TWI759688B - A method and device for detecting abnormal transaction nodes - Google Patents
A method and device for detecting abnormal transaction nodes Download PDFInfo
- Publication number
- TWI759688B TWI759688B TW109104991A TW109104991A TWI759688B TW I759688 B TWI759688 B TW I759688B TW 109104991 A TW109104991 A TW 109104991A TW 109104991 A TW109104991 A TW 109104991A TW I759688 B TWI759688 B TW I759688B
- Authority
- TW
- Taiwan
- Prior art keywords
- transaction
- node
- nodes
- subset
- cluster
- Prior art date
Links
- 230000002159 abnormal effect Effects 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 36
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 238000012544 monitoring process Methods 0.000 claims abstract description 11
- 230000008569 process Effects 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 12
- 238000004458 analytical method Methods 0.000 claims description 11
- 230000005856 abnormality Effects 0.000 claims description 5
- 238000007621 cluster analysis Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 238000004590 computer program Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000001914 filtration Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000000750 progressive effect Effects 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 238000003064 k means clustering Methods 0.000 description 2
- 238000012954 risk control Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 208000037805 labour Diseases 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/38—Payment protocols; Details thereof
- G06Q20/40—Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
- G06Q20/401—Transaction verification
- G06Q20/4016—Transaction verification involving fraud or risk level assessment in transaction processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Accounting & Taxation (AREA)
- Computer Security & Cryptography (AREA)
- Finance (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
一種異常交易節點的檢測方法及裝置,用以解決現有技術異常交易檢測的效率和正確率較低的問題。其中方法包括:根據監測時間段內的交易流水,確定N個交易維度下交易節點間的交易特徵值,針對任一交易維度,根據交易節點間的交易特徵值,將交易節點劃分至該交易維度下的交易子集中;針對任一交易節點,至少根據交易節點所在交易子集中的強關聯關係,計算交易節點在每一個交易子集中的集群特徵值,根據交易節點的集群特徵值,利用無監督聚類演算法對所有交易節點進行聚類,基於聚類結果確定異常交易節點。通過基於交易節點間的關聯關係和無監督聚類演算法中的方法檢測異常交易節點,有助於提高異常交易檢測的效率和正確率。 A method and device for detecting abnormal transaction nodes, which are used to solve the problems of low efficiency and accuracy of abnormal transaction detection in the prior art. The method includes: determining transaction characteristic values between transaction nodes under N transaction dimensions according to the transaction flow within the monitoring time period, and for any transaction dimension, dividing the transaction nodes into the transaction dimension according to the transaction characteristic values between the transaction nodes For any transaction node, at least according to the strong association relationship in the transaction subset where the transaction node is located, calculate the cluster characteristic value of the transaction node in each transaction subset, and use the unsupervised cluster characteristic value according to the cluster characteristic value of the transaction node. The clustering algorithm clusters all transaction nodes, and determines abnormal transaction nodes based on the clustering results. Detecting abnormal transaction nodes based on the relationship between transaction nodes and the method in the unsupervised clustering algorithm helps to improve the efficiency and accuracy of abnormal transaction detection.
Description
本發明屬於資料處理技術領域,尤其是關於一種異常交易節點的檢測方法及裝置。 The invention belongs to the technical field of data processing, in particular to a method and device for detecting abnormal transaction nodes.
近年來,隨著智慧終端機支付技術的不斷發展,使用手機進行支付的用戶也越來越多。隨之而來的是,智慧終端機支付面臨的業務風險也日益顯現,特別是近年來犯罪分子利用終端支付進行行銷惡意套利的行為愈加猖獗,其套利手段逐漸趨向專業化及團夥化,給企業和個人造成了直接或間接損失。 In recent years, with the continuous development of smart terminal payment technology, more and more users use mobile phones to pay. What follows is that the business risks faced by smart terminal payment are also becoming more and more obvious. Especially in recent years, criminals use terminal payment to conduct marketing malicious arbitrage more and more rampant. and individuals caused direct or indirect losses.
目前,基於交易個體特徵分析的機器學習偵測方法被逐漸利用於行銷套利等異常交易的偵測之中。但這種檢測方式十分依賴於已有的套利交易樣本及其標籤資料,在正負樣本資料不平衡甚至無標籤的檢測場景下,其訓練效果十分不理想,檢測效率和正確率較低,其模型偵測的可解釋性同樣較弱,對交易個體間交易行為關聯性分析也存在很大的缺陷。 At present, machine learning detection methods based on the analysis of individual characteristics of transactions are gradually used in the detection of abnormal transactions such as marketing arbitrage. However, this detection method is very dependent on the existing arbitrage trading samples and their label data. In the detection scenario where the positive and negative sample data is unbalanced or even without labels, the training effect is very unsatisfactory, and the detection efficiency and accuracy rate are low. The interpretability of detection is also weak, and the analysis of the correlation between transaction behaviors among transaction individuals also has great defects.
本發明提供一種異常交易節點的檢測方法及裝置,用以提高 異常交易檢測的效率和正確率。 The present invention provides a method and device for detecting abnormal transaction nodes, which are used to improve the Efficiency and accuracy of abnormal transaction detection.
本發明實施例提供的一種異常交易節點的檢測方法,包括: A method for detecting an abnormal transaction node provided by an embodiment of the present invention includes:
根據監測時間段內的交易流水,確定N個交易維度下交易節點之間的交易特徵值;其中,N1; According to the transaction flow in the monitoring time period, determine the transaction characteristic values between transaction nodes under N transaction dimensions; among them, N 1;
針對N個交易維度中的任一交易維度,根據交易節點之間的交易特徵值,將所有交易節點劃分至該交易維度下的交易子集中;其中,任一交易節點與同一個交易子集中的至少另一個交易節點之間為強關聯關係,交易節點之間的強關聯關係為交易節點之間的交易特徵值大於該交易維度的交易閾值; For any transaction dimension in the N transaction dimensions, according to the transaction characteristic values between transaction nodes, all transaction nodes are divided into transaction subsets under the transaction dimension; At least one other transaction node has a strong relationship, and the strong relationship between the transaction nodes is that the transaction feature value between the transaction nodes is greater than the transaction threshold of the transaction dimension;
針對任一交易節點,至少根據該交易節點所在交易子集中的強關聯關係,計算該交易節點在每一個交易子集中的集群特徵值; For any transaction node, at least according to the strong association relationship in the transaction subset where the transaction node is located, calculate the cluster characteristic value of the transaction node in each transaction subset;
根據交易節點的集群特徵值,利用無監督聚類演算法將所有交易節點聚類; According to the cluster eigenvalues of the transaction nodes, use the unsupervised clustering algorithm to cluster all the transaction nodes;
根據聚類結果確定異常的交易節點。 Determine abnormal transaction nodes according to the clustering results.
一種可選的實施例中,該針對N個交易維度中的任一交易維度,根據交易節點之間的交易特徵值,將所有交易節點劃分至該交易維度下的交易子集中之後,該針對任一交易節點,至少根據該交易節點所在交易子集中的強關聯關係,計算該交易節點在每一個交易子集中的集群特徵值之前,還包括: In an optional embodiment, for any transaction dimension among the N transaction dimensions, after dividing all transaction nodes into transaction subsets under the transaction dimension according to transaction characteristic values between transaction nodes, A transaction node, before calculating the cluster characteristic value of the transaction node in each transaction subset according to the strong association relationship in the transaction subset where the transaction node is located, further includes:
針對任一交易子集,確定該交易子集中交易節點的數量; For any transaction subset, determine the number of transaction nodes in the transaction subset;
將每一個交易子集中交易節點的數量與節點數閾值相對比,刪去交易節點的數量小於該節點數閾值的交易子集中的交易節點。 The number of transaction nodes in each transaction subset is compared with the threshold of the number of nodes, and the transaction nodes in the transaction subset whose number of transaction nodes is less than the threshold of the number of nodes are deleted.
一種可選的實施例中,該交易節點的集群特徵值為M個,M1;該M個集群特徵值至少包括以下內容之一:該交易節點所在交易子集的集群大小、集群規模、該交易節點對交易子集的貢獻值; In an optional embodiment, the cluster characteristic value of the transaction node is M, and M 1. The M cluster characteristic values include at least one of the following contents: the cluster size of the transaction subset where the transaction node is located, the cluster scale, and the contribution value of the transaction node to the transaction subset;
該至少根據該交易節點所在交易子集中的強關聯關係,計算該交易節點在每一個交易子集中的集群特徵值,包括: The cluster feature value of the transaction node in each transaction subset is calculated at least according to the strong association relationship in the transaction subset where the transaction node is located, including:
至少根據該交易節點所在交易子集中的強關聯關係,計算該交易節點的N×M個集群特徵值。 At least according to the strong association relationship in the transaction subset where the transaction node is located, N×M cluster characteristic values of the transaction node are calculated.
