[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI755529B - Atomic layer deposition bonding for heterogeneous integration of photonics and electronics - Google Patents

Atomic layer deposition bonding for heterogeneous integration of photonics and electronics Download PDF

Info

Publication number
TWI755529B
TWI755529B TW107115024A TW107115024A TWI755529B TW I755529 B TWI755529 B TW I755529B TW 107115024 A TW107115024 A TW 107115024A TW 107115024 A TW107115024 A TW 107115024A TW I755529 B TWI755529 B TW I755529B
Authority
TW
Taiwan
Prior art keywords
compound semiconductor
soi wafer
bonding
protective material
wafer
Prior art date
Application number
TW107115024A
Other languages
Chinese (zh)
Other versions
TW201947632A (en
Inventor
瓊 派克
克格里 艾倫 費雪
馬汀 A 史龐拿格
安東尼歐 拉伯羅
Original Assignee
美商瞻博網路公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商瞻博網路公司 filed Critical 美商瞻博網路公司
Priority to TW107115024A priority Critical patent/TWI755529B/en
Publication of TW201947632A publication Critical patent/TW201947632A/en
Application granted granted Critical
Publication of TWI755529B publication Critical patent/TWI755529B/en

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Method and systems are presented for heterogeneous integration of photonics and electronics with atomic layer deposition (ALD) bonding. One method includes operations for forming a compound semiconductor and for depositing (e.g. via atomic layer deposition) a continuous film of a protection material (e.g., Al2O3) on a first surface of the compound semiconductor. Further, the method includes an operation for forming a silicon on insulator (SOI) wafer, with the SOI wafer comprising one or more waveguides. The method further includes bonding the compound semiconductor at the first surface to the SOI wafer to form a bonded structure and processing the bonded structure. The protection material protects the compound semiconductor from acid etchants during further processing of the bonded structure.

Description

光子與電子異質性集成之原子層沉積結合 Atomic Layer Deposition Combination of Photonic and Electronic Heterogeneous Integration

本文所公開的標的內容一般來說是涉及用於半導體製造的方法和系統,並且更具體地是涉及包括異質性材料的結合的半導體製造。 The subject matter disclosed herein relates generally to methods and systems for semiconductor fabrication, and more particularly to semiconductor fabrication that includes bonding of heterogeneous materials.

兩種不同類型材料的異質性結合在用於製造積體電路(IC)的光學與電子學中正變得更常見。這種組合利用了使用具有特定且不同屬性的材料來組合為單一半導體以進行處理。 Heterogeneous combining of two different types of materials is becoming more common in optics and electronics for the fabrication of integrated circuits (ICs). This combination takes advantage of the use of materials with specific and different properties combined into a single semiconductor for processing.

例如,絕緣體上矽(SOI)晶圓提供低損耗波導路由,而III-V化合物半導體有效地為雷射生成光,並為光學通訊中使用的調變器和偵測器有效地吸收光。這些材料的組合為產生光子積體電路(PIC)提供了理想平台。由於材料是不同的,在製造這些PICs中結合會大幅影響產量和製程限制。例如,在一些應用中,目標是要製造高度集成的傳送器,其係完全通過晶圓級規模處理來製造。 For example, silicon-on-insulator (SOI) wafers provide low-loss waveguide routing, while III-V compound semiconductors efficiently generate light for lasers and absorb light efficiently for modulators and detectors used in optical communications. The combination of these materials provides an ideal platform for creating photonic integrated circuits (PICs). Since the materials are different, the combination in the manufacture of these PICs can greatly impact yield and process constraints. For example, in some applications, the goal is to fabricate highly integrated conveyors that are fabricated entirely through wafer-scale processing.

對於混合矽光子學而言,化合物半導體對矽基板之間的結合的剪切強度對元件產量具有極大的影響。由於要結合的材料不同,材料之間的分離和分層是要克服的常見挑戰。另外,在這些元件的製造中會使用許多酸以在結合之後蝕刻化合物半導體;然而,這些酸會循著矽溝道而芯吸於化合物半導體下方並且蝕刻結合界面。 For hybrid silicon photonics, the shear strength of the compound semiconductor-to-silicon substrate bond has a dramatic effect on device yield. Separation and delamination between materials are common challenges to overcome due to the different materials to be combined. Additionally, many acids are used in the fabrication of these devices to etch the compound semiconductor after bonding; however, these acids follow the silicon channel to wick under the compound semiconductor and etch the bonding interface.

102‧‧‧化合物半導體晶片 102‧‧‧Compound semiconductor wafer

104‧‧‧SOI晶圓 104‧‧‧SOI wafer

106‧‧‧超晶格 106‧‧‧Superlattice

108‧‧‧InP結合層 108‧‧‧InP bonding layer

110‧‧‧InGaAs層 110‧‧‧InGaAs layer

112‧‧‧量子阱(QWs)層 112‧‧‧Quantum Well (QWs) Layer

114‧‧‧InP層 114‧‧‧InP layer

116‧‧‧SiO2結合層 116‧‧‧SiO 2 bonding layer

118‧‧‧SiO2118‧‧‧SiO 2 layer

120‧‧‧矽基底 120‧‧‧Silicon substrate

122‧‧‧波導 122‧‧‧Waveguide

202‧‧‧化合物半導體基板 202‧‧‧Compound semiconductor substrate

204‧‧‧化合物半導體的底部/損害 204‧‧‧Bottom/damage of compound semiconductors

302‧‧‧化合物半導體 302‧‧‧Compound Semiconductors

304‧‧‧原子層沉積(ALD) 304‧‧‧Atomic Layer Deposition (ALD)

306‧‧‧保護材料 306‧‧‧Protective Materials

502‧‧‧化合物半導體 502‧‧‧Compound Semiconductors

504‧‧‧結合結構 504‧‧‧Combination structure

602‧‧‧蝕刻 602‧‧‧Etching

702‧‧‧畫面 702‧‧‧Screen

704‧‧‧畫面 704‧‧‧Screen

802‧‧‧元件 802‧‧‧ Components

804‧‧‧元件 804‧‧‧ Components

806‧‧‧化合物半導體 806‧‧‧Compound Semiconductors

808‧‧‧化合物半導體的部分 808‧‧‧Part of compound semiconductor

810‧‧‧化合物半導體 810‧‧‧Compound Semiconductors

900‧‧‧方法 900‧‧‧Method

902-920‧‧‧操作 902-920‧‧‧Operation

1000‧‧‧方法 1000‧‧‧Method

1002-1010‧‧‧操作 1002-1010‧‧‧Operation

如附圖式中的各個圖式僅描述本案的例示實施例,並且不能被認為是對其範圍的限制。 Each of the drawings, as in the accompanying drawings, describe only exemplary embodiments of the present case, and should not be considered limiting of its scope.

第一圖係根據一些例示實施例說明異質性材料的結合。 The first figure illustrates the incorporation of heterogeneous materials according to some exemplary embodiments.

第二圖係根據一些例示實施例說明在結合結構的處理期間因使用酸而損害化合物半導體。 A second diagram illustrates damage to compound semiconductors during processing of bonded structures due to the use of acids, according to some example embodiments.

