TWI745940B - Medical image analyzing system and method thereof - Google Patents
Medical image analyzing system and method thereof Download PDFInfo
- Publication number
- TWI745940B TWI745940B TW109113320A TW109113320A TWI745940B TW I745940 B TWI745940 B TW I745940B TW 109113320 A TW109113320 A TW 109113320A TW 109113320 A TW109113320 A TW 109113320A TW I745940 B TWI745940 B TW I745940B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- patient
- medical image
- image blocks
- image analysis
- Prior art date
Links
Images
Landscapes
- Apparatus For Radiation Diagnosis (AREA)
- Image Analysis (AREA)
Abstract
Description
本發明係有關一種影像分析系統及其方法,尤指一種醫療影像分析系統及其方法。 The present invention relates to an image analysis system and method, in particular to a medical image analysis system and method.
在現行醫療水準中,胰臟癌屬難以早期發現的癌症之一,且一但腫瘤大小超過2釐米時,存活率將大幅下降。在現有技術中,電腦斷層掃描(CT)影像為目前檢測與評估胰臟癌的主要方式,但檢測效率仍取決於放射科醫生的個人經驗,例如,在腫瘤小於2釐米時,約有40%無法被檢測出。此反映出人工方式的閱片及判斷將過於主觀,很容易因為人為因素而導致誤判。 In the current medical standards, pancreatic cancer is one of the cancers that are difficult to detect early, and once the tumor size exceeds 2 cm, the survival rate will drop significantly. In the prior art, computerized tomography (CT) imaging is currently the main method for detecting and evaluating pancreatic cancer, but the detection efficiency still depends on the radiologist’s personal experience. For example, when the tumor is less than 2 cm, about 40% Could not be detected. This reflects that the manual method of reading and judgment will be too subjective, and it is easy to cause misjudgment due to human factors.
因此,如何提出一種例如可應用在辨識胰臟癌以提高辨識率之醫療影像分析系統及其方法,為目前亟待解決的課題之一。 Therefore, how to propose a medical image analysis system and method that can be used to identify pancreatic cancer to improve the identification rate, for example, is one of the issues to be solved urgently.
本發明之主要目的在於提供一種醫療影像分析系統,包括:影像預處理模組,用以處理對應一臟器之至少一影像,以產生至少一處理影像,其中,該處理影像標記有對應該臟器位置之分割標籤;區塊切割模組,用以針對 標記有該分割標籤之該處理影像進行擷取,以產生複數個影像區塊;分析模組,係藉由該複數個影像區塊對一深度學習模型進行訓練,以取得各該複數個影像區塊所分別對應之複數個第一預測值;以及閥值選擇模組,係針對該複數個第一預測值繪製第一曲線,以從該第一曲線決定出判斷各該複數個影像區塊是否具有癌症之第一閥值。 The main purpose of the present invention is to provide a medical image analysis system, including: an image preprocessing module for processing at least one image corresponding to an organ to generate at least one processed image, wherein the processed image is marked with a corresponding dirty Label for the position of the device; the block cutting module is used to target The processed image marked with the segmentation label is captured to generate a plurality of image blocks; the analysis module trains a deep learning model through the plurality of image blocks to obtain each of the plurality of image blocks A plurality of first predicted values corresponding to each block; and a threshold selection module, which draws a first curve for the plurality of first predicted values, so as to determine whether each of the plurality of image blocks is determined from the first curve Has the first threshold of cancer.
本發明之另一目的在於提供一種醫療影像分析方法,包括:處理對應一臟器之至少一影像,以產生至少一處理影像,其中,該處理影像標記有對應該臟器位置之分割標籤;針對標記有該分割標籤之該處理影像進行擷取,以產生複數個影像區塊;藉由該複數個影像區塊對一深度學習模型進行訓練,以取得各該複數個影像區塊所分別對應之複數個第一預測值;以及針對該複數個第一預測值繪製第一曲線,以從該第一曲線決定出判斷各該複數個影像區塊是否具有癌症之第一閥值。 Another object of the present invention is to provide a medical image analysis method, including: processing at least one image corresponding to an organ to generate at least one processed image, wherein the processed image is marked with a segmentation label corresponding to the position of the organ; The processed image marked with the segmentation label is captured to generate a plurality of image blocks; a deep learning model is trained by the plurality of image blocks to obtain the corresponding corresponding to each of the plurality of image blocks A plurality of first predicted values; and a first curve is drawn for the plurality of first predicted values, so as to determine from the first curve a first threshold for judging whether each of the plurality of image blocks has cancer.
前述之醫療影像分析系統及其方法中,該區塊切割模組係以一正方形子區域沿著標記有該分割標籤之該處理影像之x軸及y軸進行擷取,以產生該複數個影像區塊。 In the aforementioned medical image analysis system and method, the block cutting module uses a square sub-region to capture along the x-axis and y-axis of the processed image marked with the segmentation label to generate the plurality of images Block.
前述之醫療影像分析系統及其方法中,該複數個影像區塊彼此未重疊或彼此部分重疊。 In the aforementioned medical image analysis system and method, the plurality of image blocks do not overlap each other or partially overlap each other.
前述之醫療影像分析系統及其方法中,該複數個影像區塊彼此重疊面積的比例範圍為20%至80%。 In the aforementioned medical image analysis system and method, the ratio of the overlapping area of the plurality of image blocks to each other ranges from 20% to 80%.
前述之醫療影像分析系統及其方法中,該分析模組係使用卷積神經網路對該深度學習模型進行訓練。 In the aforementioned medical image analysis system and method, the analysis module uses a convolutional neural network to train the deep learning model.
前述之醫療影像分析系統及其方法中,該第一曲線為接收者操作特徵曲線,而該第一閥值為約登指數之最大值所對應之閥值。 In the aforementioned medical image analysis system and method, the first curve is the receiver's operating characteristic curve, and the first threshold is the threshold corresponding to the maximum value of the Youden Index.
前述之醫療影像分析系統及其方法中,該影像為電腦斷層掃描或磁共振顯影之二維影像或三維影像。 In the aforementioned medical image analysis system and method, the image is a two-dimensional image or a three-dimensional image of computed tomography or magnetic resonance imaging.
