TWI740730B - Tungsten trioxide/silicon nanocomposite structure, manufacturing method thereof and gas sensing device - Google Patents
Tungsten trioxide/silicon nanocomposite structure, manufacturing method thereof and gas sensing device Download PDFInfo
- Publication number
- TWI740730B TWI740730B TW109140955A TW109140955A TWI740730B TW I740730 B TWI740730 B TW I740730B TW 109140955 A TW109140955 A TW 109140955A TW 109140955 A TW109140955 A TW 109140955A TW I740730 B TWI740730 B TW I740730B
- Authority
- TW
- Taiwan
- Prior art keywords
- tungsten trioxide
- nanocomposite structure
- manufacturing
- silicon
- tungstate
- Prior art date
Links
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 100
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 95
- 239000010703 silicon Substances 0.000 title claims abstract description 95
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 title claims abstract description 76
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 45
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 94
- 239000000758 substrate Substances 0.000 claims abstract description 69
- 239000002243 precursor Substances 0.000 claims abstract description 50
- 239000002245 particle Substances 0.000 claims abstract description 30
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000007789 gas Substances 0.000 claims description 47
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 claims description 35
- 239000007864 aqueous solution Substances 0.000 claims description 22
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 22
- 238000010438 heat treatment Methods 0.000 claims description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 14
- 230000004048 modification Effects 0.000 claims description 14
- 238000012986 modification Methods 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 14
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- 239000000243 solution Substances 0.000 claims description 14
- 239000002070 nanowire Substances 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000002360 preparation method Methods 0.000 claims description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 10
- 230000002378 acidificating effect Effects 0.000 claims description 10
- 239000002270 dispersing agent Substances 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 6
- 230000020477 pH reduction Effects 0.000 claims description 5
- 239000011780 sodium chloride Substances 0.000 claims description 5
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 claims description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 13
- 230000004044 response Effects 0.000 description 12
- 230000004043 responsiveness Effects 0.000 description 11
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000000809 air pollutant Substances 0.000 description 4
- 231100001243 air pollutant Toxicity 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000003486 chemical etching Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- -1 zinc oxide (ZnO) Chemical class 0.000 description 3
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 239000011856 silicon-based particle Substances 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 2
- QWMFKVNJIYNWII-UHFFFAOYSA-N 5-bromo-2-(2,5-dimethylpyrrol-1-yl)pyridine Chemical compound CC1=CC=C(C)N1C1=CC=C(Br)C=N1 QWMFKVNJIYNWII-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- YGSFNCRAZOCNDJ-UHFFFAOYSA-N propan-2-one Chemical compound CC(C)=O.CC(C)=O YGSFNCRAZOCNDJ-UHFFFAOYSA-N 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G41/00—Compounds of tungsten
- C01G41/02—Oxides; Hydroxides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/125—Composition of the body, e.g. the composition of its sensitive layer
- G01N27/127—Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/128—Microapparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0036—General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
- G01N33/0037—NOx
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/16—Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Nanotechnology (AREA)
- Combustion & Propulsion (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
本發明是關於一種三氧化鎢(WO3)/矽(Si)奈米複合結構、其製造方法及包含其的氣體感測裝置,且特別是關於一種低成本的WO3/Si奈米複合結構、其製造方法及包含其的氣體感測裝置。 The present invention relates to a tungsten trioxide (WO 3 )/silicon (Si) nanocomposite structure, its manufacturing method and a gas sensing device containing the same, and in particular to a low-cost WO 3 /Si nanocomposite structure , Its manufacturing method, and a gas sensing device containing the same.
空氣污染是指大氣中存在至少一種空氣汙染物,該空氣汙染物的濃度於持續時間下足以影響到人類、動物、植物的健康。以氮氧化物(NOX)為例,NOX是常見的空氣汙染物,NOX包含一氧化氮(NO)、二氧化氮(NO2)等氣體,其是形成酸雨的主要成分,且在陽光的催化下會產生揮發性物質而引發人類呼吸道疾病,對環境跟人類健康都帶來負面影響。因此,如何監控空氣汙染物的濃度,近來備受重視。 Air pollution refers to the presence of at least one air pollutant in the atmosphere, and the concentration of the air pollutant is sufficient to affect the health of humans, animals, and plants for a duration. Take nitrogen oxides (NO X ) as an example. NO X is a common air pollutant. NO X contains gases such as nitric oxide (NO) and nitrogen dioxide (NO 2 ), which are the main components of acid rain and are Catalyzed by sunlight, volatile substances are produced, which can cause human respiratory diseases, and have a negative impact on the environment and human health. Therefore, how to monitor the concentration of air pollutants has recently attracted much attention.
金屬氧化物半導體材料是指金屬氧化物,如氧化鋅(ZnO)、氧化錫(SnO2)、WO3等,由於結構上的缺陷而具有半導體的特性。當氣體分子吸附金屬氧化物半導體材料的表面時,會使導電性產生變化,因此可藉由量測電阻變化,推知氣體分子的濃度,也因此,金屬氧化物半導體材料被廣泛應用於氣體感測 裝置。市面上使用金屬氧化物半導體材料的氣體感測裝置,大多是利用濺鍍法使金屬氧化物以顆粒的型態沉積在基材表面而形成感測薄膜。然而,濺鍍法需要在真空狀態下以電場產生高能加速粒子來轟擊靶材,設備門檻較高,而導致成本高居不下。 Metal oxide semiconductor materials refer to metal oxides, such as zinc oxide (ZnO), tin oxide (SnO 2 ), WO 3, etc., which have semiconductor characteristics due to structural defects. When gas molecules adsorb on the surface of the metal oxide semiconductor material, the conductivity will change. Therefore, the concentration of gas molecules can be inferred by measuring the resistance change. Therefore, metal oxide semiconductor materials are widely used in gas sensing. Device. Most of the gas sensing devices using metal oxide semiconductor materials on the market use sputtering to deposit metal oxides on the surface of the substrate in the form of particles to form a sensing film. However, the sputtering method requires an electric field to generate high-energy accelerated particles to bombard the target in a vacuum state, and the equipment has a high threshold, which leads to high costs.
本發明之目的在於提供一種WO3/Si奈米複合結構、其製造方法及包含其的氣體感測裝置,以解決上述問題。 Object of the present invention is to provide a WO 3 / Si nano composite structure, manufacturing method thereof and comprising a gas sensing device which is to solve the above problems.
