[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI757315B - Light-emitting device and manufacturing method thereof - Google Patents

Light-emitting device and manufacturing method thereof Download PDF

Info

Publication number
TWI757315B
TWI757315B TW106125634A TW106125634A TWI757315B TW I757315 B TWI757315 B TW I757315B TW 106125634 A TW106125634 A TW 106125634A TW 106125634 A TW106125634 A TW 106125634A TW I757315 B TWI757315 B TW I757315B
Authority
TW
Taiwan
Prior art keywords
light
emitting device
wavelength conversion
layer
reflective
Prior art date
Application number
TW106125634A
Other languages
Chinese (zh)
Other versions
TW201911607A (en
Inventor
鄭景太
石俊華
任益華
余仁傑
劉欣茂
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW106125634A priority Critical patent/TWI757315B/en
Priority to CN201810228417.1A priority patent/CN109309153B/en
Publication of TW201911607A publication Critical patent/TW201911607A/en
Application granted granted Critical
Publication of TWI757315B publication Critical patent/TWI757315B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

A light-emitting device includes a light-emitting element, a wavelength conversion layer and a reflective wall. The light-emitting element has a first top surface, a bottom surface and a lateral surface arranged between the first top surface and the bottom surface. The wavelength conversion layer has a wavelength conversion material and includes a second top surface covering the first top surface. The reflective wall surrounds the lateral surface of the light-emitting element, and directly contacts the wavelength conversion layer. A step is formed between the reflective wall and the second top surface. The light-emitting device has a light angle of 110° to 118°.

Description

發光裝置以及其製造方法Light-emitting device and method of manufacturing the same

本發明係關於一種發光裝置及其製造方法,尤關於一種包含波長轉換層以及反射圍欄之發光裝置及其製造方法。The present invention relates to a light-emitting device and a manufacturing method thereof, and more particularly, to a light-emitting device including a wavelength conversion layer and a reflective fence and a manufacturing method thereof.

發光二極體(Light-Emitting Diode;LED)具有低耗電量、低發熱量、操作壽命長、耐撞擊、體積小以及反應速度快等特性,因此廣泛應用於各種需要使用發光元件的領域,例如,車輛、家電、及照明燈具等。Light-Emitting Diode (LED) has the characteristics of low power consumption, low calorific value, long operating life, impact resistance, small size and fast response speed, so it is widely used in various fields that require the use of light-emitting elements. For example, vehicles, home appliances, and lighting fixtures.

LED是一種單色光(monochromatic light),若要作為白光的發光裝置則需混合其他顏色的光。混合其他顏色的光有數種方式可採用,舉例來說,可於LED上覆蓋一層波長轉換層,例如螢光粉層,來達到此目的。螢光粉是一種光致發光的物質,它可以吸收LED所發出的第一光線後發出不同頻譜之第二光線。在第一光線未被完全消耗的情況下,未被消耗的第一光線與第二光線互相混合後,可形成另一種顏色的混合光,例如白光。LED is a monochromatic light, which needs to be mixed with other colors of light if it is to be used as a white light emitting device. There are several ways to mix other colors of light, for example, a wavelength conversion layer, such as a phosphor layer, can be covered on the LED to achieve this purpose. Phosphor powder is a kind of photoluminescent material, which can absorb the first light emitted by LED and emit second light of different spectrum. In the case where the first light is not completely consumed, after the unconsumed first light and the second light are mixed with each other, mixed light of another color, such as white light, can be formed.

LED白光發光裝置在不同應用對發光角度的需求也有所不同,但一般LED白光發光裝置的發光角度並不一定能符合所需的應用。The LED white light emitting device has different requirements for the luminous angle in different applications, but the luminous angle of the general LED white light emitting device may not necessarily meet the required application.

本發明係揭露一種發光裝置,包含一發光元件、一波長轉換層以及一反射圍欄。發光元件包含一上表面、一下表面以及位於上表面及下表面之間之一側面。波長轉換層包含波長轉換材料,且包含覆蓋第一上表面的第二上表面。反射圍欄環繞發光元件之側面,且直接接觸波長轉換層,並與第二上表面之間有一段差。其中,發光裝置之發光角度介於110度至118度之間。The invention discloses a light-emitting device comprising a light-emitting element, a wavelength conversion layer and a reflection fence. The light-emitting element includes an upper surface, a lower surface, and a side surface between the upper surface and the lower surface. The wavelength conversion layer includes a wavelength conversion material, and includes a second upper surface covering the first upper surface. The reflective fence surrounds the side surface of the light-emitting element, directly contacts the wavelength conversion layer, and has a distance from the second upper surface. The light-emitting angle of the light-emitting device is between 110 degrees and 118 degrees.

本發明係揭露一種發光裝置的形成方法。形成複數個發光元件於一載板上。覆蓋一波長轉換膜於此些發光元件上。移除部分的波長轉換膜以形成複數個波長轉換層。覆蓋一反射層於此些波長轉換層之上。移除部分的反射層以形成一反射框架並露出此些波長轉換層,其中至少一個波長轉換層與反射框架之間形成一段差。分離部分的該反射框架以形成多個反射圍欄。The present invention discloses a method for forming a light-emitting device. A plurality of light-emitting elements are formed on a carrier board. A wavelength conversion film is covered on these light-emitting elements. Part of the wavelength conversion film is removed to form a plurality of wavelength conversion layers. A reflective layer is covered on the wavelength conversion layers. Part of the reflective layer is removed to form a reflective frame and the wavelength conversion layers are exposed, wherein at least one wavelength conversion layer and the reflective frame form a gap. Parts of the reflective frame are separated to form a plurality of reflective fences.

第1A圖為根據本發明一實施例所揭露之一發光裝置100的剖面圖。發光裝置100包含一發光元件120、一波長轉換層140及一反射圍欄160。在此實施例中,發光裝置100還包含一反射層150(第一反射層)以及一導電部180。在另一實施例中,發光裝置100則不包含反射層150以及導電部180。波長轉換層140覆蓋發光元件120之部分表面。此外,反射圍欄160環繞波長轉換層140。具體而言,參閱第1B圖,反射圍欄160同時環繞發光元件120及波長轉換層140。參閱第1A圖,發光裝置100包含一頂表面102、一底表面104及多個側面106,側面106位於頂面102及底面104之間。FIG. 1A is a cross-sectional view of a light-emitting device 100 disclosed according to an embodiment of the present invention. The light-emitting device 100 includes a light-emitting element 120 , a wavelength conversion layer 140 and a reflection fence 160 . In this embodiment, the light emitting device 100 further includes a reflective layer 150 (a first reflective layer) and a conductive portion 180 . In another embodiment, the light emitting device 100 does not include the reflective layer 150 and the conductive portion 180 . The wavelength conversion layer 140 covers a part of the surface of the light emitting element 120 . In addition, the reflective fence 160 surrounds the wavelength conversion layer 140 . Specifically, referring to FIG. 1B , the reflective fence 160 surrounds the light-emitting element 120 and the wavelength conversion layer 140 at the same time. Referring to FIG. 1A , the light emitting device 100 includes a top surface 102 , a bottom surface 104 and a plurality of side surfaces 106 , and the side surfaces 106 are located between the top surface 102 and the bottom surface 104 .

在一實施例中,發光元件120包含一承載基板122、一發光層124以及接觸電極126。其中,發光層124之一側朝向承載基板122,另一側朝向接觸電極126。此外,發光元件120包含一上表面121、一下表面123及多個側面125,側面125位於頂面121及底面123之間。承載基板122可用以承載或支撐發光層124。此外,發光層124發出的光線可穿過承載基板122。進一步說明,承載基板122遠離發光層124的一面,也是發光元件120之上表面121,即為發光元件120之出光面。在一實施例中,承載基板122為成長基板(growth substrate),例如可以是藍寶石(sapphire)基板,作為發光層124磊晶成長時之基板。在另一實施例中,承載基板122並非成長基板,在製造發光裝置100之製程中成長基板被移除或置換為其他基板(例如,不同材料、不同結構、或不同形狀的基板)。In one embodiment, the light-emitting element 120 includes a carrier substrate 122 , a light-emitting layer 124 and a contact electrode 126 . One side of the light-emitting layer 124 faces the carrier substrate 122 , and the other side faces the contact electrode 126 . In addition, the light-emitting element 120 includes an upper surface 121 , a lower surface 123 and a plurality of side surfaces 125 , and the side surfaces 125 are located between the top surface 121 and the bottom surface 123 . The carrier substrate 122 may be used to carry or support the light emitting layer 124 . In addition, the light emitted by the light emitting layer 124 may pass through the carrier substrate 122 . To further illustrate, the side of the carrier substrate 122 away from the light-emitting layer 124 is also the upper surface 121 of the light-emitting element 120 , that is, the light-emitting surface of the light-emitting element 120 . In one embodiment, the carrier substrate 122 is a growth substrate, such as a sapphire substrate, which is used as a substrate for epitaxial growth of the light-emitting layer 124 . In another embodiment, the carrier substrate 122 is not a growth substrate, and the growth substrate is removed or replaced with other substrates (eg, substrates of different materials, structures, or shapes) during the manufacturing process of the light emitting device 100 .

在一實施例中,發光層124包含第一半導體層、活化層以及第二半導體層(未顯示)。第一半導體層可為n-型半導體層,第二半導體層可為p-型半導體層。在一實施例中,接觸電極126包含兩接觸電極126a及126b位在發光元件120之同一側,作為發光元件120與外界電性連結之介面。其中,下表面123包含兩接觸電極126a及126b之表面,因此於第1A圖中,下表面123是指發光層124的部分底面以及接觸電極126a及126b之表面。接觸電極126a及126b會分別與第一半導體層及第二半導體層電連接。此外,接觸電極126a及126b可以突出於(低於)波長轉換層140的底面(如圖所示)、或與底面大約齊平(圖未示)、或僅其中之一突出底面(圖未示)。側面125包含承載基板122及發光層124之側面。側面125也可為發光元件120之出光面。在一實施例中,發光元件120有四個側面125,相對的側面125彼此大致上互相平行,亦即,由上視圖觀之,發光元件120為正方形、長方形或平行四邊形。上表面121與下表面123之一部分也大致互相平行。在一實施例中,發光元件120為覆晶式發光二極體晶粒(flip chip LED die)。In one embodiment, the light emitting layer 124 includes a first semiconductor layer, an active layer, and a second semiconductor layer (not shown). The first semiconductor layer may be an n-type semiconductor layer, and the second semiconductor layer may be a p-type semiconductor layer. In one embodiment, the contact electrode 126 includes two contact electrodes 126a and 126b located on the same side of the light emitting element 120 as an interface for the electrical connection between the light emitting element 120 and the outside world. The lower surface 123 includes the surfaces of the two contact electrodes 126a and 126b. Therefore, in FIG. 1A, the lower surface 123 refers to a part of the bottom surface of the light emitting layer 124 and the surfaces of the contact electrodes 126a and 126b. The contact electrodes 126a and 126b are electrically connected to the first semiconductor layer and the second semiconductor layer, respectively. In addition, the contact electrodes 126a and 126b may protrude (below) the bottom surface of the wavelength conversion layer 140 (as shown), or be approximately flush with the bottom surface (not shown), or only one of them may protrude from the bottom surface (not shown). ). The side surface 125 includes the side surface of the carrier substrate 122 and the light emitting layer 124 . The side surface 125 can also be the light-emitting surface of the light-emitting element 120 . In one embodiment, the light emitting element 120 has four side surfaces 125, and the opposite side surfaces 125 are substantially parallel to each other, that is, the light emitting element 120 is square, rectangular or parallelogram in the top view. Parts of the upper surface 121 and the lower surface 123 are also substantially parallel to each other. In one embodiment, the light emitting element 120 is a flip chip LED die.