前述之醫療影像分析系統及其方法中,更包括電腦輔助診斷模組,用以輸入至少一病患影像至該影像預處理模組及該區塊切割模組以產生複數個病患影像區塊,並將該複數個病患影像區塊輸入至該深度學習模型中以取得各該複數個病患影像區塊所分別對應之複數個第一預測值。 The aforementioned medical image analysis system and method further includes a computer-aided diagnosis module for inputting at least one patient image to the image preprocessing module and the block cutting module to generate a plurality of patient image blocks And input the plurality of patient image blocks into the deep learning model to obtain a plurality of first predictive values corresponding to each of the plurality of patient image blocks.
前述之醫療影像分析系統及其方法中,該電腦輔助診斷模組更令該閥值選擇模組針對各該複數個病患影像區塊所分別對應之該複數個第一預測值計算出對應該至少一病患影像之至少一第二預測值,並依據該至少一第二預測值繪製第二曲線,以從該第二曲線決定出判斷該至少一病患影像是否具有癌症之第二閥值。 In the aforementioned medical image analysis system and method, the computer-aided diagnosis module further enables the threshold selection module to calculate corresponding values for the plurality of first predictive values corresponding to each of the plurality of patient image blocks. At least one second predictive value of at least one patient image, and a second curve is drawn according to the at least one second predictive value to determine from the second curve a second threshold for judging whether the at least one patient image has cancer .
前述之醫療影像分析系統及其方法中,該至少一第二預測值為各該複數個病患影像區塊所分別對應之該複數個第一預測值經該第一閥值判斷後所產生的該至少一病患影像中具有癌症之病患影像區塊之數量與該複數個病患影像區塊之總數量的比值。 In the aforementioned medical image analysis system and method, the at least one second predictive value is generated after the plurality of first predictive values corresponding to each of the plurality of patient image blocks are judged by the first threshold The ratio of the number of patient image blocks with cancer in the at least one patient image to the total number of the plurality of patient image blocks.
前述之醫療影像分析系統及其方法中,該第二曲線為接收者操作特徵曲線,該第二閥值為約登指數之最大值所對應之閥值。 In the aforementioned medical image analysis system and method, the second curve is the receiver's operating characteristic curve, and the second threshold is the threshold corresponding to the maximum value of the Youden Index.
綜上所述,本發明之醫療影像分析系統及其方法在辨識胰臟癌上,相較於放射科醫生有著較高的敏感度,此即表示本發明之醫療影像分析系統及其方法可有效輔助放射科醫生減少其臨床的漏診率,特別是在小於2cm的 腫瘤大小的情況,故可有效改善腫瘤小於2釐米時,約有40%無法被檢測出的情況。 In summary, the medical image analysis system and method of the present invention have higher sensitivity than radiologists in identifying pancreatic cancer, which means that the medical image analysis system and method of the present invention are effective Assisting radiologists to reduce their clinical missed diagnosis rate, especially in areas less than 2 cm The size of the tumor can be effectively improved when the tumor is less than 2 cm, about 40% of the cases cannot be detected.
1:醫療影像分析系統 1: Medical image analysis system
11:醫療影像分析裝置 11: Medical image analysis device
111:影像預處理模組 111: Image preprocessing module
112:區塊切割模組 112: Block cutting module
113:分析模組 113: Analysis Module
114:閥值選擇模組 114: Threshold selection module
115、122:處理單元 115, 122: processing unit
116、123:通訊單元 116, 123: communication unit
117、124:儲存單元 117, 124: storage unit
118、125:顯示單元 118, 125: display unit
12:電腦裝置 12: Computer device
121:電腦輔助診斷模組 121: Computer Aided Diagnosis Module
13:網路 13: Internet
2:影像 2: image
2’:處理影像 2’: Processing images
21:臟器 21: Organs
22:分割標籤 22: Split label
24:正方形子區域 24: Square sub-area
23、231、232、233、25、251、252、253:影像區塊 23, 231, 232, 233, 25, 251, 252, 253: image block
254、255、256:重疊部分 254, 255, 256: overlapping part
30:深度學習模型 30: Deep learning model
31:卷積神經網路 31: Convolutional Neural Network
311:卷積層 311: Convolutional layer
312:池化層 312: Pooling layer
313:全連接層 313: Fully Connected Layer
40:接收者操作特徵曲線 40: receiver operating characteristic curve
D1、D2、D1’、D2’:距離 D1, D2, D1’, D2’: distance
S1~S5:步驟 S1~S5: steps
第1A圖為本發明之醫療影像分析系統之第一實施例之示意圖。 Figure 1A is a schematic diagram of the first embodiment of the medical image analysis system of the present invention.
第1B圖為本發明之醫療影像分析系統之第二實施例之示意圖。 Figure 1B is a schematic diagram of the second embodiment of the medical image analysis system of the present invention.
第1C圖為本發明之醫療影像分析系統之第三實施例之示意圖。 Figure 1C is a schematic diagram of the third embodiment of the medical image analysis system of the present invention.
第2A圖為本發明之醫療影像分析系統中所使用之訓練影像之電腦斷層掃描影像之示意圖。 Figure 2A is a schematic diagram of the computer tomography image of the training image used in the medical image analysis system of the present invention.
第2B至2D圖為第2A圖之簡化及影像預處理與產生影像區塊之示意圖。 Figures 2B to 2D are schematic diagrams of the simplification of Figure 2A and image preprocessing and image block generation.
第3圖為本發明之醫療影像分析系統中訓練深度學習模型之示意圖。 Figure 3 is a schematic diagram of training a deep learning model in the medical image analysis system of the present invention.
第4圖為本發明之醫療影像分析系統所繪製之接收者操作特徵曲線之示意圖。 Figure 4 is a schematic diagram of the receiver operating characteristic curve drawn by the medical image analysis system of the present invention.
第5圖為本發明之醫療影像分析方法之流程示意圖。 Figure 5 is a schematic flow diagram of the medical image analysis method of the present invention.
以下藉由特定之具體實施例加以說明本發明之實施方式,而熟悉此技術之人士可由本說明書所揭示之內容輕易地瞭解本發明之其他優點和功效,亦可藉由其他不同的具體實施例加以施行或應用。 The following specific examples illustrate the implementation of the present invention, and those skilled in the art can easily understand the other advantages and effects of the present invention from the contents disclosed in this specification, and can also use other different specific embodiments. To implement or apply.
