resulting transistor/p-type transistor 418‧‧‧output 420‧‧‧n-type transistor 422‧‧‧p-type Transistor 502‧‧‧N-Type Schottky Diode/n-Type Schottky Barrier Diode/Schottky Barrier Diode 504‧‧‧N-Type Schottky Diode/n-Type Schottky Diode Barrier Diodes/Schottky Barrier Diodes506‧‧‧N-Type Schottky Diodes/N-Type Schottky Barrier Diodes/Schottky Barrier Diodes508‧‧‧n-Type Schottky Diodes Base Diode/n-Type Schottky Barrier Diode/Schottky Barrier Diode510‧‧‧n-Type Schottky Diode/n-Type Schottky Barrier Diode/Schottky Barrier Diode Pole Body 512‧‧‧N-Type Schottky Diode/n-Type Schottky Barrier Diode/Schottky Barrier Diode 514‧‧‧n-Type Schottky Diode/n-Type Schottky Diode Base Barrier Diode/Schottky Barrier Diode 516‧‧‧N-Type Schottky Diode/N-Type Schottky Barrier Diode/Schottky Barrier Diode 518‧‧‧Source Follower Coupler tree520‧‧‧p-type transistor/transistor522‧‧‧p-type transistor/transistor524‧‧‧p-type transistor/transistor526‧‧‧p-type transistor/transistor528‧‧ ‧p-type transistor/transistor 530‧‧‧p-type transistor/transistor 532‧‧‧p-type transistor/transistor 534‧‧‧p-type transistor/transistor 536‧‧‧resultant transistor/n Type Transistor 538‧‧‧Result Transistor/p Type Transistor 540‧‧‧Output 542‧‧‧N Type Transistor 544‧‧‧P Type Transistor 602‧‧‧2 Input NOR Gate 604‧‧‧2 Input NOR gate 606‧‧‧2 input NOR gate 608‧‧‧2 input NOR gate 610‧‧‧2 input NAND gate/NAND gate 612‧‧‧2 input NAND gate/NAND gate 614‧‧‧2 input NOR gate/NOR Gate 616‧‧‧Inverter 618‧‧‧Inverter 702‧‧‧P-Type Schottky Barrier Diode/Schottky Barrier Diode 704‧‧‧N-Type Transistor/Transistor 706‧‧ ‧N-Type Schottky Barrier Diode 708‧‧‧P-Type Transistor 710‧‧‧P-Type Resulting Transistor 712‧‧‧N-Type Resulting Transistor 714‧‧‧Output 1202‧‧‧2 Input NAND Gate 1204 ‧‧‧3 input NAND gate/NAND gate 1206‧‧‧NAND gate 1208‧‧‧NAND gate 1210‧‧‧NOR gate 1212‧‧‧NAND gate 1214‧‧‧NAND gate 1216‧‧‧NOR gate 1218‧‧‧ NAND gate 1220‧‧‧NAND gate 1222‧‧‧NOR gate 1224‧‧‧NAND gate 1226‧‧‧NAND gate 1228‧‧‧NAND gate 1230‧‧‧NOR gate 1232‧‧‧NAND gate 1234‧‧‧NAND gate 1236‧‧‧NAND gate 1238‧‧‧NOR gate A0‧‧‧input A1‧‧‧input A2‧‧‧input A3‧‧‧input A4‧‧‧input A5‧‧‧input A6‧‧‧input A7‧‧ ‧Input C2Y‧‧‧Inverted output C2YN‧‧‧Output C3Y‧‧‧Inverted output C3YN‧‧‧Output C4Y‧‧‧Inverted output C4YN‧‧‧Output C5Y‧‧‧Inverted output C5YN‧‧‧Output C6Y‧‧‧Inverting output C6YN‧‧‧Output C7Y‧‧‧Inverting output C7YN‧‧‧Output C8Y‧‧‧Inverting output C8YN‧‧‧Output I1‧‧‧Input I2‧‧‧Input I3‧‧‧ Input I4‧‧‧Input I31‧‧‧Node I31N‧‧‧Node I32‧‧‧Node I32N‧‧‧Node S1‧‧‧Source Voltage S2‧‧‧Source Voltage V DD ‧‧‧Drain Supply Voltage V OUT ‧‧ ‧Output voltage V SS ‧‧‧Source supply voltage