發光元件120可為一發光二極體晶粒(LED die),例如但不限為藍光發光二極體晶粒或紫外(UV)光發光二極體晶粒。在一實施例中,發光元件120為藍光發光二極體晶粒,可經由電源提供一電力而發出第一光線,第一光線的主波長(dominant wavelength)或峰值波長(peak wavelength)介於430 nm至490 nm之間。於另一實施例中,發光元件120為紫光發光二極體晶粒,第一光線的主波長(dominant wavelength)或峰值波長(peak wavelength)介於400 nm至 430 nm之間。於另一實施例中,發光元件120為紫外光發光二極體晶粒,第一光線的峰值波長(peak wavelength)介於315 nm至 400 nm之間或是介於280 nm至 315 nm之間。The light emitting element 120 can be a light emitting diode die (LED die), such as but not limited to a blue light emitting diode die or an ultraviolet (UV) light emitting diode die. In one embodiment, the light-emitting element 120 is a blue light-emitting diode die, which can provide a power through a power source to emit a first light, and the dominant wavelength or peak wavelength of the first light is between 430 between nm and 490 nm. In another embodiment, the light-emitting element 120 is a violet light-emitting diode die, and the dominant wavelength or peak wavelength of the first light is between 400 nm and 430 nm. In another embodiment, the light-emitting element 120 is an ultraviolet light-emitting diode die, and the peak wavelength of the first light is between 315 nm and 400 nm or between 280 nm and 315 nm. .

波長轉換層140可包含一黏合劑142以及多個分散於黏合劑142中的波長轉換粒子144,其中波長轉換粒子144可吸收發光元件120發出的第一光線,並將其部分或全部轉換成與第一光線波長或頻譜相異之第二光線。第二光線發出的顏色例如是綠光、黃綠光、黃光、琥珀光、橘紅光或紅光。在一實施例中,波長轉換粒子144吸收第一光線(例如,藍光或UV光)後被激發出來的第二光線為黃光,其主波長或峰值波長介於530 nm至590 nm之間。另一實施例中,波長轉換粒子144吸收第一光線(例如,藍光或UV光)後被激發出來的第二光線為綠光,其主波長或峰值波長介於515 nm至575 nm之間。其他實施例中,波長轉換粒子144吸收第一光線(例如,藍光或UV光)後被激發出來的第二光線為紅光,其主波長或峰值波長介於600 nm至660 nm之間。The wavelength conversion layer 140 may include an adhesive 142 and a plurality of wavelength conversion particles 144 dispersed in the adhesive 142, wherein the wavelength conversion particles 144 can absorb the first light emitted by the light emitting element 120 and convert part or all of it into The second light with different wavelengths or spectrums of the first light. The color emitted by the second light is, for example, green light, yellow-green light, yellow light, amber light, orange-red light or red light. In one embodiment, the second light emitted by the wavelength conversion particles 144 after absorbing the first light (eg, blue light or UV light) is yellow light, and its dominant wavelength or peak wavelength is between 530 nm and 590 nm. In another embodiment, the second light emitted by the wavelength conversion particles 144 after absorbing the first light (eg, blue light or UV light) is green light, and its dominant wavelength or peak wavelength is between 515 nm and 575 nm. In other embodiments, the second light emitted by the wavelength conversion particles 144 after absorbing the first light (eg, blue light or UV light) is red light, and its dominant wavelength or peak wavelength is between 600 nm and 660 nm.

波長轉換層140可包含單一種類或多種的波長轉換粒子144。在一實施例中,波長轉換層140包含可發出黃光之單一種類或多種的波長轉換顆粒。另一實施例中,波長轉換層140包含可發出綠光及紅光之多種波長轉換顆粒。如此,除了發出綠光的第二光線外,還包含發出紅光的第三光線,並可與未被吸收的第一光線產生一混合光。在另一實施例中,第一光線完全或幾乎完全被波長轉換層140中的波長轉換顆粒吸收。在本文中,「幾乎完全」係指混合光中位於第一光線峰值波長的光強度小於或等於在第二光線及/或第三光線峰值波長光強度的3%。波長轉換層140還可以是多層結構所組成(圖未示)。在一實施例中,波長轉換層140包含一層含有波長轉換粒子144以及另一層光擴散層(圖未示)。包含多種波長轉換顆粒之波長轉換層140可以是單層結構或多層結構。單層結構是指多種波長轉換顆粒均勻或不均勻地分布在單一層中。多層結構是指單一種類的波長轉換顆粒大體上僅分布在單一層之中,不同種類之波長轉換顆粒間具有較明顯之可區別介面。在一實施例中,波長轉換層140包含一短波長的波長轉換層,以及一長波長的波長轉換層。此處所述短波長的波長轉換層是指含有放射波峰相對較短的波長轉換顆粒,例如:波峰在510 nm至 590 nm之間。長波長的波長轉換層則是指含有放射波峰相對較長的波長轉換顆粒,例如:波峰在600 nm至 660 nm之間。在一實施例中,長波長的波長轉換層相對於短波長的波長轉換層更靠近發光元件120。The wavelength converting layer 140 may contain a single type or multiple types of wavelength converting particles 144 . In one embodiment, the wavelength converting layer 140 includes a single type or multiple wavelength converting particles that can emit yellow light. In another embodiment, the wavelength conversion layer 140 includes various wavelength conversion particles that can emit green and red light. In this way, in addition to the second light emitting green light, the third light emitting red light is also included, and a mixed light can be generated with the unabsorbed first light ray. In another embodiment, the first light rays are completely or almost completely absorbed by the wavelength converting particles in the wavelength converting layer 140 . As used herein, "almost completely" means that the light intensity at the peak wavelength of the first light in the mixed light is less than or equal to 3% of the light intensity at the peak wavelength of the second light and/or the third light. The wavelength conversion layer 140 may also be composed of a multi-layer structure (not shown). In one embodiment, the wavelength conversion layer 140 includes a layer containing the wavelength conversion particles 144 and another light diffusion layer (not shown). The wavelength conversion layer 140 containing various wavelength conversion particles may have a single-layer structure or a multi-layer structure. The monolayer structure means that a plurality of wavelength converting particles are uniformly or non-uniformly distributed in a single layer. The multi-layer structure means that a single type of wavelength conversion particles is generally only distributed in a single layer, and different types of wavelength conversion particles have relatively distinct and distinguishable interfaces. In one embodiment, the wavelength conversion layer 140 includes a short wavelength wavelength conversion layer and a long wavelength wavelength conversion layer. The short-wavelength wavelength conversion layer mentioned herein refers to wavelength conversion particles containing relatively short emission peaks, for example, the peaks are between 510 nm and 590 nm. Long-wavelength wavelength-converting layers refer to wavelength-converting particles containing relatively long emission peaks, for example, between 600 nm and 660 nm. In one embodiment, the long wavelength wavelength conversion layer is closer to the light emitting element 120 than the short wavelength wavelength conversion layer.

黏合劑142可將波長轉換顆粒144分散於空間中,且可固定波長轉換粒子144彼此間的相對位置。一般而言,波長轉換粒子144的濃度(或重量百分比)越高,可將更多來自發光元件100的光線轉換成另一種光線(轉換比例越高)。但波長轉換粒子144的濃度若太高則表示黏合劑142含量太少,可能無法有效固定波長轉換粒子144。在一實施例中,波長轉換粒子144於波長轉換層140中的重量百分比在70%以下。在另一實施例中,波長轉換粒子144於波長轉換層140中的重量百分比在20%~60%。波長轉換粒子144在上述的重量百分比範圍中可得到較佳的轉換比例及散射效果,且可被有效地被固定在空間中的位置。在一實施例中,透過發光元件100發出的光線與被波長轉換粒子144轉換的另一光線混光後可產白光,發光裝置100中白光的色溫可透過發光元件100發出的光線以及波長轉換粒子144射出的另一光線的比例調整。在一實施例中,發光裝置100的色溫在1900K到6000K之間。此外,為了讓激發波長轉換粒子144的第一光線以及波長轉換粒子144發射的第二光線能有較高的出光效率,黏合劑142以具有對第一光線及第二光線有較高的穿透率者為佳,例如穿透率大於80%、90%、95%或99%。The binder 142 can disperse the wavelength conversion particles 144 in space, and can fix the relative positions of the wavelength conversion particles 144 to each other. Generally speaking, the higher the concentration (or weight percentage) of the wavelength converting particles 144, the more light from the light-emitting element 100 can be converted into another light (the higher the conversion ratio). However, if the concentration of the wavelength conversion particles 144 is too high, it means that the content of the binder 142 is too small, and the wavelength conversion particles 144 may not be effectively fixed. In one embodiment, the weight percentage of the wavelength conversion particles 144 in the wavelength conversion layer 140 is below 70%. In another embodiment, the weight percentage of the wavelength conversion particles 144 in the wavelength conversion layer 140 is 20%-60%. The wavelength conversion particles 144 can obtain better conversion ratio and scattering effect in the above-mentioned weight percentage range, and can be effectively fixed in the position in space. In one embodiment, the light emitted by the light-emitting element 100 is mixed with another light converted by the wavelength conversion particles 144 to produce white light, and the color temperature of the white light in the light-emitting device 100 can be transmitted through the light emitted by the light-emitting element 100 and the wavelength conversion particles. 144 Scale adjustment of another ray emitted. In one embodiment, the color temperature of the light emitting device 100 is between 1900K and 6000K. In addition, in order to enable the first light ray that excites the wavelength conversion particles 144 and the second light rays emitted by the wavelength conversion particles 144 to have high light extraction efficiency, the adhesive 142 has a high penetration rate for the first light and the second light. The rate is better, for example, the penetration rate is greater than 80%, 90%, 95% or 99%.