第三圖係根據一些實施例說明經由原子層沉積(ALD)添加保護材料。 A third diagram illustrates the addition of protective material via atomic layer deposition (ALD) according to some embodiments.

第四圖係根據一些例示實施例說明通過結合化合物半導體和SOI晶圓來產生結合結構。 A fourth diagram illustrates the creation of bonded structures by bonding compound semiconductors and SOI wafers, according to some example embodiments.

第五圖係根據一些例示實施例說明不含超晶格的化合物結構。 A fifth figure illustrates compound structures without superlattice, according to some exemplary embodiments.

第六圖係根據一些例示實施例說明Al2O3增強型結合結構如何在處理期間提供更好的保護。 The sixth figure illustrates how the Al 2 O 3 enhanced bonding structure provides better protection during processing according to some example embodiments.

第七圖係根據一些例示實施例說明藉由使用保護層所獲得的改進的一些結果。 Figure 7 illustrates some results of the improvements obtained by using a protective layer according to some example embodiments.

第八圖係根據一些實施例說明利用Al2O3層所獲得的產量提高增益。 An eighth graph illustrates the yield enhancement gains obtained with Al 2 O 3 layers according to some embodiments.

第九圖是利用ALD結合的光子和電子的異質集成方法的流程圖。 The ninth figure is a flow chart of the heterointegration method of photons and electrons using ALD bonding.

第十圖係根據一些例示實施例說明用於製造結合結構的方法的流程圖。 Tenth Figure is a flow chart illustrating a method for fabricating a bonding structure according to some example embodiments.

示例方法和系統涉及用於利用原子層沉積(ALD)結合的光子和電子的異質集成。示例僅代表可能的變型。除非另外明確說明,否則部件和功能是可選的並且可以組合或細分,並且操作可以按順序變化或組合或細分。在以下描述中,出於解釋的目的,闡述很多特定細節以提供對例示實施例的透徹理解。然而,對於本領域的技術人員而言將明顯的是,可以在沒有這些特定細節的情況下實施本文標的。 Example methods and systems relate to heterogeneous integration of photons and electrons combined using atomic layer deposition (ALD). Examples only represent possible variants. Unless expressly stated otherwise, components and functions are optional and may be combined or subdivided, and operations may be varied or combined or subdivided in sequence. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the exemplary embodiments. However, it will be apparent to one skilled in the art that the subject matter herein may be practiced without these specific details.

結合結構具有必須在製造期間解決的問題,例如結合剪切強度和後結合處理中的酸損害。有一些方案是通過將III-V半導體的結合層改變為對許多酸性蝕刻劑更有抵抗力的InGaAsP來解決這些問題。然而,這種改變也會降低剪切強度,並且導致在酸性步驟之前的層離。其它方案包括對酸蝕刻步驟、元件圖、或從III-V邊緣後移到III-V元件的改變。然而,這些方案並不會增加結合的剪切強度,他們增加處理時間和成本,而且未完全解決酸芯吸的問題。此外,這些方案不允許減少從III-V邊緣到元件的後移,因此限制了裸片大小的縮減。 Bonded structures have issues that must be addressed during manufacture, such as bond shear strength and acid damage in post-bonding processing. There are solutions to these problems by changing the bonding layer of the III-V semiconductor to InGaAsP, which is more resistant to many acidic etchants. However, this change also reduces shear strength and leads to delamination prior to the acid step. Other options include changes to the acid etch step, element map, or moving back from the III-V edge to the III-V element. However, these solutions do not increase the shear strength of the bond, they increase processing time and cost, and do not fully address the problem of acid wicking. Furthermore, these schemes do not allow reducing the backshift from the III-V edge to the component, thus limiting the reduction in die size.

本案提出的實施例提供了用於結合SOI晶圓與化合物半導體(例如,形成在III-V材料上的半導體)結合的方案。實施例提供在成長之後並且在結合操作之前將保護材料(例如,Al2O3)的薄層添加到化合物半導體(例如,III-V族基半導體)中的結合表面。在一些示例中,薄層的添加是經由ALD執行,但也可以利用其他沉積方法。Al2O3防止III-V材料在結合之後受酸性蝕刻劑影響,並且也增加了結合的剪切強度(例如,與SiO2相比較)。另外,保護材料導致更少的缺陷、更高的產量,並且提供了製造 更小光學電路、同時使用更少材料的能力。 Embodiments presented in this case provide solutions for bonding SOI wafers with compound semiconductors (eg, semiconductors formed on III-V materials). Embodiments provide bonding surfaces where a thin layer of protective material (eg, Al 2 O 3 ) is added to compound semiconductors (eg, III-V-based semiconductors) after growth and prior to the bonding operation. In some examples, the addition of thin layers is performed via ALD, but other deposition methods may also be utilized. Al 2 O 3 prevents III-V materials from being affected by acidic etchants after bonding, and also increases the shear strength of the bond (eg, compared to SiO 2 ). Additionally, the protective material results in fewer defects, higher yields, and provides the ability to fabricate smaller optical circuits while using less material.

一個一般方面包括一種方法,該方法包括以下操作以:形成化合物半導體;將保護材料的連續膜沉積在化合物半導體的第一表面上;以及形成SOI晶圓,其中SOI晶圓包括一個或多個波導。該方法還包括將第一表面處的化合物半導體結合到SOI晶圓以形成結合結構,以及處理該結合結構。保護材料在結合結構的處理期間保護化合物半導體免受酸性蝕刻劑影響。 One general aspect includes a method comprising the operations of: forming a compound semiconductor; depositing a continuous film of protective material on a first surface of the compound semiconductor; and forming an SOI wafer, wherein the SOI wafer includes one or more waveguides . The method also includes bonding the compound semiconductor at the first surface to the SOI wafer to form a bonded structure, and processing the bonded structure. The protective material protects the compound semiconductor from acidic etchants during processing of the bonded structure.

一個一般方面包括一種結合結構,該結合結構包括:化合物半導體,其包括沉積在化合物半導體的第一表面上的保護材料的連續膜;以及SOI晶圓。SOI晶圓包括一個或多個波導,其中化合物半導體在第一表面處被結合到SOI晶圓以形成半導體結構;該結合結構係可處理以於化合物半導體上圖案化電路。保護材料在結合結構的處理期間保護化合物半導體免受酸性蝕刻劑。 One general aspect includes a bonded structure comprising: a compound semiconductor including a continuous film of protective material deposited on a first surface of the compound semiconductor; and an SOI wafer. The SOI wafer includes one or more waveguides, wherein a compound semiconductor is bonded to the SOI wafer at a first surface to form a semiconductor structure; the bonded structure can be processed to pattern circuits on the compound semiconductor. The protective material protects the compound semiconductor from acidic etchants during processing of the bonded structure.

