TWI754109B - Deterioration state judging device and degradation state judging method - Google Patents
Deterioration state judging device and degradation state judging method Download PDFInfo
- Publication number
- TWI754109B TWI754109B TW107137316A TW107137316A TWI754109B TW I754109 B TWI754109 B TW I754109B TW 107137316 A TW107137316 A TW 107137316A TW 107137316 A TW107137316 A TW 107137316A TW I754109 B TWI754109 B TW I754109B
- Authority
- TW
- Taiwan
- Prior art keywords
- value
- characteristic
- secondary battery
- initial
- processing element
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/3644—Constructional arrangements
- G01R31/3648—Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3842—Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/569—Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Indicating And Signalling Devices For Elevators (AREA)
Abstract
[課題]提供即使對象之二次電池自身的特性參數的初期測定結果不存在的場合,也可以判定該二次電池的劣化狀態之裝置。 [解決手段]藉由使表示二次電池(220)的特性之複數特性參數p之各個的本次測定值p(k)被輸入至初期特性模型,計算第1特性參數之初期特定推定值p1 (0←k)作為該初期特性模型的輸出。根據第1特性參數的測定值p1 (k)之本次時間序列P1 (i),計算表示出對象的本次狀態之第1指標值F1 (i)。根據第1特性參數的初期特性推定值p1 (0←k)之本次時間序列P1 (0←k,i),計算表示出對象的過去狀態之第2指標值F2 (i)。根據第1指標值F1 (i)與第2指標值F2 (i),判定出對象之劣化狀態。[Problem] To provide a device that can determine the deterioration state of the secondary battery even if there is no initial measurement result of the characteristic parameter of the secondary battery itself. [Solution] By inputting the current measured value p(k) of each of the complex characteristic parameters p representing the characteristics of the secondary battery (220) into the initial characteristic model, the initial specific estimated value p of the first characteristic parameter is calculated 1 (0←k) is the output of the initial characteristic model. From the current time series P 1 (i) of the measured values p 1 (k) of the first characteristic parameter, the first index value F 1 (i) representing the current state of the object is calculated. From the current time series P 1 (0←k,i) of the initial characteristic estimated value p 1 (0←k) of the first characteristic parameter, the second index value F 2 (i) representing the past state of the object is calculated. Based on the first index value F 1 (i) and the second index value F 2 (i), the deterioration state of the object is determined.
Description
本發明係關於判定鋰離子電池等二次電池的劣化狀態之系統等。The present invention relates to a system and the like for determining the deterioration state of a secondary battery such as a lithium ion battery.
根據二次電池的電流值、電壓值及周圍溫度之此次測定結果,藉由推定二次電池之電氣等價電路模型之模型參數值,診斷該二次電池的劣化之技術手段被提出來(參照專利文獻1)。 [先前技術文獻] [專利文獻]Based on the measurement results of the current value, voltage value and ambient temperature of the secondary battery, a technical means for diagnosing the deterioration of the secondary battery is proposed by estimating the model parameter values of the electrical equivalent circuit model of the secondary battery ( Refer to Patent Document 1). [Prior Art Literature] [Patent Literature]
[專利文獻1]日本特開2017-016991號公報[Patent Document 1] Japanese Patent Laid-Open No. 2017-016991
[發明所欲解決之課題][The problem to be solved by the invention]
但根據該先前技術的話,根據模型參數推定值之時間序列的變化量,診斷二次電池的劣化,所以為了判定二次電池由初期狀態起達到何種程度的劣化,以該二次電池自身的初期電流值等測定為前提。因此,對象之二次電池自身的電流值等初期測定結果不存在的場合,該二次電池的劣化狀態的判定變得困難。However, according to this prior art, the deterioration of the secondary battery is diagnosed based on the time-series change in the estimated value of the model parameter. Therefore, in order to determine the degree of deterioration of the secondary battery from the initial state, the secondary battery itself is used to determine the degree of deterioration of the secondary battery. It is premised on the measurement of the initial current value and the like. Therefore, when there is no initial measurement result, such as the current value of the target secondary battery itself, it becomes difficult to determine the deterioration state of the secondary battery.
在此,本發明的目的在於提供即使對象之二次電池自身的特性參數的初期測定結果不存在的場合,也可以判定該二次電池的劣化狀態之裝置。 [供解決課題之手段]Herein, an object of the present invention is to provide a device that can determine the deterioration state of a secondary battery even when there is no initial measurement result of the characteristic parameter of the secondary battery itself. [Means for solving problems]
相關於本發明之劣化狀態判定裝置,特徵為藉由把表示二次電池的特性之複數特性參數之各個的本次測定值,輸入至表示與前述二次電池相同規格的參照二次電池的初期特性之初期特性模型,計算前述複數特性參數之中的第1特性參數的初期特性推定值作為前述初期特性模型的輸出之第1演算處理要素、根據前述第1特性參數測定值之本次時間序列,計算表示前述對象的本次狀態之第1指標值,且根據藉由前述第1演算處理要素計算的前述第1特性參數的初期特性推定值之本次時間序列,計算表示前述對象的初期狀態之第2指標值的第2演算處理要素、以及根據藉由前述第2演算處理要素計算的前述第1指標值及前述第2指標值,判定以前述二次電池的初期狀態為基準的劣化狀態之第3演算處理要素。 [發明之效果]The deterioration state judging device according to the present invention is characterized in that the current measurement value of each of the plurality of characteristic parameters representing the characteristics of the secondary battery is input to the initial stage of the reference secondary battery representing the same specification as the secondary battery. The initial characteristic model of the characteristic is a first calculation processing element that calculates the initial characteristic estimated value of the first characteristic parameter among the above-mentioned complex characteristic parameters as the output of the above-mentioned initial characteristic model, and this time series based on the measured value of the above-mentioned first characteristic parameter , calculates the first index value indicating the current state of the object, and calculates the initial state of the object based on the current time series of the initial characteristic estimated values of the first characteristic parameter calculated by the first calculation processing element The second calculation processing element of the second index value, and the deterioration state based on the initial state of the secondary battery is determined based on the first index value and the second index value calculated by the second calculation processing element The third arithmetic processing element. [Effect of invention]
根據相關於本發明的劣化狀態判定裝置的話,根據對象的第1特性參數及第2特性參數之各個的「本次測定值(判定對象時間點之測定值)」,依照表示該對象的特性之初期特定模型計算第1特性參數之「初期特性推定值(作為初期狀態之推定值)」。進而,根據第1特性參數的測定值之本次時間序列(包含判定對象時間點的判定對象期間之測定值的時間序列)計算「第1指標值」,根據第1特性參數的初期特性推定值之本次時間序列(包含盼定對象時間點的判定對象期間之初期特性推定值的時間序列)計算「第2指標值」。接著,根據「第1指標值」與「第2指標值」,判定出對象之劣化狀態。 因此,即使在不存在劣化狀態的判定對象其自身的特性參數之初期或過去的測定結果的場合,也能判定該對象的劣化狀態。According to the deterioration state judging device according to the present invention, based on the "current measurement value (measurement value at the time point of the judgment object)" of each of the first characteristic parameter and the second characteristic parameter of the object, the characteristic of the object is expressed in accordance with the The initial specific model calculates the "initial characteristic estimated value (estimated value as the initial state)" of the first characteristic parameter. Furthermore, the "first index value" is calculated from the current time series of the measured values of the first characteristic parameter (the time series of the measured values during the determination target period including the determination target time point), and the initial characteristic estimated value of the first characteristic parameter is calculated. The "second index value" is calculated from the current time series (the time series including the estimated value of the initial characteristics of the determination target period at the expected target time point). Next, the deterioration state of the object is determined based on the "first index value" and the "second index value". Therefore, even when there is no initial or past measurement result of the characteristic parameter of the object for which the deterioration state is determined, the deterioration state of the object can be determined.