黏合劑142的材料可為熱固化樹脂,熱固化樹脂可為環氧樹脂或矽氧樹脂。在一實施例中,黏合劑142為矽氧樹脂,矽氧樹脂的組成可根據所需的物理性質或光學性質的需求做調整。一實施例中,黏合劑142含有脂肪族的矽氧樹脂,例如,甲基矽氧烷化合物,並具有較大的延展性,較可以承受發光元件110產生的熱應力。另一實施例中,黏合劑142含有芳香族的矽氧樹脂,例如,苯基矽氧烷化合物,相對於甲基矽氧烷化合物具有較大的折射率,可以提高發光元件110的光萃取效率。黏合劑142的折射率與發光元件120出光面之材料的折射率相差越小,出光的角度越大,光萃取(light extraction)的效率可更加提升。在一實施例中,發光元件120出光面之材料為藍寶石(sapphire) ,其折射率約為1.77,黏合劑142之材料為含有芳香族的矽樹脂,其折射率則大於1.50。The material of the adhesive 142 can be thermosetting resin, and the thermosetting resin can be epoxy resin or silicone resin. In one embodiment, the adhesive 142 is silicone resin, and the composition of the silicone resin can be adjusted according to the requirements of required physical properties or optical properties. In one embodiment, the adhesive 142 contains an aliphatic silicone resin, such as a methyl siloxane compound, which has greater ductility and is better able to withstand the thermal stress generated by the light-emitting element 110 . In another embodiment, the adhesive 142 contains an aromatic silicone resin, such as a phenylsiloxane compound, which has a larger refractive index than a methylsiloxane compound, which can improve the light extraction efficiency of the light-emitting element 110 . The smaller the difference between the refractive index of the adhesive 142 and the refractive index of the material of the light emitting surface of the light emitting element 120 is, the larger the angle of light exit is, and the efficiency of light extraction can be further improved. In one embodiment, the material of the light-emitting surface of the light-emitting element 120 is sapphire, and its refractive index is about 1.77, and the material of the adhesive 142 is an aromatic silicone resin, and its refractive index is greater than 1.50.

波長轉換粒子144的材料可包含無機的螢光粉(phosphor)、有機分子螢光色素(organic fluorescent colorant)、半導體材料(semiconductor)、或上述材料的組合。半導體材料包含奈米尺寸結晶體(nano crystal)的半導體材料,例如量子點(quantum-dot)發光材料。在一實施例中,波長轉換粒子144的材料為螢光粉,其可選自於由Y3 Al5 O12 :Ce、Gd3 Ga5 O12 :Ce、Lu3 Al5 O12 :Ce、(Lu、Y)3 Al5 O12 :Ce、Tb3 Al5 O12 :Ce、SrS:Eu、SrGa2 S4 :Eu、(Sr、Ca、Ba)(Al、Ga)2 S4 :Eu、(Ca、Sr)S:(Eu、Mn)、(Ca、Sr)S:Ce、(Sr、Ba、Ca)2 Si5 N8 :Eu、(Sr、Ba、Ca)(Al、Ga)Si N3 :Eu、SrLiAl3 N4 : Eu2+ 、CaAlSi ON:Eu、(Ba、Sr、Ca)2 SiO4 :Eu、(Ca、Sr、Ba)8 MgSi4 O16 (F, Cl, Br)2 :Eu、(Ca、Sr、Ba)Si2 O2 N2 :Eu、K2 SiF6 :Mn、K2 TiF6 :Mn、及K2 SnF6 :Mn 所組成之群組。半導體材料可包含II-VI族半導體化合物、III-V族半導體化合物、IV-VI族半導體化合物、或上述材料的組合。量子點發光材料可包含主要發光的核心區(core)以及包覆核心區的殼(shell),核心區的材料可選自於由硫化鋅(ZnS)、硒化鋅(ZnSe)、碲化鋅(ZnTe)、氧化鋅(ZnO)、硫化鎘(CdS)、硒化鎘(CdSe)、碲化鎘(CdTe)、氯化銫鉛(CsPbCl3 )、溴化銫鉛(CsPbBr3 )、碘化銫鉛(CsPbI3 )、氮化鎵(GaN)、磷化鎵(GaP)、硒化鎵(GaSe)、銻化鎵(GaSb)、砷化鎵(GaAs)、氮化鋁(AlN)、磷化鋁(AlP)、砷化鋁(AlAs)、磷化銦(InP)、砷化銦(InAs)、碲(Te)、硫化鉛(PbS)、銻化銦(InSb)、碲化鉛(PbTe)、硒化鉛(PbSe)、碲化銻(SbTe) 、硒化鋅鎘(ZnCdSe)、硫化鋅鎘硒(ZnCdSeS)、及硫化銅銦(CuInS)所組成之群組。The material of the wavelength conversion particles 144 may include inorganic phosphor, organic fluorescent colorant, semiconductor material, or a combination of the above materials. The semiconductor material includes nano-crystalline semiconductor materials, such as quantum-dot light-emitting materials. In one embodiment, the material of the wavelength conversion particles 144 is phosphor powder, which can be selected from Y 3 Al 5 O 12 : Ce, Gd 3 Ga 5 O 12 : Ce, Lu 3 Al 5 O 12 : Ce, (Lu, Y) 3 Al 5 O 12 : Ce, Tb 3 Al 5 O 12 : Ce, SrS: Eu, SrGa 2 S 4 : Eu, (Sr, Ca, Ba) (Al, Ga) 2 S 4 : Eu , (Ca, Sr) S: (Eu, Mn), (Ca, Sr) S: Ce, (Sr, Ba, Ca) 2 Si 5 N 8 : Eu, (Sr, Ba, Ca) (Al, Ga) Si N 3 : Eu, SrLiAl 3 N 4 : Eu 2+ , CaAlSi ON: Eu, (Ba, Sr, Ca) 2 SiO 4 : Eu, (Ca, Sr, Ba) 8 MgSi 4 O 16 (F, Cl, Br) 2 : the group consisting of Eu, (Ca, Sr, Ba)Si 2 O 2 N 2 : Eu, K 2 SiF 6 : Mn, K 2 TiF 6 : Mn, and K 2 SnF 6 : Mn. The semiconductor material may comprise II-VI semiconductor compounds, III-V semiconductor compounds, IV-VI semiconductor compounds, or combinations thereof. The quantum dot light-emitting material can include a core region (core) that mainly emits light and a shell (shell) that coats the core region, and the material of the core region can be selected from zinc sulfide (ZnS), zinc selenide (ZnSe), zinc telluride (ZnTe), zinc oxide (ZnO), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe), cesium lead chloride (CsPbCl 3 ), cesium lead bromide (CsPbBr 3 ), iodide Cesium lead (CsPbI 3 ), gallium nitride (GaN), gallium phosphide (GaP), gallium selenide (GaSe), gallium antimonide (GaSb), gallium arsenide (GaAs), aluminum nitride (AlN), phosphorus Aluminum (AlP), Aluminum Arsenide (AlAs), Indium Phosphide (InP), Indium Arsenide (InAs), Tellurium (Te), Lead Sulfide (PbS), Indium Antimonide (InSb), Lead Telluride (PbTe) ), lead selenide (PbSe), antimony telluride (SbTe), zinc cadmium selenide (ZnCdSe), zinc cadmium selenium sulfide (ZnCdSeS), and copper indium sulfide (CuInS).

波長轉換層140可覆蓋發光元件120的一或多個出光面。在一實施例中,發光元件120之出光面包含上表面121及側面125,波長轉換層140同時覆蓋發光元件120之上表面121及側面125。此外,在一實施例中,波長轉換層140與發光元件120之上表面121及數個側面125直接接觸。在另一實施例中,波長轉換層140僅覆蓋發光元件120之上表面121(未圖示)。The wavelength conversion layer 140 may cover one or more light-emitting surfaces of the light-emitting element 120 . In one embodiment, the light-emitting surface of the light-emitting element 120 includes an upper surface 121 and a side surface 125 , and the wavelength conversion layer 140 covers the upper surface 121 and the side surface 125 of the light-emitting element 120 at the same time. In addition, in one embodiment, the wavelength conversion layer 140 is in direct contact with the upper surface 121 and several side surfaces 125 of the light-emitting element 120 . In another embodiment, the wavelength conversion layer 140 only covers the upper surface 121 (not shown) of the light emitting element 120 .