由於在結合圖式之情況下對較佳實施例之一詳細說明下文將清晰地理解本發明之前述特徵及優點以及其額外特徵及優點。 為較清晰地圖解說明根據本發明之實施例之技術解決方案,下文簡要介紹實施例所需之附圖。然而,附圖僅僅圖解說明本發明之較相關特徵且因此並不視為係限制性的,此乃因該說明可承認其他有效特徵。 圖1係根據某些實施例之一2輸入肖特基CMOS NAND閘之一電路圖。 圖2係根據某些實施例之一8輸入肖特基CMOS NAND閘之一電路圖。 圖3係一8輸入CMOS NAND閘之一電路圖。 圖4係根據某些實施例之一2輸入肖特基CMOS NOR閘之一電路圖。 圖5係根據某些實施例之一8輸入肖特基CMOS NOR閘之一電路圖。 圖6係一8輸入CMOS NOR閘之一電路圖。 圖7係根據某些實施例之一4 對1多工器電路之一肖特基CMOS實施方案之一電路圖。 圖8圖解說明一4對1多工器電路之一CMOS實施方案。 圖9係根據某些實施例之比較使用肖特基CMOS實施之NAND閘之佈局面積與使用CMOS實施之NAND閘之佈局面積之一圖表。 圖10係根據某些實施例之比較使用肖特基CMOS實施之NAND閘之一均方根(RMS)電力消耗與使用CMOS實施之NAND閘之電力消耗之一圖表。 圖11係根據某些實施例之比較使用肖特基CMOS實施之NAND閘之傳播延遲與使用CMOS實施之NAND閘之傳播延遲之一圖表。 圖12A至圖12G圖解說明具有各種數目個輸入之NAND閘之CMOS實施方案。 貫穿圖式之數個視圖,相同元件符號係指對應部件。The foregoing features and advantages of the present invention, as well as additional features and advantages thereof, will be clearly understood from the following detailed description of one of the preferred embodiments when taken in conjunction with the accompanying drawings. In order to illustrate the technical solutions according to the embodiments of the present invention more clearly, the accompanying drawings required for the embodiments are briefly introduced below. However, the drawings illustrate only the more relevant features of the invention and are therefore not to be regarded as limiting, as the description may admit other effective features. 1 is a circuit diagram of a 2-input Schottky CMOS NAND gate in accordance with one of certain embodiments. 2 is a circuit diagram of an 8-input Schottky CMOS NAND gate according to some embodiments. Figure 3 is a circuit diagram of an 8-input CMOS NAND gate. 4 is a circuit diagram of a 2-input Schottky CMOS NOR gate according to some embodiments. 5 is a circuit diagram of an 8-input Schottky CMOS NOR gate according to some embodiments. Figure 6 is a circuit diagram of an 8-input CMOS NOR gate. 7 is a circuit diagram of a Schottky CMOS implementation of a 4-to-1 multiplexer circuit in accordance with certain embodiments. Figure 8 illustrates a CMOS implementation of a 4-to-1 multiplexer circuit. 9 is a graph comparing the layout area of a NAND gate implemented using Schottky CMOS to the layout area of a NAND gate implemented using CMOS, according to certain embodiments. 10 is a graph comparing the root mean square (RMS) power consumption of a NAND gate implemented using Schottky CMOS to the power consumption of a NAND gate implemented using CMOS, according to certain embodiments. 11 is a graph comparing the propagation delay of NAND gates implemented using Schottky CMOS to the propagation delays of NAND gates implemented using CMOS, according to certain embodiments. 12A-12G illustrate CMOS implementations of NAND gates with various numbers of inputs. Throughout the several views of the drawings, the same reference numerals refer to corresponding parts.

102‧‧‧p型肖特基二極體 102‧‧‧p-type Schottky diode

104‧‧‧p型肖特基二極體/p型肖特基障壁二極體/肖特基障壁二極體 104‧‧‧p-type Schottky diode/p-type Schottky barrier diode/Schottky barrier diode

106‧‧‧源極隨耦器樹 106‧‧‧Source Follower Tree

108‧‧‧n型電晶體/電晶體 108‧‧‧n-type transistor/transistor

110‧‧‧n型電晶體/電晶體 110‧‧‧n-type transistor/transistor

112‧‧‧連接 112‧‧‧Connection

114‧‧‧結果電晶體/n型電晶體 114‧‧‧Result transistor/n-type transistor

116‧‧‧結果電晶體/p型電晶體 116‧‧‧Result transistor/p-type transistor

118‧‧‧輸出 118‧‧‧Output

120‧‧‧n型電晶體 120‧‧‧n-type transistor

122‧‧‧p型電晶體 122‧‧‧p-type transistor

A0‧‧‧輸入 A0‧‧‧input

A1‧‧‧輸入 A1‧‧‧Input

VDD‧‧‧汲極供應電壓 V DD ‧‧‧Drain Supply Voltage

VOUT‧‧‧輸出電壓 V OUT ‧‧‧Output voltage

VSS‧‧‧源極供應電壓 V SS ‧‧‧Source Supply Voltage

Claims (19)