第1A圖為本發明之醫療影像分析系統之第一實施例之示意圖,該醫療影像分析系統1可包括醫療影像分析裝置11以及與該醫療影像分析裝置11電性連接之電腦裝置12,其中,醫療影像分析裝置11與電腦裝置12兩者之間係透過有線或無線的網路13進行通訊。
Figure 1A is a schematic diagram of the first embodiment of the medical image analysis system of the present invention. The medical
醫療影像分析裝置11包括影像預處理模組111、區塊切割模組112、分析模組113以及閥值選擇模組114,並包括處理單元115、通訊單元116以及儲存單元117,其中,通訊單元116與儲存單元117耦接至處理單元115。此外,醫療影像分析裝置11可例如是手機、平板電腦、筆記型電腦、桌上型電腦、伺服器或雲端伺服器,本發明並不以此為限。又,醫療影像分析裝置11亦可包括例如螢幕或顯示器之顯示單元(未圖示)。
The medical
在本實施例中,處理單元115可為中央處理器(Central Processing Unit,CPU)、微處理器(Microprocessor)、圖形處理器(Graphics Processing Unit,GPU)或特定應用積體電路(Application Specific Integrated Circuit,ASIC)。通訊單元116可為支援各種行動通訊系統(如GSM、PHS、CDMA、WCDMA、LTE、WiMAX、4G、5G等)、Wi-Fi系統、藍芽系統或乙太網路(Ethernet)的信號傳輸的元件。而儲存單元117可為任何型態的固定或可移動隨機存取記憶體(RAM)、唯讀記憶體(ROM)、快閃記憶體(flash memory)、硬碟(hard disk)、軟碟(soft disk)、資料庫(database)或類似元件之上述元件之組合。但本發明並不以此為限。
In this embodiment, the
在本實施例中,影像預處理模組111、區塊切割模組112、分析模組113以及閥值選擇模組114可分別為儲存在儲存單元117的程式碼片段、軟體或韌體,並可由處理單元115執行。但本發明並不以此為限,醫療影像分析裝置11
內之影像預處理模組111、區塊切割模組112、分析模組113以及閥值選擇模組114亦可是使用其他硬體或軟硬體混和之形式的方式來實現。
In this embodiment, the
電腦裝置12可包括電腦輔助診斷模組121,亦包括處理單元122、通訊單元123、儲存單元124以及顯示單元125。在本實施例中,處理單元122、通訊單元123以及儲存單元124可分別是與上述之處理單元115、通訊單元116以及儲存單元117相同或相似的元件,於此不再贅述。而電腦輔助診斷模組121亦同樣為儲存在儲存單元124的程式碼片段、軟體或韌體,亦可是使用其他硬體或軟硬體混和之形式,並可由處理單元122執行。另外,電腦裝置12亦可例如為手機、平板電腦、筆記型電腦或桌上型電腦等,顯示單元125可為螢幕或顯示器,但本發明並不以此為限。
The
請再參閱第1B圖,其為本發明之醫療影像分析系統之第二實施例之示意圖。第二實施例與前述第一實施例之不同處僅在於電腦輔助診斷模組121是位在醫療影像分析裝置11內,而非電腦裝置12內。如此一來,所有的運算可集中在醫療影像分析裝置11,而電腦裝置12可變成單純只從醫療影像分析裝置11接收輸出來加以顯示的裝置,使得電腦裝置12不需要較高階的硬體。
Please refer to FIG. 1B again, which is a schematic diagram of the second embodiment of the medical image analysis system of the present invention. The second embodiment is different from the aforementioned first embodiment only in that the computer-aided
請再參閱第1C圖,其為本發明之醫療影像分析系統之第三實施例之示意圖。第三實施例與前述第二實施例之不同處係在於本發明之醫療影像分析系統可只包括醫療影像分析裝置而不需要電腦裝置。本發明之醫療影像分析系統之醫療影像分析裝置11除了可為上述之手機、平板電腦、筆記型電腦、桌上型電腦、伺服器或雲端伺服器之外,亦可為電腦斷層掃描設備或磁共振顯影設備,亦即,本發明之醫療影像分析系統可安裝在電腦斷層掃描設備或磁共振顯影設備中,但本發明並不此以為限。
Please refer to Figure 1C again, which is a schematic diagram of the third embodiment of the medical image analysis system of the present invention. The difference between the third embodiment and the foregoing second embodiment is that the medical image analysis system of the present invention can only include a medical image analysis device without a computer device. The medical
以下統一說明上述第1A至1C圖之醫療影像分析系統中所使用之模組的詳細技術內容。 The detailed technical content of the modules used in the medical image analysis system shown in Figures 1A to 1C will be described below.