反射圍欄160圍繞發光元件120以及波長轉換層140,如此反射圍欄160可反射發光元件120發出的第一光線以及波長轉換層140轉換的第二光線再從發光裝置100的頂表面102出光。於一實施例中,反射圍欄160環繞發光元件120的側表面125以及波長轉換層140的側表面並露出發光元件120的上表面121以及波長轉換層140的上表面141。於一實施例中,反射圍欄160與波長轉換層140之間有一段差,反射圍欄160高於波長轉換層140。如此,波長轉換層140的上表面141出光的部分光線可被反射圍欄160反射,可提高發光裝置100 與光學元件連接時的光取出率 。具體說明,參閱第2圖,發光裝置220作為一光源,發出一光線L1,並透過一光學元件240後出光L2。當所有光線L1都在角度θ1 以內,表示光線L1皆可被光學元件240所利用。換句話說,光源的etendue小於系統的etendue。若光線L1在較大的角度θ2 以內,就會有有部分光源無法被光學元件240所利用。透過本發明中反射圍欄160高出於波長轉換層140的設計,可使得更多的光線L1落入角度θ1 以內,因此可提高光取出率。參閱第1A圖,於一實施例中,反射圍欄160的頂面162高於波長轉換層140的上表面141(即段差之高度h)在5微米(μm)至100微米之間,發光裝置100的發光角度在110度至118度之間。發光角度是指相對於最大光強度一半時所對應的角度。於另一實施例中,段差h在5微米(μm)至50微米之間。當段差h小於5微米時,發光角度約在120〬。因此,段差之高度在5微米至100微米之間的發光裝置100相對於段差之高度小於5微米的發光裝置100(比較例),兩者的發光角度差異在2度至10度之間。當段差h大於100微米時,發光裝置100在搭配光學元件時(可參閱第5圖),反射圍欄160與光學元件會很接近,因此反射圍欄160會有干涉光學元件的風險。於一實施例中,段差之高度h、波長轉換層140的高度以及反射層150的厚度相加,約為發光裝置100的整體厚度H,其中,h與H的比值(h/H)在0.01至0.4之間。於另一實施例中,h與H的比值(h/H)在0.015至0.2之間。於上述h/H比值範圍內,一方面可提升反射圍欄160的反射效果,另一方面也可滿足發光裝置100內波長轉換層140所需的高度。The reflective fence 160 surrounds the light emitting element 120 and the wavelength conversion layer 140 , so that the reflective fence 160 can reflect the first light emitted by the light emitting element 120 and the second light converted by the wavelength conversion layer 140 to emit light from the top surface 102 of the light emitting device 100 . In one embodiment, the reflective fence 160 surrounds the side surface 125 of the light emitting element 120 and the side surface of the wavelength conversion layer 140 and exposes the upper surface 121 of the light emitting element 120 and the upper surface 141 of the wavelength conversion layer 140 . In one embodiment, there is a gap between the reflection fence 160 and the wavelength conversion layer 140 , and the reflection fence 160 is higher than the wavelength conversion layer 140 . In this way, part of the light emitted from the upper surface 141 of the wavelength conversion layer 140 can be reflected by the reflection fence 160 , which can improve the light extraction rate when the light-emitting device 100 is connected to the optical element. For specific description, referring to FIG. 2 , the light emitting device 220 is used as a light source to emit a light L1 , which passes through an optical element 240 and then emits light L2 . When all the light rays L1 are within the angle θ 1 , it means that all the light rays L1 can be utilized by the optical element 240 . In other words, the etendue of the light source is less than the etendue of the system. If the light ray L1 is within the larger angle θ 2 , there will be some light sources that cannot be utilized by the optical element 240 . Through the design of the reflection fence 160 higher than the wavelength conversion layer 140 in the present invention, more light rays L1 can fall within the angle θ 1 , thereby improving the light extraction rate. Referring to FIG. 1A , in one embodiment, the top surface 162 of the reflective fence 160 is higher than the upper surface 141 of the wavelength conversion layer 140 (ie, the height h of the step difference) is between 5 micrometers (μm) and 100 micrometers, the light emitting device 100 The light-emitting angle is between 110 degrees and 118 degrees. The light emission angle refers to the angle corresponding to half of the maximum light intensity. In another embodiment, the level difference h is between 5 micrometers (μm) and 50 micrometers. When the level difference h is less than 5 microns, the light emission angle is about 120〬. Therefore, the light emitting angle difference between the light emitting device 100 with the height difference between 5 μm and 100 μm relative to the light emitting device 100 with the height difference less than 5 μm (comparative example) is between 2 degrees and 10 degrees. When the level difference h is greater than 100 μm, when the light emitting device 100 is matched with the optical element (see FIG. 5 ), the reflection fence 160 and the optical element are very close, so the reflection fence 160 may interfere with the optical element. In one embodiment, the height h of the step difference, the height of the wavelength conversion layer 140 and the thickness of the reflective layer 150 are added together to be about the overall thickness H of the light emitting device 100 , wherein the ratio of h to H (h/H) is 0.01 to 0.4. In another embodiment, the ratio of h to H (h/H) is between 0.015 and 0.2. Within the range of the above h/H ratio, on the one hand, the reflection effect of the reflective fence 160 can be improved, and on the other hand, the required height of the wavelength conversion layer 140 in the light emitting device 100 can be satisfied.

於一實施例中,反射圍欄160中包含樹脂以及分散於樹脂內的反射粒子,例如:氧化鈦(titanium oxide)、氧化鋅、氧化鋁、硫酸鋇或碳酸鈣。於一實施例中,反射粒子為氧化鈦,氧化鈦相對於反射圍欄160的重量百分比不小於60%,於另一實施例中,氧化鈦相對於反射圍欄160的重量百分比在20%至60%之間。於一實施例中,反射圍欄160之厚度T在20微米(μm)至200微米之間。In one embodiment, the reflective fence 160 includes resin and reflective particles dispersed in the resin, such as titanium oxide, zinc oxide, aluminum oxide, barium sulfate or calcium carbonate. In one embodiment, the reflective particles are titanium oxide, and the weight percentage of titanium oxide relative to the reflection fence 160 is not less than 60%. In another embodiment, the weight percentage of titanium oxide relative to the reflection fence 160 is 20% to 60%. between. In one embodiment, the thickness T of the reflective fence 160 is between 20 micrometers (μm) and 200 micrometers.

反射層150形成在發光元件120、波長轉換層140以及反射圍欄160的底面。在一實施例中,反射層150直接接觸發光元件120(如圖所示)。在另一實施中,反射層150則未直接接觸發光元件120(圖未示)。反射層150形成多個通孔以露出接觸電極126a及126b。在一實施例中,反射層150可反射發光裝置100發出的光,因此發光裝置100的發光效率可以被提升。在一實施例中,反射層150包含黏合劑(圖未示)以及分散於黏合劑中之反射粒子(圖未示)。黏合劑的材料可以是矽氧樹脂或環氧樹脂。反射粒子的材料包含氧化鈦、氧化鋁或氧化鋅。此外,圍繞導電部180的反射層150也可降低導電部182、184間短路的風險。The reflection layer 150 is formed on the bottom surface of the light emitting element 120 , the wavelength conversion layer 140 and the reflection fence 160 . In one embodiment, the reflective layer 150 directly contacts the light emitting element 120 (as shown). In another implementation, the reflective layer 150 does not directly contact the light-emitting element 120 (not shown). The reflective layer 150 forms a plurality of through holes to expose the contact electrodes 126a and 126b. In one embodiment, the reflective layer 150 can reflect the light emitted by the light emitting device 100 , so the light emitting efficiency of the light emitting device 100 can be improved. In one embodiment, the reflective layer 150 includes an adhesive (not shown) and reflective particles (not shown) dispersed in the adhesive. The material of the adhesive can be silicone resin or epoxy resin. The material of the reflective particles contains titanium oxide, aluminum oxide or zinc oxide. In addition, the reflective layer 150 surrounding the conductive parts 180 can also reduce the risk of short circuits between the conductive parts 182 and 184 .

導電部180分別填入通孔中,並被反射層150所圍繞。導電部180可作為發光元件120之接觸電極126a及126b與電路板(圖未示)的物理及電性連結之用。導電部180與導電墊126a及126b之接合強度越高,越不容易產生脫落(peeling)的問題。導電部180之材料可使用較低熔點的導電金屬材料。在一實施例中,導電部180之材料的熔點(或液化點)的溫度以不高於280℃尤佳。在另一實施例中,導電部180之材料包含純錫或錫合金。錫合金的種類例如:錫銀合金(Sn/Ag alloy)、錫銀銅合金(Sn/Ag/Cu alloy)、錫銅合金(Sn/Cu alloy)、錫鉛合金(Sn/Pb alloy)或錫銻合金(Sn/Sb alloy)。導電部180可以是單層或多層結構。在一實施例中,導電部180為單層結構,材料為錫合金。在又一實施例中,導電部180為多層結構,靠近或直接接觸接觸電極126a及126b的金屬具有較高的熔點;遠離或未直接接觸接觸電極126a及126b的金屬具有較低的熔點。在一實施例中,高熔點的金屬為錫銻合金(第一種錫合金),低熔點的金屬為錫銀銅合金(第二種錫合金)。在另一實施例中,高熔點的金屬為銅,低熔點的金屬為錫合金(包括但不限於錫銻合金、錫銀銅合金)。The conductive parts 180 are respectively filled in the through holes and surrounded by the reflective layer 150 . The conductive portion 180 can be used for physical and electrical connection between the contact electrodes 126a and 126b of the light-emitting element 120 and the circuit board (not shown). The higher the bonding strength between the conductive portion 180 and the conductive pads 126a and 126b, the less likely the problem of peeling occurs. The material of the conductive portion 180 can be a conductive metal material with a lower melting point. In one embodiment, the temperature of the melting point (or liquefaction point) of the material of the conductive portion 180 is preferably not higher than 280°C. In another embodiment, the material of the conductive portion 180 includes pure tin or tin alloy. Types of tin alloys such as: tin-silver alloy (Sn/Ag alloy), tin-silver-copper alloy (Sn/Ag/Cu alloy), tin-copper alloy (Sn/Cu alloy), tin-lead alloy (Sn/Pb alloy) or tin Antimony alloy (Sn/Sb alloy). The conductive part 180 may be a single-layer or multi-layer structure. In one embodiment, the conductive portion 180 is a single-layer structure, and the material is tin alloy. In yet another embodiment, the conductive portion 180 is a multi-layer structure, and the metal close to or in direct contact with the contact electrodes 126a and 126b has a higher melting point; the metal away from or not in direct contact with the contact electrodes 126a and 126b has a lower melting point. In one embodiment, the high melting point metal is a tin-antimony alloy (the first tin alloy), and the low melting point metal is a tin-silver-copper alloy (the second tin alloy). In another embodiment, the metal with high melting point is copper, and the metal with low melting point is tin alloy (including but not limited to tin-antimony alloy, tin-silver-copper alloy).

第3A圖第3F圖及第3H圖至第3K圖係顯示依據本發明一實施例之發光裝置的製造流程圖。參照第3A圖,提供一暫時性基板312、一黏膠層314形成在暫時性基板312之上、以及發光元件120a、120b、120c位於黏膠層314上,其中,發光元件的數量在此僅為例示,並不限於三個,可多於或少於三個。在一實施例中,暫時性基板312為玻璃、藍寶石基板、金屬或塑膠材料,可做為支撐之用。 黏膠層314可作為發光元件120a、120b、120c暫時的固定之用。在一實施例中,黏膠層314為一熱固化膠(thermal curing adhesive), 於此步驟,黏膠層314尚未被完全固化而仍具有黏性。在另一實施例中,黏膠層314可為光固化膠(photo curing adhesive)。FIGS. 3A to 3F and FIGS. 3H to 3K show a manufacturing flow chart of a light emitting device according to an embodiment of the present invention. Referring to FIG. 3A, a temporary substrate 312 is provided, an adhesive layer 314 is formed on the temporary substrate 312, and the light-emitting elements 120a, 120b, 120c are located on the adhesive layer 314, wherein the number of light-emitting elements is only By way of example, it is not limited to three, and there may be more or less than three. In one embodiment, the temporary substrate 312 is a glass, a sapphire substrate, a metal or a plastic material, which can be used as a support. The adhesive layer 314 can be used for temporarily fixing the light-emitting elements 120a, 120b, and 120c. In one embodiment, the adhesive layer 314 is a thermal curing adhesive. In this step, the adhesive layer 314 has not been fully cured and still has adhesive properties. In another embodiment, the adhesive layer 314 may be a photo curing adhesive.