(劣化狀態判定裝置之構成)(Configuration of Deterioration State Determination Device)
作為圖1所示的本發明之一實施型態之劣化狀態判定裝置,藉由對象機器200與可透過網路通訊的一或複數伺服器所構成。劣化狀態判定裝置100,判定在對象機器200作為電源搭載的二次電池220的劣化狀態。The degradation state determination apparatus as one embodiment of the present invention shown in FIG. 1 is constituted by the
劣化狀態判定裝置100,具備:輸入要素102、輸出要素104、第1演算處理要素110、第2演算處理要素120與第3演算處理要素130。The deterioration
輸入要素102,由被搭載二次電池220的對象機器200接收特性參數之測定值。輸出要素104,對對象機器送出二次電池220的劣化狀態的判定結果或者因應於此而產生的劣化診斷資訊。The
第1演算處理要素110、第2演算處理要素120及第3演算處理要素130各個藉由處理器(演算處理裝置)、記憶體(記憶裝置)及I/O電路等構成。於該記憶體或者與此不同個之記憶裝置,除了表示二次電池220的特性之特性參數等種種資料以外,還記憶保持著程式(軟體)。供識別二次電池220或者被搭載此之對象機器200的種類之用的複數識別子之各個,與複數模型之各個被賦予對應關係而記憶保持於記憶體。處理器由記憶體讀取必要的程式及資料,根據該資料,藉由執行依照該程式之演算處理,執行被分派給各演算處理要素110、120、130之任務。The first
第1演算處理要素110,藉由使表示二次電池220的特性之複數特性參數p=(p1
,‥pn
)之各個的本次測定值p(k)被輸入至初期特性模型,計算複數特性參數p之中的第1特性參數p1
之初期特定推定值p1
(0←k)作為初期特性模型的輸出。「初期特性模型」表示因應於規格或種類的分別之二次電池的初期特性。初期特性模型,藉由函數G依照關係式(110)來表示。The first
函數G,藉由作為因應於複數特性參數p的本次測定值p(k)之第1初期特性參數q1 (p(k))之從變數的第2初期特性參數q2 (q1 (p(k))),及與第1特性參數p1 不同的第2特性參數p2 之本次測定值p2 (k)作為主變數的多變數函數G1 ,藉由關係式(111)來定義亦可。The function G is obtained by the second initial characteristic parameter q 2 (q 1 ( q 1 ( p(k))), and the current measured value p 2 (k) of the second characteristic parameter p 2 different from the first characteristic parameter p 1 as the multivariate function G 1 of the main variable, by the relational expression (111) can be defined.
函數G,作為藉由除了第2初期特性參數q2 (q1 (p(k))),與第2特性參數p2 之本次測定值p2 (k)之外,加上以第2特性參數之測定值p2 (j)成為0的時間點t=j之第1特性參數p1 的測定值p1 (j)為主變數的多變數函數G2 ,藉由關係式(112)定義亦可。The function G is obtained by adding the second initial characteristic parameter q 2 (q 1 (p(k))) and the current measured value p 2 (k) of the second characteristic parameter p 2 The measured value p 1 (j) of the first characteristic parameter p 1 at the time point t=j when the measured value p 2 (j) of the characteristic parameter becomes 0 is a multivariate function G 2 of which the main variable is the main variable, by the relational expression (112) Definition is also possible.