第2A圖為本發明之醫療影像分析系統中所使用之影像2之電腦斷層掃描影像之示意圖,臟器21可例如為胰臟。而第2B圖為第2A圖之簡化示意圖,第2B圖所作的簡化僅為了方便說明,對本發明並不造成任何限制。請一併參閱第2A及2B圖,影像預處理模組111用以處理對應一臟器21之至少一影像2,以產生至少一處理影像2’,其中,該處理影像2’標記有對應該臟器21位置之分割標籤22。此分割標籤22一般可稱為感興趣區域(region of interest,ROI)。在本實施例中,影像預處理模組111係以重建、擴張、窗值化及正規化處理該影像2。詳細而言,影像2係為電腦斷層掃描或磁共振顯影之二維影像或三維影像。以電腦斷層掃描之二維影像為例,一般病患會有複數張電腦斷層掃描之二維影像,必須先分別使用線性內插法(linear interpolation)及最近相鄰內插法(nearest-neighbor interpolation)將影像重建為厚度一致(例如5mm)的切片,其中,線性內插法可針對影像整體,而最近相鄰內插法可針對感興趣區域。接著,將影像2中對應臟器21之標籤區域進行擴張,例如在x-y平面上將臟器21的範圍向外增加3x3像素,使影像2中對應臟器21之標籤區域擴大,而此擴大的標籤區域在後續之處理影像2’中將對應為分割標籤22。擴張標籤區域的目的,是為了防止原本的標籤區域沒有完全對應臟器21的情況,並可增加模組的判斷資訊。之後,對影像2進行窗值化,例如將影像2之窗寬(window width)及窗位(window level)分別設為250及75韓森費爾德單位(Hounsfield,HU)。最後,對影像2進行正規化,即將影像2之像素強度值設為0至1之間。經過重建、擴
張、窗值化及正規化處理之影像2將成為處理影像2’。於一實施例中,影像2會有複數張,故處理影像2’亦有複數張,但本發明並不以此為限。
FIG. 2A is a schematic diagram of a computed tomography image of the
請參閱第2C圖,區塊切割模組112用以針對標記有該分割標籤22之該處理影像2’進行擷取,以產生複數個影像區塊(patch)23。在本實施例中,區塊切割模組112係以一正方形子區域24依序沿著標記有分割標籤22之處理影像2’之x軸及y軸進行擷取,以產生複數個影像區塊23。例如,處理影像2’可為512x512像素大小,而正方形子區域24為50x50像素大小。一般而言,區塊切割模組112係將正方形子區域24設在處理影像2’的左邊界及上邊界(即左上角)來作為起始點,並擷取以產生影像區塊231。接著,正方形子區域24沿著處理影像2’之x軸向右移動距離D1(例如50像素)之後,擷取以產生影像區塊232,重複此步驟一直到正方形子區域24觸碰到處理影像2’的右邊界為止。之後,正方形子區域24將移動至處理影像2’之左邊界與距離上邊界50像素之處(即沿著y軸向下移動距離D2),擷取以產生影像區塊233,並一直重複直到正方形子區域24觸碰到處理影像2’的右邊界為止。最終,正方形子區域24將會移動至處理影像2’的右邊界及下邊界(即右下角),擷取產生複數個影像區塊23。在本實施例中,區塊切割模組112將會對每一個處理影像2’進行擷取,以產生大量的影像區塊23,而各影像區塊23彼此未重疊。另外,上述處理影像2’以及正方形子區域24的大小亦僅為示例,本發明並不以此為限。
Please refer to FIG. 2C. The
於另一實施例中,區塊切割模組112亦可不將正方形子區域24設在處理影像2’的左邊界及上邊界(即左上角)來作為起始點,而是將正方形子區域24設在處理影像2’中標記有分割標籤22之處附近來作為起始點,但本發明並不以此為限。
In another embodiment, the
再於一實施例中,如第2D圖所示,區塊切割模組112所產生之複數個影像區塊25亦可彼此部分重疊。詳細而言,區塊切割模組112係以一正方形子區域24依序沿著標記有分割標籤22之處理影像2’之x軸及y軸進行擷取,以產生複數個影像區塊25。如上所述之實施例,正方形子區域24同樣可設在處理影像2’的左邊界及上邊界(即左上角)來作為起始點,或是設在處理影像2’中標記有分割標籤22之處附近來作為起始點。本實施例與上述之實施例不同之處,在於正方形子區域24的移動距離D1’、D2’。在上述實施例中,例如正方形子區域24為50x50像素大小,每次移動皆是50像素,故所擷取之影像區塊23彼此並不會重疊。而在本實施例中,例如正方形子區域24為50x50像素大小,但每次移動皆小於50像素,故所擷取之影像區塊25彼此將會部分重疊。如第2D圖所示,正方形子區域24每次僅移動25像素(距離D1’、D2’),故影像區塊251與影像區塊252將會有重疊部分254、256,且彼此重疊面積的比例為50%,另影像區塊251與影像區塊253將會有重疊部分255、256,且彼此重疊面積的比例為50%。本發明並不限制正方形子區域24的移動距離以及影像區塊彼此重疊面積的比例,影像區塊重疊面積的比例可在20%至80%之間(最佳可為50%)。而影像區塊重疊之目的,在於後續提供給深度學習模型進行訓練時,可令深度學習模型重複檢測,例如重疊部分254、255重複檢測了2次,而重疊部分256可重複檢測了3次,以提高準確率。
In another embodiment, as shown in FIG. 2D, the plurality of image blocks 25 generated by the
前述各實施例中所提及之影像2,在訓練模型時係使用已確診之病患的電腦斷層掃描影像。換言之,放射科醫生從影像2中已可很清楚地得知腫瘤的位置,這使得區塊切割模組112所產生的複數個影像區塊23、25可分別具有癌症標記或非癌症標記。只要影像區塊23、25內有涵蓋到腫瘤的一部分,即
可標示癌症標記,而影像區塊23、25必須完全未涵蓋到腫瘤,才可以標示非癌症標記。於一實施例中,若複數個影像區塊23、25標示為非癌症標記且未包含分割標籤22者,可不列入後續訓練及預測流程,但本發明並不以此為限。
The
請參閱第3圖,在得到複數個影像區塊23、25之後,分析模組113係藉由複數個影像區塊23、25對一深度學習模型30進行訓練,以取得各複數個影像區塊23、25所分別對應之複數個第一預測值。於本實施例中,分析模組113可使用卷積神經網路(Convolutional Neural Network)31對深度學習模型30進行訓練。卷積神經網路31一般包括複數個層,例如複數個卷積層(convolution layer)311、複數個池化層(pooling layer)312以及複數個全連接層(fully-connected layer)313等,本發明並不限定卷積層311、池化層312以及全連接層313之層數多寡,亦不限定必須同時使用卷積層311、池化層312以及全連接層313,例如可僅使用卷積層311及全連接層313,或僅使用二個卷積層311及全連接層313等等。
Please refer to Figure 3. After obtaining a plurality of image blocks 23 and 25, the
於一實施例中,分析模組113所使用的卷積神經網路31可包含兩個卷積層311,後續接著整流線性單元(rectified linear unit,ReLu)作為活化函數,之後在連接全連接層313之前,先連接池化層312。經過此一步驟後,複數個影像區塊23、25可各自被展平為一陣列,之後可再重複上述步驟,直到複數個影像區塊23、25各自被展平為單一數值。以下表1即呈現複數個影像區塊之尺寸大小為50像素x 50像素時,卷積神經網路31的處理過程:
In one embodiment, the convolutional
表1
於一實施例中,卷積神經網路31係使用加權二元交叉熵(Weighted binary cross-entropy)作為損失函數,以考慮有癌症標記之區塊數量及有非癌症標記之區塊數量的不平衡性。例如,損失函數可為:
In one embodiment, the convolutional