依據本發明之一實施方式是提供一種WO3/Si奈米複合結構的製造方法,包含以下步驟。提供一矽基板,其中矽基板的一表面形成有複數個微結構。提供一WO3前驅液,使WO3前驅液與矽基板接觸。進行一水熱合成步驟,使WO3前驅液產生反應以於微結構上形成複數個WO3顆粒,而獲得WO3/Si奈米複合結構。 According to one embodiment of the present invention to provide a method of manufacturing a nano WO 3 Si / composite structure, comprising the following steps. A silicon substrate is provided, wherein a plurality of microstructures are formed on a surface of the silicon substrate. Provide a WO 3 precursor to make the WO 3 precursor contact the silicon substrate. A hydrothermal synthesis step is carried out to react the WO 3 precursor liquid to form a plurality of WO 3 particles on the microstructure to obtain a WO 3 /Si nanocomposite structure.
依據前述的WO3/Si奈米複合結構的製造方法,可更包含進行一乾燥步驟,以除去WO3/Si奈米複合結構的水分。 According to the aforementioned WO 3 /Si nanocomposite structure manufacturing method, it may further include a drying step to remove moisture from the WO 3 /Si nanocomposite structure.
依據前述的WO3/Si奈米複合結構的製造方法,可更包含進行一電漿改質步驟,係以一含氧電漿對WO3/Si奈米複合結構進行表面改質。 According to the aforementioned WO 3 /Si nanocomposite structure manufacturing method, it may further include a plasma modification step in which an oxygen-containing plasma is used to modify the surface of the WO 3 /Si nanocomposite structure.
依據前述的WO3/Si奈米複合結構的製造方法,其中各微結構可為一奈米線。奈米線的一長度可為400奈米至1400奈米,奈米線的一寬度可為40奈米至500奈米。 According to the aforementioned WO 3 /Si nanocomposite structure manufacturing method, each microstructure can be a nanowire. The length of the nanowire can be 400 nm to 1400 nm, and the width of the nanowire can be 40 nm to 500 nm.
依據前述的WO3/Si奈米複合結構的製造方法,其中WO3前驅液的製備方法可包含以下步驟。提供一含鎢酸根水溶液,其中含鎢酸根水溶液包含鎢酸根及水。進行一酸化步驟,係添加一酸性物質至含鎢酸根水溶液中,以獲得WO3前驅液。含鎢酸根水溶液中鎢酸根的濃度可為0.002M至1.8M。鎢酸根可由鎢酸鈉所提供。含鎢酸根水溶液可更包含一分散劑。含鎢酸根水溶液中分散劑的濃度可為0.004M至0.4M。分散劑可為氯化鈉。 According to the aforementioned WO 3 /Si nanocomposite structure manufacturing method, the WO 3 precursor preparation method may include the following steps. An aqueous solution containing tungstate is provided, wherein the aqueous solution containing tungstate contains tungstate and water. An acidification step is performed by adding an acidic substance to the aqueous solution containing tungstate to obtain the WO 3 precursor. The concentration of tungstate in the aqueous solution containing tungstate may be 0.002M to 1.8M. Tungstate can be provided by sodium tungstate. The aqueous solution containing tungstate may further contain a dispersant. The concentration of the dispersant in the tungstate-containing aqueous solution can be 0.004M to 0.4M. The dispersant may be sodium chloride.
依據前述的WO3/Si奈米複合結構的製造方法,其中WO3前驅液的酸鹼值(pH值)可為0至6。 According to the aforementioned WO 3 /Si nanocomposite structure manufacturing method, the acid-base value (pH value) of the WO 3 precursor can be 0-6.
依據前述的WO3/Si奈米複合結構的製造方法,其中水熱合成步驟可於一加熱裝置中進行,水熱合成步驟可包含一升溫階段、一持溫階段以及一降溫階段。升溫階段是使加熱裝置以一預定速率上升至一預定溫度,持溫階段是使加熱裝置保持在預定溫度一預定時間,降溫階段是使加熱裝置冷卻,由預定溫度冷卻至室溫。前述預定速率可為3℃/min至10℃/min、預定溫度可為140℃至250℃、預定時間可為4至8小時。 According to the aforementioned WO 3 /Si nanocomposite structure manufacturing method, the hydrothermal synthesis step can be performed in a heating device, and the hydrothermal synthesis step can include a temperature rising stage, a temperature holding stage, and a cooling stage. The heating stage is to raise the heating device to a predetermined temperature at a predetermined rate, the temperature holding stage is to keep the heating device at a predetermined temperature for a predetermined time, and the cooling stage is to cool the heating device from a predetermined temperature to room temperature. The aforementioned predetermined rate may be 3°C/min to 10°C/min, the predetermined temperature may be 140°C to 250°C, and the predetermined time may be 4 to 8 hours.
依據前述的WO3/Si奈米複合結構的製造方法,其中矽基板可設置於一夾具中,夾具包含二覆蓋件以及一夾持件,矽基板設置於二覆蓋件之間,夾持件夾持二覆蓋件以將矽基板固定於二覆蓋件之間。二覆蓋件之間可具有一縫隙,WO3前驅液可由縫隙滴入二覆蓋件之間而與矽基板接觸。 According to the aforementioned WO 3 /Si nanocomposite structure manufacturing method, the silicon substrate can be set in a jig, the jig includes two covering parts and a holding part, the silicon substrate is arranged between the two covering parts, and the holding part clamps Two covering parts are held to fix the silicon substrate between the two covering parts. There may be a gap between the two covering parts, and the WO 3 precursor can be dropped into the gap between the two covering parts to contact the silicon substrate.
依據本發明之另一實施方式是提供一種WO3/Si奈米複合結構,其係 由如前述的製造方法製造而得。 According to another embodiment of the present invention is to provide a WO 3 / Si nano composite structure produced by the preceding-based production method is obtained.
依據前述的WO3/Si奈米複合結構,其中各WO3顆粒的粒徑可為5奈米至100奈米。 According to the aforementioned WO 3 /Si nanocomposite structure, the particle size of each WO 3 particle can range from 5 nanometers to 100 nanometers.
依據本發明之再一實施方式是提供一種氣體感測裝置,包含如前述的WO3/Si奈米複合結構。 According to another embodiment of the present invention, a gas sensing device is provided, which includes the aforementioned WO 3 /Si nanocomposite structure.