一種可選的實施例中,該至少根據該交易節點所在交易子集中的強關聯關係,計算該交易節點的N×M個集群特徵值,包括: In an optional embodiment, the N×M cluster feature values of the transaction node are calculated at least according to the strong association in the transaction subset where the transaction node is located, including:
針對該交易節點所在的任一交易子集執行以下計算過程: Perform the following calculation process for any subset of transactions where the transaction node is located:
將該交易子集中交易節點的數量,確定為該交易子集的集群大小; Determine the number of transaction nodes in the transaction subset as the cluster size of the transaction subset;
將該交易子集中所有交易節點之間的交易特徵值相加,得到該交易子集的集群規模; Add the transaction eigenvalues between all transaction nodes in the transaction subset to obtain the cluster size of the transaction subset;
根據該交易子集中任意兩個交易節點之間的交易流水,確定該交易子集中的邊; Determine the edge in the transaction subset according to the transaction flow between any two transaction nodes in the transaction subset;
根據該交易子集中邊的數量,以及該交易子集的集群規模,確定該交易子集的平均交易值; Determine the average transaction value of the transaction subset according to the number of edges in the transaction subset and the cluster size of the transaction subset;
根據該交易節點的交易特徵值以及該交易子集的平均交易值,計算該交易節點對交易子集的貢獻值。 According to the transaction characteristic value of the transaction node and the average transaction value of the transaction subset, the contribution value of the transaction node to the transaction subset is calculated.
一種可選的實施例中,該根據交易節點的集群特徵值,利用無監督聚類演算法將各交易節點聚類,包括: In an optional embodiment, using an unsupervised clustering algorithm to cluster each transaction node according to the cluster characteristic value of the transaction node, including:
針對任一交易維度,根據交易節點的集群特徵值,利用基於向量密度 分析的聚類分析演算法將所有交易節點聚類; For any transaction dimension, according to the cluster eigenvalues of the transaction nodes, use the vector density-based The analyzed cluster analysis algorithm clusters all transaction nodes;
該根據交易節點的集群特徵值,利用無監督聚類演算法將各交易節點聚類之後,還包括: After clustering each transaction node by using an unsupervised clustering algorithm according to the cluster characteristic value of the transaction node, the method further includes:
確定每個交易維度的權重; Determine the weight of each transaction dimension;
針對任一交易維度,確定該交易維度的每個聚類結果的分數; For any transaction dimension, determine the score of each clustering result of the transaction dimension;
針對任一交易節點,根據該交易節點在任一交易維度下的聚類結果的分數,以及該交易維度的權重,確定該交易節點的集群評分值;和/或, For any transaction node, according to the score of the clustering result of the transaction node under any transaction dimension and the weight of the transaction dimension, determine the cluster score value of the transaction node; and/or,
針對任一交易節點,根據該交易節點在任一交易維度下的聚類結果的分數、該交易維度的權重,以及該交易節點對聚類結果的貢獻值,確定該交易節點的綜合評分值。 For any transaction node, according to the score of the clustering result of the transaction node under any transaction dimension, the weight of the transaction dimension, and the contribution value of the transaction node to the clustering result, the comprehensive score value of the transaction node is determined.
本發明實施例還提供一種異常交易節點的檢測裝置,包括: The embodiment of the present invention also provides a detection device for an abnormal transaction node, including:
獲取單元,用於根據監測時間段內的交易流水,確定N個交易維度下交易節點之間的交易特徵值;其中,N1; The acquisition unit is used to determine the transaction characteristic values between the transaction nodes under the N transaction dimensions according to the transaction flow in the monitoring time period; wherein, N 1;
劃分單元,用於針對N個交易維度中的任一交易維度,根據交易節點之間的交易特徵值,將所有交易節點劃分至該交易維度下的交易子集中;其中,任一交易節點與同一個交易子集中的至少另一個交易節點之間為強關聯關係,交易節點之間的強關聯關係為交易節點之間的交易特徵值大於該交易維度的交易閾值; The division unit is used to divide all transaction nodes into transaction subsets under the transaction dimension according to the transaction characteristic values between transaction nodes for any transaction dimension in the N transaction dimensions; At least one other transaction node in a transaction subset has a strong association relationship, and the strong association relationship between transaction nodes is that the transaction feature value between the transaction nodes is greater than the transaction threshold of the transaction dimension;
計算單元,用於針對任一交易節點,至少根據該交易節點所在交易子集中的強關聯關係,計算該交易節點在每一個交易子集中的集群特徵值; a computing unit, configured to, for any transaction node, calculate the cluster characteristic value of the transaction node in each transaction subset according to at least the strong association relationship in the transaction subset in which the transaction node is located;
聚類單元,用於根據交易節點的集群特徵值,利用無監督聚類演算法將所有交易節點聚類; The clustering unit is used to cluster all transaction nodes by using the unsupervised clustering algorithm according to the cluster eigenvalues of the transaction nodes;
確定單元,用於根據聚類結果確定異常的交易節點。 The determining unit is used to determine abnormal transaction nodes according to the clustering result.
一種可選的實施例中,該劃分單元,還用於: In an optional embodiment, the dividing unit is also used for:
針對任一交易子集,確定該交易子集中交易節點的數量; For any transaction subset, determine the number of transaction nodes in the transaction subset;
將每一個交易子集中交易節點的數量與節點數閾值相對比,刪去交易節點的數量小於該節點數閾值的交易子集中的交易節點。 The number of transaction nodes in each transaction subset is compared with the threshold of the number of nodes, and the transaction nodes in the transaction subset whose number of transaction nodes is less than the threshold of the number of nodes are deleted.
一種可選的實施例中,該交易節點的集群特徵值為M個,M1;該M個集群特徵值至少包括以下內容之一:該交易節點所在交易子集的集群大小、集群規模、該交易節點對交易子集的貢獻值; In an optional embodiment, the cluster characteristic value of the transaction node is M, and M 1. The M cluster characteristic values include at least one of the following contents: the cluster size of the transaction subset where the transaction node is located, the cluster scale, and the contribution value of the transaction node to the transaction subset;
該計算單元,用於至少根據該交易節點所在交易子集中的強關聯關係,計算該交易節點的N×M個集群特徵值。 The calculation unit is configured to calculate N×M cluster characteristic values of the transaction node at least according to the strong association relationship in the transaction subset in which the transaction node is located.
一種可選的實施例中,該計算單元,具體用於: In an optional embodiment, the computing unit is specifically used for:
針對該交易節點所在的任一交易子集執行以下計算過程: Perform the following calculation process for any subset of transactions where the transaction node is located:
將該交易子集中交易節點的數量,確定為該交易子集的集群大小; Determine the number of transaction nodes in the transaction subset as the cluster size of the transaction subset;
將該交易子集中所有交易節點之間的交易特徵值相加,得到該交易子集的集群規模; Add the transaction eigenvalues between all transaction nodes in the transaction subset to obtain the cluster size of the transaction subset;
根據該交易子集中任意兩個交易節點之間的交易流水,確定該交易子集中的邊; Determine the edge in the transaction subset according to the transaction flow between any two transaction nodes in the transaction subset;
根據該交易子集中邊的數量,以及該交易子集的集群規模,確定該交易子集的平均交易值; Determine the average transaction value of the transaction subset according to the number of edges in the transaction subset and the cluster size of the transaction subset;
根據該交易節點的交易特徵值以及該交易子集的平均交易值,計算該交易節點對交易子集的貢獻值。 According to the transaction characteristic value of the transaction node and the average transaction value of the transaction subset, the contribution value of the transaction node to the transaction subset is calculated.
一種可選的實施例中,該聚類單元,具體用於: In an optional embodiment, the clustering unit is specifically used for:
針對任一交易維度,根據交易節點的集群特徵值,利用基於向量密度分析的聚類分析演算法將所有交易節點聚類; For any transaction dimension, according to the cluster eigenvalues of the transaction nodes, the clustering algorithm based on vector density analysis is used to cluster all transaction nodes;
該確定單元,具體用於: The determination unit is specifically used for:
確定每個交易維度的權重; Determine the weight of each transaction dimension;
針對任一交易維度,確定該交易維度的每個聚類結果的分數; For any transaction dimension, determine the score of each clustering result of the transaction dimension;
針對任一交易節點,根據該交易節點在任一交易維度下的聚類結果的分數,以及該交易維度的權重,確定該交易節點的集群評分值;和/或, For any transaction node, according to the score of the clustering result of the transaction node under any transaction dimension and the weight of the transaction dimension, determine the cluster score value of the transaction node; and/or,
針對任一交易節點,根據該交易節點在任一交易維度下的聚類結果的分數、該交易維度的權重,以及該交易節點對聚類結果的貢獻值,確定該交易節點的綜合評分值。 For any transaction node, according to the score of the clustering result of the transaction node under any transaction dimension, the weight of the transaction dimension, and the contribution value of the transaction node to the clustering result, the comprehensive score value of the transaction node is determined.
本發明實施例還提供一種電子設備,包括: An embodiment of the present invention also provides an electronic device, including:
至少一個處理器;以及, at least one processor; and,
與該至少一個處理器通信連接的記憶體;其中, memory in communication with the at least one processor; wherein,
該記憶體存儲有可被該至少一個處理器執行的指令,該指令被該至少一個處理器執行,以使該至少一個處理器能夠執行如上所述的方法。 The memory stores instructions executable by the at least one processor to enable the at least one processor to perform the method as described above.