第2演算處理要素120,根據二次電池220的複數特性參數p的測定值p(k)之時間序列P(i)={p(i)|i=k,k+1,‥},把依照多變數函數f(p)算出的值f(p(k))=f(p1
(k),p2
(k),‥)之累積值或時間積分值作為第1指標值F1
來計算(參照關係式(121))。The second
第2演算處理要素120,根據第1特性參數p1
的初期特性推定值p1
(0←k)及其他特性參數pu
(u=2,3‥)的測定值pu
(k),把依照同一多變數函數f(p)算出的值f(p1
(0←k),p2
(k),‥)之累積值或時間積分值作為第2指標值F2
來計算(參照關係式(122))。The second
第3演算處理要素130,根據第1指標值F1
(i)及第2指標值F2
(i),依照關係式(130)計算二次電池220的劣化度D(i)。The third
對象機器200,具備:輸入界面202、輸出界面204、控制裝置210、二次電池220與感測器群222。對象機器200,包含個人電腦、行動電話(智慧型手機)、家電製品或電動自行車等移動體等、以二次電池220為電源的各種機器。The
控制裝置210,由處理器(演算處理裝置)、記憶體(記憶裝置)及I/O電路等構成。於該記憶體或者與此不同個之記憶裝置,記憶保持著特性參數的測定值的時間序列等種種資料。控制裝置210,因應於來自二次電池220的供給電力而動作,於通電狀態控制對象機器200的動作。於對象機器200的動作,包含構成該對象機器200的致動器(電動式致動器等)的動作。構成控制裝置210的處理器由記憶體讀取必要的程式及資料,根據該資料,藉由執行依照該程式之演算處理,執行被分派的任務。The
二次電池220,例如為鋰離子電池或電池胞,亦可為鎳鎘電池等其他的二次電池。感測器群222,除了二次電池220的特性參數以外,還測定對象機器200的控制所必要的參數之值。感測器群222,例如藉由輸出各個因應於二次電池220的電壓、電流及溫度的訊號之電壓感測器、電流感測器及溫度感測器來構成。The
劣化狀態判定裝置100,亦可被搭載於對象機器200。在此場合,軟體伺服器(省略圖示),亦可藉由對構成對象機器200所具備的控制裝置210之演算處理裝置送訊劣化判定用軟體,而對該演算處理裝置賦予作為劣化狀態判定裝置100之機能。The deterioration
(各演算處理要素的構成)(Configuration of each arithmetic processing element)
圖2顯示表示各演算處理要素110、120、130的機能之方塊圖。FIG. 2 is a block diagram showing the functions of the
第1演算處理要素110,具備作為第1初期特性模型參數記憶部112、第2初期特性模型參數初期特性推定值計算部114、及第1特性參數初期特性推定值計算部116之機能。第2演算處理要素120,具備作為第1指標值計算部121及第2指標值計算部122之機能。第3演算處理要素130具備作為劣化度計算部之機能。The first
第1初期特性模型參數記憶部112,記憶保持表示與參照二次電池相同規格或同一種類的任意二次電池的初期特性之第1初期特性模型參數q1
(p)。第1初期特性模型參數q1
(p),具有供識別二次電池的規格或種類之用的複數識別子ID及對應於複數特性參數p之各種測定值p的複數值。The first initial characteristic model
在本實施型態,二次電池220的端子間電壓V、電流I及溫度T,作為特性參數p=(p1
,p2
,p3
)來測定。特性參數p=(p1
,p2
,p3
)亦可為(V,T,I)、(I,V,T)、(I,T,V)、(T,I,V)或(T,V,I)。特性參數p亦可為2個(p1
,p2
),亦可為4個以上(p1
,‥pN
)(4≦N)。In this embodiment, the inter-terminal voltage V, current I, and temperature T of the
例如,於圖3所示的電氣等價電路模型,藉由適用第1初期特性模型參數q1
而定義初期特性模型。此電氣等價電路,藉由起電力V0
之內部電源及電阻值r之內電阻來構成。二次電池220的電氣等價電路模型的電氣特性,根據二次電池220的端子間電壓V、電流I、內部電源得起電力V0
及內電阻的電阻值r,依照關係式(210)定義。For example, in the electrical equivalent circuit model shown in FIG. 3 , an initial characteristic model is defined by applying the first initial characteristic model parameter q 1 . This electrical equivalent circuit is constituted by the internal power source of the electrification V 0 and the internal resistance of the resistance value r. The electrical characteristics of the electrical equivalent circuit model of the
規格不同的複數參照二次電池的電壓V(第1特性參數p1 )、電流I(第2特性參數p2 )及溫度T(第3特性參數p3 )、與初期狀態之該二次電池的內電阻的電阻值r之關係,根據基準電壓、基準電流Ia 及基準溫度Ta ,藉由關係式(212)近似表示。Plural numbers of different specifications refer to the voltage V (first characteristic parameter p 1 ), current I (second characteristic parameter p 2 ), and temperature T (third characteristic parameter p 3 ) of the secondary battery, and the secondary battery in the initial state The relationship between the resistance value r of the internal resistance of , is approximately expressed by the relational expression (212) according to the reference voltage, the reference current I a and the reference temperature T a .
基準電流Ia =0的場合,基準電壓Va 相當於內部電源的起電力V0 ,所以關係式(212)由關係式(214)表示。When the reference current I a = 0, the reference voltage Va corresponds to the electrification force V 0 of the internal power supply, so the relational expression (212) is represented by the relational expression (214).
初期狀態之二次電池的電壓V、電流I及溫度T被測定,根據該測定結果,於各種p=(V,I,T)之各個的組合,算出偏微分係數(∂r/∂ps
)(s=1,2,3)。如此進行對任意的p算出的偏微分係數(∂r/∂ps
),作為第1初期特性模型參數q1
(p)被記憶保持於第1初期特性模型參數記憶部112。根據離散的偏微分係數(∂r/∂ps
)的計算結果,對p=(V,I,T)之(∂r/∂ps
)藉由連續函數來近似表示,該連續函數作為第1初期特性模型參數q1
(p)被記憶保持於第1初期特性模型參數記憶部112亦可。The voltage V, current I, and temperature T of the secondary battery in the initial state are measured, and based on the measurement results, the partial differential coefficient (∂r/ ∂ps ) is calculated for each combination of p=(V, I, T). )(s=1,2,3). The partial differential coefficient (∂r/ ∂ps ) calculated for an arbitrary p in this way is memorized and held in the first initial characteristic model
以考慮內電阻的過渡回應特性的形式構築電氣等價電路模型亦可。例如,如圖3右上部分所示,內電阻藉由電阻(電阻值Rs )以及3個複合電阻(阻抗Z1 、Z2 、Z3 )被串聯連接而構成。第1複合電阻,由電阻(電阻值R0 )以及電感器(電感L0 )之並聯電路構成。第2複合電阻,由電阻(電阻值R1 )以及電容器(電容量C1 )之並聯電路構成。第2複合電阻,由一對電阻(電阻值R1 )及電阻(阻抗ZW )之串聯電路與電容器(電容量C2 )之並聯電路構成。內電阻的電阻值r依照關係式(216)定義。An electrical equivalent circuit model may be constructed in the form of considering the transient response characteristics of the internal resistance. For example, as shown in the upper right part of FIG. 3 , the internal resistance is formed by connecting a resistance (resistance value R s ) and three composite resistances (impedance Z 1 , Z 2 , Z 3 ) in series. The first composite resistor is composed of a parallel circuit of a resistor (resistance value R 0 ) and an inductor (inductance L 0 ). The second composite resistor is composed of a parallel circuit of a resistor (resistance value R 1 ) and a capacitor (capacitance C 1 ). The second composite resistor is composed of a pair of resistors (resistance value R 1 ) and a series circuit of a resistor (impedance Z W ) and a parallel circuit of a capacitor (capacitance C 2 ). The resistance value r of the internal resistance is defined according to relation (216).