依據前述的氣體感測裝置,其中氣體感測裝置用於感測NOX。 Based on the gas sensing means, wherein the gas sensing means for sensing the NO X.
較於先前技術,本發明的WO3/Si奈米複合結構的製造方法,是以具有微結構的矽基板作為基材,有利於提高WO3顆粒所附著之表面的表面積。本發明的WO3/Si奈米複合結構的製造方法是使用水熱合成步驟於矽基板上形成WO3顆粒,相較於濺鍍法,有利於降低成本。本發明的WO3/Si奈米複合結構的製造方法,可優選地將矽基板放置於夾具中,並使用滴入的方式使WO3前驅液與矽基板接觸,藉此可避免在水熱合成步驟時,WO3自我團聚而形成薄膜。本發明的WO3/Si奈米複合結構的製造方法可優選地進行電漿改質步驟,藉此,可增加WO3/Si奈米複合結構表面的氧空缺(oxygen vacancy),當應用於氣體感測裝置,有利於提升室溫感測氣體的響應度。 Compared with the prior art, the WO 3 /Si nanocomposite structure manufacturing method of the present invention uses a silicon substrate with a microstructure as a substrate, which is beneficial to increase the surface area of the surface to which the WO 3 particles are attached. The manufacturing method of the WO 3 /Si nanocomposite structure of the present invention uses a hydrothermal synthesis step to form WO 3 particles on a silicon substrate. Compared with the sputtering method, it is beneficial to reduce the cost. In the method of manufacturing WO 3 /Si nanocomposite structure of the present invention, the silicon substrate can be preferably placed in a jig, and the WO 3 precursor liquid can be brought into contact with the silicon substrate by means of dripping, thereby avoiding the hydrothermal synthesis During the step, WO 3 reunites itself to form a film. The method for manufacturing WO 3 /Si nanocomposite structure of the present invention can preferably undergo a plasma modification step, thereby increasing the oxygen vacancy on the surface of WO 3 /Si nanocomposite structure. When applied to gas The sensing device is beneficial to improve the responsiveness of sensing gas at room temperature.
100:WO3/Si奈米複合結構的製造方法 100: Manufacturing method of WO 3 /Si nanocomposite structure
110~150:步驟 110~150: Step
200:WO3/Si奈米複合結構 200: WO 3 /Si nanocomposite structure
210:矽基板 210: Silicon substrate
211:表面 211: Surface
212:微結構 212: Microstructure
220:WO3顆粒 220: WO 3 particles
311:覆蓋件 311: Cover
312:夾持件 312: Clamping parts
320:滴管 320: Dropper
330:WO3前驅液 330: WO 3 precursor fluid
400:WO3前驅液的製備方法 400: Preparation method of WO 3 precursor
410~420:步驟 410~420: steps
D:粒徑 D: particle size
G:縫隙 G: gap
L:長度 L: length
W:寬度 W: width
第1圖是依據本發明一實施方式的WO3/Si奈米複合結構的製造方法的步驟流程圖。 Fig. 1 is a flow chart of the manufacturing method of WO 3 /Si nanocomposite structure according to an embodiment of the present invention.
第2圖是依據本發明一實施方式經過水熱合成步驟使矽基板轉變為WO3/Si奈米複合結構的示意圖。 Figure 2 is a schematic diagram of converting a silicon substrate into a WO 3 /Si nanocomposite structure through a hydrothermal synthesis step according to an embodiment of the present invention.
第3圖是依據本發明一實施方式的WO3前驅液與矽基板接觸的俯視示意圖。 FIG. 3 is a schematic top view of the WO 3 precursor in contact with the silicon substrate according to an embodiment of the present invention.
第4圖是依據本發明一實施方式的WO3前驅液的製備方法的步驟流程圖。 Figure 4 is a flow chart of the steps of a WO 3 precursor preparation method according to an embodiment of the present invention.
第5圖是依據本發明一實施例的WO3/Si奈米複合結構的掃描式電子顯微鏡(Scanning Electron Microscope,SEM)照片。 Figure 5 is a scanning electron microscope (Scanning Electron Microscope, SEM) photograph of a WO 3 /Si nanocomposite structure according to an embodiment of the present invention.
第6圖是依據本發明一實施例的WO3/Si奈米複合結構在室溫下進行氣體感測響應度的測試結果圖。 FIG. 6 is a graph showing the test results of the gas sensing responsivity of the WO 3 /Si nanocomposite structure at room temperature according to an embodiment of the present invention.
第7圖是依據本發明另一實施例的WO3/Si奈米複合結構在室溫下進行氣體感測響應度的測試結果圖。 FIG. 7 is a graph showing the test results of the gas sensing responsivity of the WO 3 /Si nanocomposite structure at room temperature according to another embodiment of the present invention.