一個一般方面包括一種方法,該方法包括以下操作以:形成III-V族基半導體;在III-V族基半導體的第一表面上沉積Al2O3連續膜;分割III-V族基半導體以產生磊晶裸片;以及電漿清洗磊晶裸片。該方法還包括以下操作以:形成SOI晶圓,其中SOI晶圓包括一個或多個波導;將磊晶裸片的第一表面放置在SOI晶圓上;將磊晶裸片結合到SOI晶圓以形成結合結構;通過研磨和化學操作移除磊晶裸片的基板;以及處理結合結構,其中Al2O3在結合結構的處理期間保護磊晶裸片免受酸性蝕刻劑影響。 A general aspect includes a method comprising the operations of: forming a III-V-based semiconductor; depositing a continuous film of Al2O3 on a first surface of the III-V-based semiconductor; dividing the III-V-based semiconductor to producing an epitaxial die; and plasma cleaning the epitaxial die. The method also includes the operations of: forming an SOI wafer, wherein the SOI wafer includes one or more waveguides; placing the first surface of the epitaxial die on the SOI wafer; bonding the epitaxial die to the SOI wafer to form a bonded structure; remove the substrate of the epitaxial die by grinding and chemical operations; and process the bonded structure, wherein Al 2 O 3 protects the epitaxial die from acidic etchants during processing of the bonded structure.

第一圖係根據一些例示實施例說明異質性材料的結合。第一圖示出了在結合在一起之前的化合物半導體102和SOI晶圓104的截面。SOI 晶圓104或絕緣體上矽晶圓被產生為具有矽基底120、在矽基底120上的SiO2層118、以及提供低損耗路由的矽波導122。另外,在波導122的上方添加一SiO2結合層116。SOI晶圓是通過形成且圖案化矽波導而製造,且接著SOI晶圓係經電漿清洗。為了描述簡單起見,SOI晶圓中的其他層和電路都被省略,但是本領域的技術人員將容易理解到,SOI晶圓可以包括多個電路和層。 The first figure illustrates the incorporation of heterogeneous materials according to some exemplary embodiments. The first figure shows a cross-section of the compound semiconductor 102 and SOI wafer 104 before bonding together. The SOI wafer 104 or silicon-on-insulator wafer is produced with a silicon substrate 120, a SiO2 layer 118 on the silicon substrate 120, and a silicon waveguide 122 that provides low-loss routing. Additionally, a SiO 2 bonding layer 116 is added over the waveguide 122 . SOI wafers are fabricated by forming and patterning silicon waveguides, and then the SOI wafers are plasma cleaned. For simplicity of description, other layers and circuits in the SOI wafer are omitted, but those skilled in the art will readily understand that the SOI wafer may include multiple circuits and layers.

此外,化合物半導體102係另獨立成長。在一些例示實施例中,化合物半導體102係使用III-V類型材料(一種可生產高效雷射器、調變器和偵測器的材料類型)。 In addition, the compound semiconductor 102 is grown independently. In some exemplary embodiments, compound semiconductor 102 uses type III-V materials (a type of material that can produce high-efficiency lasers, modulators, and detectors).

在一些例示實施例中,化合物半導體102包括InP基板的基底並且添加附加層。在第一圖的例示實施例中,層包括了InGaAs層110、另一InP層、量子阱(QWs)層112、另一InP層114、超晶格106、以及InP結合層108。 In some example embodiments, compound semiconductor 102 includes a base of an InP substrate and additional layers are added. In the exemplary embodiment of the first figure, the layers include an InGaAs layer 110 , another InP layer, a quantum well (QWs) layer 112 , another InP layer 114 , a superlattice 106 , and an InP bonding layer 108 .

應注意到,可形成大型III-V半導體,然後在結合之前將其分割為多個磊晶裸片。磊晶裸片在本文被稱為化合物半導體102,且磊晶裸片被結合到SOI晶圓。 It should be noted that large III-V semiconductors can be formed and then singulated into multiple epitaxial dies prior to bonding. The epitaxial die is referred to herein as compound semiconductor 102, and the epitaxial die is bonded to an SOI wafer.

化合物半導體102和SOI晶圓104的組合是被期望的,因為矽提供低損耗波導路由,而且III-V材料提供高效的光屬性。因為它們是不同類型的材料,化合物半導體102和SOI晶圓104被結合在一起。不同的氧化物類型的結合材料可以被用於將兩個半導體連接在一起。 The combination of compound semiconductor 102 and SOI wafer 104 is desirable because silicon provides low loss waveguide routing and III-V materials provide efficient optical properties. Because they are different types of materials, the compound semiconductor 102 and the SOI wafer 104 are bonded together. Bonding materials of different oxide types can be used to connect the two semiconductors together.

在一些例示實施例中,化合物半導體102和SOI晶圓104被放置在一起,並且然後對其施加壓力和熱量以使其結合在一起。然後,它們可以進行電漿清洗,並且可進行進一步的步驟以在化合物半導體102上形成 電路。亦即,在此時點,矽圖案化完成,但是III-V圖案化仍然在進行中。在其他結合方法中,係使用聚合物(例如,苯並環丁烯,其通常簡寫為BCB)結合,使得III-V可利用聚合物而對矽連接。 In some example embodiments, compound semiconductor 102 and SOI wafer 104 are placed together, and pressure and heat are then applied to bond them together. Then, they can be plasma cleaned and further steps can be taken to form circuits on the compound semiconductor 102. That is, at this point, silicon patterning is complete, but III-V patterning is still in progress. In other bonding methods, a polymer (eg, benzocyclobutene, which is often abbreviated as BCB) is used to bond, allowing III-V to link to the silicon using the polymer.

應注意到,第一圖中所說明的實施例是示例,而且並未描述每個可能的實施例。其他實施例可以在化合物半導體102和SOI晶圓104上利用不同的、附加的或更少的層。因此,第一圖中所說明的實施例不應當被解釋為專有的或限制性的,而是說明性的。 It should be noted that the embodiment illustrated in the first figure is an example and not every possible embodiment is described. Other embodiments may utilize different, additional, or fewer layers on compound semiconductor 102 and SOI wafer 104 . Accordingly, the embodiments illustrated in the first figure should not be construed as proprietary or restrictive, but rather illustrative.

第二圖係根據一些例示實施例說明因結合結構的處理期間利用的酸而對化合物半導體的損害。在兩個半導體被結合在一起之後,進行化合物半導體102的附加處理。一些操作可以包括利用酸來使化合物半導體基板202銳利化以減少化合物半導體厚度。 A second graph illustrates damage to compound semiconductors due to acids utilized during processing of bonded structures, according to some illustrative embodiments. After the two semiconductors are bonded together, additional processing of the compound semiconductor 102 is performed. Some operations may include sharpening the compound semiconductor substrate 202 with an acid to reduce compound semiconductor thickness.

然而,當使用酸時,酸可能在化合物半導體102的底部204處使其銳利,或可能沿著矽波導122產生損害。因為在邊緣處存在有損害204,所以必須移除邊緣,其限制半導體可以達多小。 However, when an acid is used, the acid may sharpen it at the bottom 204 of the compound semiconductor 102 or may cause damage along the silicon waveguide 122 . Because there is damage 204 at the edge, the edge must be removed, which limits how small the semiconductor can be.