參照第3B圖,將一波長轉換膜140’形成於黏膠層314上,並同時覆蓋發光元件120a、120b、120c。波長轉換膜140’是將多個波長轉換顆粒與黏合劑混合後,形成於發光元件120a、120b、120c以及暫時性基板312上。形成方式包含:直接塗佈、模具成型方式或預先形成片狀結構。直接塗佈的方式可以是點膠或噴塗。片狀結構的尺寸可依照需求進行調整,例如,片狀結構包含數個彼此分離的波長轉換片,此數個彼此分離的波長轉換片可以批次或依序覆蓋數個發光元件,亦即一個波長轉換膜140’僅覆蓋一個或部分的發光元件(例如,暫時性基板312上發光元件總數的1/50、1/100、或1/200以下)。又例如,片狀結構是一捲帶(tape),可以連續且一次性地覆蓋數個發光元件,亦即一個波長轉換片同時覆蓋暫時性基板上的多數個或所有發光元件(例如,暫時性基板上發光元件總數的1/50、1/100、1/200以上)。Referring to FIG. 3B, a wavelength conversion film 140' is formed on the adhesive layer 314 and covers the light-emitting elements 120a, 120b, and 120c at the same time. The wavelength conversion film 140' is formed on the light emitting elements 120a, 120b, 120c and the temporary substrate 312 after mixing a plurality of wavelength conversion particles with a binder. Forming methods include: direct coating, mold forming or pre-forming sheet-like structures. The way of direct coating can be dispensing or spraying. The size of the sheet-like structure can be adjusted according to requirements. For example, the sheet-like structure includes several wavelength conversion sheets separated from each other, and the several wavelength conversion sheets separated from each other can cover several light-emitting elements in batches or sequentially, that is, one The wavelength conversion film 140 ′ covers only one or part of the light-emitting elements (eg, 1/50, 1/100, or 1/200 or less of the total number of light-emitting elements on the temporary substrate 312 ). For another example, the sheet-like structure is a tape, which can cover several light-emitting elements continuously and at one time, that is, one wavelength conversion sheet simultaneously covers many or all light-emitting elements on the temporary substrate (for example, temporary light-emitting elements). 1/50, 1/100, 1/200 or more of the total number of light-emitting elements on the substrate).

參照第3C圖,透過分離的製程,將波長轉換膜140’分割成多個波長轉換層140a、140b、140c。此分離的製程可以為第一次分離。在分離的製程之前,可先固化波長轉換膜140’。在一實施例中,以加熱方式固化波長轉換膜140’ 。在另一實施例中,可使用其他型態的能量固化波長轉換膜140’ ,例如:輻射。分離的製程包含以切割工具331切割波長轉換膜140’以及部分或全部的黏膠層314並形成切割道 。Referring to FIG. 3C, the wavelength conversion film 140' is divided into a plurality of wavelength conversion layers 140a, 140b, and 140c through a separation process. This separation process may be the first separation. The wavelength conversion film 140' may be cured prior to the separate process. In one embodiment, the wavelength conversion film 140' is cured by heating. In another embodiment, the wavelength converting film 140' can be cured using other types of energy, such as radiation. The separate process includes cutting the wavelength conversion film 140' and part or all of the adhesive layer 314 with the cutting tool 331 and forming a cutting line.

參照第3D圖,形成一反射層160’(第二反射層)於多個波長轉換層140a、140b、140c以及暫時性基板312之上。在一實施例中,反射層160’會包覆波長轉換層140a、140b、140c之所有的上表面及側壁。此外,反射層160’與黏膠層314的表面直接接觸。反射層160’形成方式可透過貼合(laminating)或模具成形法(molding)。在一實施例中,反射粒子已預先與接合劑混合後預成形為一片狀結構,將此片狀結構加熱且施加壓力使得反射層160’包覆波長轉換層140a、140b、140c的上表面以及填入發光元件120a、120b、120c之間的凹陷處或切割道。此階段的反射層160’尚屬於半固化的狀態,或是稱作B階段(B-stage)的膠材。在一實施例中,可透過加熱方式固化反射層160’。加熱後的反射層160’轉變為完全固化的的狀態,或是稱作C階段(C-stage)的反射層160’。在其他實施例中,反射層160’的形成方式包含塗佈或貼合一膜材。在一實施例中,反射粒子與接合劑混合後可直接塗佈至波長轉換層140a、140b、140c之上形成反射層160’ 。在另一實施例中,可以使用其他型態的能量固化反射層160’,例如:UV光。Referring to FIG. 3D, a reflective layer 160' (second reflective layer) is formed on the plurality of wavelength conversion layers 140a, 140b, 140c and the temporary substrate 312. In one embodiment, the reflective layer 160' covers all the upper surfaces and sidewalls of the wavelength conversion layers 140a, 140b, and 140c. In addition, the reflective layer 160' is in direct contact with the surface of the adhesive layer 314. The reflective layer 160' can be formed by laminating or molding. In one embodiment, the reflective particles are pre-mixed with the adhesive and then pre-shaped into a sheet-like structure, and the sheet-like structure is heated and pressure is applied to make the reflective layer 160' coat the upper surfaces of the wavelength conversion layers 140a, 140b, 140c and filling the recesses or cutting lines between the light-emitting elements 120a, 120b, and 120c. The reflective layer 160' at this stage is still in a semi-cured state, or a glue material called B-stage. In one embodiment, the reflective layer 160' can be cured by heating. The heated reflective layer 160' is transformed into a fully cured state, or a so-called C-staged reflective layer 160'. In other embodiments, the reflective layer 160' is formed by coating or laminating a film material. In one embodiment, the reflective particles can be directly coated on the wavelength conversion layers 140a, 140b, and 140c after being mixed with the bonding agent to form the reflective layer 160'. In another embodiment, the reflective layer 160' may be cured using other types of energy, such as UV light.

參照第3E圖及第3F圖,移除波長轉換層140a、140b、140c上方之部分反射層160’以形成反射框架160’’。波長轉換層140a、140b、140c會從反射層160’中露出,且反射框架160’’與波長轉換層140a、140b、140c會產生段差的結構。在一實施例中,參照第1A圖,段差h介於5微米(μm)至50微米之間。在一實施例中,移除反射層160’的方式是透過一滾輪370,將波長轉換層140a、140b、140c上表面上以及其周遭之部分反射層160’黏附到滾輪370上。具體而言,由於反射層160’與波長轉換層140a、140b、140c的接著力小於反射層160’本身的斷裂強度,且反射層160’本身的斷裂強度小於滾輪370對反射層160’的黏著力。因此,透過一框架390定義反射框架160’’所需高度,框架390之高度會略高於波長轉換層140a、140b、140c之高度,當滾輪370滾過反射層160’時會帶走波長轉換層140a、140b、140c上表面上之部分反射層160’,因此反射框架160’’與波長轉換層140a、140b、140c之間會產生段差的結構。Referring to FIGS. 3E and 3F, a portion of the reflective layer 160' over the wavelength conversion layers 140a, 140b, 140c is removed to form a reflective frame 160''. The wavelength conversion layers 140a, 140b, and 140c are exposed from the reflective layer 160', and the reflective frame 160'' and the wavelength conversion layers 140a, 140b, and 140c have a level difference structure. In one embodiment, referring to FIG. 1A , the level difference h is between 5 micrometers (μm) and 50 micrometers. In one embodiment, the way to remove the reflective layer 160' is to pass through a roller 370, and adhere the part of the reflective layer 160' on the upper surfaces of the wavelength conversion layers 140a, 140b, 140c and around the reflective layer 160' to the roller 370. Specifically, since the adhesive force between the reflective layer 160' and the wavelength conversion layers 140a, 140b, 140c is smaller than the breaking strength of the reflective layer 160' itself, and the breaking strength of the reflective layer 160' itself is smaller than the adhesion of the roller 370 to the reflective layer 160' force. Therefore, the required height of the reflective frame 160 ″ is defined by a frame 390 . The height of the frame 390 is slightly higher than the height of the wavelength conversion layers 140 a , 140 b and 140 c . When the roller 370 rolls over the reflective layer 160 ′, the wavelength conversion is taken away. The layers 140a, 140b, 140c are partially reflective layers 160' on the upper surfaces, so a structure of level difference will be generated between the reflective frame 160'' and the wavelength conversion layers 140a, 140b, 140c.

參照第3H圖,移除暫時性基板312以及黏膠層314,並於移除暫時性基板312以及黏膠層314之前先轉移到另一暫時基板352及另一黏膠層354。暫時基板352與暫時性基板312的材質可以相同或相似。黏膠層354與黏膠層314的材質也可以相同或相似,例如熱解離膠或熱固化膠。Referring to FIG. 3H, the temporary substrate 312 and the adhesive layer 314 are removed and transferred to another temporary substrate 352 and another adhesive layer 354 before the temporary substrate 312 and the adhesive layer 314 are removed. The materials of the temporary substrate 352 and the temporary substrate 312 may be the same or similar. The materials of the adhesive layer 354 and the adhesive layer 314 can also be the same or similar, such as thermal release adhesive or thermal curing adhesive.

參照第3I圖,形成多個導電部180a、180b、180c分別對應接觸電極126a、126b、126c之上。在一實施例中,導電部180a、180b、180c的材料為焊料,可以透過回焊(reflow)方式形成在接觸電極126a、126b、126c上。在一實施例中,回焊溫度在160℃至260℃之間。Referring to FIG. 3I, a plurality of conductive portions 180a, 180b, and 180c are formed on the contact electrodes 126a, 126b, and 126c, respectively. In one embodiment, the conductive parts 180a, 180b, and 180c are made of solder, which can be formed on the contact electrodes 126a, 126b, and 126c by means of reflow. In one embodiment, the reflow temperature is between 160°C and 260°C.