<WO<WO 33 /Si奈米複合結構的製造方法>/Si nanocomposite structure manufacturing method>
請參照第1圖,其是依據本發明一實施方式的WO3/Si奈米複合結構的製造方法100的步驟流程圖。第1圖中,WO3/Si奈米複合結構的製造方法100包含步驟110~130,且可選擇性地包含步驟140及步驟150。步驟110是提供一矽基板,其中矽基板的一表面形成有複數個微結構。具體來說,矽基板可為單晶矽,且可選擇地摻雜其他元素,如IIIA族元素或VA族元素,亦即矽基板可為P型矽基板或N型矽基板。
Please refer to FIG. 1, which is a flow chart of the
請參照第2圖,其是依據本發明一實施方式經過水熱合成步驟使矽基板210轉變為WO3/Si奈米複合結構200的示意圖。如第2圖所示,矽基板210的一表面211形成有複數個微結構212,在此,以微結構212為直線型的奈米線為例示,然而本發明不以此為限,微結構212係用於增大表面積,因此在其他實施方
式中,微結構212可配置為彎曲奈米線、孔洞結構或其他型態,亦可達到增大表面積的功效。第2圖中,奈米線的長度L可為400奈米至1400奈米,奈米線的寬度W可為40奈米至500奈米,藉此,有利於提升對感測氣體的響應度。優選地,奈米線的長度L可為800奈米至1200奈米,奈米線的寬度W可為100奈米至200奈米。舉例來說,矽基板210可採用金屬輔助化學蝕刻(Metal-assisted Chemical Etching)製程製造而得,亦即先提供表面光滑(不具有微結構)的矽晶圓片,使用金屬輔助化學蝕刻矽晶圓片的表面,而獲得表面211形成有複數個微結構212的矽基板210。關於如何於矽晶圓片上形成微結構乃本領域所熟知,在此不重複贅述。
Please refer to FIG. 2, which is a schematic diagram of converting a silicon substrate 210 into a WO 3 /
請復參照第1圖,步驟120是提供一WO3前驅液,使WO3前驅液與矽基板接觸。
Please refer to FIG. 1 again. In
配合參照第3圖,其是依據本發明一實施方式的WO3前驅液330與矽基板210接觸的俯視示意圖。第3圖中,矽基板210是設置於一夾具(未另標號)中,夾具包含二覆蓋件311以及二夾持件312,矽基板210設置於二覆蓋件311之間,夾持件312夾持二覆蓋件311以將矽基板210固定於二覆蓋件311之間。在此,夾持件312的數量例示為二,然而,本發明不以此為限,可視實際需求調整夾持件312的數量。二覆蓋件311之間具有一縫隙G,WO3前驅液330可由縫隙G滴入二覆蓋件311之間而與矽基板210接觸。具體來說,二覆蓋件311可為片狀結構且可分別設置於矽基板210相對的二側而將矽基板210夾設其間,夾持件312係用於固定二覆蓋件311及矽基板210,並提供後續水熱合成步驟所需的壓力。換句話說,矽基板210設置於夾具間所受的壓力大於大氣壓力,此外,可視實際需求調整夾持件312的夾持力,進而調整矽基板210設置於夾具間所受的壓力。WO3前驅液
330可盛裝於滴管320中,並使用滴管320將WO3前驅液330由縫隙G滴入二覆蓋件311之間而與矽基板210接觸。藉由使用夾具,可避免WO3前驅液330在進行水熱合成步驟時形成薄膜,而有利於WO3以顆粒的型態分布於微結構212上,進而可提升對感測氣體的響應度。藉由使用滴入的方式使WO3前驅液330與矽基板210接觸,有利於WO3前驅液330快速均勻地分布於矽基板210的表面,並有利於控制WO3前驅液330的總量。
With reference to FIG. 3, it is a schematic top view of the WO 3
請參照第4圖,其是依據本發明一實施方式的WO3前驅液的製備方法400的步驟流程圖。第4圖中,WO3前驅液的製備方法400包含步驟410及步驟420。
Please refer to FIG. 4, which is a flow chart of the
步驟410是提供一含鎢酸根水溶液,其中含鎢酸根水溶液包含鎢酸根及水。含鎢酸根水溶液可選擇性的更包含一分散劑,用於提升鎢酸根在水中的分散性,避免後續形成WO3顆粒時產生團聚,以提升WO3顆粒在微結構上的分散性。含鎢酸根水溶液中,鎢酸根的濃度可為0.002M至1.8M,分散劑的濃度可為0.004M至0.4M。依據本發明一實施方式,鎢酸根可由鎢酸鈉(Na2WO4)所提供,例如可將鎢酸鈉二水合物((Na2WO4˙2H2O)溶解於水中而獲得鎢酸根,然而,本發明不以此為限,可只要可溶於水且可提供鎢酸根的物質皆可作為提供鎢酸根的來源。分散劑可為氯化鈉,然而,本發明不以此為限,只要可溶於水且不與鎢酸根產生反應的物質皆可作為分散劑。 Step 410 is to provide an aqueous solution containing tungstate, wherein the aqueous solution containing tungstate contains tungstate and water. The aqueous solution containing tungstate may optionally further contain a dispersant for improving the dispersibility of tungstate in water, avoiding agglomeration during subsequent formation of WO 3 particles, so as to improve the dispersibility of WO 3 particles in the microstructure. In the aqueous solution containing tungstate, the concentration of tungstate may be 0.002M to 1.8M, and the concentration of the dispersant may be 0.004M to 0.4M. According to one embodiment of the present invention, tungstate can be provided by sodium tungstate (Na 2 WO 4 ), for example, sodium tungstate dihydrate ((Na 2 WO 4 ˙2H 2 O) can be dissolved in water to obtain tungstate, However, the present invention is not limited to this. Any material that is soluble in water and can provide tungstate can be used as the source of tungstate. The dispersant can be sodium chloride, however, the present invention is not limited thereto. Any substance that is soluble in water and does not react with tungstate can be used as a dispersant.
步驟420是進行一酸化步驟,係添加一酸性物質至含鎢酸根水溶液中,以獲得WO3前驅液。酸性物質係用於調整pH值,使製備好的WO3前驅液的pH值在一預定範圍,且酸性物質中的氫離子可與鎢酸根結合形成鎢酸。WO3前驅液的pH值可為0至6,藉此,後續形成WO3顆粒對於感測氣體具有較佳的響應
度。優選地,WO3前驅液的pH值可為0.4至2。酸性物質可為鹽酸(HCl)水溶液,然而,本發明不以此為限,只要不與矽基板及鎢酸反應的酸性物質皆可作為步驟420中的酸性物質。此外,WO3前驅液是用於在水熱合成步驟中轉變為WO3顆粒,因此,WO3前驅液的製備方法400僅為例示,本發明不以此為限,只要在水熱合成步驟中可轉變為WO3顆粒的WO3前驅液皆在本發明保護的範圍。
Step 420 is to perform an acidification step, which is to add an acidic substance to the aqueous solution containing tungstate to obtain the WO 3 precursor. The acidic substance is used to adjust the pH value so that the pH value of the prepared WO 3 precursor solution is within a predetermined range, and the hydrogen ions in the acidic substance can combine with tungstate to form tungstic acid. The pH value of the WO 3 precursor solution can be 0 to 6, so that the subsequent formation of WO 3 particles has better responsiveness for sensing gas. Preferably, the pH value of the WO 3 precursor liquid may be 0.4 to 2. The acidic substance may be a hydrochloric acid (HCl) aqueous solution, however, the present invention is not limited to this, and any acidic substance that does not react with the silicon substrate and tungstic acid can be used as the acidic substance in