第三圖係根據一些實施例說明經由ALD 304來添加保護材料。在一些例示實施例中,保護材料306的薄膜係使用ALD 304而沉積在化合物半導體102上,產生了具有保護材料306的化合物半導體302。原子層沉積(ALD)是一種以氣相化學處理的依序使用為基礎的薄膜沉積技術。ALD被認為是化學氣相沉積的一種類型。大多數ALD反應是使用一般被稱為前驅物的兩種化學物質。這些前驅物以順序的、自我限制的方式一次一個地與材料的表面發生反應。通過對個別前驅物的重複曝光,即可緩慢地沉積出薄膜。 A third diagram illustrates the addition of protective material via ALD 304 according to some embodiments. In some illustrative embodiments, a thin film of protective material 306 is deposited on compound semiconductor 102 using ALD 304 , resulting in compound semiconductor 302 with protective material 306 . Atomic layer deposition (ALD) is a thin-film deposition technique based on the sequential use of vapor-phase chemical processes. ALD is considered a type of chemical vapor deposition. Most ALD reactions use two chemicals commonly referred to as precursors. These precursors react with the surface of the material one at a time in a sequential, self-limiting fashion. Thin films are slowly deposited by repeated exposure to individual precursors.

在此提出的實施例是使用Al2O3作為保護材料,但是也可以使用其他的介電材料,例如SiO2、HfO2、ZrO2、SiN、TiO2或其他介電薄膜。另外,雖以ALD來描述本實施例,但是也可以使用其他沉積方法作為替代,例如:電漿增強化學氣相沉積(PECVD)、離子束沉積(IBD)和射頻(RF)濺鍍。 The example presented here uses Al 2 O 3 as the protective material, but other dielectric materials such as SiO 2 , HfO 2 , ZrO 2 , SiN, TiO 2 or other dielectric films can also be used. Additionally, while ALD is used to describe this embodiment, other deposition methods may be used instead, such as plasma enhanced chemical vapor deposition (PECVD), ion beam deposition (IBD), and radio frequency (RF) sputtering.

沉積層的高度是在1至50奈米的範圍內,但是其他數值也是可行的。在一些例示實施例中,是使用10nm的層。 The height of the deposited layer is in the range of 1 to 50 nm, but other values are possible. In some exemplary embodiments, 10 nm layers are used.

使用ALD的優點之一在於,它改進了結合的剪切強度,因為除了其他原因外,其提供了更適合於結合的實質無缺陷層。ALD膜是完全共形的,因為在膜中不存在中斷、也沒有不連續性,而且還易於控制膜的厚度,使得層可以如同單一單層一樣小(幾近於奈米),並且一直向上達到數十或數百奈米。使用以LAD沉積的Al2O3的結果是,其極大地改進了結合品質。 One of the advantages of using ALD is that it improves the shear strength of the bond because, among other reasons, it provides a substantially defect-free layer that is more suitable for bonding. ALD films are fully conformal because there are no discontinuities or discontinuities in the film, and the thickness of the film can be easily controlled so that layers can be as small as a single monolayer (nearly nanometers), all the way up down to tens or hundreds of nanometers. The result of using Al 2 O 3 deposited with LAD is that it greatly improves the bonding quality.

第四圖係根據一些例示實施例說明通過結合化合物半導體和SOI晶圓而產生結合結構。在沉積了Al2O3之後,化合物半導體302和SOI晶圓104被結合在一起以產生結合結構304。例如,可以通過將兩個半導體放置在一起並且然後施用壓力和熱量而使其結合在一起。 A fourth diagram illustrates the creation of bonded structures by bonding compound semiconductors and SOI wafers, according to some example embodiments. After deposition of Al 2 O 3 , compound semiconductor 302 and SOI wafer 104 are bonded together to produce bonded structure 304 . For example, two semiconductors can be bonded together by placing them together and then applying pressure and heat.

此結合形成了III-V上的氧化物和矽上的氧化物,而且這些氧化物使化合物半導體302和SOI晶圓104保持連接。 This combination forms oxides on III-V and oxides on silicon, and these oxides keep compound semiconductor 302 and SOI wafer 104 connected.

第五圖係根據一些例示實施例說明沒有超晶格的化合物結構。將Al2O3合併到在化合物半導體上的缺點在於會增加III-V與矽波導的分離。PIC中的光學操作需要將光模(即,光)從一個材料傳送到另一個;因 此會希望能夠減少所述分離。 A fifth figure illustrates compound structures without superlattices according to some exemplary embodiments. The disadvantage of incorporating Al 2 O 3 on compound semiconductors is the increased separation of the III-V from the silicon waveguide. Optical operations in PICs require the transmission of optical modes (ie, light) from one material to another; it would therefore be desirable to be able to reduce the separation.

在光子積體電路中,光在矽波導中的晶片周圍被路由,然後在III-V材料中發生主動光學功能(例如雷射器、偵測器和調變器)。因此,在主動元件中,存在矽與III-V之間的耦合。Al2O3增加了矽與III-V之間的間隙的厚度,因此耦合的性能被減小。矽與III-V的主動層之間的間隙越小,兩個材料之間的耦合越好。 In photonic integrated circuits, light is routed around a wafer in silicon waveguides, and then active optical functions (such as lasers, detectors, and modulators) occur in III-V materials. Therefore, in an active device, there is a coupling between silicon and III-V. Al 2 O 3 increases the thickness of the gap between silicon and III-V, so the performance of coupling is reduced. The smaller the gap between the silicon and the active layer of the III-V, the better the coupling between the two materials.

在一些例示實施例中,方案是要減小光學耦合的距離,例如通過消除化合物半導體502中的超晶格。超晶格包括在非常薄的層中一個接一個成長的兩個材料。例如,超晶格層可以是大約10nm,而其他層可以在數十或數百奈米內。超晶格的目的是防止缺陷從底面向上移動到材料中。超晶格層作為缺陷阻止機制,並且改進元件的可靠性。超晶格的移除使化合物半導體具有結合缺陷的風險,然而其亦改進了矽與化合物半導體之間的耦合性能。 In some example embodiments, the solution is to reduce the distance of optical coupling, such as by eliminating superlattices in compound semiconductor 502 . A superlattice consists of two materials grown one after the other in very thin layers. For example, a superlattice layer can be on the order of 10 nm, while other layers can be within tens or hundreds of nanometers. The purpose of a superlattice is to prevent defects from moving up into the material from the bottom surface. The superlattice layer acts as a defect prevention mechanism and improves device reliability. The removal of the superlattice exposes the compound semiconductor to the risk of bonding defects, however it also improves the coupling properties between the silicon and the compound semiconductor.

然而,Al2O3層藉由移動結合界面使其遠離化合物半導體表面而提供了類似保護。同時,III-V到矽波導的距離(即,光學限制)減少,這改進了耦合性能,而且也改進了結合的品質。移除超晶格是折衷方式,但是以採用Al2O3層的總體性能較佳。 However, the Al2O3 layer provides similar protection by moving the bonding interface away from the compound semiconductor surface. At the same time, the distance of the III-V to the silicon waveguide (ie, the optical confinement) is reduced, which improves the coupling performance, but also improves the quality of the bonding. Removing the superlattice is a compromise, but overall performance is better with an Al 2 O 3 layer.

在模擬中,與具有超晶格、但是沒有Al2O3層的化合物半導體相比較,具有10nm Al2O3層且沒有超晶格的偵測器回應性和調變器插入損耗是更好的。 In simulations, the detector responsivity and modulator insertion loss were better with a 10 nm Al2O3 layer and no superlattice compared to a compound semiconductor with a superlattice, but no Al2O3 layer of.

