TWI746411B - Clock generating circuit and calibration circuit thereof - Google Patents
Clock generating circuit and calibration circuit thereof Download PDFInfo
- Publication number
- TWI746411B TWI746411B TW110118698A TW110118698A TWI746411B TW I746411 B TWI746411 B TW I746411B TW 110118698 A TW110118698 A TW 110118698A TW 110118698 A TW110118698 A TW 110118698A TW I746411 B TWI746411 B TW I746411B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- circuit
- parameter
- coupled
- frequency
- Prior art date
Links
- 238000001228 spectrum Methods 0.000 claims description 29
- 230000010355 oscillation Effects 0.000 claims description 19
- 238000003860 storage Methods 0.000 claims description 12
- 239000013256 coordination polymer Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000010453 quartz Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/16—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
- H03L7/18—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Abstract
Description
本發明係有關一種時脈產生電路及其補償電路,尤其是利用除頻整數參數與除頻小數參數搭配展頻訊號與參考時脈訊號進行除頻,以輸出適當的輸出時脈訊號。The present invention relates to a clock generation circuit and its compensation circuit, in particular, frequency division integer parameters and frequency division decimal parameters are combined with spread spectrum signals and reference clock signals for frequency division to output appropriate output clock signals.
現今的積體電路(IC)上皆有至少一鎖相電路(phase-lock loop,PLL),以提供積體電路上所需的各種頻率時鐘。又,現今積體電路隨著半導體製程的製程精度演進,而導致製程複雜度,積體電路之運作複雜度,且運作時的各種時脈可能不是整數倍的關係,例如,同一顆積體電路(IC)內可能需要用到66MHz,100MHz,133MHz的時脈。使用鎖相電路來產生積體電路內所需的各種頻率的時脈是最經濟的方法,也就是鎖相電路所輸出之具固定頻率之脈波訊號經過除頻的動作,使鎖相電路在固定頻率提供脈波訊號之輸出,但為了得到不同頻率之脈波訊號輸出,則需要設置多個鎖向電路,以提供多個頻率之脈波訊號輸出。如此大幅度占用電路面積,且功率消耗較高,因而發展出單一鎖相電路連結多個除頻器,以提供不同頻率之脈波訊號輸出。Today's integrated circuits (ICs) have at least one phase-lock loop (PLL) to provide various frequency clocks required by the integrated circuits. In addition, today's integrated circuits are evolving with the process accuracy of semiconductor manufacturing processes, resulting in process complexity, the operational complexity of integrated circuits, and the various clocks during operation may not be an integer multiple of the relationship, for example, the same integrated circuit (IC) may need to use 66MHz, 100MHz, 133MHz clock. It is the most economical way to use a phase-locked circuit to generate the clocks of various frequencies required in an integrated circuit. That is, the pulse signal with a fixed frequency output by the phase-locked circuit undergoes a frequency division action to make the phase-locked circuit in A fixed frequency provides pulse signal output, but in order to obtain pulse signal output of different frequencies, it is necessary to set multiple lock circuits to provide pulse signal output of multiple frequencies. As such a large circuit area is occupied and power consumption is high, a single phase-locked circuit is developed to connect multiple frequency dividers to provide pulse signal output of different frequencies.
現今許多電子電路,即使是微型電子電路,例如:IC,需要一時脈來源作為訊號的基本制動。因此在一微處理器(MCU)之電路中設計一高頻晶體振盪器是很普遍的電路設計。然而,該高頻晶體振盪器之電路設計除了提供高頻時脈訊號之餘,更需要輸入相當可觀的電流至電路中,以驅動該高頻晶體振盪器。對於電量較為敏感的應用,其因此需要使用一相對較低功率需求,甚至較低頻率的時脈來源於計時功能上。因此32.768kHz的石英晶體振盪產生器遂應此一需求而被開發出來,石英晶體振盪產生器所產生的振盪訊號,可經過石英時脈產生器內部之除頻器進行15次除頻後,而獲得1Hz的時脈訊號,1Hz即秒針每秒鐘走一下,因此,石英鐘內部的除頻器僅能進行15 次除頻,若是將32.768kHz要是換成別的頻率的振盪訊號,則振盪訊號經15次除頻後,就不是1Hz的除頻訊號,且電子時鐘所表示的時間就不準確了。32.768k=32768=2的15次方,因此可提供電子裝置用於資料傳輸並提供比較方便、精確的計時。Nowadays, many electronic circuits, even miniature electronic circuits, such as IC, need a clock source as the basic brake of the signal. Therefore, designing a high-frequency crystal oscillator in a microprocessor (MCU) circuit is a very common circuit design. However, the circuit design of the high-frequency crystal oscillator not only provides a high-frequency clock signal, but also needs to input a considerable current into the circuit to drive the high-frequency crystal oscillator. For power-sensitive applications, a relatively low power requirement is therefore required, and even lower frequency clocks are derived from the timing function. Therefore, a 32.768kHz quartz crystal oscillator was developed in response to this demand. The oscillation signal generated by the quartz crystal oscillator can be divided by 15 times by the frequency divider inside the quartz clock generator. Obtain a 1Hz clock signal, 1Hz means that the second hand moves every second, therefore, the frequency divider inside the quartz clock can only divide the frequency 15 times. If 32.768kHz is replaced with another frequency oscillation signal, the oscillation signal will pass After 15 times of frequency division, it is not a 1Hz frequency division signal, and the time indicated by the electronic clock is inaccurate. 32.768k=32768=2 to the 15th power, so it can provide electronic devices for data transmission and provide more convenient and accurate timing.