請復參照第1圖,步驟130是進行一水熱合成步驟,使WO3前驅液產生反應以於微結構上形成複數個WO3顆粒,而獲得WO3/Si奈米複合結構。請復參照第2圖,WO3/Si奈米複合結構200中,WO3顆粒220散布於複數個微結構212上,WO3顆粒220的粒徑D可為5奈米至100奈米,藉此,WO3顆粒220對於感測氣體具有優良的響應度。
Please refer to Figure 1 again. In
依據本發明一實施方式,水熱合成步驟可於一加熱裝置中進行,且可包含一升溫階段、一持溫階段以及一降溫階段,升溫階段是使加熱裝置以一預定速率上升至一預定溫度,持溫階段是使加熱裝置保持在預定溫度一預定時間,降溫階段是使加熱裝置冷卻,由預定溫度冷卻至室溫。依據本發明一實施方式,加熱裝置可為水熱釜,矽基板及WO3前驅液皆直接放置在水熱釜中。依據本發明另一實施方式,矽基板是設置於夾具中(可參見第3圖),此時加熱裝置可為但不限於高溫爐,具體來說,當對夾具中的矽基板滴入WO3前驅液後,即可將矽基板連同夾具一同放入高溫爐中加熱。前述預定速率可為3℃/min至10℃/min、預定溫度可為140℃至250℃,預定時間可為4至8小時。關於水熱合成步驟的條件參數,可依據矽基板之微結構的型態、尺寸、WO3前驅液的濃度以及所欲生成之WO3顆粒的尺寸予以調整。 According to an embodiment of the present invention, the hydrothermal synthesis step can be performed in a heating device, and can include a heating stage, a temperature holding stage, and a cooling stage. The heating stage is to increase the heating device to a predetermined temperature at a predetermined rate. The temperature holding stage is to keep the heating device at a predetermined temperature for a predetermined time, and the cooling stage is to cool the heating device from a predetermined temperature to room temperature. According to an embodiment of the present invention, the heating device can be a hydrothermal kettle, and the silicon substrate and the WO 3 precursor are directly placed in the hydrothermal kettle. According to another embodiment of the present invention, the silicon substrate is set in a jig (see Figure 3). At this time, the heating device can be, but not limited to, a high-temperature furnace. Specifically, when WO 3 is dropped into the silicon substrate in the jig After the precursor liquid, the silicon substrate can be heated in a high-temperature furnace together with the fixture. The aforementioned predetermined rate may be 3°C/min to 10°C/min, the predetermined temperature may be 140°C to 250°C, and the predetermined time may be 4 to 8 hours. Regarding the condition parameters of the hydrothermal synthesis step, it can be adjusted according to the type and size of the microstructure of the silicon substrate, the concentration of the WO 3 precursor solution, and the size of the WO 3 particles to be generated.
第1圖中,步驟140是進行一乾燥步驟,其是用以除去WO3/Si奈米複合結構的水分。例如,可將由加熱裝置取出的WO3/Si奈米複合結構放置於烘箱中,以60℃進行10小時。然而,關於乾燥步驟的溫度及時間可視實際情況予以調整,只要溫度不致高破壞WO3/Si奈米複合結構並可除去水分即可。
FIG. 1,
第1圖中,步驟150是進行一電漿改質步驟,其是以一含氧電漿對WO3/Si奈米複合結構進行表面改質。含氧電漿是指形成電漿的氣體源中包含氧氣。依據本發明一實施方式,可將WO3/Si奈米複合結構放置於電漿清洗機中,抽真空並通入含氧氣體使含氧氣體形成含氧電漿,以含氧電漿對WO3/Si奈米複合結構進行表面改質一預定時間。例如,可將電漿清洗機抽真空至約0.01torr,含氧氣體可使用氧氣,氧氣通入電漿清洗機的流量可為6sccm(standard cubic centimeter per minute)、功率可設定為20W,前述預定時間可為10秒至120秒,優選地,前述預定時間可為40秒至80秒。藉由步驟150,可增加WO3/Si奈米複合結構表面的氧空缺(oxygen vacancy),當應用於氣體感測裝置,有利於提升室溫感測氣體的響應度。
In Figure 1,
<WO<WO 33 /Si奈米複合結構>/Si nanocomposite structure>
本發明提供一種WO3/Si奈米複合結構,其係使用WO3/Si奈米複合結構的製造方法100製造而得。
The present invention provides a WO 3 /Si nanocomposite structure, which is manufactured using the
如第2圖所示,依據本發明的WO3/Si奈米複合結構200包含一矽基板210以及複數個WO3顆粒220,矽基板210的一表面211形成有複數個微結構212,WO3顆粒220分布於複數個微結構212上。WO3/Si奈米複合結構200對於特定氣體具有響應度,而可用於感測該特定氣體。關於WO3/Si奈米複合結構200可參照上
文相關說明,關於WO3/Si奈米複合結構200感測氣體的應用可參照下文相關說明,在此不予重複。
As shown in Figure 2, the WO 3 /
<氣體感測裝置><Gas Sensing Device>
本發明提供一氣體感測裝置,其係包含WO3/Si奈米複合結構。WO3/Si奈米複合結構對於特定氣體具有響應度,特定氣體包含但不限於NOx、NH3、丙酮蒸氣,NOx可為但不限於NO2。當WO3/Si奈米複合結構優選地進行過電漿改質步驟,可進一步提升WO3/Si奈米複合結構對於特定氣體於室溫的響應度,使WO3/Si奈米複合結構在室溫下即可感測該特定氣體,換句話說,依據本發明的氣體感測裝置可優選地為室溫型氣體感測裝置。具體舉例來說,本發明的WO3/Si奈米複合結構於室溫下對的NO2具有優良的響應度,可應用於在室溫下偵測NO2。 The present invention provides a gas sensing device, which system contains WO 3 / Si nano composite structure. The WO 3 /Si nanocomposite structure is responsive to specific gases. The specific gases include, but are not limited to, NO x , NH 3 , and acetone vapor. The NO x can be, but is not limited to, NO 2 . When the composite structure of WO 3 / Si is preferably subjected to nano plasma modification step, may further enhance the WO 3 / Si nano composite structure for a particular gas at room temperature responsiveness of the WO 3 / Si nano composite structure in The specific gas can be sensed at room temperature. In other words, the gas sensing device according to the present invention may preferably be a room temperature gas sensing device. Specifically for example, WO 3 / Si nano composite structure of the present invention on the NO 2 at room temperature with excellent responsiveness it can be used to detect NO 2 at room temperature.