第六圖係根據一些例示實施例說明Al2O3增強型結合結構504如何在處理期間提供更好的保護。在對化合物結構502加入Al2O3 306之 後,應觀察到,來自於蝕刻602期間所利用的酸的損害係大幅減少。在化合物半導體的邊緣上以及沿著矽波導的損害都減少。 The sixth figure illustrates how the Al 2 O 3 enhanced bonding structure 504 provides better protection during processing, according to some example embodiments. After adding Al 2 O 3 306 to compound structure 502, it should be observed that the damage from the acid utilized during etching 602 is greatly reduced. Damage is reduced at the edge of the compound semiconductor as well as along the silicon waveguide.

在一些實驗室測試中,而且是被作為示例而非用於限制性所提出的,在具有10nm的Al2O3的層的邊緣處所觀察到的損害實際上被消除。在2nm以及在5nm處,觀察到邊緣處的一些損害,但是損害比不使用Al2O3層的情況更少。此外,結合的剪切強度亦獲提升。下文提供了更多樣本結果,請參閱第七圖。 In some laboratory tests, and presented by way of example and not limitation, the damage observed at the edge of the layer with 10 nm Al 2 O 3 was practically eliminated. At 2nm as well as at 5nm, some damage at the edges is observed, but less damage than without the Al2O3 layer. In addition, the shear strength of the bond is also improved. More sample results are provided below, see Figure 7.

第七圖根據一些例示實施例說明通過利用保護層所獲得的改進的一些結果。針對有和沒有Al2O3半導體執行一些測試,並且測量結合的邊緣上的損害。 Figure 7 illustrates some of the results of the improvements obtained by utilizing protective layers according to some example embodiments. Some tests were performed with and without Al 2 O 3 semiconductors and the damage on the bonded edges was measured.

畫面702描述了對於沒有ALD Al2O3的結合結構所取得的影像,而畫面704描述了對於具有ALD Al2O3 10nm厚的結合結構所取得的影像。畫面702顯示出在結合的邊緣處存在損害(因有材料耗失),而具有ALD Al2O3的結合結構則顯示出沒有可觀察到的損害。ALD Al2O3的邊緣是連續的而且未損害的,並且不存在蝕刻不足。 Picture 702 depicts the image taken for the bonded structure without ALD Al2O3 , while picture 704 depicts the image taken for the bonded structure with ALD Al2O3 10 nm thick. Panel 702 shows damage at the edges of the bond (due to material loss), while the bond structure with ALD Al2O3 shows no observable damage. The edges of ALD Al 2 O 3 are continuous and undamaged, and there is no underetching.

藉由檢查使結合結構分離所需要的力的量來測量剪切強度。在一些測試中,ALD Al2O3半導體的剪切強度是沒有Al2O3的半導體的剪切強度的大約2.5倍。 Shear strength is measured by examining the amount of force required to separate the bonded structures. In some tests, the shear strength of the ALD Al 2 O 3 semiconductor was approximately 2.5 times that of the semiconductor without Al 2 O 3 .

在其他測試中,針對不同的半導體結構測量偵測器關於光回應性的性能。由於已經從化合物結構中消除超晶格,提升了光回應性,因為Al2O3層比超晶格更薄,這導致更緊密的光耦合。 In other tests, the performance of the detectors with respect to photoresponsivity was measured for different semiconductor structures. Since the superlattice has been eliminated from the compound structure, the photoresponsivity is improved because the Al2O3 layer is thinner than the superlattice, which results in tighter optical coupling.

第八圖係根據一些實施例說明利用Al2O3層獲得的產量提高 增益。ALD Al2O3半導體的益處包括:(a)減少或消除了在結合之前在III-V塊上所要求的電漿清洗,其允許更高的處理量;(b)可減少從III-V邊緣到元件的後移,因此可結合更小塊的III-V;(c)因為目前裸片大小是受III-V結合塊的大小所限制,因此減小了裸片大小,而且每晶圓有更多裸片;以及(d)大幅減少在了結合之後的III-V表面缺陷增長。 An eighth graph illustrates the yield enhancement gains obtained with Al 2 O 3 layers according to some embodiments. The benefits of ALD Al 2 O 3 semiconductors include: (a) reduction or elimination of plasma cleaning required on the III-V block prior to bonding, which allows higher throughput; (b) reduction from III-V edge-to-component back-off, so smaller III-V blocks can be bonded; (c) reduced die size because current die size is limited by the size of III-V bonding blocks, and per wafer There are more dies; and (d) greatly reduced III-V surface defect growth after bonding.

元件802未使用Al2O3所結合的半導體電路。元件802包括結合在SOI晶圓上面的四塊化合物半導體806。由於化合物半導體806的邊緣上的損害,故僅較少的部分808可以被用於最後的PIC。 Element 802 does not use a semiconductor circuit in which Al 2 O 3 is bonded. Element 802 includes four compound semiconductors 806 bonded on top of an SOI wafer. Due to damage on the edges of compound semiconductor 806, only a smaller portion 808 can be used for the final PIC.

元件804包括結合在SOI晶圓上面的四個化合物半導體810。由於化合物半導體810因Al2O3層所提供的保護而未受損害,故有完整的化合物半導體可以被用於PIC。 Element 804 includes four compound semiconductors 810 bonded on top of an SOI wafer. Since the compound semiconductor 810 is undamaged by the protection provided by the Al2O3 layer, there are complete compound semiconductors that can be used in the PIC.

還應注意到,因為化合物半導體未被損害,所以可將III-V塊更緊密地放置在一起,其導致更小的PIC和經改進的III-V使用,這導致對於III-V半導體能有較少的浪費和較低的成本。此外,由於對III-V半導體的浪費較少,因而在SOI晶圓上也存在更少的浪費,導致減少的矽花費。 It should also be noted that because compound semiconductors are not damaged, III-V blocks can be placed more closely together, which results in smaller PICs and improved III-V usage, which results in better performance for III-V semiconductors. Less waste and lower costs. In addition, there is less waste on SOI wafers due to less waste on III-V semiconductors, resulting in reduced silicon costs.

在一些示例中,可使用更簡單的製程,因為化合物半導體不對酸性化學品敏感。 In some examples, simpler processes can be used because compound semiconductors are not sensitive to acidic chemicals.

第九圖是利用ALD結合的光子和電子的異質集成方法900的流程圖。在操作902處,成長一化合物半導體材料;而且在操作904處,在操作902中成長的化合物半導體上沉積保護材料。在一些例示實施例中,係利用ALD進行沉積,而且保護材料是Al2O3,但是其他保護材料也是可能的。 The ninth figure is a flow diagram of a method 900 of heterogeneous integration of photons and electrons using ALD combining. At operation 902, a compound semiconductor material is grown; and at operation 904, a protective material is deposited on the compound semiconductor grown in operation 902. In some exemplary embodiments, ALD is used for deposition and the protective material is Al 2 O 3 , although other protective materials are possible.