例如:嵌入式微控制器(MCU)的系統歷來依靠低頻32.768 kHz石英晶體振盪器產生低頻振盪訊號,以驅動MCU內部的振盪器進行時間保持和故障恢復功能。提出了一種具有背景校準功能的片上32.768kHz時鐘發生器,以實現良好的頻率精度。通過重複使用系統時鐘(HFXO)來間歇性地協助進行背景校準,可以實現頻率精度。但是,上述除頻方式需要設置HFXO,且除頻器即使在睡眠模式下也需要保持致能狀態,如此時脈產生電路會導致較大之功率消耗。For example: Embedded microcontroller (MCU) systems have always relied on a low-frequency 32.768 kHz quartz crystal oscillator to generate low-frequency oscillation signals to drive the internal oscillator of the MCU for time keeping and fault recovery functions. An on-chip 32.768kHz clock generator with background calibration function is proposed to achieve good frequency accuracy. By reusing the system clock (HFXO) to intermittently assist in background calibration, frequency accuracy can be achieved. However, the above frequency dividing method requires HFXO to be set, and the frequency divider needs to be kept in an enabled state even in sleep mode, so the clock generation circuit will cause greater power consumption.
基於上述之問題,本發明提供一種時脈產生電路及其補償電路,其計數器的設置,並以輸入除頻訊號結合展頻訊號,以產生計數訊號至一增益誤差電路,而產生對應之除頻整數參數與除頻小數參數至一分數鎖相電路,以讓該分數鎖相電路經由除頻整數參數與除頻小數參數之補償後產生對應之一輸出脈波訊號。藉此進而減少時脈產生電路保持在致能狀態之功率消耗。Based on the above-mentioned problems, the present invention provides a clock generation circuit and its compensation circuit. The counter is set up, and the input frequency divider signal is combined with the spread spectrum signal to generate the counting signal to a gain error circuit to generate the corresponding frequency divider. The integer parameter and the frequency-dividing decimal parameter are transferred to a fractional phase-locked circuit, so that the fractional phase-locked circuit generates a corresponding output pulse signal after the compensation of the frequency-dividing integer parameter and the frequency-dividing decimal parameter. This further reduces the power consumption of the clock generating circuit in the enabled state.
本發明之一目的,提供一種時脈產生電路,其以輸入除頻訊號結合展頻訊號,以產生計數訊號至一增益誤差電路,因而產生對應之除頻整數參數與除頻小數參數至一分數鎖相電路,以補償該分數鎖相電路而產生對應之一輸出脈波訊號。藉此進而減少時脈產生電路保持在致能狀態之功率消耗。An object of the present invention is to provide a clock generation circuit that combines an input frequency divider signal with a spread spectrum signal to generate a counting signal to a gain error circuit, thereby generating corresponding frequency division integer parameters and frequency division decimal parameters to a fraction The phase lock circuit is used to compensate the fractional phase lock circuit to generate a corresponding output pulse signal. This further reduces the power consumption of the clock generating circuit in the enabled state.
本發明揭示了一種時脈產生電路,其包含一參考時脈產生電路、一輸入除頻器、一計數器、一增益誤差電路與一分數鎖相電路。該參考時脈產生電路產生一參考時脈訊號至該輸入除頻器與該分數鎖相電路,該輸入除頻器依據該參考時脈訊號產生一輸入除頻訊號至該計數器與該增益誤差電路,該計數器藉由接收該輸入除頻訊號與一展頻訊號,以產生一計數訊號至該增益誤差電路,使該增益誤差電路接收該輸入除頻訊號與該計數訊號產生一除頻整數參數與一除頻小數參數。藉此,本發明之補償電路因未保持致能狀態,且本發明之補償電路所提供之該除頻整數參數與該除頻小數參數相當於利用參考時脈訊號所產生,因此本發明之補償電路減少功率消耗。The present invention discloses a clock generation circuit, which includes a reference clock generation circuit, an input frequency divider, a counter, a gain error circuit and a fractional phase lock circuit. The reference clock generating circuit generates a reference clock signal to the input frequency divider and the fractional phase lock circuit, and the input frequency divider generates an input frequency dividing signal to the counter and the gain error circuit according to the reference clock signal , The counter generates a counting signal to the gain error circuit by receiving the input frequency division signal and a spread signal, so that the gain error circuit receives the input frequency division signal and the counting signal to generate a frequency division integer parameter and A frequency-dividing decimal parameter. As a result, the compensation circuit of the present invention is not kept in the enabled state, and the frequency-dividing integer parameter and the frequency-dividing decimal parameter provided by the compensation circuit of the present invention are equivalent to those generated by the reference clock signal. Therefore, the compensation of the present invention The circuit reduces power consumption.