<實施例的製備><Preparation of Examples>
提供一矽基板(步驟110),矽基板的製造方式如下:取一P型矽晶圓片,將其裁切成2cm×2cm的正方形試片,依序浸泡至第一酸性蝕刻液中15秒及第二酸性蝕刻液中1分鐘。第一酸性蝕刻液的製備方法是於去離子水中加入硝酸銀以及氫氟酸,其中硝酸銀的濃度為0.01M,氫氟酸的濃度為4.6M。第二酸性蝕刻液的製備方法是於去離子水中加入過氧化氫以及氫氟酸,其中過氧化氫的濃度約為0.035M,氫氟酸的濃度為4.6M。正方形試片於第一酸性蝕刻液中的反應如式(1)至式(3)所示,正方形試片於第二酸性蝕刻液中的反應如式(4)至式(5)所示:4Ag++4 e- → 4Ag (1);Si+2H2O → SiO2+4H++4e- (2); SiO2+6HF → H2SiF6+2H2O (3);H2O2+2H+ → 2H2O+2h+ (4);2H++2e- → H2↑ (5)。 Provide a silicon substrate (step 110). The manufacturing method of the silicon substrate is as follows: Take a P-type silicon wafer, cut it into a 2cm×2cm square test piece, and soak it in the first acid etching solution for 15 seconds. And the second acid etching solution for 1 minute. The preparation method of the first acidic etching solution is to add silver nitrate and hydrofluoric acid to deionized water, wherein the concentration of silver nitrate is 0.01M and the concentration of hydrofluoric acid is 4.6M. The preparation method of the second acidic etching solution is to add hydrogen peroxide and hydrofluoric acid to deionized water, wherein the concentration of hydrogen peroxide is about 0.035M and the concentration of hydrofluoric acid is 4.6M. The reaction of the square test piece in the first acid etching solution is as shown in formula (1) to formula (3), and the reaction of the square test piece in the second acid etching solution is as shown in formula (4) to formula (5): 4Ag + +4 e - → 4Ag ( 1); Si + 2H 2 O → SiO 2 + 4H + + 4e - (2); SiO 2 + 6HF → H 2 SiF 6 + 2H 2 O (3); H 2 O 2 + 2H + → 2H 2 O + 2h + (4); 2H + + 2e - → H 2 ↑ (5).
提供一WO3/Si前驅液(步驟120),WO3/Si前驅液的製備方式如下:提供一含鎢酸根水溶液(步驟410),係取適量的Na2WO4˙2H2O及NaCl以去離子水溶解,以形成含鎢酸根水溶液,其中Na2WO4˙2H2O的濃度為0.02M,NaCl的濃度為0.04M。進行一酸化步驟(步驟420),以12M的HCl水溶液滴入含鎢酸根水溶液,直至pH值約為1.2,以獲得WO3/Si前驅液,酸化步驟的反應如式(6)所示:WO4 2-+2H+ → H2WO4↓ (6)。 Provide a WO 3 /Si precursor (step 120). The preparation method of the WO 3 /Si precursor is as follows: Provide an aqueous solution containing tungstate (step 410), and take appropriate amounts of Na 2 WO 4 ˙2H 2 O and NaCl to The deionized water is dissolved to form an aqueous solution containing tungstate, in which the concentration of Na 2 WO 4 ˙2H 2 O is 0.02M and the concentration of NaCl is 0.04M. Carry out an acidification step (step 420), drop a 12M HCl aqueous solution into the tungstate-containing aqueous solution until the pH value is about 1.2 to obtain a WO 3 /Si precursor solution. The reaction of the acidification step is shown in formula (6): WO 4 2- +2H + → H 2 WO 4 ↓ (6).
將矽基板設置於夾具中(可參考第3圖),在此以載玻片為覆蓋件,以長尾夾為夾持件,將WO3/Si前驅液由二載玻片之間的縫隙滴入而與矽基板接觸。 Set the silicon substrate in the jig (refer to Figure 3), where the glass slide is used as the cover, and the long tail clip is used as the holding piece, and the WO 3 /Si precursor is dropped from the gap between the two glass slides. Into contact with the silicon substrate.
將矽基板連同夾具放置於高溫爐中,進行水熱合成步驟(步驟130),先以5℃/min的速率升溫至160℃,將溫度保持在160℃約6小時,再停止加熱,使溫度冷卻至室溫,此時獲得WO3/Si奈米複合結構。 Place the silicon substrate and fixtures in a high-temperature furnace for the hydrothermal synthesis step (step 130). First, the temperature is raised to 160°C at a rate of 5°C/min, and the temperature is maintained at 160°C for about 6 hours, and then the heating is stopped to bring the temperature After cooling to room temperature, a WO 3 /Si nanocomposite structure is obtained.
進行一乾燥步驟(步驟140),將WO3/Si奈米複合結構自高溫爐取出並與夾具分離,放置烘箱中,以60℃烘乾10小時以除去水分。將乾燥的WO3/Si奈米複合結構以SEM觀察表面形貌,並進行氣體感測響應測試,結果請參照下文。 A drying step (step 140) is performed, and the WO 3 /Si nanocomposite structure is taken out from the high-temperature furnace and separated from the fixture, placed in an oven, and dried at 60° C. for 10 hours to remove moisture. The surface morphology of the dried WO 3 /Si nanocomposite structure was observed by SEM, and the gas sensing response test was performed. Please refer to the following for the results.
進行一電漿改質步驟(步驟150),將WO3/Si奈米複合結構放置於電漿 清洗機(Basic Plasma Cleaner,Harrick Plasma,PDG-32G)中,抽真空至約0.01torr,以6sccm的流量通入氧氣,功率以20W的功率加工60秒,並進行氣體感測響應測試,結果請參照下文。 Carry out a plasma modification step (step 150), place the WO 3 /Si nanocomposite structure in a plasma cleaner (Basic Plasma Cleaner, Harrick Plasma, PDG-32G), and vacuum to about 0.01torr, with 6sccm Oxygen was introduced at a flow rate of 20W for 60 seconds, and a gas sensing response test was performed. For the results, please refer to the following.
<實施例的性質量測><Sexual Quality Test of Example>
將進行過乾燥步驟的WO3/Si奈米複合結構以SEM進行觀察,結果如第5圖所示。第5圖中,矽基板的微結構為奈米線,WO3/Si顆粒形成於微結構上,且WO3/Si顆粒的粒徑為5奈米至100奈米。 The WO 3 /Si nanocomposite structure after the drying step was observed with SEM, and the result is shown in Figure 5. In Figure 5, the microstructure of the silicon substrate is nanowires, WO 3 /Si particles are formed on the microstructure, and the particle size of the WO 3 /Si particles is 5 nm to 100 nm.