本發明實施例還提供一種電腦可讀存儲介質,該電腦可讀存儲介質存儲有電腦可執行指令,該電腦可執行指令用於使該電腦執行如上所述的方法。 Embodiments of the present invention further provide a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute the above-mentioned method.
本發明實施例中,根據監測時間段內的交易流水,確定N個交易維度下交易節點之間的交易特徵值,即任意兩個交易節點之間確定N個交易特徵值,其中一個交易特徵值對應一個交易維度。針對任一交易維度,根據交易節點之間的交易特徵值,將所有交易節點劃分至交易子集中。 其中,任一交易節點與同一個交易子集中的至少另一個交易節點之間為強關聯關係,這裡交易節點之間的強關聯關係為交易節點之間的交易特徵值大於交易維度的交易閾值。之後,針對任一交易節點,至少根據交易節點所在交易子集中的強關聯關係,計算交易節點在每一個交易子集中的集群特徵值。根據交易節點的集群特徵值,利用無監督聚類演算法將所有交易節點聚類,並根據聚類結果確定異常的交易節點。本發明實施例中,對交易節點之間的關聯關係進行過濾,只保留大於交易閾值的強關聯關係,並根據強關聯關係將交易節點劃分集群,再計算交易節點的集群特徵值,從而能夠有效篩選出孤島交易節點以及孤島節點子對,可以在聚類之前篩選出雜訊交易資料,對於海量資料的複雜網路下異常交易檢測的效率和正確率具有極大的提升。同時,利用了無監督聚類演算法,能夠擺脫對異常樣本的標籤資料的依賴,對於異常交易樣本資料很少甚至無樣本可訓練的情況,能夠快速發現異常交易節點及其團夥,從而及時進行異常交易的風控。 In the embodiment of the present invention, according to the transaction flow in the monitoring time period, the transaction characteristic values between the transaction nodes under N transaction dimensions are determined, that is, N transaction characteristic values are determined between any two transaction nodes, and one transaction characteristic value is determined. Corresponds to a transaction dimension. For any transaction dimension, all transaction nodes are divided into transaction subsets according to the transaction eigenvalues between transaction nodes. Wherein, any transaction node and at least another transaction node in the same transaction subset are strongly associated, where the strong association between transaction nodes is that the transaction feature value between transaction nodes is greater than the transaction threshold of the transaction dimension. Afterwards, for any transaction node, at least according to the strong association relationship in the transaction subset where the transaction node is located, the cluster feature value of the transaction node in each transaction subset is calculated. According to the cluster eigenvalues of the transaction nodes, the unsupervised clustering algorithm is used to cluster all the transaction nodes, and the abnormal transaction nodes are determined according to the clustering results. In the embodiment of the present invention, the association relationship between the transaction nodes is filtered, and only the strong association relationship greater than the transaction threshold is retained, and the transaction nodes are divided into clusters according to the strong association relationship, and then the cluster characteristic value of the transaction nodes is calculated, so as to effectively Filtering out island transaction nodes and island node sub-pairs can filter out noisy transaction data before clustering, which greatly improves the efficiency and accuracy of abnormal transaction detection in complex networks with massive data. At the same time, the unsupervised clustering algorithm is used, which can get rid of the dependence on the label data of abnormal samples. In the case where there is little or no sample data for abnormal transaction samples, abnormal transaction nodes and their gangs can be quickly discovered, so as to carry out timely processing. Risk control of abnormal transactions.
101~105:步驟 101~105: Steps
301~307:步驟 301~307: Steps
201~209:交易節點 201~209: Trading Nodes
211~213:交易子集 211~213: Transaction subset
401:獲取單元 401: Get unit
402:劃分單元 402: Divide unit
403:計算單元 403: Computing Unit
404:聚類單元 404: Cluster unit
405:確定單元 405: Determine unit
501:處理器 501: Processor
502:記憶體 502: memory
503:收發機 503: Transceiver
504:匯流排介面 504: Bus interface
為了更清楚地說明本發明實施例中的技術方案,下面將對實施例描述中所需要使用的附圖作簡要介紹,顯而易見地,下面描述中的附圖僅僅是本發明的一些實施例,對於本領域的普通技術人員來講,在不付出進步性勞動性的前提下,還可以根據這些附圖獲得其他的附圖。 In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without paying progressive labor.
圖1為本發明實施例提供的一種異常交易節點的檢測方法的流程示意圖; 1 is a schematic flowchart of a method for detecting an abnormal transaction node according to an embodiment of the present invention;
圖2a至圖2c為本發明實施例中將交易節點劃入至交易子集的示意圖; 2a to 2c are schematic diagrams of dividing transaction nodes into transaction subsets in an embodiment of the present invention;
圖3為本發明具體實施例提供的一種異常交易節點的檢測方法的流程示意圖; 3 is a schematic flowchart of a method for detecting an abnormal transaction node provided by a specific embodiment of the present invention;
圖4為本發明實施例提供的一種異常交易節點的檢測裝置的結構示意圖; 4 is a schematic structural diagram of an apparatus for detecting an abnormal transaction node according to an embodiment of the present invention;
圖5為本發明實施例提供的電子設備的結構示意圖。 FIG. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention.
為了使本發明的目的、技術方案和優點更加清楚,下面將結合附圖對本發明作進一步地詳細描述,顯然,所描述的實施例僅僅是本發明一部份實施例,而不是全部的實施例。基於本發明中的實施例,本領域普通技術人員在沒有做出進步性勞動前提下所獲得的所有其它實施例,都屬於本發明保護的範圍。 In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. . Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without making progressive efforts fall within the protection scope of the present invention.
本發明實施例提供了一種異常交易節點的檢測方法,如圖1所示,本發明實施例提供的異常交易節點的檢測方法包括以下步驟: An embodiment of the present invention provides a method for detecting an abnormal transaction node. As shown in FIG. 1 , the method for detecting an abnormal transaction node provided by the embodiment of the present invention includes the following steps:
步驟101、根據監測時間段內的交易流水,確定N個交易維度下交易節點之間的交易特徵值;其中,N1。 Step 101: Determine transaction characteristic values between transaction nodes under N transaction dimensions according to the transaction flow in the monitoring time period; wherein, N 1.
舉例來說,交易特徵可以為交易節點之間的交易筆數、交易總金額、優惠總金額、交易平均時間差、異地交易地點數等。交易節點可以為個人或商戶,個人可以為網路支付帳戶、銀行卡持卡人等,本發明實施例中的個人主要指的是銀行卡持卡人。 For example, the transaction features may be the number of transactions between transaction nodes, the total transaction amount, the total discount amount, the average transaction time difference, the number of different transaction locations, and the like. The transaction node may be an individual or a merchant, and the individual may be an online payment account, a bank card holder, etc. The individual in the embodiment of the present invention mainly refers to the bank card holder.
步驟102、針對N個交易維度中的任一交易維度,根據交易
節點之間的交易特徵值,將所有交易節點劃分至該交易維度下的交易子集中;其中,任一交易節點與同一個交易子集中的至少另一個交易節點之間為強關聯關係,交易節點之間的強關聯關係為交易節點之間的交易特徵值大於該交易維度的交易閾值。
具體地,針對不同的交易維度設置交易閾值,若交易節點之間的交易維度值大於交易閾值,則交易節點之間為強關聯關係;若交易節點之間的交易維度值小於或等於交易閾值,則交易節點之間為弱關聯關係。本發明實施例中篩除弱關聯關係,只保留交易節點之間的強關聯關係。 Specifically, transaction thresholds are set for different transaction dimensions. If the transaction dimension value between transaction nodes is greater than the transaction threshold, the transaction nodes are strongly associated; if the transaction dimension value between transaction nodes is less than or equal to the transaction threshold, Then there is a weak relationship between transaction nodes. In the embodiment of the present invention, weak associations are screened out, and only strong associations between transaction nodes are retained.