在此場合,Rs
、Z1
、Z2
及Z3
之各個,藉由以與式(12)同樣的形式近似,對任意的p_m
=(V_m
,I_m
,T_m
)算出的偏微分係數(∂Z/∂pi
)(Z=Rs
、Z1
、Z2
、Z3
),作為第1初期特性模型參數q1
(V,I,T)被記憶保持於第1初期特性模型參數記憶部112亦可。In this case, by approximating each of R s , Z 1 , Z 2 and Z 3 in the same form as the formula (12), the bias calculated for an arbitrary p _m =(V _m , I _m , T _m ) The differential coefficient (∂Z/ ∂pi ) (Z=R s , Z 1 , Z 2 , Z 3 ) is stored in the first initial characteristic as the first initial characteristic model parameter q 1 (V, I, T) The model
第2初期特性模型參數初期特性推定值計算部114,除了二次電池220的識別子ID以外由第1初期特性模型參數記憶部112讀取複數對應於特性參數V,I及T之各個的本次測定值(V(k),I(k),T(k))之第1初期特性模型參數q1
。第2初期特性模型參數初期特性推定值計算部114,根據二次電池220的複數特性參數的本次測定值p(k)=(V(k), I(k),T(k)),與因應於該本次測定值p(k)的第1初期特性模型參數q1
(p(k)),依照關係式(218),計算內電阻的電阻值r作為第2初期特性模型參數q2
之本次初期特性推定值q2
(0←k)。The second initial characteristic model parameter initial characteristic estimated
第1特性參數初期特性推定值計算部116,根據二次電池220的電流測定值I(t)為0的最後時間點t=j之電壓V的測定值V(j)亦即基準測定值V0
(j),與電壓V的本次測定值V(k),與內電阻之本次初期特性推定值r(0←k),依照關係式(220)計算電壓V的本次初期特性推定值V(0←k)(參照關係式(112))。The first characteristic parameter initial characteristic estimated
二次電池220的電壓V的測定值V(j),被記憶保持於構成第1特性模型參數初期特性推定值計算部116的記憶部。其後,二次電池220的電流測定值I(t)成為0的場合,該時間點之二次電池220的電壓V的測定值V(j),作為初期特性模型之內部電源的本次起電力V0
(k)被覆寫保存於該記憶部。The measured value V(j) of the voltage V of the
第1演算處理要素110,藉由使表示二次電池220的特性之複數特性參數p=(p1
,‥pN
)之各個的本次測定值p(k)=(p1
(k),‥pN
(k))被輸入至表示初期特性模型的函數G,作為該初期特性模型的輸出G(p(k)),計算複數特性參數p之中的第1特性參數p1
之本次初期特定推定值p1
(0←k)。該函數G,例如係在關係式(14)的右邊第2項代入關係式(122)而得的函數。The first
第1指標值計算部121,根據二次電池220特性參數p的測定值p(k)=(V(k),I(k),T(k)),把依照多變數函數f(p)算出的值f(V(k),I(k),T(k))之累積值或時間積分值作為第1指標值F1
來計算(參照關係式(121))。第2指標值計算部122,根據電壓V的初期特性推定值V(0←k)以及電流I的測定值I(k)及溫度T的測定值T(k),把依照同一多變數函數f(V,I,T)算出的值f(V(0←k),I(k),T(k))之累積值或時間積分值作為第2指標值F2
來計算(參照關係式(122))。The first index
於圖5,初期狀態之二次電池220的電壓V(第1特性參數p1
(t))的時間變化態樣以實線表示,劣化狀態之二次電池220的電壓V的時間變化態樣以虛線表示。如圖5所示任意的期間採用作為累積區間或積分區間[t1
,t2
]亦可。由電流I成為0的最後時間點起之經過時間在特定期間以內之區間亦可作為該累積區間採用。In FIG. 5 , the time change pattern of the voltage V (the first characteristic parameter p 1 (t)) of the
替代該函數f,而依照至少以電壓V(第1特性參數p1 )為主變數的函數f1 (V)、f2 (V,I)及f3 (V,T)之中的至少1個,藉由與關係式(121)(122)同樣地使該函數(從變數)的值被累積或被積分而計算第1指標值F1 及第2指標值F2 亦可。In place of the function f, at least 1 of the functions f 1 (V), f 2 (V, I) and f 3 (V, T) having at least the voltage V (the first characteristic parameter p 1 ) as the main variable The first index value F 1 and the second index value F 2 may be calculated by accumulating or integrating the values of the function (subvariable) in the same manner as in relational expressions (121) and (122).
第3演算處理要素130(劣化度計算部),根據第1指標值F1 (i)及第2指標值F2 (i),依照關係式(130)計算二次電池220的劣化度D(i)。 The third arithmetic processing element 130 (deterioration degree calculation unit) calculates the degree of deterioration D ( i).
(劣化狀態判定方法)(Determination state determination method)
說明藉由前述構成的劣化狀態判定裝置執行的對象的劣化狀態判定方法。A method of judging the degradation state of an object to be executed by the degradation state judging device having the above-described configuration will be described.
於對象機器200,藉由通電狀態的控制裝置210判定是否第1條件被滿足(圖4/STEP202)。作為「第1條件」,於對象機器200,採用:通過輸入界面202有二次電池220的劣化狀態判定的要求、特定的應用軟體於對象機器200被啟動、或是二次電池220的特性參數的測定值顯示第1變化態樣等條件。In the
被判定未滿足第1條件的場合(圖4/STEP202‥NO),第1條件的充足性判定處理再度被執行(圖4/STEP202)。第1條件之充足性判定處理(圖4/STEP202)亦可省略。When it is determined that the first condition is not satisfied ( FIG. 4 / STEP202 ‥ NO ), the sufficiency determination process of the first condition is executed again ( FIG. 4 / STEP202 ). The sufficiency determination process ( FIG. 4 / STEP 202 ) of the first condition may be omitted.
被判定為滿足第1條件的場合(圖4/STEP202‥YES),根據感測器群222之輸出訊號,取得表示二次電池220的特性的複數特性參數p的測定值p(k)=(V(k),I(k), T(k))(圖4/STEP204)。「k」系表示因應於取樣周期的離散的時刻之指數。二次電池220的電壓V被測定作為第1特性參數p1
。二次電池220的電流I(包含充電電流及放電電流)被測定第2特性參數p2
。二次電池220的溫度T(殼體的周圍溫度或表面溫度)被測定作為第3特性參數p3
。在此測定的過程,電流I成為0的最後的時間點t=j之電壓V的測定值V(j),作為基準測定值V0
(j)被記憶保持於記憶體。When it is determined that the first condition is satisfied ( FIG. 4 /
接著,藉由控制裝置210判定是否第2條件被滿足(圖4/STEP206)。作為「第2條件」,採用:最後判定第1條件被滿足的第1時間點起到達經過特定時間的第2時間點、表示特性參數p(k)的測定結果之資料之由第1時間點起的累計值達到閾值、或是藉由感測器群222測定的二次電池220的特性參數的測定值顯示第2變化態樣等條件。Next, it is determined by the
被判定第2條件未被滿足的場合(圖4/STEP206‥NO),指數k僅被增加「1」(圖4/STEP208),而且取得各特性參數ps (s=1,2,3)的測定值ps (k)(圖4/STEP204)。此時,特性參數ps 的測定值ps (k)之本次時間序列Ps (i)={ps (i)|i=k,k+1,‥}被累積地保持於記憶體。When it is determined that the second condition is not satisfied (Fig. 4/STEP206‥NO), the index k is only increased by "1" (Fig. 4/STEP208), and each characteristic parameter p s (s=1, 2, 3) is obtained. The measured value of ps( k ) (Fig. 4/STEP204). At this time, the current time series P s (i)={ ps (i)|i=k,k+1,‥} of the measured value p s (k) of the characteristic parameter p s is accumulated in the memory .