一種實施一NAND閘系統之積體電路,該積體電路包括:一第一輸入,其耦合至一第一p型肖特基二極體之一陰極;x個額外輸入,其耦合至x個額外p型肖特基二極體之x個各別陰極;一第一n型電晶體,其包含一閘極節點,該閘極節點耦合至該第一p型肖特基二極體之一陽極及該x個額外p型肖特基二極體之x個各別陽極;及一p型電晶體,其包含一閘極節點,該閘極節點耦合至該第一p型肖特基二極體之該陽極及該x個額外p型肖特基二極體之x個各別陽極;一第二n型電晶體,其包含一閘極節點,該閘極節點耦合至該第一p型肖特基二極體之該陰極;及x個額外n型電晶體,其包含x個各別閘極節點,該x個各別閘極節點耦合至該x個額外p型肖特基二極體之該x個各別陰極;其中一輸出耦合至該第一n型電晶體之一非閘極節點及該p型電晶體之一非閘極節點。 An integrated circuit implementing a NAND gate system, the integrated circuit comprising: a first input coupled to a cathode of a first p-type Schottky diode; x additional inputs coupled to x x respective cathodes of additional p-type Schottky diodes; a first n-type transistor including a gate node coupled to one of the first p-type Schottky diodes an anode and x respective anodes of the x additional p-type Schottky diodes; and a p-type transistor including a gate node coupled to the first p-type Schottky diode the anode of the pole body and the x respective anodes of the x additional p-type Schottky diodes; a second n-type transistor including a gate node coupled to the first p the cathode of a type Schottky diode; and x additional n-type transistors including x respective gate nodes coupled to the x additional p-type Schottky diodes the x respective cathodes of the pole body; wherein an output is coupled to a non-gate node of the first n-type transistor and a non-gate node of the p-type transistor. 如請求項1之積體電路,其中該第一p型肖特基二極體之一臨限正向電壓(threshold forward voltage)小於該第二n型電晶體之一臨限電壓。 The integrated circuit of claim 1, wherein a threshold forward voltage of the first p-type Schottky diode is less than a threshold voltage of the second n-type transistor. 如請求項1之積體電路,其中:該x個額外p型肖特基二極體中之一各別p型肖特基二極體之一臨限正向電壓小於該x個額外n型電晶體中之一各別n型電晶體之一臨限正向電壓,且 該x個額外輸入中之一各別額外輸入耦合至該各別p型肖特基二極體及該各別n型電晶體。 The integrated circuit of claim 1, wherein: a threshold forward voltage of a respective p-type Schottky diode of one of the x additional p-type Schottky diodes is less than the x additional n-type diodes a threshold forward voltage of a respective n-type transistor in one of the transistors, and A respective one of the x additional inputs is coupled to the respective p-type Schottky diode and the respective n-type transistor. 如請求項1之積體電路,其中該第一p型肖特基二極體之一臨限正向電壓小於該第一n型電晶體之一臨限電壓。 The integrated circuit of claim 1, wherein a threshold forward voltage of the first p-type Schottky diode is less than a threshold voltage of the first n-type transistor. 如請求項1之積體電路,其中該第一p型肖特基二極體之一臨限正向電壓小於該p型電晶體之一臨限電壓。 The integrated circuit of claim 1, wherein a threshold forward voltage of the first p-type Schottky diode is less than a threshold voltage of the p-type transistor. 如請求項1至5中任一項之積體電路,其中該積體電路經組態以用於非同步操作(asynchronous operation)。 5. The integrated circuit of any one of claims 1 to 5, wherein the integrated circuit is configured for asynchronous operation. 如請求項1至5中任一項之積體電路,其中該x個額外n型電晶體包含與一第三n型電晶體串聯連接之一第二n型電晶體。 5. The integrated circuit of any one of claims 1 to 5, wherein the x additional n-type transistors comprise a second n-type transistor connected in series with a third n-type transistor. 如請求項1至5中任一項之積體電路,其中x大於或等於4。 The integrated circuit of any one of claims 1 to 5, wherein x is greater than or equal to 4. 如請求項8之積體電路,其中該積體電路之一傳播延遲(propagation delay)小於80微微秒。 The integrated circuit of claim 8, wherein a propagation delay of the integrated circuit is less than 80 picoseconds. 如請求項8之積體電路,其中該積體電路所需之一佈局面積小於2.0μm2The integrated circuit of claim 8, wherein a required layout area of the integrated circuit is less than 2.0 μm 2 . 如請求項8之積體電路,其中該積體電路所需之均方根(RMS)電力小於50微瓦特(microwatts)。 The integrated circuit of claim 8, wherein the root mean square (RMS) power required by the integrated circuit is less than 50 microwatts (microwatts). 一種實施一NOR閘系統之積體電路,該積體電路包括:一第一輸入,其耦合至一第一n型肖特基二極體之一陽極;x個額外輸入,其耦合至x個額外n型肖特基二極體之x個各別陽極;一第一p型電晶體,其包含一閘極節點,該閘極節點耦合至該第一n型肖特基二極體之一陰極及該x個額外n型肖特基二極體之一陰極;及一n型電晶體,其包含一閘極節點,該閘極節點耦合至該第一n型肖特基二極體之該陰極及該x個額外n型肖特基二極體之該等陰極;一第二p型電晶體,其包含一閘極節點,該閘極節點耦合至該第一n型肖特基二極體之該陽極;及x個額外p型電晶體,其包含x個各別閘極節點,該x個各別閘極節點耦合至該x個額外n型肖特基二極體之該x個各別陽極;其中一輸出耦合至該第一p型電晶體之一非閘極節點(non-gate node)及該n型電晶體之一非閘極節點。 