本發明提供一實施例,在於該分數鎖相電路包含一相/頻偵測器、一電荷幫浦元件、一迴路濾波器、一壓控振盪器、一輸出除頻器、一多除數除頻器與一調變器。該相/頻偵測器耦接該參考時脈產生電路與一時序控制電路,該時序控制電路產生一時序控制訊號與一致能訊號,該相/頻偵測器接收該參考時脈訊號與該時序控制訊號,以對應產生一充放電控制訊號;該電荷幫浦元件,耦接該相/頻偵測器與該時序控制電路,以接收該充放電控制訊號與該致能訊號進行充放電;該迴路濾波器耦接該電荷幫浦元件,依據該電荷幫浦元件之充放電產生一電位訊號;該壓控振盪器耦接該迴路濾波器,接收該電位訊號,以對應產生一壓控振盪訊號;該輸出除頻器,耦接該壓控振盪器,接收該壓控振盪訊號,以對應產生一輸出時脈訊號;該多除數除頻器接收該壓控振盪訊號與一加總訊號,以對應產生一回授除頻訊號至該時序控制電路,使該時序控制電路產生該時序控制訊號與該致能訊號;以及該調變器耦接該多除數除頻器與一加總單元,該調變器與該加總單元一併耦接該增益誤差電路,該調變器接收該回授除頻訊號與該除頻小數參數,以產生一調變訊號至該加總單元,該加總單元接收該除頻整數參數與該調變訊號,以產生該加總訊號至該多除數除頻器。The present invention provides an embodiment in which the fractional phase-locked circuit includes a phase/frequency detector, a charge pump element, a loop filter, a voltage-controlled oscillator, an output frequency divider, and a multi-divisor Frequency converter and a modulator. The phase/frequency detector is coupled to the reference clock generating circuit and a timing control circuit. The timing control circuit generates a timing control signal and an energy signal. The phase/frequency detector receives the reference clock signal and the timing control circuit. A timing control signal to correspondingly generate a charge and discharge control signal; the charge pump element is coupled to the phase/frequency detector and the timing control circuit to receive the charge and discharge control signal and the enable signal for charge and discharge; The loop filter is coupled to the charge pump element and generates a potential signal according to the charge and discharge of the charge pump element; the voltage-controlled oscillator is coupled to the loop filter and receives the potential signal to correspondingly generate a voltage-controlled oscillation Signal; the output frequency divider, coupled to the voltage-controlled oscillator, receives the voltage-controlled oscillation signal to correspondingly generate an output clock signal; the multi-divider frequency divider receives the voltage-controlled oscillation signal and a sum signal , To correspondingly generate a feedback frequency divider signal to the timing control circuit, so that the timing control circuit generates the timing control signal and the enable signal; and the modulator is coupled to the multi-divider frequency divider and a totalizer Unit, the modulator and the summing unit are coupled to the gain error circuit, and the modulator receives the feedback frequency division signal and the frequency division decimal parameter to generate a modulation signal to the summation unit, The summation unit receives the frequency division integer parameter and the modulation signal to generate the summation signal to the multi-divider frequency divider.
本發明提供一實施例,在於該時脈產生電路更包含一展頻時脈產生器,其耦接該計數器,以產生該展頻訊號至該計數器。The present invention provides an embodiment in which the clock generating circuit further includes a spread-spectrum clock generator, which is coupled to the counter to generate the spread-spectrum signal to the counter.
本發明提供一實施例,在於該增益誤差電路更產生一展頻致能訊號至該展頻時脈產生器,以控制該展頻時脈產生器致能。The present invention provides an embodiment in which the gain error circuit further generates a spread-spectrum enabling signal to the spread-spectrum clock generator to control the spread-spectrum clock generator to be enabled.
本發明提供一實施例,在於該補償電路更包含一溫度感測器,耦接該增益誤差電路,感測一環境溫度,以產生一溫度補償訊號至該增益誤差電路,該增益誤差電路更依據該溫度補償訊號產生該除頻小數參數與該除頻整數參數。The present invention provides an embodiment in which the compensation circuit further includes a temperature sensor coupled to the gain error circuit to sense an ambient temperature to generate a temperature compensation signal to the gain error circuit, and the gain error circuit is more based on The temperature compensation signal generates the frequency division decimal parameter and the frequency division integer parameter.