被判定為滿足第2條件的場合(圖4/STEP206‥YES),特性參數ps的測定值ps(k)之本次時間序列PS(i),藉由構成輸出界面204的送訊裝置由對象機器200對劣化狀態判定裝置100送訊(圖4/STEP210)。此時,供識別二次電池220的規格或種類之識別子ID、及電壓V的基準測定值V0(j)也由對象機器200對劣化狀態判定裝置100送訊。因應於該送訊,指數i被僅增加「1」(圖4/STEP212),而且再度執行第1條件的充足性判定以後的處理(參照圖4/STEP202→STEP204→‥STEP210)。
When it is judged that the second condition is satisfied (FIG. 4/STEP206‥YES), the current time series P S (i) of the measured value p s (k) of the characteristic parameter p s is sent by the transmission of the
亦可為第2條件的充足性判定處理(圖4/STEP206)被省略,特性參數ps之本次測定值ps(k),與識別子ID及電壓V之基準測定值V0(j)一起由對象機器200對劣化狀態判定裝置100逐次送訊。
The sufficiency determination process (FIG. 4/STEP 206) of the second condition may be omitted, the current measured value ps ( k ) of the characteristic parameter ps, and the reference measured value V0 (j) of the identifier ID and the voltage V At the same time, the
於劣化狀態判定裝置100,輸入要素102,接收特性參數ps(k)之測定值的本次時間序列Ps(i)、識別子ID及電壓V之基準測定值V(j)(圖4/STEP102)。
In the degradation
第1演算處理要素110(第2初期特性模型參數計算部114),由記憶體(圖2/第1初期特性模型參數記憶部112)讀取對應於識別子ID及特性參數p的測定值p(k)之第1初期特性模型參數q1(p(k))(圖4/STEP104)。第1初期特性模型參數q1,為前述關係式(12)之偏微分係數(r/ps)。 The first arithmetic processing element 110 (the second initial characteristic model parameter calculation unit 114 ) reads the measured value p ( The first initial characteristic model parameter q 1 (p(k)) of k) (Fig. 4/STEP104). The first initial characteristic model parameter q 1 is the partial differential coefficient ( r/ ps ).
第1演算處理要素110(第2初期特性模型參數計算部114),根據二次電池220的特性參數p的本次測定值p(k),與第1初期特性模型參數q1(p(k)),依照關係式
(122),計算初期狀態模型之二次電池的內電阻之電阻值r之本次初期特性推定值r(0←k)作為第2初期特性模型參數q2(0←k)(圖4/STEP106)。
The first calculation processing element 110 (the second initial characteristic model parameter calculation unit 114 ) uses the current measured value p(k) of the characteristic parameter p of the
第1演算處理要素110(第1特性參數初期特性推定值計算部116),根據電壓V之基準測定值V0(j)、電流I之本次測定值I(k)及初期模型之內電阻的電阻值r之本次初期特性推定值r(0←k),依照關係式(220)計算電壓V的本次初期特性推定值V(0←k)(圖4/STEP108)。 The first calculation processing element 110 (the first characteristic parameter initial characteristic estimated value calculation unit 116 ) is based on the reference measurement value V 0 (j) of the voltage V, the current measurement value I (k) of the current I, and the internal resistance of the initial model The estimated value of this initial characteristic r(0←k) of the resistance value r is calculated according to the relational expression (220), and the estimated value V(0←k) of this initial characteristic of the voltage V is calculated (FIG. 4/STEP108).
第2演算處理要素120(第1指標值計算部121),至少根據作為第1特性參數p1的電壓V之測定值V(k)的本次時間序列V(i),例如依照關係式(121)計算第1指標值F1(i)(圖4/STEP110)。第2演算處理要素120(第2指標值計算部122),至少根據作為第1特性參數p1的電壓V之測定值V(k)的本次時間序列V(i),例如依照關係式(122)計算第2指標值F2(i)(圖4/STEP110)。 The second calculation processing element 120 (the first index value calculation unit 121 ) is based on at least the current time series V(i) of the measured value V(k) of the voltage V as the first characteristic parameter p1, for example, according to the relational expression ( 121) Calculate the first index value F 1 (i) (FIG. 4/STEP110). The second calculation processing element 120 (the second index value calculation unit 122 ) is based on at least the current time series V(i) of the measured value V(k) of the voltage V as the first characteristic parameter p1, for example, according to the relational expression ( 122) Calculate the second index value F 2 (i) (FIG. 4/STEP110).