An integrated circuit implementing a NOR gate system, the integrated circuit comprising: a first input coupled to an anode of a first n-type Schottky diode; x additional inputs coupled to x x respective anodes of additional n-type Schottky diodes; a first p-type transistor including a gate node coupled to one of the first n-type Schottky diodes a cathode and a cathode of the x additional n-type Schottky diodes; and an n-type transistor including a gate node coupled to the first n-type Schottky diode the cathode and the cathodes of the x additional n-type Schottky diodes; a second p-type transistor including a gate node coupled to the first n-type Schottky diode the anode of the pole body; and x additional p-type transistors including x respective gate nodes coupled to the x of the x additional n-type Schottky diodes respective anodes; wherein an output is coupled to a non-gate node of the first p-type transistor and a non-gate node of the n-type transistor. 如請求項12之積體電路,其中該第一n型肖特基二極體之一臨限正向電壓小於該第二p型電晶體之一臨限電壓。 The integrated circuit of claim 12, wherein a threshold forward voltage of the first n-type Schottky diode is less than a threshold voltage of the second p-type transistor. 如請求項12之積體電路,其中:該x個額外n型肖特基二極體中之一各別n型肖特基二極體之一臨限正向電壓小於該x個額外p型電晶體中之一各別p型電晶體之一臨限正向電 壓,且該x個額外輸入中之一各別額外輸入耦合至該各別n型肖特基二極體及該各別p型電晶體。 The integrated circuit of claim 12, wherein: a threshold forward voltage of a respective n-type Schottky diode of one of the x additional n-type Schottky diodes is less than the x additional p-type A threshold forward current of a respective p-type transistor in one of the transistors voltage, and a respective one of the x additional inputs is coupled to the respective n-type Schottky diode and the respective p-type transistor. 如請求項12至14中任一項之積體電路,其中該積體電路經組態以用於非同步操作。 The integrated circuit of any of claims 12 to 14, wherein the integrated circuit is configured for asynchronous operation. 如請求項12至14中任一項之積體電路,其中該x個額外p型電晶體包含與一第三p型電晶體串聯連接之一第二p型電晶體。 The integrated circuit of any one of claims 12 to 14, wherein the x additional p-type transistors comprise a second p-type transistor connected in series with a third p-type transistor. 一種實施一x輸入邏輯閘之積體電路,該積體電路包括:複數個肖特基二極體,其包含x個肖特基二極體;及複數個源極隨耦器電晶體(source-follower transistors),其包含x個源極隨耦器電晶體,其中:該複數個源極隨耦器電晶體中之每一各別源極隨耦器電晶體包含耦合至一各別肖特基二極體之一各別閘極節點;且該複數個源極隨耦器電晶體中之一第一源極隨耦器電晶體串聯連接至該複數個源極隨耦器電晶體中之一第二源極隨耦器電晶體。 An integrated circuit implementing an x input logic gate, the integrated circuit comprising: a plurality of Schottky diodes including x Schottky diodes; and a plurality of source follower transistors (source - follower transistors) comprising x source-follower transistors, wherein: each respective source-follower transistor of the plurality of source-follower transistors includes a respective Schottky coupled to A respective gate node of the base diode; and a first source-follower transistor of the plurality of source-follower transistors is connected in series to one of the plurality of source-follower transistors a second source follower transistor. 如請求項17之積體電路,其中:該x個肖特基二極體中之一各別肖特基二極體之一臨限正向電壓小於該x個源極隨耦器電晶體中之一各別源極隨耦器電晶體之一臨限正向電壓,且 該積體電路之一輸入耦合至該各別肖特基二極體及該各別源極隨耦器電晶體。 The integrated circuit of claim 17, wherein: a threshold forward voltage of each of the x Schottky diodes is less than that of the x source follower transistors a threshold forward voltage of a respective source follower transistor, and An input of the integrated circuit is coupled to the respective Schottky diode and the respective source follower transistor. 如請求項17至18中任一項之積體電路,其中該積體電路經組態以用於非同步操作。The integrated circuit of any one of claims 17 to 18, wherein the integrated circuit is configured for asynchronous operation.
TW107112301A 2017-04-10 2018-04-10 Schottky-cmos asynchronous logic cells TWI760477B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/484,040 2017-04-10
US15/484,040 US9853643B2 (en) 2008-12-23 2017-04-10 Schottky-CMOS asynchronous logic cells