本發明提供一實施例,在於該增益誤差電路設有一對照表單元、一增益加總單元與一運算單元。該對照表單元耦接該溫度感測器,依據該溫度補償訊號產生一溫度補償參數;該增益加總單元耦接該對照表單元、該計數器與一儲存單元,該儲存單元儲存有一除頻參數,該增益加總單元接收該溫度補償參數、該除頻參數與該計數訊號而對應產生一加總運算參數;以及該運算單元,耦接該增益加總單元,以依據該加總運算參數產生該除頻小數參數與該除頻整數參數。The present invention provides an embodiment in that the gain error circuit is provided with a look-up table unit, a gain summation unit and an arithmetic unit. The look-up table unit is coupled to the temperature sensor and generates a temperature compensation parameter according to the temperature compensation signal; the gain summation unit is coupled to the look-up table unit, the counter and a storage unit, and the storage unit stores a frequency dividing parameter , The gain summation unit receives the temperature compensation parameter, the frequency division parameter, and the counting signal to generate a summation operation parameter correspondingly; and the operation unit is coupled to the gain summation unit to generate the summation parameter The frequency division decimal parameter and the frequency division integer parameter.
本發明提供一實施例,在於該增益誤差電路設有一增益加總單元與一運算單元。該增益加總單元耦接該計數器與一儲存單元,該儲存單元儲存有一除頻參數,該增益加總單元接收該溫度補償參數、該除頻參數與該計數訊號而對應產生一加總運算參數;以及該運算單元耦接該增益加總單元,以依據該加總運算參數產生該除頻小數參數與該除頻整數參數。The present invention provides an embodiment, in that the gain error circuit is provided with a gain summation unit and an arithmetic unit. The gain summation unit is coupled to the counter and a storage unit. The storage unit stores a frequency division parameter. The gain summation unit receives the temperature compensation parameter, the frequency division parameter and the counting signal to generate a summation operation parameter correspondingly And the arithmetic unit is coupled to the gain summation unit to generate the frequency division decimal parameter and the frequency division integer parameter according to the summation operation parameter.
本發明另提供一種補償電路,其產生一除頻整數參數與一除頻小數參數至一分數鎖相電路,使該分數鎖相電路依據一參考時脈訊號、該除頻小數參數與該除頻整數參數產生一輸出時脈訊號,該補償電路包含一輸入除頻器、一計數器、一增益誤差電路。該輸入除頻器依據該參考時脈訊號產生一輸入除頻訊號至該計數器與該增益誤差電路,該計數器藉由接收該輸入除頻訊號與一展頻訊號,以產生一計數訊號至該增益誤差電路,使該增益誤差電路接收該輸入除頻訊號與該計數訊號產生該除頻整數參數與該除頻小數參數。藉此,本發明之補償電路因未保持致能狀態,且本發明之補償電路所提供之該除頻整數參數與該除頻小數參數相當於利用參考時脈訊號所產生,因此本發明之補償電路減少功率消耗。The present invention also provides a compensation circuit, which generates a frequency division integer parameter and a frequency division decimal parameter to a fractional phase lock circuit, so that the fractional phase lock circuit is based on a reference clock signal, the frequency division decimal parameter and the frequency division circuit The integer parameter generates an output clock signal, and the compensation circuit includes an input frequency divider, a counter, and a gain error circuit. The input frequency divider generates an input frequency division signal to the counter and the gain error circuit according to the reference clock signal, and the counter generates a count signal to the gain by receiving the input frequency division signal and a spread frequency signal The error circuit enables the gain error circuit to receive the input frequency division signal and the count signal to generate the frequency division integer parameter and the frequency division decimal parameter. As a result, the compensation circuit of the present invention is not kept in the enabled state, and the frequency-dividing integer parameter and the frequency-dividing decimal parameter provided by the compensation circuit of the present invention are equivalent to those generated by the reference clock signal. Therefore, the compensation of the present invention The circuit reduces power consumption.
為使 貴審查委員對本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以實施例及配合說明,說明如後:In order to enable your reviewer to have a further understanding and understanding of the features of the present invention and the effects achieved, the following examples and accompanying descriptions are provided. The description is as follows:
有鑑於習知時脈產生電路中,除頻器保持致能狀態,因而增加較多之功率消耗,據此,本發明遂提出一種時脈產生電路及其補償電路,以解決習知技術所造成之除頻器保持致能而導致功率消耗較多之問題。In view of the fact that in the conventional clock generating circuit, the frequency divider remains in the enabled state, which increases the power consumption, the present invention proposes a clock generating circuit and its compensation circuit to solve the problem caused by the conventional technology. The frequency divider remains enabled, which leads to the problem of more power consumption.