參照第3J圖,形成反射層150’及150’’(第一反射層)於發光層124之表面(圖中為上表面)與反射框架160’’之表面(圖中為上表面)以及覆蓋接觸電極126a、126b、126c及導電部180a、180b、180c。之後,移除反射層150’’以露出導電部180a、180b、180c。Referring to FIG. 3J, reflective layers 150' and 150'' (first reflective layers) are formed on the surface of the light-emitting layer 124 (the upper surface in the figure) and the surface of the reflective frame 160'' (the upper surface in the figure) and covering Contact electrodes 126a, 126b, 126c and conductive parts 180a, 180b, 180c. After that, the reflective layer 150'' is removed to expose the conductive parts 180a, 180b, 180c.

參照第3K圖,透過分離製程,將反射框架160’’分割成多個反射圍欄160a、160b、160c以及將反射層150’ 分割成多個反射層150。此分離的製程可以為第二次分離。分離的製程包含以切割工具333切割反射框架160’’ 、反射層150’以及部分或全部的黏膠層354並形成切割道 。於此步驟後可形成發光裝置100a、100b、100c。Referring to FIG. 3K, the reflective frame 160'' is divided into a plurality of reflective fences 160a, 160b, 160c and the reflective layer 150' is divided into a plurality of reflective layers 150 through a separation process. This separation process can be the second separation. The separate process includes cutting the reflective frame 160'', the reflective layer 150' and part or all of the adhesive layer 354 with the cutting tool 333 and forming a dicing line. After this step, the light emitting devices 100a, 100b, 100c can be formed.

第3A圖至第3G圖係顯示依據本發明一另實施例之發光裝置的製造流程圖。與上述實施例不同之處在於本實施例並無反射層150以及導電部180a、180b、180c。FIG. 3A to FIG. 3G show a manufacturing flow chart of a light-emitting device according to another embodiment of the present invention. The difference from the above-mentioned embodiment is that the present embodiment does not have the reflective layer 150 and the conductive parts 180a, 180b, and 180c.

在移除波長轉換層140a、140b、140c上表面之部分反射層160’以形成反射框架160’’ (第3E圖及第3F圖)之後,參照第3G圖,透過分離的製程,將反射框架160’’分割成多個反射圍欄160a、160b、160c。此分離的製程可以為第二次分離。分離的製程包含以切割工具332切割反射框架160’’以及部分或全部的黏膠層314並形成切割道 。After the partial reflective layer 160' on the upper surfaces of the wavelength conversion layers 140a, 140b, and 140c is removed to form the reflective frame 160'' (FIG. 3E and FIG. 3F), referring to FIG. 3G, through a separate process, the reflective frame is 160" is divided into a plurality of reflection fences 160a, 160b, 160c. This separation process can be the second separation. The separate process includes cutting the reflective frame 160'' and part or all of the adhesive layer 314 with the cutting tool 332 and forming a cutting line.

第3A圖至第3B圖以及第4A圖至第4F圖係顯示依據本發明另一實施例之發光裝置的製造流程圖。將一波長轉換層140’形成於黏膠層314上,並同時覆蓋發光元件120a、120b、120c(第3B圖)之後。在一實施例中,參照第4A圖,覆蓋一暫時層430’於波長轉換層140’之上。暫時層430’的目的之一是為了後續形成反射框架160’’與波長轉換層140a、140b、140c間的段差。暫時層430’的材料可以是光固化樹脂或熱固化樹脂。在一實施例中,暫時層430’是光固化樹脂所形成的膜層,透過照射特定波長的光線後所形成,例如:紫外光。FIGS. 3A to 3B and FIGS. 4A to 4F show a manufacturing flow chart of a light emitting device according to another embodiment of the present invention. After forming a wavelength conversion layer 140' on the adhesive layer 314 and covering the light-emitting elements 120a, 120b, and 120c at the same time (FIG. 3B). In one embodiment, referring to FIG. 4A, a temporary layer 430' is overlaid on the wavelength converting layer 140'. One of the purposes of the temporary layer 430' is to subsequently form the level difference between the reflection frame 160'' and the wavelength conversion layers 140a, 140b, and 140c. The material of the temporary layer 430' may be a photo-curable resin or a heat-curable resin. In one embodiment, the temporary layer 430' is a film layer formed of a photocurable resin, which is formed by irradiating light with a specific wavelength, such as ultraviolet light.

參照第4B圖,透過分離的製程,將波長轉換層140’分割成多個波長轉換層140a、140b、140c,並將暫時層430’ 分割成多個暫時層430a、430b、430c。此分離的製程可以為第一次分離。多個暫時層430a、430b、430c各自對應於多個波長轉換層140a、140b、140c之上。4B, the wavelength conversion layer 140' is divided into a plurality of wavelength conversion layers 140a, 140b, 140c, and the temporary layer 430' is divided into a plurality of temporary layers 430a, 430b, 430c through a separation process. This separation process may be the first separation. The plurality of temporary layers 430a, 430b, 430c each correspond to over the plurality of wavelength converting layers 140a, 140b, 140c.

參照第4C圖,形成一反射層460’(第一反射層)於多個波長轉換層(140a、140b、140c)、多個暫時層(430a、430b、430c)以及暫時性基板312及黏膠層314之上。反射層460’的作用及形成的方法可參閱第3D圖及相關的段落。Referring to FIG. 4C, a reflective layer 460' (first reflective layer) is formed on a plurality of wavelength conversion layers (140a, 140b, 140c), a plurality of temporary layers (430a, 430b, 430c), the temporary substrate 312 and the adhesive above layer 314 . For the function and formation method of the reflective layer 460', please refer to FIG. 3D and related paragraphs.

參照第4D圖,移除暫時層430a、430b、430c上部分反射層460’以形成反射框架460’’。在一實施例中,反射框架460’’的上表面可以透過機械式的磨平、濕式去膠法或兩者的組合,讓反射框架460’’的上表面與暫時層430a、430b、430c的。Referring to Figure 4D, a portion of the reflective layer 460' on the temporary layers 430a, 430b, 430c is removed to form a reflective frame 460''. In one embodiment, the upper surface of the reflective frame 460 ″ can be mechanically smoothed, wet stripped, or a combination of the two, so that the upper surface of the reflective frame 460 ″ and the temporary layers 430a , 430b , 430c can be removed. of.

參照第4E圖,移除暫時層430a、430b、430c以露出波長轉換層140a、140b、140c。此步驟可形成波長轉換層140a、140b、140c與反射框架460’’之間的段差結構。Referring to FIG. 4E, the temporary layers 430a, 430b, 430c are removed to expose the wavelength converting layers 140a, 140b, 140c. This step may form a step structure between the wavelength conversion layers 140a, 140b, 140c and the reflection frame 460''.

參照第4F圖,透過分離的製程,將反射框架460’’分割成多個反射圍欄460a、460b、460c。此分離的製程可以為第二次分離。分離的製程包含以切割工具切割反射框架460’’以及部分或全部的黏膠層354並形成切割道 。於此步驟後可形成發光裝置400a、400b、400c。Referring to FIG. 4F, the reflective frame 460'' is divided into a plurality of reflective fences 460a, 460b, 460c through a separate process. This separation process can be the second separation. The separate process includes cutting the reflective frame 460" and part or all of the adhesive layer 354 with a cutting tool and forming a cutting line. After this step, the light emitting devices 400a, 400b, 400c can be formed.

第5圖係顯示依據本發明一實施例之發光模組500。發光模組500包含第一發光裝置520a、第二發光裝置520b、一承載板540以及一光學元件560。第一發光裝置520a以及第二發光裝置520b分別形成在承載板540上,此外,光學元件560覆蓋第一發光裝置520a以及第二發光裝置520b。在一實施例中,第一發光裝置520a包含第一發光元件522a、第一波長轉換層524a以及第一反射圍欄526a。第二發光裝置520b包含第二發光元件522b、第二波長轉換層524b以及第二反射圍欄526a。在此實施例中,第一發光裝置520a與第二發光裝置520b可以發出不同色溫的光線。在一實施例中,透過第一波長轉換層524a與第二波長轉換層524b分別具有不同波長轉換層,因此第一發光裝置520a與第二發光裝置520b色溫的不同。不同波長轉換層可指不同的波長轉換材料、相同的波長轉換材料但濃度不同或相同的波長轉換材料但配比不同。在一實施例中,第一發光裝置520a的色溫在1800K至3000K之間,而第二發光裝置520b的色溫在4000K至7000K之間。在一實施例中,第一發光裝置520a以及第二發光裝置520b的色溫差大於2000K以上,如此發光模組500可更明顯的發出兩種不同色溫的光線。發光模組500可應用於電子產品中的閃光燈上,透過不同色溫的光源設計,在不同環境可提供更細緻的白平衡處理,因此可更貼近真實的影像。FIG. 5 shows a light emitting module 500 according to an embodiment of the present invention. The light emitting module 500 includes a first light emitting device 520 a , a second light emitting device 520 b , a carrier board 540 and an optical element 560 . The first light emitting device 520a and the second light emitting device 520b are respectively formed on the carrier board 540, and the optical element 560 covers the first light emitting device 520a and the second light emitting device 520b. In one embodiment, the first light-emitting device 520a includes a first light-emitting element 522a, a first wavelength conversion layer 524a, and a first reflective fence 526a. The second light emitting device 520b includes a second light emitting element 522b, a second wavelength conversion layer 524b, and a second reflection fence 526a. In this embodiment, the first light emitting device 520a and the second light emitting device 520b can emit light with different color temperatures. In one embodiment, the first wavelength conversion layer 524a and the second wavelength conversion layer 524b respectively have different wavelength conversion layers, so the color temperature of the first light emitting device 520a and the second light emitting device 520b are different. Different wavelength conversion layers may refer to different wavelength conversion materials, the same wavelength conversion material but with different concentrations, or the same wavelength conversion material but with different ratios. In one embodiment, the color temperature of the first light-emitting device 520a is between 1800K and 3000K, and the color temperature of the second light-emitting device 520b is between 4000K and 7000K. In one embodiment, the color temperature difference between the first light emitting device 520a and the second light emitting device 520b is greater than 2000K, so that the light emitting module 500 can more clearly emit light with two different color temperatures. The light-emitting module 500 can be applied to flashlights in electronic products. Through the design of light sources with different color temperatures, it can provide more detailed white balance processing in different environments, so it can be closer to the real image.