在操作906處,III-V晶圓然後被分割成小塊以用於結合到SOI晶圓。在操作908處,電漿清洗磊晶裸片,確保表面在結合之前是非常乾淨的。 At operation 906, the III-V wafer is then diced for bonding to the SOI wafer. At operation 908, the epitaxial die is plasma cleaned, ensuring that the surfaces are very clean prior to bonding.

在操作910處,圖案化且製造SOI晶圓,包括矽波導;並且在操作912處以電漿清洗SOI晶圓。 At operation 910, the SOI wafer is patterned and fabricated, including silicon waveguides; and at operation 912, the SOI wafer is plasma cleaned.

在操作914處,將磊晶裸片放置在SOI晶圓表面上,並且在操作916處,對在SOI晶圓上面的磊晶裸片施加壓力和熱量以改進結合。 At operation 914, an epitaxial die is placed on the SOI wafer surface, and at operation 916, pressure and heat are applied to the epitaxial die on top of the SOI wafer to improve bonding.

從操作916,方法進行至操作918,其中通過研磨和化學蝕刻步驟(具有由保護材料層所提供的經改進的性能)移除磊晶裸片基板。在操作920處,對用於磊晶裸片和元件圖案化的異質結合結構執行附加步驟。 From operation 916, the method proceeds to operation 918, where the epitaxial die substrate is removed by grinding and chemical etching steps (with improved properties provided by the protective material layer). At operation 920, additional steps are performed on the heterojunction structure for epitaxial die and element patterning.

第十圖是根據一些例示實施例之用於製造結合結構的方法1000的流程圖。雖然第九圖和第十圖的流程圖中的各種操作被順序地呈現和描述,但是本領域的普通技術人員將理解到,操作中的一些或全部可以以不同的次序被執行、被組合或被省略或被並存執行。 Tenth Figure is a flow diagram of a method 1000 for fabricating a bonding structure in accordance with some illustrative embodiments. Although the various operations in the flowcharts of Figures 9 and 10 are presented and described sequentially, one of ordinary skill in the art will appreciate that some or all of the operations may be performed in a different order, combined or is omitted or executed concurrently.

在操作1002處,形成一化合物半導體(例如,第五圖的化合物半導體502)。從操作1002,方法進行至操作1004,其中保護材料的連續膜(例如,第五圖的Al2O3層306)係沉積在化合物半導體的第一表面上。 At operation 1002, a compound semiconductor (eg, compound semiconductor 502 of the fifth figure) is formed. From operation 1002, the method proceeds to operation 1004, where a continuous film of protective material (eg, the Al2O3 layer 306 of the fifth figure ) is deposited on the first surface of the compound semiconductor.

而且,在操作1006處,形成SOI晶圓(例如,第五圖的SOI晶圓104),其中SOI晶圓包括一個或多個波導122。從操作1006,方法進行到操作1008,以將第一表面處的化合物半導體結合到SOI晶圓以形成結合結構。 Also, at operation 1006 , an SOI wafer (eg, SOI wafer 104 of FIG. 5 ) is formed, wherein the SOI wafer includes one or more waveguides 122 . From operation 1006, the method proceeds to operation 1008 to bond the compound semiconductor at the first surface to the SOI wafer to form a bonded structure.

從操作1008,方法進行到操作1010以處理結合結構。保護材 料在結合結構的處理期間係防止化合物半導體酸性蝕刻劑影響。 From operation 1008, the method proceeds to operation 1010 to process the combined structure. The protective material protects the compound semiconductor acidic etchant during processing of the bonded structure.

在一個示例中,沉積連續膜係由原子層沉積執行。 In one example, depositing the continuous film system is performed by atomic layer deposition.

在一些示例中,保護材料是Al2O3。在其他示例中,保護材料是以下各項之一:SiO2、HfO2、ZrO2、SiN或TiO2In some examples, the protective material is Al 2 O 3 . In other examples, the protective material is one of: SiO 2 , HfO 2 , ZrO 2 , SiN or TiO 2 .

在一些示例中,連續膜具有介於2奈米與50奈米之間的高度,但是保護層的其他高度也是可能的(例如在從1奈米到100奈米的範圍內)。 In some examples, the continuous film has a height between 2 nm and 50 nm, although other heights of the protective layer are possible (eg, in the range from 1 nm to 100 nm).

在一些例示實施例中,化合物半導體是III-V晶圓。 In some exemplary embodiments, the compound semiconductor is a III-V wafer.

在一些例示實施例中,將化合物半導體結合到SOI晶圓還包括:將化合物半導體放置在SOI晶圓上;對化合物半導體和SOI晶圓施加壓力和熱量;以及移除壓力和熱量。 In some exemplary embodiments, bonding the compound semiconductor to the SOI wafer further includes: placing the compound semiconductor on the SOI wafer; applying pressure and heat to the compound semiconductor and the SOI wafer; and removing the pressure and heat.

在一些示例中,SOI晶圓包括直接在一個或多個波導之一上面的SiO2層,其中SiO2層被放置為與用於結合的化合物半導體的第一表面接觸。 In some examples, the SOI wafer includes a SiO 2 layer directly over one of the one or more waveguides, wherein the SiO 2 layer is placed in contact with the first surface of the compound semiconductor for bonding.

在一些示例中,化合物半導體不包括超晶格層以補償具有保護材料的連續膜的化合物半導體的增加的大小。 In some examples, the compound semiconductor does not include a superlattice layer to compensate for the increased size of the compound semiconductor with the continuous film of protective material.

在一些示例中,處理結合結構還包括:通過研磨和化學步驟從化合物半導體移除磊晶基板;在化合物半導體上進行元件圖案化。 In some examples, processing the bonded structure further includes: removing the epitaxial substrate from the compound semiconductor through grinding and chemical steps; and patterning the elements on the compound semiconductor.

貫穿本說明書,多個實例可以實現如單個實例所描述的部件、操作或者結構。儘管一個或多個方法的單獨的操作作為分離的操作被圖示描述,但是可以同時執行單獨的操作中的一個或多個並且不要求以所圖示的循序執行操作。呈現為示例配置中的分離的部件的結構和功能性可 以被實現為組合的結構或者部件。類似地,作為單個部件所呈現的結構和功能性可以被實現為分離的部件。這些和其他變型、修改、添加和改進落在本文中的主題的範圍內。 Throughout this specification, multiple instances may implement a component, operation, or structure as described by a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently and are not required to be performed in the order illustrated. Structure and functionality presented as separate components in the example configurations may be implemented as a combined structure or component. Similarly, structure and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions and improvements fall within the scope of the subject matter herein.

本文所圖示的實施例以足夠的細節被描述以使得本領域的技術人員能夠實踐所公開的教導。可以使用並且從其匯出其他實施例,使得在不脫離本公開的範圍的情況下,可以做出結構和邏輯替換和改變。因此,具體實施例中分將不以限制性意義理解,並且各種實施例的範圍僅由隨附的權利要求連同與被授權的這樣的權利要求的等同物的全部範圍一起定義。 The embodiments illustrated herein are described in sufficient detail to enable those skilled in the art to practice the disclosed teachings. Other embodiments may be used and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of the present disclosure. Therefore, the specific embodiments are not to be taken in a limiting sense, and the scope of the various embodiments is defined solely by the appended claims, along with the full scope of equivalents to which such claims are entitled.