以下,將進一步說明本發明揭示一種時脈產生電路所包含之特性、所搭配之結構:In the following, the characteristics and the structure of a clock generating circuit disclosed in the present invention will be further explained:
首先,請參閱第一圖,其為本發明之一實施例之時脈產生電路的方塊圖。如圖所示,本發明之時脈產生電路10包含一分數鎖相電路20與一補償電路40,補償電路40產生一除頻整數參數N與一除頻小數參數α至該分數鎖相電路20,使該分數鎖相電路20依據一參考時脈訊號f
OSC、該除頻小數參數α與該除頻整數參數N產生一輸出時脈訊號f
OUT。此外,時脈產生電路10更耦接一參考時脈電路12,其產生該參考時脈訊號f
OSC。
First, please refer to the first figure, which is a block diagram of a clock generating circuit according to an embodiment of the present invention. As shown in the figure, the
其中,該分數鎖相電路20包含一相/頻偵測器22、一電荷幫浦元件24、一迴路濾波器26、一壓控振盪器28、一輸出除頻器30、一多除數除頻器32、一時序控制電路34、一調變器36與一加總單元38。該相/頻偵測器22耦接一參考時脈產生電路12與該時序控制電路34,該電荷幫浦元件24耦接該迴路濾波器26,該迴路濾波器26耦接該壓控振盪器28,該壓控振盪器28耦接該輸出除頻器30與該多除數除頻器32,該多除數除頻器32耦接該時序控制電路34、該調變器36與該加總單元38,該調變器36與該加總單元38更耦接至該補償電路40。Wherein, the fractional
該時序控制電路34產生一時序控制訊號T
EN與一致能訊號CP
EN,該相/頻偵測器22接收該參考時脈訊號f
OSC與該時序控制訊號T
EN,以對應產生一充放電控制訊號V
PF,該電荷幫浦元件24接收該充放電控制訊號V
PF與該致能訊號CP
EN進行充放電,因而形成一充放電訊號V
CP,特別是在該迴路濾波器26形成一電位訊號V
Filter,並藉由電位訊號V
Filter對該壓控振盪器28進行控制,以產生一壓控振盪訊號V
VCO,分別由該輸出除頻器30與該多除數除頻器32接收壓控振盪器28所產生之該壓控振盪訊號V
VCO,該輸出除頻器30依據該壓控振盪訊號V
VCO產生對應之一輸出時脈訊號f
OUT,而該多除數除頻器32接收該壓控振盪訊號V
VCO與該加總單元38所產生之一加總訊號,以對應產生一回授除頻訊號V
MMD至該時序控制電路34,使該時序控制電路34產生該時序控制訊號T
EN與該致能訊號CP
EN。該調變器36接收該回授除頻訊號V
MMD與該除頻小數參數α,以產生一調變訊號Σ
OUT至該加總單元38,該加總單元38接收該除頻整數參數N與該調變訊號Σ
OUT,以產生該加總訊號SUM至該多除數除頻器32。由上述說明可知,而該多除數除頻器32至該時序控制電路34,以及該時序控制訊號T
EN、該致能訊號CP
EN、該回授除頻訊號V
MMD與該壓控振盪訊號V
VCO的訊號傳遞相當於該壓控振盪器28對該相/頻偵測器22以及該電荷幫浦元件24進行回授控制。
The
請一併參閱第二圖,本發明之該補償電路40包含一輸入除頻器42、一計數器44與一增益誤差電路46。此外,該補償電路40外更耦接一展頻產生電路14。該輸入除頻器42耦接該參考時脈產生電路、該計數器44與該增益誤差電路46,特別該輸入除頻器42耦接至該計數器44之致能埠EN,該輸入除頻器42接收該參考時脈訊號f
OSC,以對應產生一輸入除頻訊號V
M;該計數器44接收該輸入除頻器42之該輸入除頻訊號V
M,並接收該展頻產生電路14所產生之該展頻訊號f
MO,以對應產生一計數訊號k,因而讓該增益誤差電路46接收該輸入除頻訊號V
M與該計數訊號k產生該除頻整數參數N與該除頻小數參數α,以讓上述之該分數鎖相電路20依據該除頻整數參數N與該除頻小數參數α產生對應之時脈輸出訊號f
OUT。
Please also refer to the second figure. The
詳言之,增益誤差電路46中設有一增益加總單元462、一儲存單元464與一運算單元466,該增益加總單元462耦接該計數器與一儲存單元,該儲存單元儲存有一除頻參數k
32k,該增益加總單元462接收該除頻參數k
32k與該計數訊號k而對應產生一加總運算參數Δcode,該運算單元耦接該增益加總單元462,以依據該加總運算參數Δcode產生該除頻整數參數N與該除頻小數參數α,以輸出至分數鎖相電路20。特別是輸出該除頻小數參數α至該調變器36,以及輸出該除頻整數參數N至該加總單元38。因此本實施例之該除頻整數參數N與該除頻小數參數α對應於該除頻參數k
32k與該計數訊號k。
In detail, the
藉此可知,本發明之補償電路40藉由該除頻整數參數N與該除頻小數參數α補償該分數鎖相電路20,因而讓該分數鎖相電路20可產生對應之輸出時脈訊號f
OUT,同時,展頻訊號f
MO,因藉由補償電路40對分數鎖相電路20進行補償,並非展頻訊號f
MO直接輸入至該分數鎖相電路20,因而讓該分數鎖相電路20可間歇操作,也就是該分數鎖相電路20不需持續保持致能狀態,因而降低較多功率消耗。以上實施例之參考時脈產生電路12與展頻時脈產生電路14外接於分數鎖相電路20與補償電路之外,更有另一實施例為參考時脈產生電路12與展頻時脈產生電路14內建於參考時脈產生電路12或展頻時脈產生電路14中。
It can be seen that the
由於時脈產生電路10除了補償電路40之外,更進一步設有參考時脈產生電路12與展頻時脈產生電路14,然而,環境溫度亦是會影響到時脈產生電路10的運作,因此更可進一步設置溫度補償機制,以彌補溫度導致之誤差。In addition to the
請參閱第三圖,其為本發明之另一實施例之時脈產生電路之方塊圖。其中,第一圖與第三圖之差異在於第三圖之補償電路40更進一步設有一溫度感測器48,以補全補償電路40之溫度補償機制。其中,增益誤差電路46為耦接溫度感測器48,並在該輸入除頻訊號V
M與該計數訊號k未能匹配的情況下,產生一溫度致能訊號TP至該溫度感測器48,以致能該溫度感測器48,該溫度感測器48即會偵測該時脈產生電路10所在之環境(圖未示),並對應產生一溫度感測訊號TC至該增益誤差電路46,以對該除頻整數參數N與該除頻小數參數α進行溫度補償。
Please refer to FIG. 3, which is a block diagram of a clock generating circuit according to another embodiment of the present invention. The difference between the first figure and the third figure is that the
詳言之,請一併參閱第四圖,其與第二圖之差異在於第四圖之增益誤差電路46內進一步設置一對照表單元466,其耦接溫度感測器48,因而接收溫度感測訊號TC,以依據該溫度感測訊號TC查找對應之溫度補償參數K
TC,並輸入至增益加總單元462,因此,本實施例之增益加總單元462更是依據溫度補償參數K
TC產生該加總運算參數Δcode至運算單元466,因此本實施例之該除頻整數參數N與該除頻小數參數α更是對應於溫度補償參數K