Publications (2)

Publication Number Publication Date
TW201904198A TW201904198A (en) 2019-01-16
TWI760477B true TWI760477B (en) 2022-04-11

Family

ID=63792798

Family Applications (2)

Application Number Title Priority Date Filing Date
TW107112301A TWI760477B (en) 2017-04-10 2018-04-10 Schottky-cmos asynchronous logic cells
TW111107370A TW202230983A (en) 2017-04-10 2018-04-10 Schottky-cmos asynchronous logic cells

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111107370A TW202230983A (en) 2017-04-10 2018-04-10 Schottky-cmos asynchronous logic cells

Country Status (4)

Country Link
EP (1) EP3610573A4 (en)
CN (2) CN110622419B (en)
TW (2) TWI760477B (en)
WO (1) WO2018191217A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405870A (en) * 1980-12-10 1983-09-20 Rockwell International Corporation Schottky diode-diode field effect transistor logic
US4491747A (en) * 1981-09-30 1985-01-01 Tokyo Shibaura Denki Kabushiki Kaisha Logic circuit using depletion mode field effect switching transistors
US4607175A (en) * 1984-08-27 1986-08-19 Advanced Micro Devices, Inc. Non-inverting high speed low level gate to Schottky transistor-transistor logic translator
US4931670A (en) * 1988-12-14 1990-06-05 American Telephone And Telegraph Company TTL and CMOS logic compatible GAAS logic family
US5451890A (en) * 1992-08-24 1995-09-19 California Institue Of Technology Gallium arsenide source follower FET logic family with diodes for preventing leakage currents
US20030147275A1 (en) * 2001-06-15 2003-08-07 Chang Augustine Wei-Chun Schottky diode static random access memory (DSRAM) device, a method for making same, and CFET based DTL
US20030231031A1 (en) * 2002-06-14 2003-12-18 Christian Cojocaru Low-voltage current mode logic circuits and methods
US20050258863A1 (en) * 2004-05-20 2005-11-24 Chang Augustine W Quaternary and trinary logic switching circuits