第3演算處理要素130(劣化度計算部),根據第1指標值F1(i)及第2指標值F2(i),例如依照關係式(130)計算二次電池220的劣化度D(i)(圖4/STEP112)。
The third arithmetic processing element 130 (degradation degree calculation unit) calculates the degree of deterioration D of the
第3演算處理要素130,產生因應於二次電池220的劣化度D(i)之劣化診斷資訊Inf(D(i))(圖4/STEP114)。藉由構成輸出要素104的送訊裝置,診斷資訊Inf(D(i))由劣化狀態判定裝置100對對象機器200送訊(圖4/STEP116)。
The third
於對象機器200,構成輸入界面202的收訊裝
置接收劣化診斷資訊Inf(D(i))(圖4/STEP222)。於構成輸出界面204的顯示裝置,被輸出顯示劣化診斷資訊Inf(D(i))(圖4/STEP224)。藉此,例如圖6所示的,顯示二次電池220的劣化度D(i)的圖像顯示以外,「電池的劣化度為30%。建議在150日後進行交換。」之關於因應劣化度D(i)的對應方法等的訊息被顯示於顯示裝置。
In the
根據本發明之劣化狀態判定裝置及劣化狀態判定方法,省略劣化狀態的判定對象其自身之二次電池220的初期時間點/初期期間的特性參數p的測定,如圖5及圖7所示那樣根據具有任意的起點及終點的本次期間t=t1~t2之特性參數p的測定結果,來判定二次電池220的劣化狀態。因此,可以謀求二次電池220的劣化狀態判定所需要的期間的縮短。
According to the degradation state judging device and the degradation state judging method of the present invention, the measurement of the characteristic parameter p at the initial time point/initial period of the
對此,根據前述先前技術的話,為了判定二次電池220的劣化狀態,如圖8所示那樣不僅一定期間t=tx1~tx2之二次電池220的特性參數p=(V,I,T)的測定值之本次時間序列,也有必要使用本次以前(例如初期狀態)的一定期間t=t01~t02之二次電池220的特性參數p=(V,I,T)的測定值之過去時間序列。
On the other hand, according to the aforementioned prior art, in order to determine the deterioration state of the secondary battery 220 , as shown in FIG. 8 , not only the characteristic parameter p =(V,I, For the current time series of the measured values of T), it is necessary to use the characteristic parameter p=(V, I, T) of the
前述實施型態之二次電池220的劣化狀態判定方法,亦可針對構成一個或共通的二次電池模組(例如
電池)的同一規格的複數二次電池(電池胞)之各個來適用。
The method for judging the deterioration state of the
針對構成共通的二次電池模組之複數二次電池之各個,於相互不重複的複數期間之各個測定複數之特性參數p的本次測定值p(k)亦可。如圖9所示,考慮構成二次電池模組的第1~第4二次電池之各個的特性參數p(此處為作為第1特性參數p1之電壓V)變化的場合。此處為了4個特性參數p的曲線更容易看清,使該4條曲線於縱軸方向拉開顯示,並不意味著第1二次電池的第1特性參數p1之值總是比其他二次電池之值常態性地更高。 For each of the plurality of secondary batteries constituting the common secondary battery module, the current measurement value p(k) of the plurality of characteristic parameters p may be measured for each of the plurality of periods that do not overlap with each other. As shown in FIG. 9 , consider a case where the characteristic parameter p (here, the voltage V as the first characteristic parameter p 1 ) of each of the first to fourth secondary batteries constituting the secondary battery module varies. Here, in order to make the curves of the four characteristic parameters p easier to see, the four curves are displayed in the direction of the vertical axis, which does not mean that the value of the first characteristic parameter p 1 of the first secondary battery is always higher than that of the others. The value of the secondary battery is normally higher.
在此場合,各二次電池的特性參數p的測定期間以相互不重複的方式控制。第{mod(n,4)+1}之二次電池(n=1,2,3,4)的特性參數p的測定期間的開始時間點,在第n個二次電池的特性參數p的測定期間的結束時間點之後。接著,依照前述程序,判定各二次電池的劣化狀態(參照圖4)。構成二次電池模組的二次電池的個數比4還要少的場合或比4還要多的場合也相同。 In this case, the measurement periods of the characteristic parameters p of the respective secondary batteries are controlled so as not to overlap each other. At the start time point of the measurement period of the characteristic parameter p of the {mod(n,4)+1}th secondary battery (n=1, 2, 3, 4), at the characteristic parameter p of the n-th secondary battery After the end time point of the measurement period. Next, according to the aforementioned procedure, the deterioration state of each secondary battery is determined (see FIG. 4 ). The same applies to the case where the number of secondary batteries constituting the secondary battery module is less than four or more than four.
於前述其他實施型態,在構成一個二次電池模組的複數二次電池之中,亦可針對構成表示劣化狀態的劣化度D(i)為特定值以上的劣化二次電池群的一個二次電池或者複數二次電池之各個,判定劣化狀態。亦即,構成二次電池模組的複數二次電池之中,劣化度比較高的二次電池比其他的二次電池優先判定劣化狀態。 In the above-mentioned other embodiments, among the plurality of secondary batteries constituting one secondary battery module, one of the degraded secondary battery groups in which the degree of deterioration D(i) indicating the deterioration state is equal to or greater than a specific value may be used. For each of the secondary battery or the plurality of secondary batteries, the deterioration state is determined. That is, among the plurality of secondary batteries constituting the secondary battery module, the secondary battery with a relatively high degree of deterioration is prioritized in determining the deterioration state over the other secondary batteries.
100‧‧‧劣化狀態判定裝置
102‧‧‧輸入要素
104‧‧‧輸出要素
110‧‧‧第1演算處理要素
112‧‧‧第1初期特性模型參數記憶部
114‧‧‧第2初期特性模型參數初期特性推定值計算部
116‧‧‧第1特性參數初期特性推定值計算部
120‧‧‧第2演算處理要素
121‧‧‧第1指標值計算部
122‧‧‧第2指標值計算部
130‧‧‧第3演算處理要素(劣化度計算部)
200‧‧‧對象機器
202‧‧‧輸入界面
204‧‧‧輸出界面
210‧‧‧控制裝置
220‧‧‧二次電池
222‧‧‧感測器群100‧‧‧Deterioration
圖1係關於本發明之一實施型態的劣化狀態判定裝置的構成之說明圖。 圖2係表示劣化狀態判定裝置的機能之方塊圖。 圖3係關於電池的電氣等價電流模型之一例之說明圖。 圖4係關於本發明之一實施型態的劣化狀態判定方法之說明圖。 圖5係關於第1指標值及第2指標值的計算之用的積分區間之說明圖。 圖6係關於劣化診斷資訊的輸出例之說明圖。 圖7係相關於本發明的劣化狀態判定方法之時序圖。 圖8係相關於從前技術的劣化狀態判定方法之時序圖。 圖9係關於構成二次電池模組的複數二次電池之各個的特性參數的變化態樣之例示圖。FIG. 1 is an explanatory diagram of a configuration of a deterioration state determination apparatus according to an embodiment of the present invention. FIG. 2 is a block diagram showing the function of the deterioration state determination device. FIG. 3 is an explanatory diagram of an example of an electrical equivalent current model for a battery. FIG. 4 is an explanatory diagram of a method for judging a deterioration state according to an embodiment of the present invention. FIG. 5 is an explanatory diagram of an integration interval for calculating the first index value and the second index value. FIG. 6 is an explanatory diagram of an output example of deterioration diagnosis information. FIG. 7 is a timing chart related to the deterioration state determination method of the present invention. FIG. 8 is a timing chart related to the deterioration state determination method of the prior art. FIG. 9 is a diagram illustrating an example of a change in characteristic parameters of each of the plurality of secondary batteries constituting the secondary battery module.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018061133 | 2018-03-28 | ||