TC,以避免環境溫度過高導致之誤差影響時脈輸出訊號f
OUT之準確度。
In detail, please refer to the fourth figure. The difference from the second figure is that the
故本發明實為一具有新穎性、進步性及可供產業上利用者,應符合我國專利法專利申請要件無疑,爰依法提出發明專利申請,祈 鈞局早日賜准專利,至感為禱。Therefore, the present invention is really novel, progressive, and available for industrial use. It should meet the patent application requirements of my country's patent law. Undoubtedly, I filed an invention patent application in accordance with the law. I pray that the Bureau will grant the patent as soon as possible.
惟以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍,舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。However, the above are only the preferred embodiments of the present invention, and are not used to limit the scope of implementation of the present invention. For example, the shapes, structures, features and spirits described in the scope of the patent application of the present invention are equally changed and modified. , Should be included in the scope of patent application of the present invention.
10:時脈產生電路 12:參考 時脈產生電路 14:展頻時脈產生電路 20:分數鎖相電路 22:相/頻偵測器 24:電荷幫浦元件 26:迴路濾波器 28:壓控振盪器 30:輸出除頻器 32:多除數除頻器 34:時序控制電路 36:調變器 38:加總單元 40:補償電路 42:輸入除頻器 44:計數器 46:增益誤差電路 462:增益加總單元 464:儲存單元 466:運算單元 468:對照表單元 48:溫度感測器 α:除頻小數參數 Σ:out調變訊號 CP EN:致能訊號 f IN:輸入脈波訊號 f OUT:輸出脈波訊號 f MO:展頻訊號 k:計數訊號 k 32k:除頻參數 k TC:溫度補償參數 N:除頻整數參數 SUM:加總訊號 TC:溫度感測訊號 T EN:時序控制訊號 V PF:充放電控制訊號 V CP:充放電訊號 V Filter:電位訊號 V VCO:壓控振盪訊號 V M:輸入除頻訊號 V MMD:回授除頻訊號10: Clock generation circuit 12: Reference clock generation circuit 14: Spread-spectrum clock generation circuit 20: Fractional phase lock circuit 22: Phase/frequency detector 24: Charge pump component 26: Loop filter 28: Voltage control Oscillator 30: output frequency divider 32: multiple divisor frequency divider 34: timing control circuit 36: modulator 38: summing unit 40: compensation circuit 42: input frequency divider 44: counter 46: gain error circuit 462 : Gain summation unit 464: Storage unit 466: Operation unit 468: Comparison table unit 48: Temperature sensor α: Divider decimal parameter Σ: Out modulation signal CP EN : Enable signal f IN : Input pulse signal f OUT : output pulse signal f MO : spread spectrum signal k: counting signal k 32k : frequency division parameter k TC : temperature compensation parameter N: frequency division integer parameter SUM: sum signal TC: temperature sensing signal T EN : timing control Signal V PF : Charge and discharge control signal V CP : Charge and discharge signal V Filter : Potential signal V VCO : Voltage-controlled oscillation signal V M : Input frequency elimination signal V MMD : Feedback frequency elimination signal
第一圖:其為本發明之一實施例之時脈產生電路之方塊圖; 第二圖:其為本發明之一實施例之補償電路之細部電路的方塊圖; 第三圖:其為本發明之另一實施例之時脈產生電路之方塊圖;以及 第四圖:其為本發明之另一實施例之補償電路之細部電路的方塊圖。 Figure 1: It is a block diagram of a clock generating circuit according to an embodiment of the present invention; Figure 2: It is a block diagram of the detailed circuit of the compensation circuit according to an embodiment of the present invention; Figure 3: It is a block diagram of a clock generating circuit according to another embodiment of the present invention; and Figure 4: It is a block diagram of the detailed circuit of the compensation circuit of another embodiment of the present invention.