於一實施例中,分析模組113藉由複數個影像區塊23、25對深度學習模型30進行訓練時,可再設置超常數(hyperparameters)及回呼(Callback)等機制來最佳化模型訓練效能。例如將其中一種超常數-批尺寸(batch size)設置為2560,這表示深度學習模型30在每次迭代中將接收2560個影像區塊,但本發明並不以此為限。另外,回呼機制有二:其一為分析模組113在近十次迭代中驗證損失函數處於未減少狀態時,降低該卷積神經網路31對該深度學習模型30之學習率;另一為分析模組113在近四十次迭代中驗證該損失函數處於穩定狀態時,停止該卷積神經網路31對該深度學習模型30之訓練。但本發明並不限於上述回呼機制的態樣,例如不限制迭代之次數等。
In one embodiment, when the
在本實施例中,分析模組113在對深度學習模型30進行訓練後,深度學習模型30可針對每個影像區塊給予一個對應之第一預測值,而此第一預測值可用於分類,例如,可將各影像區塊透過一第一閥值分類為具有癌症或不具有癌症,而決定第一閥值之方法將如下述。
In this embodiment, after the
閥值選擇模組114係可針對複數個第一預測值繪製第一曲線,以從該第一曲線決定出判斷各該複數個影像區塊23、25是否具有癌症之第一閥值。詳細而言,複數個影像區塊23、25分別具有對應之複數個第一預測值,將該複數個第一預測值經一特定閥值判斷後(例如第一預測值大於特定閥值則判斷影像區塊具有癌症),可計算出該特定閥值所對應之包括敏感度
(Sensitivity)及特異度(Specificity)等之統計指標,而在0至1之間的任何數值(例如為0.1、0.2、0.3、0.4…等)皆為該特定閥值的可能值,如此一來,根據複數個特定閥值的可能值所計算出的複數個敏感度及特異度可繪製出如第4圖所示之接收者操作特徵曲線(Receiver Operating Characteristic Curve,ROC)40,並從該接收者操作特徵曲線40中得到曲線下面積(Area Under Receiver Operating Characteristic Curve,AUC)及複數個約登指數(Youden index)等之統計指標,其中,複數個約登指數(公式為:約登指數=敏感度-(1-特異度))可從接收者操作特徵曲線40中每一個點所對應之敏感度及特異度計算而得。本發明係將複數個約登指數中最大值所對應之閥值做為第一閥值,在影像區塊之第一預測值大於第一閥值時,可將該影像區塊分類為具有癌症(陽性),而在影像區塊之第一預測值小於或等於第一閥值時,則可將該影像區塊分類為不具有癌症(陰性)。
The
於一實施例中,本發明之深度學習模型判斷影像區塊有癌症且放射科醫生亦判斷該影像區塊有癌症時,定義為真陽性;本發明之深度學習模型判斷影像區塊不具有癌症且放射科醫生亦判斷該影像區塊不具有癌症時,定義為真陰性;本發明之深度學習模型判斷影像區塊有癌症,但放射科醫生判斷該影像區塊不具有癌症時,定義為假陽性;本發明之深度學習模型判斷影像區塊不具有癌症,但放射科醫生判斷該影像區塊有癌症時,定義為假陰性。而前述之敏感度及特異度則由下述公式所定義:敏感度=真陽性/(真陽性+假陰性);特異度=真陰性/(真陰性+假陽性)。 In one embodiment, when the deep learning model of the present invention determines that the image block has cancer and the radiologist also determines that the image block has cancer, it is defined as a true positive; the deep learning model of the present invention determines that the image block does not have cancer And when the radiologist also judges that the image block does not have cancer, it is defined as true negative; the deep learning model of the present invention judges that the image block has cancer, but when the radiologist judges that the image block does not have cancer, it is defined as false Positive; the deep learning model of the present invention judges that the image block does not have cancer, but when the radiologist judges that the image block has cancer, it is defined as a false negative. The aforementioned sensitivity and specificity are defined by the following formula: sensitivity=true positive/(true positive+false negative); specificity=true negative/(true negative+false positive).
電腦輔助診斷模組121用以輸入至少一病患影像至該影像預處理模組111及該區塊切割模組112以產生該至少一病患影像所對應之複數個病患影
像區塊,並將該複數個病患影像區塊輸入至該深度學習模型30中以取得各該複數個病患影像區塊所分別對應之複數個第一預測值。
The computer-aided
詳細而言,電腦輔助診斷模組121具體可為電腦輔助診斷工具(Computer-assisted detection/diagnosis tools,CAD tools)軟體,而電腦輔助診斷模組121可使用醫療影像分析裝置11之分析模組113所訓練好的深度學習模型30,來協助臨床醫生對病患的診斷。例如,臨床醫生可先取得欲分析之某一病患的病患影像,並透過電腦裝置12之電腦輔助診斷模組121將病患影像輸入至醫療影像分析裝置11之影像預處理模組111及區塊切割模組112,以產生複數個病患影像區塊。有關影像預處理模組111及區塊切割模組112對病患影像之處理方式係相同於前述影像2,於此不再贅述。接著,將此病患之複數個病患影像區塊輸入至深度學習模型30中以取得對應複數個病患影像區塊之複數個第一預測值。接著,電腦輔助診斷模組121可令閥值選擇模組114針對各該複數個病患影像區塊所分別對應之複數個第一預測值計算出對應該至少一病患影像之至少一第二預測值。於一實施例中,一個病患係對應一個第二預測值,一個病患如有複數個病患影像,亦同樣對應一個第二預測值,而第二預測值係由同一病患之複數個第一預測值計算所得,但本發明並不以此為限。在本實施例中,各該複數個病患影像區塊所分別對應之該複數個第一預測值經過閥值選擇模組114所決定之第一閥值判斷後,該閥值選擇模組114將該複數個病患影像區塊分類為具有癌症(陽性)或不具有癌症(陰性),而第二預測值即是透過統計該至少一病患影像中被分類為具有癌症之病患影像區塊之數量來產生,例如第二預測值可以是該至少一病患影像中被分類為具有癌症之病患影像區塊之數量與該至少一病患影像之複數個病患影像區塊之總數量之比值。在本實施例中,電腦輔助診
斷模組121可用以輸入單一病患影像來取得單一第二預測值,以供後續臨床醫師獲得電腦輔助診斷模組121判斷該病患影像是否具有癌症的資訊。電腦輔助診斷模組121亦可以輸入複數個病患影像(即不同病患)來取得複數個第二預測值,以供後續繪製第二曲線以決定第二閥值,但本發明並不以此為限。另外,前述之單一病患影像可為單一病患所拍攝的一張或多張二維CT影像,使得第二預測值可對應單一病患影像,而該單一病患影像亦可為單一病患所拍攝的一張或多張三維CT影像,該三維CT影像經影像預處理模組111處理後可產生複數張二維病患影像,使得第二預測值亦可對應該複數張病患影像(同樣可直接對應到該病患),本發明並不以此為限。
In detail, the computer-assisted