將進行過乾燥步驟的WO3/Si奈米複合結構在室溫(25℃)下進行氣體感測響應測試,結果如第6圖所示。具體來說,第6圖是分別量測WO3/Si奈米複合結構對濃度為25ppm的乙醇(EtOH)、異丙醇(IPA)、丙酮(Acetone)等蒸氣及氨氣(NH3)的響應值,以及濃度為3ppm的二氧化氮(NO2)的響應值,其中WO3/Si奈米複合結構對於異丙醇蒸氣響應值為1,即WO3/Si奈米複合結構對於異丙醇蒸氣不具有響應度,而對其他物質的響應度依序如下:NO2>氨氣>乙醇蒸氣>丙酮蒸氣,其中以對NO2的響應度最為優異,NO2的測試濃度遠低於其他物質,然而卻具有最高的響應值。 The WO 3 /Si nanocomposite structure that has undergone the drying step is subjected to a gas sensing response test at room temperature (25° C.), and the result is shown in Figure 6. Specifically, Figure 6 is the measurement of the WO 3 /Si nanocomposite structure for ethanol (EtOH), isopropanol (IPA), acetone (Acetone) and other vapors and ammonia (NH 3 ) at a concentration of 25 ppm. The response value, and the response value of nitrogen dioxide (NO 2 ) at a concentration of 3 ppm, where the WO 3 /Si nanocomposite structure has a response value of 1 for isopropanol vapor, that is, the WO 3 /Si nanocomposite structure is for isopropyl Alcohol vapor does not have responsiveness, but the order of responsiveness to other substances is as follows: NO 2 > ammonia gas> ethanol vapor> acetone vapor. Among them , the responsiveness to NO 2 is the most excellent, and the tested concentration of NO 2 is much lower than others. Substance, however, has the highest response value.
將進行過電漿改質步驟的WO3/Si奈米複合結構在室溫下進行氣體感測響應測試,結果如第7圖所示。比較第6圖及第7圖,當進行過電漿改質步驟,WO3/Si奈米複合結構對於乙醇、異丙醇、丙酮等蒸氣、氨氣及NO2的響應值皆顯著提升,其中WO3/Si奈米複合結構對於異丙醇蒸氣由不具響應度變成具有響應度,而對NO2的響應值更由1.25大幅提升至3.49。 The WO 3 /Si nanocomposite structure that has undergone the plasma modification step was tested for gas sensing response at room temperature, and the results are shown in Figure 7. Comparing Figure 6 and Figure 7, after the plasma modification step, the WO 3 /Si nanocomposite structure has a significant increase in response to ethanol, isopropanol, acetone and other vapors, ammonia, and NO 2. The WO 3 /Si nanocomposite structure changed from being non-responsive to isopropanol vapor, and the response value to NO 2 increased significantly from 1.25 to 3.49.
將進行過電漿改質步驟的WO3/Si奈米複合結構進一步測試其在室溫對於NO2的感測極限,得到WO3/Si奈米複合結構對NO2的感測極限為151ppb。換句話說,當空氣中NO2的濃度很低時,依據本發明的WO3/Si奈米複合結構仍可感測到NO2的存在。 The WO 3 /Si nanocomposite structure that has undergone the plasma modification step is further tested for its sensing limit for NO 2 at room temperature, and it is obtained that the sensing limit of the WO 3 /Si nanocomposite structure for NO 2 is 151 ppb. In other words, when the concentration of NO 2 in the air is very low, the WO 3 /Si nanocomposite structure according to the present invention can still sense the presence of NO 2.
由第6圖及第7圖的測試結果可知,本發明的WO3/Si奈米複合結構對於特定氣體具有響應度,可應用於感測特定氣體。本發明的WO3/Si奈米複合結構經過電漿改質步驟後可大幅提升在室溫下對特定氣體的響應度,而可應用於室溫型氣體感測裝置。此外,本發明的WO3/Si奈米複合結構在室溫下對於NO2具有優異的響應度以及優異的感測極限,可應用於在室溫下偵測NO2。 It can be seen from the test results in Fig. 6 and Fig. 7 that the WO 3 /Si nanocomposite structure of the present invention is responsive to specific gases and can be applied to sense specific gases. WO invention 3 / Si nano composite structure after the step of plasma modification can greatly enhance the responsiveness of a specific gas at room temperature, but may be applied to gas-temperature sensing means. In addition, the WO 3 /Si nanocomposite structure of the present invention has excellent response to NO 2 at room temperature and excellent sensing limit, and can be applied to detect NO 2 at room temperature.
較於先前技術,本發明的WO3/Si奈米複合結構的製造方法,是以具有微結構的矽基板作為基材,有利於提高WO3顆粒所附著之表面的表面積。本發明的WO3/Si奈米複合結構的製造方法是使用水熱合成步驟於矽基板上形成WO3顆粒,相較於濺鍍法,有利於降低成本。本發明的WO3/Si奈米複合結構的製造方法,可優選地將矽基板放置於夾具中,並使用滴入的方式使WO3前驅液與矽基板接觸,藉此可避免在水熱合成步驟時,WO3自我團聚而形成薄膜。本發明的WO3/Si奈米複合結構的製造方法可優選地進行電漿改質步驟,藉此,可增加WO3/Si奈米複合結構表面的氧空缺,當應用於氣體感測裝置,有利於提升室溫感測氣體的響應度。 Compared with the prior art, the WO 3 /Si nanocomposite structure manufacturing method of the present invention uses a silicon substrate with a microstructure as a substrate, which is beneficial to increase the surface area of the surface to which the WO 3 particles are attached. The manufacturing method of the WO 3 /Si nanocomposite structure of the present invention uses a hydrothermal synthesis step to form WO 3 particles on a silicon substrate. Compared with the sputtering method, it is beneficial to reduce the cost. In the method of manufacturing WO 3 /Si nanocomposite structure of the present invention, the silicon substrate can be preferably placed in a jig, and the WO 3 precursor liquid can be brought into contact with the silicon substrate by means of dripping, thereby avoiding the hydrothermal synthesis During the step, WO 3 reunites itself to form a film. The manufacturing method of the WO 3 /Si nanocomposite structure of the present invention can preferably undergo a plasma modification step, whereby the oxygen vacancy on the surface of the WO 3 /Si nanocomposite structure can be increased. When applied to a gas sensing device, It is helpful to improve the responsiveness of sensing gas at room temperature.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The foregoing descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the present invention.
