TWI638501B - Redundant power supply system that extends the hold time after power failure - Google Patents
Redundant power supply system that extends the hold time after power failure Download PDFInfo
- Publication number
- TWI638501B TWI638501B TW106122348A TW106122348A TWI638501B TW I638501 B TWI638501 B TW I638501B TW 106122348 A TW106122348 A TW 106122348A TW 106122348 A TW106122348 A TW 106122348A TW I638501 B TWI638501 B TW I638501B
- Authority
- TW
- Taiwan
- Prior art keywords
- power supply
- power
- inductor
- backflow
- electronic switch
- Prior art date
Links
Landscapes
- Direct Current Feeding And Distribution (AREA)
Abstract
一種可延長斷電後維持時間的冗餘電源供應系統,包含複數電源供應器與複數維持控制電路,該等電源供應器彼此並聯而供連接負載系統的輸入電容器,各電源供應器與該輸入電容器之間連接或閘防逆流元件,該等維持控制電路分別對應連接該等電源供應器的直流輸出側,各維持控制電路包含電感器、電子開關與控制器,電感器串聯於或閘防逆流元件,電子開關連接於電感器以及或閘防逆流元件的串聯節點與各電源供應器的直流輸出之間,控制器根據直流輸出側所輸出的直流電源大小,而控制電子開關導通與否,達到延長斷電後維持時間之目的。A redundant power supply system capable of prolonging maintenance time after power failure, comprising a plurality of power supplies and a plurality of sustain control circuits, wherein the power supplies are connected in parallel with each other for input capacitors connected to the load system, the power supplies and the input capacitors The connection or gate anti-backflow component is respectively connected to the DC output side of the power supply, and each of the maintenance control circuits includes an inductor, an electronic switch and a controller, and the inductor is connected in series or the gate anti-backflow component The electronic switch is connected between the series node of the inductor and the gate anti-backflow component and the DC output of each power supply, and the controller controls whether the electronic switch is turned on or not according to the size of the DC power output outputted from the DC output side, and the extension is extended. The purpose of maintaining time after power failure.
Description
本創作是有關一種冗餘電源供應系統,特別是指可延長斷電後維持時間的冗餘電源供應系統。This creation is about a redundant power supply system, especially a redundant power supply system that extends the hold time after a power outage.
請參考圖7,其揭示典型冗餘電源供應系統的電路架構圖,其包含複數電源供應器30,眾所周知的,各該電源供應器30主要包含一交流/直流電源轉換電路、一功率因數校正電路與一直流/直流電源轉換電路,該交流/直流電源轉換電路具有一交流輸入側,以供從市電接收一交流電源,該直流/直流電源轉換電路具有一直流輸出側,該直流輸出側設有一輸出電容器C 1。 Please refer to FIG. 7 , which illustrates a circuit architecture diagram of a typical redundant power supply system including a plurality of power supplies 30 . As is well known, each of the power supplies 30 mainly includes an AC/DC power conversion circuit and a power factor correction circuit. And the DC/DC power conversion circuit, the AC/DC power conversion circuit has an AC input side for receiving an AC power from the mains, the DC/DC power conversion circuit has a DC output side, and the DC output side is provided with a Output capacitor C 1 .
通過該交流/直流電源轉換電路、該功率因數校正電路與該直流/直流電源轉換電路的協同運作,對該交流電源進行直流轉換與功率因數校正,以於該直流輸出側輸出一直流電源Vo。該等電源供應器30的直流輸出側彼此並聯而對外連接一負載系統40的輸入側。其中,各電源供應器30的直流輸出側與該負載系統40之間連接一或閘防逆流二極體(ORing diode)50,該或閘防逆流二極體50的陽極端連接各電源供應器30的直流輸出側,而陰極端連接該負載系統40。The AC power supply is DC-converted and power-factor corrected by the AC/DC power conversion circuit, the power factor correction circuit, and the DC/DC power conversion circuit, so as to output the DC power supply Vo on the DC output side. The DC output sides of the power supplies 30 are connected in parallel to each other and to the input side of a load system 40. An ORing diode 50 is connected between the DC output side of each power supply 30 and the load system 40, and the anode end of the OR anti-countercurrent diode 50 is connected to each power supply. The DC output side of 30 is connected to the load system 40.
典型冗餘電源供應系統是由該等電源供應器30係共同輸出直流電源Vo,直流電源Vo通過順偏的或閘防逆流二極體50而供應給該負載系統40的輸入側,同時對負載系統40之輸入側的輸入電容器C 2儲能。在該等電源供應器的交流輸入側可正常接收交流電源的前提下,當任一電源供應器30發生故障而無法輸出直流電源Vo時,可由其它電源供應器30持續供電給該負載系統40,達到不斷電的效果。藉由所述或閘防逆流二極體50的設置,可將故障的電源供應器30隔離於其它正常的電源供應器30,以及避免故障電流進入每一個電源供應器30的直流輸出側。 A typical redundant power supply system is a common output DC power supply Vo from the power supply 30, and the DC power supply Vo is supplied to the input side of the load system 40 through the forward or gate anti-countercurrent diode 50, and simultaneously to the load input capacitor C 2 tank 40 of the input side of the system. On the premise that the AC input side of the power supply can normally receive the AC power, when any of the power supplies 30 fails and the DC power supply Vo cannot be output, the other power supply 30 can continuously supply power to the load system 40. Reach the effect of constant power. By the arrangement of the or anti-backflow diodes 50, the faulty power supply 30 can be isolated from other normal power supplies 30, and fault currents can be prevented from entering the DC output side of each of the power supplies 30.