接著,電腦輔助診斷模組121可令閥值選擇模組114針對複數個第二預測值繪製第二曲線,以從該第二曲線決定出判斷各該複數個病患影像是否具有癌症之第二閥值,其中,第二曲線為接收者操作特徵曲線,第二閥值為約登指數之最大值所對應之閥值。第二曲線及第二閥值之繪製及決定方法係相同於第一曲線及第一閥值,於此不再贅述。在決定出第二閥值之後,電腦輔助診斷模組121即可根據此第二閥值來對病患影像所對應之第二預測值進行判斷,以決定該病患影像是否具有癌症。例如,一病患影像經各模組及該深度學習模型處理後,所得到的第二預測值為0.7,若第二閥值是0.5,電腦輔助診斷模組121即可給出此病患影像具有癌症的結果。若第二閥值是0.8,則可給出此病患影像不具有癌症的結果。
Then, the computer-aided
請參閱第5圖,其揭示本發明之醫療影像分析方法之流程示意圖,而本發明之醫療影像分析方法可用於如前述之具有醫療影像分析裝置11之
醫療影像分析系統1。本發明之醫療影像分析方法中與前述醫療影像分析系統中技術內容相同者,於此不再贅述。
Please refer to Figure 5, which shows a schematic flow diagram of the medical image analysis method of the present invention, and the medical image analysis method of the present invention can be used for the aforementioned medical
首先,本發明之醫療影像分析方法可處理影像以產生處理影像(步驟S1)。亦即,本發明之醫療影像分析方法係先令醫療影像分析裝置11之影像預處理模組111處理對應一臟器21之至少一影像2,以產生至少一處理影像2’,其中,該處理影像2’標記有對應該臟器21位置之分割標籤22。
First, the medical image analysis method of the present invention can process images to generate processed images (step S1). That is, the medical image analysis method of the present invention is to order the
接著,本發明之醫療影像分析方法可產生複數個影像區塊(步驟S2)。亦即,令醫療影像分析裝置11之區塊切割模組112針對標記有分割標籤22之處理影像2’進行擷取,以產生複數個影像區塊23、25。
Next, the medical image analysis method of the present invention can generate a plurality of image blocks (step S2). That is, the
之後,本發明之醫療影像分析方法係對一深度學習模型進行訓練(步驟S3)。亦即,令醫療影像分析裝置11之分析模組113藉由複數個影像區塊對一深度學習模型30進行訓練,以取得各複數個影像區塊所分別對應之複數個第一預測值。
After that, the medical image analysis method of the present invention trains a deep learning model (step S3). That is, the
之後,本發明之醫療影像分析方法係繪製第一曲線以決定第一閥值(步驟S4)。亦即,令醫療影像分析裝置11之閥值選擇模組114針對複數個第一預測值繪製第一曲線,以從第一曲線決定出判斷各該複數個影像區塊23、25是否具有癌症之第一閥值。
After that, the medical image analysis method of the present invention draws a first curve to determine the first threshold (step S4). That is, the
最後,本發明之醫療影像分析方法在訓練完深度學習模型並決定出第一閥值後,可再繪製第二曲線以決定第二閥值(步驟S5)。亦即,令與醫療影像分析裝置11電性連接之電腦裝置12之電腦輔助診斷模組121或醫療影像分析裝置11內的電腦輔助診斷模組121輸入至少一病患影像至影像預處理模組111及區塊切割模組112以產生複數個病患影像區塊,並將複數個病患影像區塊輸入
至深度學習模型30中以取得各該複數個病患影像區塊所分別對應之複數個第一預測值。電腦輔助診斷模組121更令閥值選擇模組114針對各該複數個病患影像區塊所分別對應之複數個第一預測值計算出對應該至少一病患影像之至少一第二預測值,並依據至少一第二預測值繪製第二曲線,以從第二曲線決定出判斷該至少一病患影像是否具有癌症之第二閥值,其中,第二曲線為接收者操作特徵曲線,第二閥值為約登指數之最大值所對應之閥值。在本實施例中,複數個第二預測值為各該複數個病患影像區塊所分別對應之該複數個第一預測值經該第一閥值判斷後所產生的該至少一病患影像中具有癌症之病患影像區塊之數量與該複數個病患影像區塊之總數量的比值。
Finally, after the medical image analysis method of the present invention has trained the deep learning model and determined the first threshold, a second curve can be drawn to determine the second threshold (step S5). That is, the computer-aided
本發明之醫療影像分析系統及其方法所訓練之深度學習模型,具有較佳準確性的是採用影像區塊為50 x 50像素(即正方形子區域為50 x 50像素)來進行訓練者。由下表2清楚可見,50 x 50像素的影像區塊尺寸之敏感性為91.1±2.0%、特異性為86.5±2.6%、準確度為87.3±1.9%、曲線下面積為0.96±0.001。若影像區塊尺寸小於50 x 50像素,則準確率下降,此可能是由於影像區塊尺寸太小而無法包含與腫瘤與相鄰組織之間有關的足夠訊息;若影像區塊尺寸大於50 x 50像素,則準確率的穩定性不足,此可能與影像區塊尺寸過大而引入了更多的雜訊(noise)有關。由此可見,50 x 50像素的影像區塊尺寸係為較佳選擇。 The deep learning model trained by the medical image analysis system and method of the present invention has better accuracy if the image block is 50 x 50 pixels (that is, the square sub-region is 50 x 50 pixels) for training. It can be clearly seen from Table 2 below that the sensitivity of the 50 x 50 pixel image block size is 91.1±2.0%, the specificity is 86.5±2.6%, the accuracy is 87.3±1.9%, and the area under the curve is 0.96±0.001. If the size of the image block is less than 50 x 50 pixels, the accuracy will decrease. This may be because the size of the image block is too small to contain enough information about the tumor and adjacent tissues; if the size of the image block is larger than 50 x 50 pixels, the stability of the accuracy rate is insufficient, which may be related to the excessively large image block size and the introduction of more noise. It can be seen that an image block size of 50 x 50 pixels is a better choice.