舉例來說,交易節點201-交易節點209之間存在交易,可以將存在交易的交易節點之間用邊連接,形成如圖2a所示的交易網路圖譜。針對一個交易維度,如交易筆數,根據交易流水確定交易節點201-交易節點209之間的交易特徵值,並將交易特徵值與交易閾值對比,例如,將交易筆數的閾值設定為10筆,若兩個交易節點之間的交易筆數大於10筆,則認為交易節點之間為強關聯關係。如圖2a中的交易節點201與交易節點204之間交易筆數為4筆,交易節點204與交易節點205之間的交易筆數為2筆,交易節點204與交易節點206之間的交易筆數為8筆,交易節點205與交易節點206之間的交易筆數為5筆,交易節點206與交易節點209之間的交易筆數為7筆,均小於10筆。則認為交易節點201與交易節點204之間、交易節點204與交易節點205之間、交易節點204與交易節點206之間、交易節點205與交易節點206之間、交易節點206與交易節點209之間為弱關聯關係,從而將圖2a中交易節點201與交易節點204之間、交易節點204與交易節點205之間、交易節點204與交易節點206之間、交
易節點205與交易節點206之間、交易節點206與交易節點209之間的邊用虛線表示,並在圖過濾過程中將虛線的邊刪去,從而得到如圖2b所示的交易網路圖譜。
For example, if there is a transaction between the
之後,根據交易節點之間的強關聯關係將交易節點劃分至交易子集中。例如圖2b所示的交易節點,根據交易節點之間的強關聯關係,交易節點被分入交易子集211、交易子集212和交易子集213中,劃分結果如圖2c所示。
Afterwards, the transaction nodes are divided into transaction subsets according to the strong association between the transaction nodes. For example, the transaction nodes shown in Figure 2b, according to the strong association between the transaction nodes, the transaction nodes are divided into
步驟103、針對任一交易節點,至少根據該交易節點所在交易子集中的強關聯關係,計算該交易節點在每一個交易子集中的集群特徵值。 Step 103: For any transaction node, at least according to the strong association relationship in the transaction subset in which the transaction node is located, calculate the cluster characteristic value of the transaction node in each transaction subset.
具體來說,本發明實施例中,若兩個交易節點之間存在強關聯關係,則將兩個交易節點作為點,交易節點直接用邊相連,交易子集中的多個交易節點形成網路圖譜,從而根據交易子集的網路圖譜計算交易節點的集群特徵值。 Specifically, in the embodiment of the present invention, if there is a strong relationship between two transaction nodes, the two transaction nodes are used as points, the transaction nodes are directly connected by edges, and the multiple transaction nodes in the transaction subset form a network graph , so as to calculate the cluster feature value of the transaction node according to the network graph of the transaction subset.
步驟104、根據交易節點的集群特徵值,利用無監督聚類演算法將所有交易節點聚類。
舉例來說,本發明實施例中的無監督聚類演算法為DBSCAN(Density-Based Spatial Clustering of Applications with Noise,基於密度的聚類演算法),此外,也可以用KMEANS(k-means clustering algorithm,K均值聚類演算法)或者KNN(K-Nearest Neighbour,K近鄰演算法)等。 For example, the unsupervised clustering algorithm in the embodiment of the present invention is DBSCAN (Density-Based Spatial Clustering of Applications with Noise, density-based clustering algorithm), in addition, KMEANS (k-means clustering algorithm) can also be used , K-means clustering algorithm) or KNN (K-Nearest Neighbour, K-nearest neighbor algorithm) and so on.
步驟105、根據聚類結果確定異常的交易節點。 Step 105: Determine an abnormal transaction node according to the clustering result.
本發明實施例中,根據監測時間段內的交易流水,確定N 個交易維度下交易節點之間的交易特徵值,即任意兩個交易節點之間確定N個交易特徵值,其中一個交易特徵值對應一個交易維度。針對任一交易維度,根據交易節點之間的交易特徵值,將所有交易節點劃分至交易子集中。其中,任一交易節點與同一個交易子集中的至少另一個交易節點之間為強關聯關係,這裡交易節點之間的強關聯關係為交易節點之間的交易特徵值大於交易維度的交易閾值。之後,針對任一交易節點,至少根據交易節點所在交易子集中的強關聯關係,計算交易節點在每一個交易子集中的集群特徵值。根據交易節點的集群特徵值,利用無監督聚類演算法將所有交易節點聚類,並根據聚類結果確定異常的交易節點。本發明實施例中,對交易節點之間的關聯關係進行過濾,只保留大於交易閾值的強關聯關係,並根據強關聯關係將交易節點劃分集群,再計算交易節點的集群特徵值,從而能夠有效篩選出孤島交易節點以及孤島節點子對,可以在聚類之前篩選出雜訊交易資料,對於海量資料的複雜網路下異常交易檢測的效率和正確率具有極大的提升。同時,利用了無監督聚類演算法,能夠擺脫對異常樣本的標籤資料的依賴,對於異常交易樣本資料很少甚至無樣本可訓練的情況,能夠快速發現異常交易節點及其團夥,從而及時進行異常交易的風控。 In the embodiment of the present invention, N is determined according to the transaction flow in the monitoring time period. Transaction feature values between transaction nodes under each transaction dimension, that is, N transaction feature values are determined between any two transaction nodes, and one transaction feature value corresponds to one transaction dimension. For any transaction dimension, all transaction nodes are divided into transaction subsets according to the transaction eigenvalues between transaction nodes. Wherein, any transaction node and at least another transaction node in the same transaction subset are strongly associated, where the strong association between transaction nodes is that the transaction feature value between transaction nodes is greater than the transaction threshold of the transaction dimension. Afterwards, for any transaction node, at least according to the strong association relationship in the transaction subset where the transaction node is located, the cluster feature value of the transaction node in each transaction subset is calculated. According to the cluster eigenvalues of the transaction nodes, the unsupervised clustering algorithm is used to cluster all the transaction nodes, and the abnormal transaction nodes are determined according to the clustering results. In the embodiment of the present invention, the association relationship between the transaction nodes is filtered, and only the strong association relationship greater than the transaction threshold is retained, and the transaction nodes are divided into clusters according to the strong association relationship, and then the cluster characteristic value of the transaction nodes is calculated, so as to effectively Filtering out island transaction nodes and island node sub-pairs can filter out noisy transaction data before clustering, which greatly improves the efficiency and accuracy of abnormal transaction detection in complex networks with massive data. At the same time, the unsupervised clustering algorithm is used, which can get rid of the dependence on the label data of abnormal samples, and can quickly find abnormal transaction nodes and their gangs when there is little or no sample data for abnormal transactions. Risk control of abnormal transactions.
針對步驟S102中得到的交易子集,可以在進行無監督聚類演算法之前,先將孤島節點及節點子對刪去。該針對N個交易維度中的任一交易維度,根據交易節點之間的交易特徵值,將所有交易節點劃分至該交易維度下的交易子集中之後,該針對任一交易節點,至少根據該交易節點所在交易子集中的強關聯關係,計算該交易節點在每一個交易子集中的集群特徵值之前,還包括: For the transaction subset obtained in step S102, the island node and the node sub-pair may be deleted before performing the unsupervised clustering algorithm. For any transaction dimension in the N transaction dimensions, after dividing all transaction nodes into transaction subsets under the transaction dimension according to the transaction feature values between transaction nodes, for any transaction node, at least according to the transaction The strong association relationship in the transaction subset where the node is located, before calculating the cluster feature value of the transaction node in each transaction subset, also includes:
針對任一交易子集,確定該交易子集中交易節點的數量; For any transaction subset, determine the number of transaction nodes in the transaction subset;
將每一個交易子集中交易節點的數量與節點數閾值相對比,刪去交易節點的數量小於該節點數閾值的交易子集中的交易節點。 The number of transaction nodes in each transaction subset is compared with the threshold of the number of nodes, and the transaction nodes in the transaction subset whose number of transaction nodes is less than the threshold of the number of nodes are deleted.
具體的做法可以是將交易子集中交易節點的數量與節點數閾值相對比,若交易節點的數量小於節點數閾值,則認為該交易子集中的交易節點為孤島節點,可以不對這些交易節點進行後續處理。如圖2c中所示,若將節點數閾值設置為3,由於交易子集212中只包含1個交易節點,因此,將交易子集212中的交易節點205作為孤島節點,將其刪去。此外,也可以依據其它特徵將交易節點作為孤島節點,如依據交易子集中邊的數量等。
The specific method may be to compare the number of transaction nodes in the transaction subset with the threshold of the number of nodes. If the number of transaction nodes is less than the threshold of the number of nodes, the transaction nodes in the transaction subset are considered to be island nodes, and these transaction nodes may not be followed up. deal with. As shown in FIG. 2c, if the node number threshold is set to 3, since the
當然,也可以不預先刪去孤島節點,而直接對所有交易節點進行無監督聚類,根據無監督聚類得到的聚類結果分析,也能夠將孤島節點從異常交易節點的檢測中去除。 Of course, it is also possible to directly perform unsupervised clustering on all transaction nodes without deleting the island nodes in advance. According to the analysis of the clustering results obtained by the unsupervised clustering, the island nodes can also be removed from the detection of abnormal transaction nodes.
此外,在對交易節點進行聚類分析前的資料預處理,還可以根據資料稀疏程度對資料取對數再歸一化,從而降低聚類分析的工作量,加快處理時間,提高工作效率。 In addition, in the data preprocessing before cluster analysis of transaction nodes, the logarithm of the data can be taken and then normalized according to the degree of data sparsity, thereby reducing the workload of cluster analysis, speeding up processing time and improving work efficiency.