10:時脈產生電路 10: Clock generation circuit
12:參考時脈電路 12: Reference clock circuit
14:展頻時脈電路 14: Spread spectrum clock circuit
20:分數鎖相電路 20: Fractional phase lock circuit
22:相/頻偵測器 22: Phase/frequency detector
24:電荷幫浦元件 24: Charge pump component
26:迴路濾波器 26: Loop filter
28:壓控振盪器 28: Voltage Controlled Oscillator
30:輸出除頻器 30: Output divider
32:多除數除頻器 32: Multi-divisor frequency divider
34:時序控制電路 34: timing control circuit
36:積分-微分調變電路 36: Integral-differential modulation circuit
38:加總單元 38: Sum unit
40:補償電路 40: Compensation circuit
42:輸入除頻器 42: Input frequency divider
44:計數器 44: counter
46:增益誤差電路 46: gain error circuit
fOSC:參考時脈訊號 f OSC : Reference clock signal
fMO:展頻訊號 f MO : Spread spectrum signal
fOUT:時脈輸出訊號 f OUT : Clock output signal
CPEN:電荷致能訊號 CP EN : Charge-enable signal
TEN:致能訊號 T EN : Enabling signal
VPF:偵測訊號 V PF : Detection signal
VFilter:濾波訊號 V Filter : Filter the signal
VCO:壓控訊號 VCO: voltage control signal
VMMD:回授除頻訊號 V MMD : feedback frequency elimination signal
SUM:加總訊號 SUM: Sum signal
Σout:調變訊號 Σout: Modulation signal
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110118698A TWI746411B (en) | 2021-05-24 | 2021-05-24 | Clock generating circuit and calibration circuit thereof |
CN202110844830.2A CN115395952A (en) | 2021-05-24 | 2021-07-26 | Clock generation circuit and compensation circuit thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110118698A TWI746411B (en) | 2021-05-24 | 2021-05-24 | Clock generating circuit and calibration circuit thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI746411B true TWI746411B (en) | 2021-11-11 |
TW202247609A TW202247609A (en) | 2022-12-01 |
Family
ID=79907958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110118698A TWI746411B (en) | 2021-05-24 | 2021-05-24 | Clock generating circuit and calibration circuit thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115395952A (en) |
TW (1) | TWI746411B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114138053A (en) * | 2021-11-15 | 2022-03-04 | 中科芯集成电路有限公司 | Baud rate generator |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6515553B1 (en) * | 1999-09-10 | 2003-02-04 | Conexant Systems Inc. | Delta-sigma based dual-port modulation scheme and calibration techniques for similar modulation schemes |
US20050008113A1 (en) * | 2003-07-09 | 2005-01-13 | Masaru Kokubo | Spread spectrum clock generator and integrated circuit device using the spread spectrum clock generators |
US20060176933A1 (en) * | 2005-01-14 | 2006-08-10 | Renesas Technology Corp. | Clock generating method and clock generating circuit |
US7327172B2 (en) * | 2005-06-27 | 2008-02-05 | Lsi Corporation | Integrated clock generator with programmable spread spectrum using standard PLL circuitry |
US7389095B1 (en) * | 2005-01-24 | 2008-06-17 | Nvidia Corporation | Variable frequency clock generator for synchronizing data rates between clock domains in radio frequency wireless communication systems |
TW200849828A (en) * | 2007-06-08 | 2008-12-16 | Faraday Tech Corp | Spread spectrum clock generator with low jitter |
US7561652B2 (en) * | 2003-04-22 | 2009-07-14 | Paul Kevin Hall | High frequency spread spectrum clock generation |
TWI351820B (en) * | 2007-03-27 | 2011-11-01 | Mstar Semiconductor Inc | Clock generator, method for generating clock signa |
CN104378108A (en) * | 2014-12-04 | 2015-02-25 | 龙迅半导体科技(合肥)有限公司 | Clock signal outputting method and circuit |
TW201701127A (en) * | 2015-06-22 | 2017-01-01 | 矽創電子股份有限公司 | Frequency selecting module and related computing device and frequency selecting method |
US20170093459A1 (en) * | 2015-09-24 | 2017-03-30 | Semiconductor Components Industries, Llc | Calibration for spread spectrum clock generator and method therefor |
US20180183397A1 (en) * | 2016-12-23 | 2018-06-28 | Macdonald, Dettwiler And Associates Corporation | Calibration system and method for optimizing leakage performance of a multi-port amplifier |
US20210083681A1 (en) * | 2018-07-10 | 2021-03-18 | Mitsubishi Electric Corporation | Phase-locked loop circuit |
-
2021
- 2021-05-24 TW TW110118698A patent/TWI746411B/en active
- 2021-07-26 CN CN202110844830.2A patent/CN115395952A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6515553B1 (en) * | 1999-09-10 | 2003-02-04 | Conexant Systems Inc. | Delta-sigma based dual-port modulation scheme and calibration techniques for similar modulation schemes |