在一實施例中,承載板540為一電路板,具有電路層542a及542b分別與第一發光裝置520a以及第二發光裝置520b電性連接。在一實施例中,光學元件560為一菲涅耳透鏡(Fresnel lens)。菲涅耳透鏡中具有兩組的同心圓紋路各自面對第一發光裝置520a以及第二發光裝置520b。如此,第一發光裝置520a以及第二發光裝置520b透過菲涅耳透鏡可以近似或等同平行光方式發光。In one embodiment, the carrier board 540 is a circuit board with circuit layers 542a and 542b electrically connected to the first light-emitting device 520a and the second light-emitting device 520b, respectively. In one embodiment, the optical element 560 is a Fresnel lens. There are two groups of concentric circles in the Fresnel lens facing the first light emitting device 520a and the second light emitting device 520b respectively. In this way, the first light-emitting device 520a and the second light-emitting device 520b can emit light in an approximate or equivalent parallel light manner through the Fresnel lens.

第6A圖及第6B圖分別係顯示本發明另一實施例之一種發光裝置600的剖面圖及上視圖。發光裝置600包含一發光元件620、一波長轉換層640、一反射圍欄660、一反射層650以及一導電部680。與第1圖的不同之處,反射圍欄660具有斜面。在一實施例中,斜面是位於反射圍欄660的內表面,即面對發光元件620的表面。具體而言,反射圍欄660的內表面、一波長轉換層640的上表面、發光元件620的底面以及反射層650的頂面可圍成一個倒梯形的結構。反射圍欄660具有斜面的發光裝置600,可改變發光裝置600內光線的行進方向進而縮小發光角度。發光元件620、波長轉換層640、反射圍欄660、反射層650以及導電部680的具體結構、作用及形成的方法可以參考第1圖及相應之段落。6A and 6B are respectively a cross-sectional view and a top view of a light emitting device 600 according to another embodiment of the present invention. The light-emitting device 600 includes a light-emitting element 620 , a wavelength conversion layer 640 , a reflection fence 660 , a reflection layer 650 and a conductive portion 680 . The difference from FIG. 1 is that the reflective fence 660 has a sloped surface. In one embodiment, the inclined surface is located on the inner surface of the reflective fence 660 , that is, the surface facing the light-emitting element 620 . Specifically, the inner surface of the reflective fence 660 , the upper surface of a wavelength conversion layer 640 , the bottom surface of the light-emitting element 620 and the top surface of the reflective layer 650 may enclose an inverted trapezoidal structure. The reflective fence 660 has the light-emitting device 600 with an inclined surface, which can change the traveling direction of the light in the light-emitting device 600 and reduce the light-emitting angle. The specific structures, functions and formation methods of the light emitting element 620 , the wavelength conversion layer 640 , the reflective fence 660 , the reflective layer 650 and the conductive portion 680 can be referred to FIG. 1 and the corresponding paragraphs.

以上所述之實施例僅係為說明本發明之技術思想及特點,其目的在使熟習此項技藝之人士能夠瞭解本發明之內容並據以實施,當不能以之限定本發明之專利範圍,即大凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍內。The above-mentioned embodiments are only to illustrate the technical ideas and characteristics of the present invention, and the purpose is to enable those who are familiar with the art to understand the content of the present invention and implement it accordingly. It should not be used to limit the patent scope of the present invention. That is, all equivalent changes or modifications made according to the spirit disclosed in the present invention should still be covered within the patent scope of the present invention.

100、100a、100b、100c、220、520a、520b、600‧‧‧發光裝置102‧‧‧頂表面104‧‧‧底表面106‧‧‧側面120、120a、120b、120c、522a、522b、620‧‧‧發光元件121‧‧‧上表面122‧‧‧承載基板123‧‧‧下表面124‧‧‧發光層125‧‧‧側面126、126a、126b、126c‧‧‧接觸電極140、140a、140b、140c、524a、524b、640‧‧‧波長轉換層140’‧‧‧波長轉換膜141‧‧‧上表面142‧‧‧黏合劑144‧‧‧波長轉換粒子150、160’、460’、526a、526b、650‧‧‧反射層160、160a、160b、160c、460a、460b、460c、526a、526b、660‧‧‧反射圍欄160’’、460’’‧‧‧反射框架162‧‧‧頂面180、180a、180b、180c、182、184、680‧‧‧導電部240、560‧‧‧光學元件312、352‧‧‧暫時性基板314、354‧‧‧黏膠層331、332、332、534‧‧‧切割工具370‧‧‧滾輪390‧‧‧框架430’、430a、430b、430c‧‧‧暫時層500‧‧‧發光模組540‧‧‧載板542a、542b‧‧‧電路層h‧‧‧段差高度H‧‧‧整體厚度T‧‧‧厚度100, 100a, 100b, 100c, 220, 520a, 520b, 600‧‧‧Light-emitting device 102‧‧‧Top surface 104‧‧‧Bottom surface 106‧‧‧Side surface 120, 120a, 120b, 120c, 522a, 522b, 620 ‧‧‧Light emitting element 121‧‧‧Top surface 122‧‧‧Support substrate 123‧‧‧Lower surface 124‧‧‧Light emitting layer 125‧‧‧Side surfaces 126, 126a, 126b, 126c‧‧‧contact electrodes 140, 140a, 140b, 140c, 524a, 524b, 640‧‧‧Wavelength converting layer 140'‧‧‧Wavelength converting film 141‧‧‧Top surface 142‧‧‧Binder 144‧‧‧Wavelength converting particles 150, 160', 460', 526a, 526b, 650‧‧‧reflective layer 160, 160a, 160b, 160c, 460a, 460b, 460c, 526a, 526b, 660‧‧‧reflective fence 160'', 460''‧‧‧reflective frame 162‧‧‧ Top surface 180, 180a, 180b, 180c, 182, 184, 680‧‧‧conductive part 240, 560‧‧‧optical element 312, 352‧‧‧Temporary substrate 314, 354‧‧‧adhesive layer 331, 332, 332, 534‧‧‧Cutting tool 370‧‧‧Roller 390‧‧‧Frame 430', 430a, 430b, 430c‧‧‧Temporary layer 500‧‧‧Light-emitting module 540‧‧‧Carrier board 542a, 542b‧‧‧ Circuit layer h‧‧‧step height H‧‧‧overall thickness T‧‧‧thickness

第1A圖係顯示本發明一實施例之一種發光裝置的剖面圖。FIG. 1A is a cross-sectional view of a light-emitting device according to an embodiment of the present invention.

第1B圖係顯示第1A圖中發光裝置的上視圖。Fig. 1B is a top view showing the light emitting device of Fig. 1A.

第2圖係顯示依據本發明一實施例之發光裝置的發光角度。FIG. 2 shows the light-emitting angle of the light-emitting device according to an embodiment of the present invention.

第3A圖至第3F圖及第3H圖至第3K圖係顯示依據本發明一實施例之發光裝置的製造流程圖。FIGS. 3A to 3F and FIGS. 3H to 3K show a manufacturing flow chart of a light emitting device according to an embodiment of the present invention.

第3A圖至第3G圖係顯示依據本發明一另實施例之發光裝置的製造流程圖。FIG. 3A to FIG. 3G show a manufacturing flow chart of a light-emitting device according to another embodiment of the present invention.

第3A圖至第3B圖及第4A圖至第4F圖係顯示依據本發明另一實施例之發光裝置的製造流程圖。FIGS. 3A to 3B and FIGS. 4A to 4F show a manufacturing flow chart of a light emitting device according to another embodiment of the present invention.

第5圖係顯示依據本發明一實施例之發光模組。FIG. 5 shows a light emitting module according to an embodiment of the present invention.

第6A圖係顯示本發明另一實施例之一種發光裝置的剖面圖。FIG. 6A is a cross-sectional view of a light-emitting device according to another embodiment of the present invention.

第6B圖係顯示第6A圖中發光裝置的上視圖。Fig. 6B is a top view showing the light emitting device of Fig. 6A.

without

without

100‧‧‧發光裝置 100‧‧‧Light-emitting device

102‧‧‧頂表面 102‧‧‧Top surface

104‧‧‧底表面 104‧‧‧Bottom surface

106‧‧‧側面 106‧‧‧Side

120‧‧‧發光元件 120‧‧‧Light-emitting element

121‧‧‧上表面 121‧‧‧Top surface

122‧‧‧成長基板 122‧‧‧Growth substrate

123‧‧‧下表面 123‧‧‧Lower surface

124‧‧‧發光層 124‧‧‧Light Emitting Layer

125‧‧‧側面 125‧‧‧Side

126、126a、126b‧‧‧接觸電極 126, 126a, 126b‧‧‧contact electrodes

140‧‧‧波長轉換層 140‧‧‧Wavelength Conversion Layer

142‧‧‧黏合劑 142‧‧‧Binders

144‧‧‧波長轉換材料 144‧‧‧Wavelength Conversion Materials

150‧‧‧反射層 150‧‧‧Reflector

160‧‧‧反射圍欄 160‧‧‧Reflection Fence

180、182、184‧‧‧導電部 180, 182, 184‧‧‧Conductive part

h‧‧‧段差高度 h‧‧‧step height

H‧‧‧整體厚度 H‧‧‧Overall thickness

T‧‧‧厚度 T‧‧‧Thickness

Claims (10)