本發明實施例中的交易節點的集群特徵值為M個,M1;該M個集群特徵值至少包括以下內容之一:該交易節點所在交易子集的集群大小、集群規模、該交易節點對交易子集的貢獻值; The cluster characteristic value of the transaction node in the embodiment of the present invention is M, where M 1. The M cluster characteristic values include at least one of the following contents: the cluster size of the transaction subset where the transaction node is located, the cluster scale, and the contribution value of the transaction node to the transaction subset;
該至少根據該交易節點所在交易子集中的強關聯關係,計算該交易節點在每一個交易子集中的集群特徵值,包括: The cluster feature value of the transaction node in each transaction subset is calculated at least according to the strong association relationship in the transaction subset where the transaction node is located, including:
至少根據該交易節點所在交易子集中的強關聯關係,計算該交易節點 的N×M個集群特徵值。 Calculate the transaction node at least according to the strong association relationship in the transaction subset in which the transaction node is located The N×M cluster eigenvalues of .
具體來說,在一個交易維度下,每個交易節點均被劃入某個交易子群內。針對一個交易節點,可以根據該交易節點所在的交易子群,計算出該交易節點的集群特徵值,例如該交易節點所在的交易子群的集群大小、集群規模交易節點對交易子集的貢獻值等。由於共有N個交易維度,每個交易維度下交易節點的集群特徵值為M個,因此,每個交易節點可以計算得出N×M個集群特徵值。 Specifically, under one transaction dimension, each transaction node is classified into a certain transaction subgroup. For a transaction node, the cluster characteristic value of the transaction node can be calculated according to the transaction subgroup where the transaction node is located, such as the cluster size of the transaction subgroup where the transaction node is located, and the contribution value of the cluster-scale transaction node to the transaction subset. Wait. Since there are N transaction dimensions in total, and the cluster characteristic values of the transaction nodes under each transaction dimension are M, each transaction node can calculate N×M cluster characteristic values.
進一步地,該至少根據該交易節點所在交易子集中的強關聯關係,計算該交易節點的N×M個集群特徵值,包括: Further, the N×M cluster characteristic values of the transaction node are calculated at least according to the strong association relationship in the transaction subset where the transaction node is located, including:
針對該交易節點所在的任一交易子集執行以下計算過程: Perform the following calculation process for any subset of transactions where the transaction node is located:
將該交易子集中交易節點的數量,確定為該交易子集的集群大小; Determine the number of transaction nodes in the transaction subset as the cluster size of the transaction subset;
將該交易子集中所有交易節點之間的交易特徵值相加,得到該交易子集的集群規模; Add the transaction eigenvalues between all transaction nodes in the transaction subset to obtain the cluster size of the transaction subset;
根據該交易子集中任意兩個交易節點之間的交易流水,確定該交易子集中的邊; Determine the edge in the transaction subset according to the transaction flow between any two transaction nodes in the transaction subset;
根據該交易子集中邊的數量,以及該交易子集的集群規模,確定該交易子集的平均交易值; Determine the average transaction value of the transaction subset according to the number of edges in the transaction subset and the cluster size of the transaction subset;
根據該交易節點的交易特徵值以及該交易子集的平均交易值,計算該交易節點對交易子集的貢獻值。 According to the transaction characteristic value of the transaction node and the average transaction value of the transaction subset, the contribution value of the transaction node to the transaction subset is calculated.
具體實施過程中,交易子集的集群大小可以為交易子集中交易節點的數量,或者設置為交易子集中交易節點之間邊的數量。交易子集的集群規模可以是將所有交易節點之間的交易特徵值相加得到,或者也可 以是將交易子集中所有交易特徵值之和除以交易節點的數量作為集群規模。交易節點對交易子集的貢獻值可以為將交易節點的交易特徵值與交易子集的平均交易值的比值,也可以為交易節點的交易特徵值與交易子集的集群規模的比值,或者為其它演算法。此外,還可以考慮交易節點的出入交易流水。例如交易節點a向交易節點b匯款的總金額為100元,交易節點b向交易節點a匯款的總金額為80元,則對於交易總金額,交易節點a與交易節點b之間的集群特徵值記為180。或者根據交易節點的出入交易流水,記錄單個交易節點的資金改變量,則此時交易節點a的集群特徵值為-20,交易節點b的集群特徵值為20。 In a specific implementation process, the cluster size of the transaction subset may be the number of transaction nodes in the transaction subset, or set as the number of edges between transaction nodes in the transaction subset. The cluster size of the transaction subset can be obtained by adding the transaction eigenvalues between all transaction nodes, or it can be So divide the sum of all transaction eigenvalues in the transaction subset by the number of transaction nodes as the cluster size. The contribution value of a transaction node to a transaction subset can be the ratio of the transaction eigenvalue of the transaction node to the average transaction value of the transaction subset, or the ratio of the transaction eigenvalue of the transaction node to the cluster size of the transaction subset, or other algorithms. In addition, the transaction flow of in and out of transaction nodes can also be considered. For example, the total amount remitted by transaction node a to transaction node b is 100 yuan, and the total amount remitted by transaction node b to transaction node a is 80 yuan, then for the total transaction amount, the cluster characteristic value between transaction node a and transaction node b Record it as 180. Or record the capital change of a single transaction node according to the transaction flow of in and out of the transaction node. At this time, the cluster characteristic value of transaction node a is -20, and the cluster characteristic value of transaction node b is 20.
下面針對圖2c中的交易子集213,對本發明實施例中的集群特徵值舉例說明。針對交易節點208,依據交易維度w被劃分入交易子集213中,在交易維度w的邊權重為1的情況下,計算交易節點208的集群特徵值如下:
In the following, with respect to the
交易子集213中交易節點的數量為4,作為集群大小。交易子集213中存在5條邊,則邊權重和為5,因此集群規模為5。交易子集213中平均交易值為(3+3+2+2)/4=2.5,交易節點208對交易子集的貢獻值為3/2.5=1.2。這樣,在交易維度w下,交易節點208的三個集群特徵值分別為4、5、1.2。
The number of transaction nodes in
進一步地,該根據交易節點的集群特徵值,利用無監督聚類演算法將各交易節點聚類,包括: Further, according to the cluster characteristic value of the transaction node, use an unsupervised clustering algorithm to cluster each transaction node, including:
針對任一交易維度,根據交易節點的集群特徵值,利用基於向量密度分析的聚類分析演算法將所有交易節點聚類; For any transaction dimension, according to the cluster eigenvalues of the transaction nodes, the clustering algorithm based on vector density analysis is used to cluster all transaction nodes;
該根據交易節點的集群特徵值,利用無監督聚類演算法將各交易節點 聚類之後,還包括: According to the cluster eigenvalues of the transaction nodes, the unsupervised clustering algorithm is used to classify the transaction nodes. After clustering, it also includes:
確定每個交易維度的權重; Determine the weight of each transaction dimension;
針對任一交易維度,確定該交易維度的每個聚類結果的分數; For any transaction dimension, determine the score of each clustering result of the transaction dimension;
針對任一交易節點,根據該交易節點在任一交易維度下的聚類結果的分數,以及該交易維度的權重,確定該交易節點的集群評分值;和/或, For any transaction node, according to the score of the clustering result of the transaction node under any transaction dimension and the weight of the transaction dimension, determine the cluster score value of the transaction node; and/or,
針對任一交易節點,根據該交易節點在任一交易維度下的聚類結果的分數、該交易維度的權重,以及該交易節點對聚類結果的貢獻值,確定該交易節點的綜合評分值。 For any transaction node, according to the score of the clustering result of the transaction node under any transaction dimension, the weight of the transaction dimension, and the contribution value of the transaction node to the clustering result, the comprehensive score value of the transaction node is determined.
具體實施過程中,將所有交易節點的集群特徵值輸入DBSCAN中,將所有交易節點進行無監督聚類。之後,可以根據聚類結果分析每個聚類中的交易節點的性質,或者針對每個交易節點,根據其不同交易維度的聚類對其打分,根據最終分數確定該交易節點的異常程度。具體地,根據業務管控的需求,確定每個交易維度的權重,針對一個交易節點,將該交易節點在任一交易維度下聚類結果的分數乘以該交易維度的權重得到該交易節點在一個交易維度下的評分,將該交易節點的所有交易維度評分相加,得到該交易節點的集群評分值。或者,將該交易節點在任一交易維度下聚類結果的分數乘以該交易維度的權重再乘以交易節點對該聚類結果的貢獻值,得到交易節點的綜合評分值。本發明實施例中可以利用交易節點的集群評分值評估該交易節點的異常程度,或者利用交易節點的綜合評分值評估該交易節點的異常程度,或者根據交易節點的集群評分值與交易節點的綜合評分值綜合評估該交易節點的異常程度。 In the specific implementation process, the cluster feature values of all transaction nodes are input into DBSCAN, and all transaction nodes are subjected to unsupervised clustering. After that, the properties of the transaction nodes in each cluster can be analyzed according to the clustering results, or for each transaction node, it can be scored according to the clusters of different transaction dimensions, and the abnormal degree of the transaction node can be determined according to the final score. Specifically, according to the requirements of business management and control, the weight of each transaction dimension is determined. For a transaction node, the score of the clustering result of the transaction node under any transaction dimension is multiplied by the weight of the transaction dimension to obtain the transaction node in a transaction. The score under the dimension, add all the transaction dimension scores of the transaction node to obtain the cluster score value of the transaction node. Alternatively, the score of the clustering result of the transaction node in any transaction dimension is multiplied by the weight of the transaction dimension and then multiplied by the contribution value of the transaction node to the clustering result to obtain the comprehensive score value of the transaction node. In the embodiment of the present invention, the abnormality degree of the transaction node may be evaluated by using the cluster score value of the transaction node, or the abnormality degree of the transaction node may be evaluated by using the comprehensive score value of the transaction node, or the aggregate score value of the transaction node and the transaction node may be evaluated. The score value comprehensively evaluates the abnormality of the transaction node.