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300064A (en) * 1979-02-12 1981-11-10 Rockwell International Corporation Schottky diode FET logic integrated circuit
US4559609A (en) * 1983-02-07 1985-12-17 At&T Bell Laboratories Full adder using transmission gates
US4701643A (en) * 1986-03-24 1987-10-20 Ford Microelectronics, Inc. FET gate current limiter circuits
US4798979A (en) * 1986-09-23 1989-01-17 Honeywell Inc. Schottky diode logic for E-mode FET/D-mode FET VLSI circuits
US4798978A (en) * 1987-04-30 1989-01-17 Gain Electronics Corporation GAAS FET logic having increased noise margin
US4868415A (en) * 1988-05-16 1989-09-19 Motorola, Inc. Voltage level conversion circuit
US20060044018A1 (en) * 2004-04-02 2006-03-02 Chang Augustine W Variable threshold transistor for the Schottky FPGA and multilevel storage cell flash arrays
US7135890B2 (en) * 2004-04-19 2006-11-14 Super Talent Electronics, Inc. SCL type FPGA with multi-threshold transistors and method for forming same
US7071518B2 (en) * 2004-05-28 2006-07-04 Freescale Semiconductor, Inc. Schottky device
US7224205B2 (en) * 2004-07-07 2007-05-29 Semi Solutions, Llc Apparatus and method for improving drive-strength and leakage of deep submicron MOS transistors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405870A (en) * 1980-12-10 1983-09-20 Rockwell International Corporation Schottky diode-diode field effect transistor logic
US4491747A (en) * 1981-09-30 1985-01-01 Tokyo Shibaura Denki Kabushiki Kaisha Logic circuit using depletion mode field effect switching transistors
US4607175A (en) * 1984-08-27 1986-08-19 Advanced Micro Devices, Inc. Non-inverting high speed low level gate to Schottky transistor-transistor logic translator
US4931670A (en) * 1988-12-14 1990-06-05 American Telephone And Telegraph Company TTL and CMOS logic compatible GAAS logic family
US5451890A (en) * 1992-08-24 1995-09-19 California Institue Of Technology Gallium arsenide source follower FET logic family with diodes for preventing leakage currents
US20030147275A1 (en) * 2001-06-15 2003-08-07 Chang Augustine Wei-Chun Schottky diode static random access memory (DSRAM) device, a method for making same, and CFET based DTL
US20030231031A1 (en) * 2002-06-14 2003-12-18 Christian Cojocaru Low-voltage current mode logic circuits and methods
US20050258863A1 (en) * 2004-05-20 2005-11-24 Chang Augustine W Quaternary and trinary logic switching circuits

Also Published As

Publication number Publication date
CN113452362A (en) 2021-09-28
CN113452362B (en) 2022-07-08
EP3610573A4 (en) 2021-04-21
TW202230983A (en) 2022-08-01
WO2018191217A4 (en) 2018-11-29
EP3610573A1 (en) 2020-02-19
CN110622419B (en) 2021-05-11
WO2018191217A1 (en) 2018-10-18
TW201904198A (en) 2019-01-16
CN110622419A (en) 2019-12-27

Similar Documents

Publication Publication Date Title
JP4149011B2 (en) Method of assembling integrated circuit, integrated circuit, and high voltage tolerant interface circuit for integrated circuit
US8536925B2 (en) Voltage level translator circuit
EP0145004B1 (en) Bipolar transistor-field effect transistor composite circuit
US8179160B1 (en) Input-output (I/O) circuit supporting multiple I/O logic-level swings
TWI712264B (en) Temperature instability-aware circuit and method for the same
TWI415246B (en) A circuit with esd protection for a switching regulator
TW200409461A (en) Semiconductor integrated circuit device having a leakage current cutoff circuit, constructed using MT-CMOS, for reducing standby leakage current
US20220286134A1 (en) Schottky-cmos asynchronous logic cells
Kamsani et al. A low power multiplexer based pass transistor logic full adder
US20240120922A1 (en) Schottky-CMOS Static Random-Access Memory
TWI760477B (en) Schottky-cmos asynchronous logic cells
US20080258774A1 (en) Semiconductor device with a logic circuit
JP5627691B2 (en) Apparatus and related method for metastability enhanced storage circuit
JP3814589B2 (en) Switch circuit and bus switch circuit
US9685780B2 (en) ESD protection circuit
Ker et al. High-voltage-tolerant ESD clamp circuit with low standby leakage in nanoscale CMOS process
Kumar et al. Power sequence free 400Mbps 90µW 6000µm 2 1.8 V–3.3 V stress tolerant I/O buffer in 28nm CMOS
US20090302893A1 (en) High Speed "Pseudo" Current Mode Logic (CML) Integrated Circuit Memory Latch
JP3547906B2 (en) Semiconductor integrated circuit device
US5428302A (en) Logic circuit with controlled current supply output
Saligram et al. Realization of multi-valued logic combinational circuits on fully depleted silicon on insulator
KR101867510B1 (en) Electrostatic discharging circuit
JP2008244071A (en) Semiconductor integrated circuit provided with esd protection circuit
Dadoria et al. New leakage reduction techniques for FinFET technology with its application
CN100409439C (en) Electrostatic discharge protection circuit and semiconductor circuit with same