JP2018-061133 | 2018-03-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201942590A TW201942590A (en) | 2019-11-01 |
TWI754109B true TWI754109B (en) | 2022-02-01 |
Family
ID=68061084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107137316A TWI754109B (en) | 2018-03-28 | 2018-10-23 | Deterioration state judging device and degradation state judging method |
Country Status (10)
Country | Link |
---|---|
US (1) | US11085971B2 (en) |
EP (1) | EP3780248B1 (en) |
JP (5) | JP6745554B2 (en) |
KR (1) | KR102237565B1 (en) |
CN (1) | CN111902996B (en) |
CA (1) | CA3095272C (en) |
DK (1) | DK3780248T3 (en) |
HR (1) | HRP20230478T1 (en) |
TW (1) | TWI754109B (en) |
WO (1) | WO2019187264A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110927606B (en) * | 2019-11-05 | 2022-01-25 | 腾讯科技(深圳)有限公司 | Battery state monitoring method and device |
JP7457939B2 (en) * | 2019-11-29 | 2024-03-29 | パナソニックIpマネジメント株式会社 | management system |
JP6842212B1 (en) * | 2019-12-26 | 2021-03-17 | 東洋システム株式会社 | Battery performance evaluation method and battery performance evaluation device |
JP6842213B1 (en) * | 2019-12-27 | 2021-03-17 | 東洋システム株式会社 | Simulated battery construction method and simulated battery construction device |
JP6887700B1 (en) * | 2020-01-20 | 2021-06-16 | 東洋システム株式会社 | Battery performance evaluation device, electronic device, charger and battery performance evaluation method |
JP6944208B2 (en) * | 2020-01-20 | 2021-10-06 | 東洋システム株式会社 | Charger |
JP6997473B2 (en) * | 2020-04-13 | 2022-02-04 | 東洋システム株式会社 | Secondary battery inspection method and secondary battery inspection device |
JP7266907B2 (en) * | 2021-08-06 | 2023-05-01 | 東洋システム株式会社 | BATTERY PERFORMANCE EVALUATION DEVICE AND BATTERY PERFORMANCE EVALUATION METHOD |
JP7361750B2 (en) * | 2021-12-09 | 2023-10-16 | 本田技研工業株式会社 | fuel cell system |
JP7276928B1 (en) | 2022-03-29 | 2023-05-18 | 東洋システム株式会社 | Secondary battery capacity estimation system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW298621B (en) * | 1994-05-31 | 1997-02-21 | Omron Tateisi Electronics Co | A batting life tester and method of testing the batting life |
CN102834727A (en) * | 2010-04-09 | 2012-12-19 | 丰田自动车株式会社 | Secondary battery degradation determination device and degradation determination method |
US20140269811A1 (en) * | 2013-03-14 | 2014-09-18 | Motorola Mobility Llc | Method and apparatus for determining a thermal state of a battery taking into account battery aging |
CN104597402A (en) * | 2013-10-31 | 2015-05-06 | 现代摩比斯株式会社 | Apparatus and method for determining degradation of high-voltage vehicle battery |
US20160349329A1 (en) * | 2015-05-28 | 2016-12-01 | Mitsubishi Electric Corporation | Rechargeable battery parameter estimation apparatus and rechargeable battery parameter estimation method |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11285155A (en) * | 1998-03-27 | 1999-10-15 | Suzuki Motor Corp | Discriminating device for battery replacement timing, deterioration level display and storage medium with battery performance measuring data stored therein |
JP3868692B2 (en) | 2000-02-21 | 2007-01-17 | 矢崎総業株式会社 | Battery deterioration degree determination apparatus and recording medium recording deterioration degree calculation program in battery deterioration degree determination apparatus |
JP2005037230A (en) * | 2003-07-14 | 2005-02-10 | Toyota Motor Corp | Battery degradation detection device and method |
JP4638195B2 (en) | 2004-09-28 | 2011-02-23 | 富士重工業株式会社 | Battery degradation degree estimation device |
JP4661457B2 (en) * | 2005-08-24 | 2011-03-30 | 日産自動車株式会社 | Detection method of internal resistance of secondary battery |
JP5220269B2 (en) * | 2005-09-16 | 2013-06-26 | 古河電気工業株式会社 | Method and apparatus for detecting deterioration / charge state of storage battery |
EP1933158B1 (en) * | 2005-09-16 | 2018-04-25 | The Furukawa Electric Co., Ltd. | Secondary cell degradation judgment method, secondary cell degradation judgment device, and power supply system |
JP4969179B2 (en) * | 2006-08-23 | 2012-07-04 | 中国電力株式会社 | Distribution line remote monitoring control system, battery deterioration diagnosis device and method |
JP2009071986A (en) * | 2007-09-13 | 2009-04-02 | Fuji Heavy Ind Ltd | Calculation device for deterioration degree of in-vehicle battery |
JP4649682B2 (en) * | 2008-09-02 | 2011-03-16 | 株式会社豊田中央研究所 | Secondary battery state estimation device |
JP2010230469A (en) * | 2009-03-27 | 2010-10-14 | Calsonic Kansei Corp | Device and method for determining state of health of secondary battery |
JP4744622B2 (en) * | 2009-07-01 | 2011-08-10 | トヨタ自動車株式会社 | Vehicle control device |
JP5341823B2 (en) * | 2010-06-07 | 2013-11-13 | トヨタ自動車株式会社 | Lithium ion secondary battery degradation judgment system and degradation judgment method |
JP5511951B2 (en) * | 2010-06-07 | 2014-06-04 | 三菱電機株式会社 | Charge state estimation device |
CN102959418B (en) * | 2010-06-24 | 2016-04-27 | 松下知识产权经营株式会社 | Obtain the method and system of the impairment grade of battery |
EP2738908A1 (en) * | 2011-07-28 | 2014-06-04 | Sanyo Electric Co., Ltd | Battery system, battery control device, electric vehicle, mobile body, and power source device |
JP5694088B2 (en) * | 2011-08-23 | 2015-04-01 | トヨタ自動車株式会社 | Secondary battery deterioration management system |
JP5772615B2 (en) * | 2011-11-14 | 2015-09-02 | トヨタ自動車株式会社 | Power storage system |