表2
另外,本發明之醫療影像分析系統及其方法的功效證實如下:先提供295個胰臟癌症病患之具有癌症標記之244,859個影像區塊,以及提供了256個無癌症病患之具有非癌症標記之1,216,715個影像區塊做為深度學習模型之訓練材料。將上述影像區塊數量隨機分成訓練組及驗證組。由訓練組之影像區塊所訓練出之深度學習模型在驗證組中區分具有癌症標記之影像區塊與具有非癌症標記之影像區塊時,接收者操作特徵曲線下面積(AUC)高達0.96,敏感度、特異度及準確率分別有91.3%、84.5%及85.6%。在區分癌症病患及無癌症病患所獲得之接收者操作特徵曲線下面積(AUC)為1.00,敏感度、特異度及準確率分別有97.3%、100%和98.5%。 In addition, the efficacy of the medical image analysis system and method of the present invention is confirmed as follows: first provide 244,859 image blocks with cancer markers of 295 pancreatic cancer patients, and provide 256 cancer-free patients with non-cancer The marked 1,216,715 image blocks are used as training materials for the deep learning model. The number of the above image blocks is randomly divided into a training group and a verification group. When the deep learning model trained from the image blocks of the training group distinguishes image blocks with cancer markers from those with non-cancer markers in the validation group, the area under the receiver operating characteristic curve (AUC) is as high as 0.96. The sensitivity, specificity and accuracy rate are 91.3%, 84.5% and 85.6% respectively. The area under the receiver operating characteristic curve (AUC) obtained by distinguishing cancer patients and cancer-free patients was 1.00, and the sensitivity, specificity and accuracy were 97.3%, 100% and 98.5%, respectively.
又,本發明之醫療影像分析系統及其方法與放射科醫師之間的比較證實如下:以75個癌症病患之影像,以及64個無癌症病患之影像來測試上述由訓練資料所得到的深度學習模型,可知本發明之醫療影像分析系統在區分癌症病患及無癌症病患的影像預測接收者操作特徵曲線下面積(AUC)達0.997,敏 感度、特異度及準確率分別有97.3%、100.0%及98.6%。在相同的影像中,放射科醫生之敏感度僅有94.4%。 In addition, the comparison between the medical image analysis system and method of the present invention and radiologists proved as follows: 75 cancer patients' images and 64 cancer-free patients' images were used to test the above-mentioned training data The deep learning model shows that the medical image analysis system of the present invention predicts the area under the operating characteristic curve (AUC) of the receiver for distinguishing cancer patients and cancer-free patients to 0.997. Sensitivity, specificity and accuracy are 97.3%, 100.0% and 98.6% respectively. In the same image, the radiologist's sensitivity is only 94.4%.
另再以101個癌症病患之影像,以及88個無癌症病患之影像來測試上述由訓練資料所得到的深度學習模型,可知本發明之醫療影像分析系統在區分癌症病患及無癌症病患的影像預測接收者操作特徵曲線下面積(AUC)達0.999,敏感度、特異度及準確率分別有99.0%、98.9%及98.9%。在相同的影像中,放射科醫生之敏感度僅有91.7%。 In addition, 101 images of cancer patients and 88 images of cancer-free patients were used to test the above-mentioned deep learning model obtained from the training data. It can be seen that the medical image analysis system of the present invention distinguishes cancer patients from cancer-free patients. The area under the operating characteristic curve (AUC) of the patient’s image predictions reached 0.999, and the sensitivity, specificity and accuracy were 99.0%, 98.9% and 98.9%, respectively. In the same image, the radiologist's sensitivity is only 91.7%.
統計上述癌症病患之腫瘤大小與本發明之醫療影像分析系統及其方法與放射科醫生之間的敏感度後,可以得到本發明在檢測大於4cm與2-4cm之間的腫瘤大小的敏感度皆為100%,而放射科醫生在檢測大於4cm的腫瘤大小的敏感度為100%,在2-4cm之間的腫瘤大小的敏感度只有90.8%。另外,本發明在檢測小於2cm的腫瘤大小的敏感度則有92.1%,然而放射科醫生在檢測小於2cm的腫瘤大小的敏感度僅有89.5%。 After calculating the tumor size of the aforementioned cancer patients and the sensitivity between the medical image analysis system and method of the present invention and the radiologist, the sensitivity of the present invention in detecting tumor sizes between 4 cm and 2-4 cm can be obtained. Both are 100%, while the sensitivity of radiologists in detecting tumor sizes larger than 4 cm is 100%, and the sensitivity of tumor sizes between 2-4 cm is only 90.8%. In addition, the sensitivity of the present invention in detecting tumor sizes less than 2 cm is 92.1%, while the sensitivity of radiologists in detecting tumor sizes less than 2 cm is only 89.5%.
綜上所述,本發明之醫療影像分析系統及其方法在辨識胰臟癌上,相較於放射科醫生有著較高的敏感度,此即表示本發明之醫療影像分析系統及其方法可有效輔助放射科醫生減少其臨床的漏診率,特別是在小於2cm的腫瘤大小的情況,故可有效改善一般臨床情境下腫瘤小於2釐米時,約有40%無法被檢測出的情況。 In summary, the medical image analysis system and method of the present invention have higher sensitivity than radiologists in identifying pancreatic cancer, which means that the medical image analysis system and method of the present invention are effective Assisting radiologists to reduce their clinical missed diagnosis rate, especially in the case of tumors less than 2 cm in size, so it can effectively improve the general clinical situation when the tumor is less than 2 cm, about 40% of the cases cannot be detected.