如本文所使用的,術語“`或者,,可以以或者包括性或者專有性意義解釋。此外,多個實例可以被提供用於在本文被描述為單個實例的資源、操作或結構。此外,各種資源、操作、模組、引擎和資料存儲裝置之間的界限在某種程度上是任意的,並且在特定說明性配置的上下文中圖示了特定操作。功能的其他分配被設想並且可以落在本公開的各種實施例的範圍內。一般而言,在示例配置中被呈現為分離的資源的結構和功能可以被實現為組合的結構或資源。類似地,被呈現為單個資源的結構和功能可以被實現為分離的資源。這些和其他變型、修改、添加和改進落在如由隨附的權利要求所表示的本公開的實施例的範圍內。因此,說明書和附圖將被認為是說明性而非限制性意義。 As used herein, the term "or," may be interpreted in either an inclusive or exclusive sense. Furthermore, multiple instances may be provided for resources, operations or structures described herein as a single instance. Furthermore, The boundaries between the various resources, operations, modules, engines, and data storage devices are somewhat arbitrary, and particular operations are illustrated in the context of particular illustrative configurations. Other assignments of functionality are envisioned and may fall within the scope of Within the scope of various embodiments of the present disclosure. Generally speaking, the structure and function that are presented as separate resources in the example configuration can be implemented as a combined structure or resource. Similarly, the structures presented as a single resource and Functions can be implemented as separate resources. These and other variations, modifications, additions and improvements fall within the scope of embodiments of the present disclosure as represented by the appended claims. Therefore, description and accompanying drawings will be considered as In an illustrative rather than a restrictive sense.

104‧‧‧SOI晶圓 104‧‧‧SOI wafer

122‧‧‧矽波導 122‧‧‧Silicon Waveguide

306‧‧‧保護材料 306‧‧‧Protective Materials

502‧‧‧化合物半導體 502‧‧‧Compound Semiconductors

504‧‧‧結合結構 504‧‧‧Combination structure

602‧‧‧蝕刻 602‧‧‧Etching

Claims (20)

一種半導體製造之方法,包括:形成一化合物半導體;在所述化合物半導體的一第一表面上沉積一保護材料之一連續膜;形成一絕緣體上矽(SOI)晶圓,所述SOI晶圓包括一個或多個波導;藉由將所述第一表面處的所述化合物半導體放置(placing)到所述SOI晶圓以形成一結合結構(bonded structure),使得所述保護材料之所述連續膜與所述SOI晶圓接觸且施加熱量;以及處理所述結合結構,所述保護材料在所述結合結構的所述處理期間保護所述化合物半導體免受酸性蝕刻劑影響。 A semiconductor manufacturing method, comprising: forming a compound semiconductor; depositing a continuous film of a protective material on a first surface of the compound semiconductor; forming a silicon-on-insulator (SOI) wafer, the SOI wafer comprising one or more waveguides; the continuous film of the protective material is formed by placing the compound semiconductor at the first surface to the SOI wafer to form a bonded structure contacting the SOI wafer and applying heat; and processing the bond structure, the protective material protecting the compound semiconductor from an acidic etchant during the processing of the bond structure. 如申請專利範圍第1項所述的方法,其中沉積所述連續膜是藉由原子層沉積來執行。 The method of claim 1, wherein depositing the continuous film is performed by atomic layer deposition. 如申請專利範圍第1項所述的方法,其中所述保護材料是Al2O3The method of claim 1, wherein the protective material is Al 2 O 3 . 如申請專利範圍第1項所述的方法,其中所述保護材料是SiO2、HfO2、ZrO2、SiN或TiO2其中之一。 The method of claim 1, wherein the protective material is one of SiO 2 , HfO 2 , ZrO 2 , SiN or TiO 2 . 如申請專利範圍第1項所述的方法,其中所述連續膜具有介於2奈米和50奈米之間的高度。 The method of claim 1, wherein the continuous film has a height of between 2 nanometers and 50 nanometers. 如申請專利範圍第1項所述的方法,其中所述化合物半導體是一III-V晶圓。 The method of claim 1, wherein the compound semiconductor is a III-V wafer. 如申請專利範圍第1項所述的方法,其中將所述化合物半導體放置到所述SOI晶圓進一步包括: 將所述化合物半導體放置在所述SOI晶圓上;對所述化合物半導體和所述SOI晶圓施加壓力和熱量;以及移除所述壓力和熱量。 The method of claim 1, wherein placing the compound semiconductor onto the SOI wafer further comprises: placing the compound semiconductor on the SOI wafer; applying pressure and heat to the compound semiconductor and the SOI wafer; and removing the pressure and heat. 如申請專利範圍第1項所述的方法,其中所述SOI晶圓包括直接在所述一個或多個波導中的其中一個波導上方的一SiO2層,其中所述SiO2層被放置為與用於所述結合的所述化合物半導體的所述第一表面接觸。 The method of claim 1, wherein the SOI wafer includes a layer of SiO2 directly over one of the one or more waveguides, wherein the layer of SiO2 is positioned to The first surface of the compound semiconductor for the bonding is in contact. 如申請專利範圍第1項所述的方法,其中所述化合物半導體不包括一超晶格層以補償具有所述保護材料的所述連續膜之所述化合物半導體的增加的大小。 The method of claim 1, wherein the compound semiconductor does not include a superlattice layer to compensate for an increased size of the compound semiconductor with the continuous film of the protective material. 如申請專利範圍第1項所述的方法,其中處理所述結合結構進一步包括:通過研磨和化學步驟從所述化合物半導體移除一磊晶基板;以及在所述化合物半導體上進行元件圖案化。 The method of claim 1, wherein processing the bonded structure further comprises: removing an epitaxial substrate from the compound semiconductor through grinding and chemical steps; and patterning elements on the compound semiconductor. 一種半導體結合結構,包括:一化合物半導體,其包括被沉積在所述化合物半導體的一第一表面上的一保護材料之一連續膜;以及一絕緣體上矽(SOI)晶圓,所述SOI晶圓包括一個或多個波導,其中藉由將在所述第一表面處的所述化合物半導體放置到所述SOI晶圓以形成所述半導體結構,使得所述保護材料之所述連續膜與所述SOI晶圓接觸且施加熱量,其中所述結合結構係可處理以在所述化合物半導體上圖案化電路,所述保護材料在所述結合結構的所述處理期間保護所述化合物半導體免受酸性蝕刻劑影響。 A semiconductor bonding structure comprising: a compound semiconductor including a continuous film of a protective material deposited on a first surface of the compound semiconductor; and a silicon-on-insulator (SOI) wafer, the SOI crystal A circle includes one or more waveguides, wherein the semiconductor structure is formed by placing the compound semiconductor at the first surface onto the SOI wafer such that the continuous film of the protective material is connected to the SOI wafer. the SOI wafer is contacted and heat is applied, wherein the bonding structure is processable to pattern circuits on the compound semiconductor, the protective material protects the compound semiconductor from acid during the processing of the bonding structure Etchant effect. 如申請專利範圍第11項所述的結合結構,其中所述保護材料是Al2O3The bonding structure of claim 11, wherein the protective material is Al 2 O 3 . 如申請專利範圍第11項所述的結合結構,其中所述保護材料是SiO2、HfO2、ZrO2、SiN或TiO2其中之一。 The bonding structure of claim 11, wherein the protective material is one of SiO 2 , HfO 2 , ZrO 2 , SiN or TiO 2 . 如申請專利範圍第11項所述的結合結構,其中所述連續膜具有介於2奈米和50奈米之間的高度。 The bonding structure of claim 11, wherein the continuous film has a height between 2 nanometers and 50 nanometers. 如申請專利範圍第11項所述的結合結構,其中所述化合物半導體是一III-V晶圓。 The bonding structure of claim 11, wherein the compound semiconductor is a III-V wafer. 如申請專利範圍第11項所述的結合結構,其中所述SOI晶圓包括直接在所述一個或多個波導中的其中一個波導上的一SiO2層,其中所述SiO2層被放置為與用於所述結合的所述化合物半導體的所述第一表面接觸。 The bonding structure of claim 11, wherein the SOI wafer includes a layer of SiO2 directly on one of the one or more waveguides, wherein the layer of SiO2 is positioned as in contact with the first surface of the compound semiconductor for the bonding. 一種半導體製造方法,包括:形成一III-V族基半導體;在所述III-V族基半導體的一第一表面上沉積Al2O3之一連續膜;分割所述III-V族基半導體以產生一磊晶裸片;電漿清洗所述磊晶裸片;形成一絕緣體上矽(SOI)晶圓,所述SOI晶圓包括一個或多個波導;將所述磊晶裸片的所述第一表面放置在所述SOI晶圓上;藉由將所述磊晶裸片放置到所述SOI晶圓以形成一結合結構,使得所述連續膜與所述SOI晶圓接觸且施加熱量;通過研磨和化學操作來移除所述磊晶裸片的一基板;以及處理所述結合結構,所述Al2O3在所述結合結構的所述處理期間保護所述磊晶裸片免受酸性蝕刻劑影響。 A semiconductor manufacturing method, comprising: forming a III-V group-based semiconductor; depositing a continuous film of Al 2 O 3 on a first surface of the III-V group-based semiconductor; dividing the III-V group-based semiconductor to generate an epitaxial die; plasma clean the epitaxial die; form a silicon-on-insulator (SOI) wafer including one or more waveguides; The first surface is placed on the SOI wafer; by placing the epitaxial die on the SOI wafer to form a bonded structure, the continuous film is brought into contact with the SOI wafer and heat is applied ; removing a substrate of the epitaxial die by grinding and chemical operations; and processing the bonded structure, the Al 2 O 3 protecting the epitaxial die from Affected by acid etchants. 如申請專利範圍第17項所述的方法,其中沉積所述連續膜是藉由原子層沉積來執行。 The method of claim 17, wherein depositing the continuous film is performed by atomic layer deposition. 如申請專利範圍第17項所述的方法,其中將所述磊晶裸片結合到所述SOI晶圓係進一步包括:對所述磊晶裸片和所述SOI晶圓施加壓力和熱量;以及移除所述壓力和熱量。 The method of claim 17, wherein bonding the epitaxial die to the SOI wafer system further comprises: applying pressure and heat to the epitaxial die and the SOI wafer; and The pressure and heat are removed. 如申請專利範圍第17項所述的方法,其中所述SOI晶圓包括直接在所述一個或多個波導中的其中一個波導上方的一SiO2層,其中所述SiO2層被放置為與用於所述結合的所述化合物半導體的所述第一表面接觸。 17. The method of claim 17, wherein the SOI wafer includes a layer of SiO2 directly over one of the one or more waveguides, wherein the layer of SiO2 is positioned with the The first surface of the compound semiconductor for the bonding is in contact.
TW107115024A 2018-05-03 2018-05-03 Atomic layer deposition bonding for heterogeneous integration of photonics and electronics TWI755529B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107115024A TWI755529B (en) 2018-05-03 2018-05-03 Atomic layer deposition bonding for heterogeneous integration of photonics and electronics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107115024A TWI755529B (en) 2018-05-03 2018-05-03 Atomic layer deposition bonding for heterogeneous integration of photonics and electronics