舉例來說,在不同的交易維度下,交易節點可以被聚類至不 同的等級中。 For example, under different transaction dimensions, transaction nodes can be clustered into different in the same level.
表1
如表1所示,不同交易維度下,交易節點c被聚類至不同的等級,根據表1中各聚類結果的分數以及交易維度權重,可以計算出該交易節點c的集群評分值G c =ΣP i .v i =3×4+0×5+2×3+2×2=22,即交易節點c的集群評分值為22。在此基礎上,考慮交易節點c對每個聚類結果的貢獻值u,計算得到交易節點c的綜合評分值H c =ΣP i .v i .u i 。 As shown in Table 1, under different transaction dimensions, transaction nodes c are clustered into different levels. According to the scores of each clustering result and the transaction dimension weights in Table 1, the cluster score value G c of the transaction node c can be calculated. =Σ P i . v i =3×4+0×5+2×3+2×2=22, that is, the cluster score of transaction node c is 22. On this basis, considering the contribution value u of transaction node c to each clustering result, the comprehensive score value H c =Σ P i of transaction node c is calculated. vi . ui .
除了依據不同交易維度下交易節點的聚類結果,對交易節點進行評分,然後依據評分確定交易節點的異常程度,本發明實施例中還可以利用無監督聚類演算法綜合考慮多個交易維度,直接將交易節點劃分至不同風險程度的聚類,從而直接確定出異常的交易節點。 In addition to scoring the transaction nodes according to the clustering results of the transaction nodes under different transaction dimensions, and then determining the degree of abnormality of the transaction nodes according to the scores, in the embodiment of the present invention, an unsupervised clustering algorithm can also be used to comprehensively consider multiple transaction dimensions, The transaction nodes are directly divided into clusters with different risk levels, so as to directly determine the abnormal transaction nodes.
為了更清楚地理解本發明,下面以具體實施例對上述流程進行詳細描述,具體實施例的步驟如圖3所示,包括: In order to understand the present invention more clearly, the above process is described in detail below with specific embodiments. The steps of the specific embodiment are shown in FIG. 3 , including:
步驟301:根據監測時間段內的交易流水,確定N個交易維度下交易節點之間的交易特徵值; Step 301: Determine transaction characteristic values between transaction nodes under N transaction dimensions according to the transaction flow in the monitoring time period;
步驟302:針對N個交易維度中的任一交易維度,根據交易節點之間 的強關聯關係,將所有交易節點劃分至交易子集中; Step 302: For any transaction dimension in the N transaction dimensions, according to the relationship between transaction nodes The strong association relationship of all transaction nodes is divided into transaction subsets;
步驟303:將每一個交易子集中交易節點的數量與節點數閾值相對比,刪去交易節點的數量小於節點數閾值的交易子集中的交易節點; Step 303: Compare the number of transaction nodes in each transaction subset with the node number threshold, and delete the transaction nodes in the transaction subset whose number of transaction nodes is less than the node number threshold;
步驟304:至少根據交易節點所在交易子集中的強關聯關係,計算交易節點的N×M個集群特徵值,交易節點的集群特徵值為M個; Step 304: Calculate N×M cluster characteristic values of the transaction node according to at least the strong association in the transaction subset where the transaction node is located, and the cluster characteristic value of the transaction node is M;
步驟305:針對任一交易維度,根據交易節點的集群特徵值,利用基於向量密度分析的聚類分析演算法將所有交易節點聚類; Step 305: For any transaction dimension, according to the cluster characteristic value of the transaction node, use a cluster analysis algorithm based on vector density analysis to cluster all transaction nodes;
步驟306:針對任一交易節點,根據該交易節點在任一交易維度下的聚類結果的分數,以及交易維度的權重,確定交易節點的集群評分值;同時,根據該交易節點在任一交易維度下的聚類結果的分數、交易維度的權重,以及該交易節點對聚類結果的貢獻值,確定交易節點的綜合評分值; Step 306: For any transaction node, according to the score of the clustering result of the transaction node under any transaction dimension and the weight of the transaction dimension, determine the cluster score value of the transaction node; at the same time, according to the transaction node in any transaction dimension. The score of the clustering result, the weight of the transaction dimension, and the contribution value of the transaction node to the clustering result, determine the comprehensive score value of the transaction node;
步驟307:依據交易節點的集群評分值以及綜合評分值,從所有交易節點中確定異常的交易節點。 Step 307: Determine an abnormal transaction node from all transaction nodes according to the cluster score value and the comprehensive score value of the transaction node.
本發明實施例還提供了一種異常交易節點的檢測裝置,如圖4所示,包括: The embodiment of the present invention also provides an abnormal transaction node detection device, as shown in FIG. 4 , including:
獲取單元401,用於根據監測時間段內的交易流水,確定N個交易維度下交易節點之間的交易特徵值;其中,N1;
The obtaining
劃分單元402,用於針對N個交易維度中的任一交易維度,根據交易節點之間的交易特徵值,將所有交易節點劃分至該交易維度下的交易子集中;其中,任一交易節點與同一個交易子集中的至少另一個交易節點之間為強關聯關係,交易節點之間的強關聯關係為交易節點之間的交易特徵值大於該交易維度的交易閾值;
The dividing
計算單元403,用於針對任一交易節點,至少根據該交易節點所在交易子集中的強關聯關係,計算該交易節點在每一個交易子集中的集群特徵值;
The
聚類單元404,用於根據交易節點的集群特徵值,利用無監督聚類演算法將所有交易節點聚類;
The
確定單元405,用於根據聚類結果確定異常的交易節點。
The determining
可選的,該劃分單元402,還用於:
Optionally, the dividing
針對任一交易子集,確定該交易子集中交易節點的數量; For any transaction subset, determine the number of transaction nodes in the transaction subset;
將每一個交易子集中交易節點的數量與節點數閾值相對比,刪去交易節點的數量小於該節點數閾值的交易子集中的交易節點。 The number of transaction nodes in each transaction subset is compared with the threshold of the number of nodes, and the transaction nodes in the transaction subset whose number of transaction nodes is less than the threshold of the number of nodes are deleted.
可選的,該交易節點的集群特徵值為M個,M1;該M個集群特徵值至少包括以下內容之一:該交易節點所在交易子集的集群大小、集群規模、該交易節點對交易子集的貢獻值; Optionally, the cluster characteristic value of the transaction node is M, and M 1. The M cluster characteristic values include at least one of the following contents: the cluster size of the transaction subset where the transaction node is located, the cluster scale, and the contribution value of the transaction node to the transaction subset;
該計算單元403,用於至少根據該交易節點所在交易子集中的強關聯關係,計算該交易節點的N×M個集群特徵值。
The
可選的,該計算單元403,具體用於:
Optionally, the
針對該交易節點所在的任一交易子集執行以下計算過程: Perform the following calculation process for any subset of transactions where the transaction node is located:
將該交易子集中交易節點的數量,確定為該交易子集的集群大小; Determine the number of transaction nodes in the transaction subset as the cluster size of the transaction subset;
將該交易子集中所有交易節點之間的交易特徵值相加,得到該交易子集的集群規模; Add the transaction eigenvalues between all transaction nodes in the transaction subset to obtain the cluster size of the transaction subset;
根據該交易子集中任意兩個交易節點之間的交易流水,確定該交易子集中的邊; Determine the edge in the transaction subset according to the transaction flow between any two transaction nodes in the transaction subset;
根據該交易子集中邊的數量,以及該交易子集的集群規模,確定該交易子集的平均交易值; Determine the average transaction value of the transaction subset according to the number of edges in the transaction subset and the cluster size of the transaction subset;
根據該交易節點的交易特徵值以及該交易子集的平均交易值,計算該交易節點對交易子集的貢獻值。 According to the transaction characteristic value of the transaction node and the average transaction value of the transaction subset, the contribution value of the transaction node to the transaction subset is calculated.