100:三氧化鎢/矽奈米複合結構的製造方法 100: Manufacturing method of tungsten trioxide/silicon nanocomposite structure
110~150:步驟 110~150: Step
Claims (18)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109140955A TWI740730B (en) | 2020-11-23 | 2020-11-23 | Tungsten trioxide/silicon nanocomposite structure, manufacturing method thereof and gas sensing device |
US17/123,054 US11598741B2 (en) | 2020-11-23 | 2020-12-15 | Tungsten trioxide/silicon nanocomposite structure, method for manufacturing the same and gas sensing device having the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109140955A TWI740730B (en) | 2020-11-23 | 2020-11-23 | Tungsten trioxide/silicon nanocomposite structure, manufacturing method thereof and gas sensing device |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI740730B true TWI740730B (en) | 2021-09-21 |
TW202220932A TW202220932A (en) | 2022-06-01 |
Family
ID=78777823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109140955A TWI740730B (en) | 2020-11-23 | 2020-11-23 | Tungsten trioxide/silicon nanocomposite structure, manufacturing method thereof and gas sensing device |
Country Status (2)
Country | Link |
---|---|
US (1) | US11598741B2 (en) |
TW (1) | TWI740730B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101799443A (en) * | 2010-03-16 | 2010-08-11 | 天津大学 | Method for preparing multiaperture silicon substrate tungsten oxide nanometer thin film gas sensitive transducer |
CN103626117A (en) * | 2013-10-21 | 2014-03-12 | 天津大学 | Method for preparing tungsten oxide nanowire/porous silicon composite structure material at low temperature |
CN103630572A (en) * | 2013-10-21 | 2014-03-12 | 天津大学 | Preparation method of porous silicon/tungsten oxide nanowire composite structure for gas-sensitive material |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI220455B (en) * | 2001-11-29 | 2004-08-21 | Ind Tech Res Inst | Method for preparing tungsten trioxide precursor and hydrogen sulfide gas sensor fabricated using the same |
CN110511059A (en) * | 2019-07-11 | 2019-11-29 | 江苏大学 | Tungstic acid air-sensitive membrane material, tungstic acid base composite air-sensitive membrane material, preparation method and application |
-
2020
- 2020-11-23 TW TW109140955A patent/TWI740730B/en active
- 2020-12-15 US US17/123,054 patent/US11598741B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101799443A (en) * | 2010-03-16 | 2010-08-11 | 天津大学 | Method for preparing multiaperture silicon substrate tungsten oxide nanometer thin film gas sensitive transducer |
CN103626117A (en) * | 2013-10-21 | 2014-03-12 | 天津大学 | Method for preparing tungsten oxide nanowire/porous silicon composite structure material at low temperature |
CN103630572A (en) * | 2013-10-21 | 2014-03-12 | 天津大学 | Preparation method of porous silicon/tungsten oxide nanowire composite structure for gas-sensitive material |
Also Published As
Publication number | Publication date |
---|---|
US11598741B2 (en) | 2023-03-07 |
TW202220932A (en) | 2022-06-01 |
US20220163472A1 (en) | 2022-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Öztürk et al. | Fabrication of ZnO nanorods for NO2 sensor applications: effect of dimensions and electrode position | |
Wang et al. | Free-standing ZnO–CuO composite nanowire array films and their gas sensing properties | |
US7846822B2 (en) | Methods for controlling dopant concentration and activation in semiconductor structures | |
Jundale et al. | Nanocrystalline CuO thin films for H2S monitoring: microstructural and optoelectronic characterization | |
JP2008042067A5 (en) | ||
CN108535337B (en) | Flexible gas sensor based on tin oxide/gallium oxide heterojunction nano array and preparation method thereof | |
KR20080027276A (en) | Method for making electronic devices using metal oxide nanoparticles | |
Wu et al. | Highly Sensitive $\beta {-}{\rm Ga} _ {2}{\rm O} _ {3} $ Nanowire Nanowires Isopropyl Alcohol Sensor | |
KR101889175B1 (en) | ZnO nanowire gas sensor functionalized with Au, Pt and Pd nanoparticle using room temperature sensing properties and method of manufacturing the same | |
WO2021232503A1 (en) | Gallium oxide nanostructure device, preparation method therefor and use thereof | |
Li et al. | NO2 sensing performance of p-type intermediate size porous silicon by a galvanostatic electrochemical etching method | |
KR101463958B1 (en) | Hydrogen Sensor basing Graphene and Method for the Same | |
TWI740730B (en) | Tungsten trioxide/silicon nanocomposite structure, manufacturing method thereof and gas sensing device | |
Hui et al. | n-and p-Type modulation of ZnO nanomesh coated graphene field effect transistors | |
Yan et al. | Preparation and room temperature NO2-sensing performances of n-porous silicon/n-WO3 nanowires heterojunction | |
CN104181206B (en) | The preparation method of gold doping porous silicon/vanadium oxide nanometer rod air-sensitive material | |
CN109721103B (en) | Molybdenum dioxide nanorod growing along crystal direction less than 010 and preparation method thereof | |
Chen et al. | Electric transport, reversible wettability and chemical sensing of single-crystalline zigzag Zn 2 SnO 4 nanowires | |
Niu et al. | H 2 S Sensor Based on MEMS Hotplate and on-Chip Growth of CuO-SnO 2 Nanosheets for High Response, Fast Recovery and Low Power Consumption | |
Chen et al. | A solid-state cation exchange reaction to form multiple metal oxide heterostructure nanowires | |
CN114778612A (en) | Based on PANI @ g-C3N4Ammonia gas sensor made of nano composite material and preparation method and application thereof | |
CN110873732A (en) | Method for adjusting application humidity window of silicon nanowire gas sensor | |
Foo et al. | Study of ZnO micro-gap on SiO 2/Si substrate by conventional lithography method for pH measurement | |
US20200312659A1 (en) | Method for the preparation of gallium oxide/copper gallium oxide heterojunction | |
Wang et al. | One step fabrication of low noise CuO nanowire-bridge gas sensor |