Publications (2)

Publication Number Publication Date
TW201947632A TW201947632A (en) 2019-12-16
TWI755529B true TWI755529B (en) 2022-02-21

Family

ID=69583100

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107115024A TWI755529B (en) 2018-05-03 2018-05-03 Atomic layer deposition bonding for heterogeneous integration of photonics and electronics

Country Status (1)

Country Link
TW (1) TWI755529B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10168475B2 (en) 2017-01-18 2019-01-01 Juniper Networks, Inc. Atomic layer deposition bonding for heterogeneous integration of photonics and electronics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1、 LI XIANG ET AL: ‘Design and Analysis of 2-[mu]m InGaSb’GaSb Quantum Well Lasers Integrated Onto Silicon-on-Insulator (SQl) Waveguide Circuits Through an A1203 Bonding Layer", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 22, no. 6, 25 April 2016 (2016-04-25), pages 1-7, XPO1 1615555, ISSN: 1077-260X, DOI: 10.1109/JSTQE.2016.2553448 [retrie *

Also Published As

Publication number Publication date
TW201947632A (en) 2019-12-16

Similar Documents

Publication Publication Date Title
US11237325B2 (en) Atomic layer deposition bonding for heterogeneous integration of photonics and electronics
US10312661B2 (en) III-V chip preparation and integration in silicon photonics
US11698488B2 (en) Method for fabricating a heterostructure comprising active or passive elementary structure made of III-V material on the surface of a silicon-based substrate
EP3785294B1 (en) Device including structure over airgap
RU2639612C1 (en) Method of producing "silicon on insulator" substrate and "silicon on insulator" substrate
JP2022511666A (en) Silicon-based substrates, substrates and their manufacturing methods, and optoelectronic devices
KR102678638B1 (en) Atomic layer deposition bonding for heterogeneous integration of photonics and electronics
TWI755529B (en) Atomic layer deposition bonding for heterogeneous integration of photonics and electronics
TWI797971B (en) Atomic layer deposition bonding for heterogeneous integration of photonics and electronics
WO2014190890A1 (en) Composite substrate having isolation layer and manufacturing method thereof
TW201729355A (en) Method of manufacturing a hybrid substrate
EP3455911A1 (en) Iii-v chip preparation and integration in silicon photonics
US11088244B2 (en) Devices having substrates with selective airgap regions
US12117629B2 (en) Fabrication of optical devices utilizing dicing to maximize chamber space
JPH03191549A (en) Manufacture of compound semiconductor device on si substrate
WO2017049277A1 (en) Semiconductor layer variation for substrate removal after bonding
US9927572B1 (en) Hybrid photonic device structures
TW202414568A (en) Photonic semiconductor-on-insulator (soi) substrate and method for forming thereof
JPH05226307A (en) Manufacture of semiconductor substrate
CN113671771A (en) Preparation of silicon carbide and nitride structures on carrier substrates
CN117543340A (en) Epitaxial structure of semiconductor laser and preparation method of semiconductor laser
US20180013260A1 (en) Bonding interface layer