可選的,該聚類單元404,具體用於:
Optionally, the
針對任一交易維度,根據交易節點的集群特徵值,利用基於向量密度分析的聚類分析演算法將所有交易節點聚類; For any transaction dimension, according to the cluster eigenvalues of the transaction nodes, the clustering algorithm based on vector density analysis is used to cluster all transaction nodes;
該確定單元405,具體用於:
The determining
確定每個交易維度的權重; Determine the weight of each transaction dimension;
針對任一交易維度,確定該交易維度的每個聚類結果的分數; For any transaction dimension, determine the score of each clustering result of the transaction dimension;
針對任一交易節點,根據該交易節點在任一交易維度下的聚類結果的分數,以及該交易維度的權重,確定該交易節點的集群評分值;和/或, For any transaction node, according to the score of the clustering result of the transaction node under any transaction dimension and the weight of the transaction dimension, determine the cluster score value of the transaction node; and/or,
針對任一交易節點,根據該交易節點在任一交易維度下的聚類結果的分數、該交易維度的權重,以及該交易節點對聚類結果的貢獻值,確定該交易節點的綜合評分值。 For any transaction node, according to the score of the clustering result of the transaction node under any transaction dimension, the weight of the transaction dimension, and the contribution value of the transaction node to the clustering result, the comprehensive score value of the transaction node is determined.
基於相同的原理,本發明還提供一種電子設備,如圖5所示,包括: Based on the same principle, the present invention also provides an electronic device, as shown in FIG. 5 , including:
包括處理器501、記憶體502、收發機503、匯流排介面504,其中處理器501、記憶體502與收發機503之間通過匯流排介面504連接;
Including a
該處理器501,用於讀取該記憶體502中的程式,該程式用於執行下列方法:
The
根據監測時間段內的交易流水,確定N個交易維度下交易節點之間的 交易特徵值;其中,N1; According to the transaction flow in the monitoring time period, determine the transaction characteristic values between transaction nodes under N transaction dimensions; among them, N 1;
針對N個交易維度中的任一交易維度,根據交易節點之間的交易特徵值,將所有交易節點劃分至該交易維度下的交易子集中;其中,任一交易節點與同一個交易子集中的至少另一個交易節點之間為強關聯關係,交易節點之間的強關聯關係為交易節點之間的交易特徵值大於該交易維度的交易閾值; For any transaction dimension in the N transaction dimensions, according to the transaction characteristic values between transaction nodes, all transaction nodes are divided into transaction subsets under the transaction dimension; At least one other transaction node has a strong relationship, and the strong relationship between the transaction nodes is that the transaction feature value between the transaction nodes is greater than the transaction threshold of the transaction dimension;
針對任一交易節點,至少根據該交易節點所在交易子集中的強關聯關係,計算該交易節點在每一個交易子集中的集群特徵值; For any transaction node, at least according to the strong association relationship in the transaction subset where the transaction node is located, calculate the cluster characteristic value of the transaction node in each transaction subset;
根據交易節點的集群特徵值,利用無監督聚類演算法將所有交易節點聚類; According to the cluster eigenvalues of the transaction nodes, use the unsupervised clustering algorithm to cluster all the transaction nodes;
根據聚類結果確定異常的交易節點。 Determine abnormal transaction nodes according to the clustering results.
其中,程式可以包括程式碼,程式碼包括電腦操作指令。記憶體901可以為易失性記憶體(volatile memory),例如隨機存取記憶體(random-access memory,簡稱RAM);也可以為非易失性記憶體(non-volatile memory),例如快閃記憶體(flash memory),硬碟(hard disk drive,簡稱HDD)或固態硬碟(solid-state drive,簡稱SSD);還可以為上述任一種或任多種易失性記憶體和非易失性記憶體的組合。 Wherein, the program may include program code, and the program code includes computer operation instructions. The memory 901 can be a volatile memory (volatile memory), such as random-access memory (random-access memory, RAM for short); or a non-volatile memory (non-volatile memory), such as flash memory Memory (flash memory), hard disk drive (HDD for short) or solid-state drive (solid-state drive, SSD for short); can also be any one or more of the above volatile memory and non-volatile memory combination of memory.
處理器501可以是中央處理器(central processing unit,簡稱CPU),網路處理器(network processor,簡稱NP)或者CPU和NP的組合。還可以是硬體晶片。上述硬體晶片可以是專用積體電路(application-specific integrated circuit,簡稱ASIC),可程式設計邏輯器件(programmable logic device,簡稱PLD)或其組合。上述PLD可以是複雜
可程式設計邏輯器件(complex programmable logic device,簡稱CPLD),現場可程式設計邏輯閘陣列(field-programmable gate array,簡稱FPGA),通用陣列邏輯(generic array logic,簡稱GAL)或其任意組合。
The
相應地,記憶體502中存儲了如下的元素,可執行模組或者資料結構,或者它們的子集,或者它們的擴展集:
Accordingly, the following elements are stored in
操作指令:包括各種操作指令,用於實現各種操作; Operation instructions: including various operation instructions, used to realize various operations;
作業系統:包括各種系統程式,用於實現各種基礎業務以及處理基於硬體的任務。 Operating system: includes various system programs used to implement various basic businesses and handle hardware-based tasks.
一種可能的設計中,記憶體502也可以和處理器501集成在一起。
In a possible design, the
一種可能的實現方式,處理器501還用於:
In a possible implementation manner, the
針對N個交易維度中的任一交易維度,根據交易節點之間的交易特徵值,將所有交易節點劃分至該交易維度下的交易子集中之後,針對任一交易節點,至少根據該交易節點所在交易子集中的強關聯關係,計算該交易節點在每一個交易子集中的集群特徵值之前,還針對任一交易子集,確定該交易子集中交易節點的數量,將每一個交易子集中交易節點的數量與節點數閾值相對比,刪去交易節點的數量小於該節點數閾值的交易子集中的交易節點。 For any transaction dimension in the N transaction dimensions, after dividing all transaction nodes into transaction subsets under the transaction dimension according to the transaction characteristic values between the transaction nodes, for any transaction node, at least according to the transaction feature value of the transaction node. For the strong correlation in the transaction subset, before calculating the cluster characteristic value of the transaction node in each transaction subset, the number of transaction nodes in the transaction subset is also determined for any transaction subset, and the transaction nodes in each transaction subset are determined. The number of transaction nodes is compared with the node number threshold, and the transaction nodes in the transaction subset whose number of transaction nodes is less than the node number threshold are deleted.
一種可能的實現方式,該交易節點的集群特徵值為M個,M1;該M個集群特徵值至少包括以下內容之一:該交易節點所在交易子集的集群大小、集群規模、該交易節點對交易子集的貢獻值; A possible implementation, the cluster characteristic value of the transaction node is M, and M 1. The M cluster characteristic values include at least one of the following contents: the cluster size of the transaction subset where the transaction node is located, the cluster scale, and the contribution value of the transaction node to the transaction subset;
該處理器501具體用於:
The
至少根據該交易節點所在交易子集中的強關聯關係,計算該交易節點的N×M個集群特徵值。 At least according to the strong association relationship in the transaction subset where the transaction node is located, N×M cluster characteristic values of the transaction node are calculated.
一種可能的實現方式,該處理器501具體用於:
A possible implementation manner, the
針對該交易節點所在的任一交易子集執行以下計算過程: Perform the following calculation process for any subset of transactions where the transaction node is located:
將該交易子集中交易節點的數量,確定為該交易子集的集群大小; Determine the number of transaction nodes in the transaction subset as the cluster size of the transaction subset;
將該交易子集中所有交易節點之間的交易特徵值相加,得到該交易子集的集群規模; Add the transaction eigenvalues between all transaction nodes in the transaction subset to obtain the cluster size of the transaction subset;
根據該交易子集中任意兩個交易節點之間的交易流水,確定該交易子集中的邊; Determine the edge in the transaction subset according to the transaction flow between any two transaction nodes in the transaction subset;
根據該交易子集中邊的數量,以及該交易子集的集群規模,確定該交易子集的平均交易值; Determine the average transaction value of the transaction subset according to the number of edges in the transaction subset and the cluster size of the transaction subset;
根據該交易節點的交易特徵值以及該交易子集的平均交易值,計算該交易節點對交易子集的貢獻值。 According to the transaction characteristic value of the transaction node and the average transaction value of the transaction subset, the contribution value of the transaction node to the transaction subset is calculated.
一種可能的實現方式,該處理器501具體用於:
A possible implementation manner, the
針對任一交易維度,根據交易節點的集群特徵值,利用基於向量密度分析的聚類分析演算法將所有交易節點聚類; For any transaction dimension, according to the cluster eigenvalues of the transaction nodes, the clustering algorithm based on vector density analysis is used to cluster all transaction nodes;
該根據交易節點的集群特徵值,利用無監督聚類演算法將各交易節點聚類之後,還包括: After clustering each transaction node by using an unsupervised clustering algorithm according to the cluster characteristic value of the transaction node, the method further includes:
確定每個交易維度的權重; Determine the weight of each transaction dimension;
針對任一交易維度,確定該交易維度的每個聚類結果的分數; For any transaction dimension, determine the score of each clustering result of the transaction dimension;
針對任一交易節點,根據該交易節點在任一交易維度下的聚類結果的分數,以及該交易維度的權重,確定該交易節點的集群評分值;和/或, For any transaction node, according to the score of the clustering result of the transaction node under any transaction dimension and the weight of the transaction dimension, determine the cluster score value of the transaction node; and/or,
針對任一交易節點,根據該交易節點在任一交易維度下的聚類結果的分數、該交易維度的權重,以及該交易節點對聚類結果的貢獻值,確定該交易節點的綜合評分值。 For any transaction node, according to the score of the clustering result of the transaction node under any transaction dimension, the weight of the transaction dimension, and the contribution value of the transaction node to the clustering result, the comprehensive score value of the transaction node is determined.