US7561652B2 (en) * | 2003-04-22 | 2009-07-14 | Paul Kevin Hall | High frequency spread spectrum clock generation |
US20050008113A1 (en) * | 2003-07-09 | 2005-01-13 | Masaru Kokubo | Spread spectrum clock generator and integrated circuit device using the spread spectrum clock generators |
US20060176933A1 (en) * | 2005-01-14 | 2006-08-10 | Renesas Technology Corp. | Clock generating method and clock generating circuit |
US7389095B1 (en) * | 2005-01-24 | 2008-06-17 | Nvidia Corporation | Variable frequency clock generator for synchronizing data rates between clock domains in radio frequency wireless communication systems |
US7327172B2 (en) * | 2005-06-27 | 2008-02-05 | Lsi Corporation | Integrated clock generator with programmable spread spectrum using standard PLL circuitry |
TWI351820B (en) * | 2007-03-27 | 2011-11-01 | Mstar Semiconductor Inc | Clock generator, method for generating clock signa |
TW200849828A (en) * | 2007-06-08 | 2008-12-16 | Faraday Tech Corp | Spread spectrum clock generator with low jitter |
CN104378108A (en) * | 2014-12-04 | 2015-02-25 | 龙迅半导体科技(合肥)有限公司 | Clock signal outputting method and circuit |
TW201701127A (en) * | 2015-06-22 | 2017-01-01 | 矽創電子股份有限公司 | Frequency selecting module and related computing device and frequency selecting method |
US20170093459A1 (en) * | 2015-09-24 | 2017-03-30 | Semiconductor Components Industries, Llc | Calibration for spread spectrum clock generator and method therefor |
US20180183397A1 (en) * | 2016-12-23 | 2018-06-28 | Macdonald, Dettwiler And Associates Corporation | Calibration system and method for optimizing leakage performance of a multi-port amplifier |
US20210083681A1 (en) * | 2018-07-10 | 2021-03-18 | Mitsubishi Electric Corporation | Phase-locked loop circuit |
Non-Patent Citations (1)
Title |
---|
Integrated Device Technology, Inc. "Spread Spectrum Clocking on VersaClock III" Application Note AN-000, 2009年8月31日公開文件, https://www.renesas.com/us/en/document/apn/spread-spectrum-clocking-versaclock-iii * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114138053A (en) * | 2021-11-15 | 2022-03-04 | 中科芯集成电路有限公司 | Baud rate generator |
CN114138053B (en) * | 2021-11-15 | 2024-05-28 | 中科芯集成电路有限公司 | Baud rate generator |
Also Published As
Publication number | Publication date |
---|---|
TW202247609A (en) | 2022-12-01 |
CN115395952A (en) | 2022-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8049569B1 (en) | Circuit and method for improving the accuracy of a crystal-less oscillator having dual-frequency modes | |
US8461885B2 (en) | Hybrid digital-analog phase locked loops | |
US8581671B2 (en) | Oscillation device | |
US20080018369A1 (en) | Phase locked loop (PLL) method and architecture | |
JP3323054B2 (en) | Frequency multiplier | |
US6977536B2 (en) | Clock multiplier | |
TW201507361A (en) | Frequency-locked loop circuit and semiconductor integrated circuit | |
US11101806B2 (en) | Frequency regulator and frequency regulating method thereof, and electronic device | |
TWI746411B (en) | Clock generating circuit and calibration circuit thereof | |
US11201588B2 (en) | Oscillator and electronic apparatus | |
JP2001036405A (en) | Atomic oscillator | |
CN113031428B (en) | Real-time clock device and electronic apparatus | |
JP2000174615A (en) | Method and device for automatically correcting internal clock frequency of integrated circuit | |
US6876236B2 (en) | Clock multiplier circuit | |
JP2001127598A (en) | Frequency multiplying circuit | |
JP2003204260A (en) | Temperature compensated high frequency oscillator and communication equipment | |
JP7415535B2 (en) | Oscillators and electronic equipment | |
JP7562411B2 (en) | Frequency locked loop, electronic device and frequency generation method | |
CN115149906A (en) | Duty ratio correction frequency multiplier based on analog feedback | |
JP2021097354A (en) | Oscillator and electronic apparatus | |
Pandit et al. | Design and implementation of PLL frequency synthesizer using PE3336 IC for IRS applications | |
JP4036114B2 (en) | Clock generation circuit | |
US11967962B2 (en) | Oscillation system including frequency-locked loop logic circuit and operating method thereof | |
Upadhye et al. | Optimal Low Power Design Of PLL | |
Cochet et al. | Clock Generation and Distribution for Low-Power Digital Systems |