一種發光裝置,包含:一發光元件,包含一第一上表面、一下表面以及位於該第一上表面及該第一下表面間之複數個第一側面,且該複數個第一側面彼此相互平行;一波長轉換層,包含多顆波長轉換粒子,且包含一位於該第一上表面正上方之第二上表面;以及一反射圍欄,環繞該複數個第一側面,包含一頂面以及複數個內側面,其中,該複數個內側面與該複數個第一側面相互平行,其中,該頂面高於該第二上表面為h,該發光裝置的高度為H,且h與H的比值(h/H)在0.01至0.4之間,其中,該發光裝置具有一發光角度,該發光角度介於110度至118度之間。 A light-emitting device, comprising: a light-emitting element, comprising a first upper surface, a lower surface, and a plurality of first side surfaces located between the first upper surface and the first lower surface, and the plurality of first side surfaces are parallel to each other ; a wavelength conversion layer, including a plurality of wavelength conversion particles, and including a second upper surface located directly above the first upper surface; and a reflective fence surrounding the plurality of first side surfaces, including a top surface and a plurality of Inner side, wherein, the plurality of inner sides and the plurality of first sides are parallel to each other, wherein, the top surface is h higher than the second upper surface, the height of the light-emitting device is H, and the ratio of h to H ( h/H) is between 0.01 and 0.4, wherein the light-emitting device has a light-emitting angle, and the light-emitting angle is between 110 degrees and 118 degrees. 如申請專利範圍第1項之發光裝置,其中,該頂面高於該第二上表面為h,該發光裝置的高度為H,且h與H的比值(h/H)在0.015至0.2之間。 The light-emitting device of claim 1, wherein the top surface is higher than the second upper surface by h, the height of the light-emitting device is H, and the ratio of h to H (h/H) is between 0.015 and 0.2 between. 如申請專利範圍第1項之發光裝置,其中,該頂面與該第二上表面之間具有一段差,該頂面高於該第二上表面在5微米至100微米之間。 The light-emitting device of claim 1, wherein there is a difference between the top surface and the second top surface, and the top surface is higher than the second top surface by between 5 microns and 100 microns. 如申請專利範圍第1項之發光裝置,其中,該發光裝置具有一色溫,該色溫在1800K到7000K之間。 The light-emitting device of claim 1 of the claimed scope, wherein the light-emitting device has a color temperature, and the color temperature is between 1800K and 7000K. 如申請專利範圍第1項之發光裝置,其中,該反射圍欄具有一厚度,該厚度在20微米至200微米之間。 The light-emitting device of claim 1, wherein the reflective fence has a thickness, and the thickness is between 20 microns and 200 microns. 如申請專利範圍第1項之發光裝置,更包含一反射層形成在該下表面之上。 The light-emitting device of claim 1 of the claimed scope further comprises a reflective layer formed on the lower surface. 如申請專利範圍第6項之發光裝置,更包含一導電部被該反射層所圍繞。 The light-emitting device of claim 6 of the claimed scope further comprises a conductive portion surrounded by the reflective layer. 如申請專利範圍第1項之發光裝置,其中,該反射圍欄包含一內表面,該內表面具有一斜面。 The light-emitting device of claim 1, wherein the reflection fence includes an inner surface, and the inner surface has an inclined surface. 一種發光模組,包含:一載板,具有一電路層;如申請專利範圍第1項之發光裝置,可發出一光線並形成在該載板上與該電路層電性連接;以及一光學元件,覆蓋該發光裝置。 A light-emitting module, comprising: a carrier board with a circuit layer; the light-emitting device as claimed in item 1 of the patent application scope, capable of emitting a light and being formed on the carrier board to be electrically connected with the circuit layer; and an optical element , covering the light-emitting device. 如申請專利範圍第9項之發光模組,其中,該光學元件包含一菲涅耳透鏡。The light-emitting module of claim 9, wherein the optical element comprises a Fresnel lens.
TW106125634A 2017-07-28 2017-07-28 Light-emitting device and manufacturing method thereof TWI757315B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106125634A TWI757315B (en) 2017-07-28 2017-07-28 Light-emitting device and manufacturing method thereof
CN201810228417.1A CN109309153B (en) 2017-07-28 2018-03-20 Light emitting device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106125634A TWI757315B (en) 2017-07-28 2017-07-28 Light-emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201911607A TW201911607A (en) 2019-03-16
TWI757315B true TWI757315B (en) 2022-03-11

Family

ID=65225847

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106125634A TWI757315B (en) 2017-07-28 2017-07-28 Light-emitting device and manufacturing method thereof

Country Status (2)

Country Link
CN (1) CN109309153B (en)
TW (1) TWI757315B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7244771B2 (en) * 2020-04-02 2023-03-23 日亜化学工業株式会社 Manufacturing method of planar light source
TWI742720B (en) * 2020-06-12 2021-10-11 友達光電股份有限公司 Display apparatus and manufacturing method thereof
CN112993133B (en) * 2020-10-22 2022-07-22 重庆康佳光电技术研究院有限公司 Display device and manufacturing method thereof
CN114005913B (en) * 2021-10-22 2023-08-04 义乌清越光电技术研究院有限公司 Luminous structure
CN115188875B (en) * 2022-09-13 2023-07-04 泉州三安半导体科技有限公司 Light-emitting device and light-emitting element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040159850A1 (en) * 2003-02-18 2004-08-19 Sharp Kabushiki Kaisha Semiconductor light-emitting device, manufacturing method thereof, and electronic image pickup device
TWM450829U (en) * 2012-10-16 2013-04-11 Helio Optoelectronics Corp LED package body structure with Fresnel lens
US20130334559A1 (en) * 2011-03-07 2013-12-19 Koninklijke Philips N.V. Light emitting module, a lamp, a luminaire and a display device
US20160013379A1 (en) * 2014-07-11 2016-01-14 Lumenmax Optoelectronics Co., Ltd. Emitting device of wide-angle led
US9252337B1 (en) * 2014-12-22 2016-02-02 Bridgelux, Inc. Composite substrate for light emitting diodes
US20170062678A1 (en) * 2014-01-29 2017-03-02 Koninklijke Philips N.V. Shallow reflector cup for phosphor-converted led filled with encapsulant

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691143B1 (en) * 2003-04-30 2007-03-09 삼성전기주식회사 Light emitting diode device with multi-layered phosphor
WO2007105647A1 (en) * 2006-03-10 2007-09-20 Nichia Corporation Light emitting device
CN101271884B (en) * 2007-03-22 2011-04-20 沈育浓 Luminous source encapsulation body
CN101740688B (en) * 2007-03-22 2012-06-13 沈育浓 Packaging body of light source
CN201663179U (en) * 2010-02-23 2010-12-01 必奇股份有限公司 LED base structure with bending-free pin
JP5566785B2 (en) * 2010-06-22 2014-08-06 日東電工株式会社 Composite sheet
CN103227168A (en) * 2012-01-31 2013-07-31 台宙晶体科技股份有限公司 LED chip on board (COB) structure compatible with different wavelengths
EP2637224B1 (en) * 2012-03-09 2019-04-03 Panasonic Intellectual Property Management Co., Ltd. Light emitting device, illumination apparatus and system using same
CN102800794A (en) * 2012-08-17 2012-11-28 南通脉锐光电科技有限公司 Optical wavelength conversion device and application thereof in white light emitting device
KR102146595B1 (en) * 2013-01-10 2020-08-31 루미리즈 홀딩 비.브이. Led with shaped growth substrate for side emission
JP2014165225A (en) * 2013-02-21 2014-09-08 Toshiba Lighting & Technology Corp Light-emitting module and illuminating device
JP6094254B2 (en) * 2013-02-21 2017-03-15 東芝ライテック株式会社 Light emitting module and lighting device
CN104752597B (en) * 2013-12-30 2018-09-07 展晶科技(深圳)有限公司 Light-emitting diode encapsulation structure and its packaging method
CN203883044U (en) * 2014-04-30 2014-10-15 广东恒润光电有限公司 Novel surface mounted technology type LED
CN203932108U (en) * 2014-05-29 2014-11-05 博罗承创精密工业有限公司 The emitting led support of a kind of wide-angle
TWI677113B (en) * 2014-12-24 2019-11-11 晶元光電股份有限公司 Light-emitting device and manufacturing method thereof
CN105742454A (en) * 2014-12-24 2016-07-06 晶元光电股份有限公司 Light emitting element and method for manufacturing same
CN105006511A (en) * 2015-07-29 2015-10-28 广州市鸿利光电股份有限公司 LED package method
US9922963B2 (en) * 2015-09-18 2018-03-20 Genesis Photonics Inc. Light-emitting device
CN106816520A (en) * 2015-11-30 2017-06-09 隆达电子股份有限公司 Wavelength conversion material and application thereof
CN205452351U (en) * 2015-12-30 2016-08-10 东莞市翔光光电科技有限公司 Ultra -thin -type LED (light emitting diode) support with heat -radiation bottom
TWI674684B (en) * 2015-12-30 2019-10-11 晶元光電股份有限公司 Light-emitting device and manufacturing method thereof
CN205282504U (en) * 2016-01-05 2016-06-01 厦门光莆电子股份有限公司 SMD white light LED packaging body
CN105629569B (en) * 2016-01-11 2018-11-20 苏州奥浦迪克光电技术有限公司 CSP encapsulates LED light emission device
CN106531857A (en) * 2016-12-28 2017-03-22 芜湖聚飞光电科技有限公司 Chip scale LED packaging structure and packaging technology

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040159850A1 (en) * 2003-02-18 2004-08-19 Sharp Kabushiki Kaisha Semiconductor light-emitting device, manufacturing method thereof, and electronic image pickup device
US20130334559A1 (en) * 2011-03-07 2013-12-19 Koninklijke Philips N.V. Light emitting module, a lamp, a luminaire and a display device
TWM450829U (en) * 2012-10-16 2013-04-11 Helio Optoelectronics Corp LED package body structure with Fresnel lens
US20170062678A1 (en) * 2014-01-29 2017-03-02 Koninklijke Philips N.V. Shallow reflector cup for phosphor-converted led filled with encapsulant
US20160013379A1 (en) * 2014-07-11 2016-01-14 Lumenmax Optoelectronics Co., Ltd. Emitting device of wide-angle led
US9252337B1 (en) * 2014-12-22 2016-02-02 Bridgelux, Inc. Composite substrate for light emitting diodes

Also Published As

Publication number Publication date
CN109309153B (en) 2022-06-21
TW201911607A (en) 2019-03-16
CN109309153A (en) 2019-02-05

Similar Documents

Publication Publication Date Title
TWI721005B (en) Light-emitting device and manufacturing method thereof
TWI757315B (en) Light-emitting device and manufacturing method thereof
TWI513033B (en) Light emitting diode device and producing method thereof
US11430925B2 (en) Light-emitting device having package structure with quantum dot material and manufacturing method thereof
US20120248485A1 (en) Producing method of light emitting diode device and light emitting diode element
JP2018029179A5 (en)
JP6515940B2 (en) Light emitting device and method of manufacturing the same
TWI712187B (en) Light-emitting device and manufacturing method thereof
US10522721B2 (en) Light-emitting device and manufacturing method thereof
US10879433B2 (en) Stabilized quantum dot composite and method of making a stabilized quantum dot composite
TW201914060A (en) Quantum dot-based color-converted light emitting device and method for manufacturing the same
CN111146323B (en) Light emitting device and manufacturing method thereof
US11183616B2 (en) Phosphor converter structures for thin film packages and method of manufacture
JP2018191015A (en) Method for manufacturing light-emitting device
US10026873B2 (en) Method of manufacturing light emitting device
CN111883635B (en) Light emitting device and method of manufacturing the same
JP2020167240A (en) Quantum dot light emitting device and quantum dot backlight unit
TW202329486A (en) Light-emitting device and manufacturing method thereof
JP2023122866A (en) Light-emitting device and method for manufacturing light-emitting device
TW202414860A (en) Light-emitting device and manufacturing method thereof