基於相同的原理,本發明還提供一種電腦可讀存儲介質,該電腦可讀存儲介質存儲有電腦可執行指令,該電腦可執行指令用於使該電腦執行上述任意所述的異常交易節點的檢測方法。 Based on the same principle, the present invention also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to make the computer perform any of the above-mentioned abnormal transaction node detections method.
本發明是參照根據本發明實施例的方法、設備(系統)、和電腦程式產品的流程圖和/或方框圖來描述的。應理解可由電腦程式指令實現流程圖和/或方框圖中的每一流程和/或方框、以及流程圖和/或方框圖中的流程和/或方框的結合。可提供這些電腦程式指令到通用電腦、專用電腦、嵌入式處理機或其他可程式設計資料處理設備的處理器以產生一個機器,使得通過電腦或其他可程式設計資料處理設備的處理器執行的指令產生用於實現在流程圖一個流程或多個流程和/或方框圖一個方框或多個方框中指定的功能的裝置。 The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine for causing the instructions to be executed by the processor of the computer or other programmable data processing device Means are created for implementing the functions specified in a flow or flows of the flowcharts and/or a block or blocks of the block diagrams.
這些電腦程式指令也可存儲在能引導電腦或其他可程式設計資料處理設備以特定方式工作的電腦可讀記憶體中,使得存儲在該電腦可讀記憶體中的指令產生包括指令裝置的製造品,該指令裝置實現在流程圖一個流程或多個流程和/或方框圖一個方框或多個方框中指定的功能。 These computer program instructions may also be stored in computer readable memory capable of directing a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction means , the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
這些電腦程式指令也可裝載到電腦或其他可程式設計資料處理設備上,使得在電腦或其他可程式設計設備上執行一系列操作步驟以產生電腦實現的處理,從而在電腦或其他可程式設計設備上執行的指令提供用於實現在流程圖一個流程或多個流程和/或方框圖一個方框或多個方 框中指定的功能的步驟。 These computer program instructions can also be loaded onto a computer or other programmable data processing device, such that a series of operational steps are performed on the computer or other programmable device to produce a computer-implemented process that can be executed on the computer or other programmable device. Instructions executed on the flowchart provide for implementing a flow or processes in a flowchart and/or a block or parties in a block diagram Steps for the function specified in the box.
儘管已描述了本發明的優選實施例,但本領域內的技術人員一旦得知了基本進步性概念,則可對這些實施例作出另外的變更和修改。所以,所附權利要求意欲解釋為包括優選實施例以及落入本發明範圍的所有變更和修改。 Although preferred embodiments of the present invention have been described, additional changes and modifications to these embodiments may occur to those skilled in the art once the basic progressive concepts are known. Therefore, the appended claims are intended to be construed to include the preferred embodiment and all changes and modifications that fall within the scope of the present invention.
顯然,本領域的技術人員可以對本發明進行各種改動和變型而不脫離本發明的精神和範圍。這樣,倘若本發明的這些修改和變型屬於本發明權利要求及其等同技術的範圍之內,則本發明也意圖包括這些改動和變型在內。 It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention. Thus, provided that these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include such modifications and variations.
101~105:步驟 101~105: Steps
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910358467.6 | 2019-04-30 | ||
CN201910358467.6A CN110111113B (en) | 2019-04-30 | 2019-04-30 | Abnormal transaction node detection method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202042132A TW202042132A (en) | 2020-11-16 |
TWI759688B true TWI759688B (en) | 2022-04-01 |
Family
ID=67487641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109104991A TWI759688B (en) | 2019-04-30 | 2020-02-17 | A method and device for detecting abnormal transaction nodes |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN110111113B (en) |
TW (1) | TWI759688B (en) |
WO (1) | WO2020220758A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110111113B (en) * | 2019-04-30 | 2023-12-08 | 中国银联股份有限公司 | Abnormal transaction node detection method and device |
CN111340622A (en) * | 2020-02-21 | 2020-06-26 | 中国银联股份有限公司 | Abnormal transaction cluster detection method and device |
CN113064953B (en) * | 2021-04-21 | 2023-08-22 | 湖南天河国云科技有限公司 | Block chain address clustering method and device based on neighbor information aggregation |
CN113469696B (en) * | 2021-06-29 | 2024-08-13 | 中国银联股份有限公司 | User anomaly evaluation method, device and computer readable storage medium |
CN113469697B (en) * | 2021-06-30 | 2022-12-06 | 重庆富民银行股份有限公司 | Unsupervised anomaly detection method and unsupervised anomaly detection device based on knowledge graph |
CN113656802B (en) * | 2021-07-19 | 2024-05-14 | 同盾科技有限公司 | Knowledge federation undirected graph-based federation loop detection method, system, equipment and medium |
CN113569994B (en) * | 2021-08-30 | 2024-05-21 | 平安医疗健康管理股份有限公司 | Lei-co medical record identification method, device, equipment and storage medium |
CN113724252A (en) * | 2021-10-11 | 2021-11-30 | 北京中科智眼科技有限公司 | Industrial image anomaly detection method based on deep dual network feature matching |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106327340A (en) * | 2016-08-04 | 2017-01-11 | 中国银联股份有限公司 | Method and device for detecting abnormal node set in financial network |
CN109684673A (en) * | 2018-12-03 | 2019-04-26 | 三峡大学 | A kind of feature extraction and clustering method of electric power system transient stability result |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107918905B (en) * | 2017-11-22 | 2021-10-15 | 创新先进技术有限公司 | Abnormal transaction identification method and device and server |
CN109242499A (en) * | 2018-09-19 | 2019-01-18 | 中国银行股份有限公司 | A kind of processing method of transaction risk prediction, apparatus and system |
CN110111113B (en) * | 2019-04-30 | 2023-12-08 | 中国银联股份有限公司 | Abnormal transaction node detection method and device |
-
2019
- 2019-04-30 CN CN201910358467.6A patent/CN110111113B/en active Active
-
2020
- 2020-01-13 WO PCT/CN2020/071837 patent/WO2020220758A1/en active Application Filing
- 2020-02-17 TW TW109104991A patent/TWI759688B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106327340A (en) * | 2016-08-04 | 2017-01-11 | 中国银联股份有限公司 | Method and device for detecting abnormal node set in financial network |
CN109684673A (en) * | 2018-12-03 | 2019-04-26 | 三峡大学 | A kind of feature extraction and clustering method of electric power system transient stability result |
Also Published As
Publication number | Publication date |
---|---|
WO2020220758A1 (en) | 2020-11-05 |
CN110111113B (en) | 2023-12-08 |
TW202042132A (en) | 2020-11-16 |
CN110111113A (en) | 2019-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI759688B (en) | A method and device for detecting abnormal transaction nodes | |
CN107633265B (en) | Data processing method and device for optimizing credit evaluation model | |
WO2021051529A1 (en) | Method, apparatus and device for estimating cloud host resources, and storage medium | |
JP6771751B2 (en) | Risk assessment method and system | |
US10599999B2 (en) | Digital event profile filters based on cost sensitive support vector machine for fraud detection, risk rating or electronic transaction classification | |
Li et al. | DefectNet: Toward fast and effective defect detection | |
TW201939412A (en) | Identification method, device, server and storage medium for fraudulent transaction | |
WO2017181660A1 (en) | K-means algorithm-based data clustering method and device | |
CN104539484A (en) | Method and system for dynamically estimating network connection reliability | |
CN111062425B (en) | Unbalanced data set processing method based on C-K-SMOTE algorithm | |
JP7173332B2 (en) | Fraud detection device, fraud detection method, and fraud detection program | |
WO2018006631A1 (en) | User level automatic segmentation method and system | |
WO2022199185A1 (en) | User operation inspection method and program product | |
CN108549904A (en) | Difference secret protection K-means clustering methods based on silhouette coefficient | |
WO2017092581A1 (en) | User data sharing method and device | |
CN113449778B (en) | Model training method for quantum data classification and quantum data classification method | |
Huang et al. | CCR-GSVM: A boundary data generation algorithm for support vector machine in imbalanced majority noise problem | |
US10181102B2 (en) | Computer implemented classification system and method | |
CN112329862A (en) | Decision tree-based anti-money laundering method and system | |
CN111858267A (en) | Early warning method and device, electronic equipment and storage medium | |
CN116805245A (en) | Fraud detection method and system based on graph neural network and decoupling representation learning | |
Liu et al. | A Big Data-Based Anti-Fraud Model for Internet Finance. | |
JP2020095583A (en) | Bankruptcy probability calculation system utilizing artificial intelligence | |
Lv et al. | An improved CFSFDP algorithm with cluster center automatically selected based on weighted average method | |
CN111428510B (en) | Public praise-based P2P platform risk analysis method |