上述實施形態僅為例示性說明本發明之技術原理、特點及其功效,並非用以限制本發明之可實施範疇,任何熟習此技術之人士均可在不違背本發明之精神與範疇下,對上述實施形態進行修飾與改變。然任何運用本發明 所教示內容而完成之等效修飾及改變,均仍應為下述之申請專利範圍所涵蓋。而本發明之權利保護範圍,應如下述之申請專利範圍所列。 The above-mentioned embodiments are only illustrative to illustrate the technical principles, features and effects of the present invention, and are not intended to limit the scope of the present invention. Anyone familiar with this technology can do the same without departing from the spirit and scope of the present invention. The above embodiment is modified and changed. Any use of the invention The equivalent modifications and changes to the teaching content should still be covered by the following patent application scope. The scope of protection of the rights of the present invention shall be as listed in the following patent scope.
1:醫療影像分析系統 1: Medical image analysis system
11:醫療影像分析裝置 11: Medical image analysis device
111:影像預處理模組 111: Image preprocessing module
112:區塊切割模組 112: Block cutting module
113:分析模組 113: Analysis Module
114:閥值選擇模組 114: Threshold selection module
115、122:處理單元 115, 122: processing unit
116、123:通訊單元 116, 123: communication unit
117、124:儲存單元 117, 124: storage unit
12:電腦裝置 12: Computer device
121:電腦輔助診斷模組 121: Computer Aided Diagnosis Module
125:顯示單元 125: display unit
13:網路 13: Internet
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/868,742 US11424021B2 (en) | 2019-05-10 | 2020-05-07 | Medical image analyzing system and method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962845922P | 2019-05-10 | 2019-05-10 | |
US62/845,922 | 2019-05-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202042250A TW202042250A (en) | 2020-11-16 |
TWI745940B true TWI745940B (en) | 2021-11-11 |
Family
ID=74201308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109113320A TWI745940B (en) | 2019-05-10 | 2020-04-21 | Medical image analyzing system and method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI745940B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102534453B1 (en) | 2020-12-04 | 2023-05-22 | 주식회사 뷰노 | Method for predicting disease based on medical image |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9486142B2 (en) * | 2010-12-13 | 2016-11-08 | The Trustees Of Columbia University In The City Of New York | Medical imaging devices, methods, and systems |
TWI587844B (en) * | 2016-01-28 | 2017-06-21 | 太豪生醫股份有限公司 | Medical image processing apparatus and breast image processing method thereof |
CN107767362A (en) * | 2017-09-01 | 2018-03-06 | 苏州侠洛信息科技有限公司 | A kind of early screening of lung cancer device based on deep learning |
TW201839128A (en) * | 2017-03-15 | 2018-11-01 | 學校法人兵庫醫科大學 | Novel biomarker for cancer immunotherapy |
CN109584252A (en) * | 2017-11-03 | 2019-04-05 | 杭州依图医疗技术有限公司 | Lobe of the lung section dividing method, the device of CT images based on deep learning |
-
2020
- 2020-04-21 TW TW109113320A patent/TWI745940B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9486142B2 (en) * | 2010-12-13 | 2016-11-08 | The Trustees Of Columbia University In The City Of New York | Medical imaging devices, methods, and systems |
TWI587844B (en) * | 2016-01-28 | 2017-06-21 | 太豪生醫股份有限公司 | Medical image processing apparatus and breast image processing method thereof |
TW201839128A (en) * | 2017-03-15 | 2018-11-01 | 學校法人兵庫醫科大學 | Novel biomarker for cancer immunotherapy |
CN107767362A (en) * | 2017-09-01 | 2018-03-06 | 苏州侠洛信息科技有限公司 | A kind of early screening of lung cancer device based on deep learning |
CN109584252A (en) * | 2017-11-03 | 2019-04-05 | 杭州依图医疗技术有限公司 | Lobe of the lung section dividing method, the device of CT images based on deep learning |
Also Published As
Publication number | Publication date |
---|---|
TW202042250A (en) | 2020-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ma et al. | U‐Net based deep learning bladder segmentation in CT urography | |
Taşcı et al. | Shape and texture based novel features for automated juxtapleural nodule detection in lung CTs | |
JP4949264B2 (en) | System and method for automatically detecting and segmenting tumor boundaries in medical image data | |
US11424021B2 (en) | Medical image analyzing system and method thereof | |
US20150356730A1 (en) | Quantitative predictors of tumor severity | |
KR20220117236A (en) | Automated tumor identification and segmentation using medical images | |
KR20220042072A (en) | Method and computer program for automatic segmentation of abnominal organs based on deep learning in medical images | |
Pu et al. | An automated CT based lung nodule detection scheme using geometric analysis of signed distance field | |
US11783476B2 (en) | System and method for analyzing three-dimensional image data | |
US11684333B2 (en) | Medical image analyzing system and method thereof | |
Dandıl | A Computer‐Aided Pipeline for Automatic Lung Cancer Classification on Computed Tomography Scans | |
US11257210B2 (en) | Method and system of performing medical treatment outcome assessment or medical condition diagnostic | |
CN110717894B (en) | Method, device, equipment and storage medium for evaluating curative effect of cancer targeted therapy | |
CN117291866A (en) | Medical image processing method and computing device for processing medical image | |
Hoogi et al. | A fully-automated pipeline for detection and segmentation of liver lesions and pathological lymph nodes | |
TWI745940B (en) | Medical image analyzing system and method thereof | |
TWI776716B (en) | Medical image analyzing system and method thereof | |
Rezaie et al. | Detection of lung nodules on medical images by the use of fractal segmentation | |
TWI767439B (en) | Medical image analyzing system and method thereof | |
JP2008510565A (en) | System and method for extracting colon wall in the presence of labeled feces or collapsed colonic region | |
KR102332472B1 (en) | Tumor automatic segmentation using deep learning based on dual window setting in a medical image | |
Fan et al. | Texture recognition of pulmonary nodules based on volume local direction ternary pattern | |
JP7130107B2 (en) | Area identification device, method and program, learning device, method and program, and discriminator | |
CN115393246A (en) | Image segmentation system and image segmentation method | |
US20220167928A1 (en) | Methods and systems for image segmentation and analysis |