JP5842054B2 (en) | 2012-03-02 | 2016-01-13 | 株式会社日立製作所 | Storage battery analysis system, storage battery analysis method, and storage battery analysis program |
CN104813180B (en) * | 2013-02-19 | 2017-04-05 | 古河电气工业株式会社 | Secondary cell deterioration judging method and secondary cell deterioration judging device |
JP5810116B2 (en) * | 2013-03-14 | 2015-11-11 | 古河電気工業株式会社 | Secondary battery state detection device and secondary battery state detection method |
US10073147B2 (en) | 2013-05-16 | 2018-09-11 | Nec Corporation | Battery state estimation device, battery state management system, battery, battery state estimation method, and non-transitory storage medium |
JP6244850B2 (en) | 2013-11-21 | 2017-12-13 | 日産自動車株式会社 | Battery pack and battery deterioration detection device |
JPWO2016059869A1 (en) * | 2014-10-17 | 2017-04-27 | 株式会社東芝 | Secondary battery charge state estimation apparatus and charge state estimation method thereof |
JP6593769B2 (en) | 2015-03-09 | 2019-10-23 | 中国電力株式会社 | Storage battery remaining life estimation method, storage battery check date determination method, storage battery remaining life estimation device, and storage battery remaining life estimation system |
JP6626356B2 (en) | 2015-03-18 | 2019-12-25 | 積水化学工業株式会社 | Secondary battery deterioration detection system, secondary battery deterioration detection method |
JP6461684B2 (en) | 2015-04-03 | 2019-01-30 | プライムアースEvエナジー株式会社 | Battery control device, battery control method, and determination method of lower limit voltage |
JP6161133B2 (en) | 2015-07-02 | 2017-07-12 | 学校法人同志社 | Data extraction apparatus, data extraction method, and data extraction program |
WO2017038749A1 (en) | 2015-08-31 | 2017-03-09 | 日立化成株式会社 | Degradation diagnosis device, degradation diagnosis method, and degradation diagnosis system for batteries |
US10114079B2 (en) * | 2016-02-24 | 2018-10-30 | Ford Global Technologies, Llc | System and method for identifying vehicle battery decay |
JP6615011B2 (en) | 2016-03-09 | 2019-12-04 | 日立オートモティブシステムズ株式会社 | Battery management system, battery system and hybrid vehicle control system |
JP6699391B2 (en) | 2016-06-22 | 2020-05-27 | 株式会社リコー | Status output device, status output program, and status output method |
JP2018029430A (en) * | 2016-08-17 | 2018-02-22 | トヨタ自動車株式会社 | Electric vehicle |
EP3605124B1 (en) * | 2017-03-29 | 2023-05-03 | GS Yuasa International Ltd. | Degradation estimating device, degradation estimating method, and computer program |
-
2018
- 2018-10-12 CA CA3095272A patent/CA3095272C/en active Active
- 2018-10-12 CN CN201880091858.XA patent/CN111902996B/en active Active
- 2018-10-12 WO PCT/JP2018/038056 patent/WO2019187264A1/en unknown
- 2018-10-12 US US17/042,472 patent/US11085971B2/en active Active
- 2018-10-12 HR HRP20230478TT patent/HRP20230478T1/en unknown
- 2018-10-12 EP EP18912371.4A patent/EP3780248B1/en active Active
- 2018-10-12 DK DK18912371.4T patent/DK3780248T3/en active
- 2018-10-12 KR KR1020207031033A patent/KR102237565B1/en active IP Right Grant
- 2018-10-12 JP JP2019569847A patent/JP6745554B2/en active Active
- 2018-10-23 TW TW107137316A patent/TWI754109B/en active
-
2020
- 2020-07-22 JP JP2020125818A patent/JP7201254B2/en active Active
- 2020-07-22 JP JP2020125815A patent/JP7160370B2/en active Active
- 2020-07-22 JP JP2020125816A patent/JP7195633B2/en active Active
- 2020-07-22 JP JP2020125817A patent/JP7201253B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW298621B (en) * | 1994-05-31 | 1997-02-21 | Omron Tateisi Electronics Co | A batting life tester and method of testing the batting life |
CN102834727A (en) * | 2010-04-09 | 2012-12-19 | 丰田自动车株式会社 | Secondary battery degradation determination device and degradation determination method |
US20140269811A1 (en) * | 2013-03-14 | 2014-09-18 | Motorola Mobility Llc | Method and apparatus for determining a thermal state of a battery taking into account battery aging |
CN104597402A (en) * | 2013-10-31 | 2015-05-06 | 现代摩比斯株式会社 | Apparatus and method for determining degradation of high-voltage vehicle battery |
US20160349329A1 (en) * | 2015-05-28 | 2016-12-01 | Mitsubishi Electric Corporation | Rechargeable battery parameter estimation apparatus and rechargeable battery parameter estimation method |
Also Published As
Publication number | Publication date |
---|---|
EP3780248B1 (en) | 2023-03-29 |
CA3095272C (en) | 2021-11-30 |
JP2020191780A (en) | 2020-11-26 |
CN111902996A (en) | 2020-11-06 |
KR102237565B1 (en) | 2021-04-07 |
CA3095272A1 (en) | 2019-10-03 |
JP2020191778A (en) | 2020-11-26 |
JP2020191779A (en) | 2020-11-26 |
JP7195633B2 (en) | 2022-12-26 |
KR20200128170A (en) | 2020-11-11 |
JP6745554B2 (en) | 2020-08-26 |
DK3780248T3 (en) | 2023-05-22 |
CN111902996B (en) | 2022-05-06 |
EP3780248A1 (en) | 2021-02-17 |
JP7160370B2 (en) | 2022-10-25 |
HRP20230478T1 (en) | 2023-07-21 |
JP2020198780A (en) | 2020-12-10 |
JPWO2019187264A1 (en) | 2020-04-30 |
JP7201254B2 (en) | 2023-01-10 |
US20210028510A1 (en) | 2021-01-28 |
US11085971B2 (en) | 2021-08-10 |
WO2019187264A1 (en) | 2019-10-03 |
JP7201253B2 (en) | 2023-01-10 |
TW201942590A (en) | 2019-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI754109B (en) | Deterioration state judging device and degradation state judging method | |
TWI835691B (en) | Battery status determination method and battery status determination device | |
TWI818607B (en) | Battery performance evaluation device and battery performance evaluation method | |
TWI826949B (en) | Battery performance evaluation device and battery performance evaluation method | |
CN116819346B (en) | Battery SOC estimation method, device, equipment and storage medium | |
JP7297339B2 (en) | BATTERY STATE DETERMINATION METHOD AND BATTERY STATE DETERMINATION DEVICE |