或者,如前所述的該或閘防逆流二極體50可被一或閘防逆流電晶體(ORing MOS)(圖中未示)所取代,該或閘防逆流電晶體的汲極端與源極端分別連接各電源供應器30的直流輸出側與負載系統40,且所述汲極端與源極端之間具有一本體二極體,一控制器電連接該或閘防逆流電晶體的一控制端、汲極端與源極端,當該控制器判斷出該本體二極體為逆向偏壓時(源極端電壓大於汲極端電壓),該控制器控制該或閘防逆流電晶體為開路狀態,即可將故障的電源供應器30隔離於其它正常的電源供應器30,以及避免故障電流進入每一個電源供應器30的直流輸出側。Alternatively, the gate anti-countercurrent diode 50 may be replaced by an ORing MOS (not shown) as described above, and the gate terminal and source of the gate anti-countercurrent transistor The terminal is connected to the DC output side of each power supply 30 and the load system 40, and has a body diode between the 汲 terminal and the source terminal. A controller is electrically connected to a control end of the thyristor anti-backflow transistor.汲 extremes and source extremes, when the controller determines that the body diode is reverse biased (the source terminal voltage is greater than the 汲 extreme voltage), the controller controls the gate anti-backflow transistor to be in an open state, The faulty power supply 30 is isolated from the other normal power supplies 30, and fault current is prevented from entering the DC output side of each of the power supplies 30.
當典型冗餘電源供應系統突然停止輸出直流電源時,例如突然關機或交流電源突然跳電,該負載系統40因為沒有接收直流電源Vo而執行一緊急處理程序(例如:資料備份或關機…等),此時該負載系統40之輸入側的輸入電容器C 2釋放儲能。隨著持續釋放儲能,該輸入電容器C 2的端電壓逐漸降低,當該負載系統40檢測出該輸入電容器C 2的端電壓低於一門檻電壓,該負載系統40係直接關閉。其中,從該負載系統40未接收直流電源Vo開始,至該輸入電容器C 2的端電壓低於該門檻電壓的持續時間稱為一維持時間。顯然的,在該負載系統40關閉的當下,若該緊急處理程序尚未執行完畢,將造成負載系統40不正常關閉而導致不好的後果(例如:資料遺失)。 When a typical redundant power supply system suddenly stops outputting DC power, such as sudden shutdown or sudden power failure of the AC power supply, the load system 40 performs an emergency processing procedure (eg, data backup or shutdown, etc.) because it does not receive the DC power supply Vo. At this time, the input capacitor C 2 on the input side of the load system 40 releases the energy storage. As the stored energy is continuously released, the terminal voltage of the input capacitor C 2 gradually decreases. When the load system 40 detects that the terminal voltage of the input capacitor C 2 is lower than a threshold voltage, the load system 40 is directly turned off. The duration from when the load system 40 does not receive the DC power supply Vo and until the terminal voltage of the input capacitor C 2 is lower than the threshold voltage is referred to as a sustain time. Obviously, when the load system 40 is turned off, if the emergency processing program has not been executed, the load system 40 will be improperly shut down and cause bad consequences (for example, data loss).
典型改善作法可在各該電源供應器30中選用具有更大容量的輸出電容器C 1,讓該負載系統40的輸入電容器C 2能於斷電後抽取輸出電容器C 1的能量,延緩該輸入電容器C 2的放電以延長該維持時間。然而,在每一個電源供應器30採用大電容量的輸出電容器C 1不僅成本更高,其體積更為龐大,也導致典型冗餘電源供應系統整體機構設計的不便,且只是為了獲得短暫延長該維持時間的有限效果而採用大容量輸出電容器C 1,恐不敷成本。 A typical improvement can be used in each of the power supplies 30 to select an output capacitor C 1 having a larger capacity, so that the input capacitor C 2 of the load system 40 can extract the energy of the output capacitor C 1 after power-off, delaying the input capacitor. Discharge of C 2 to extend the hold time. However, the use of a large-capacity output capacitor C 1 in each power supply 30 is not only more expensive, but also bulkier, which also causes inconvenience in the overall mechanical design of a typical redundant power supply system, and is only for a short extension. The large-capacity output capacitor C 1 is used to maintain the limited effect of time, which is not cost.
有鑒於此,本創作的主要目的是提供一種可延長斷電後維持時間的冗餘電源供應系統,以典型冗餘電源供應系統的電路架構為基礎,在不改用更大容量之輸出電容器的前提下,可有效延長所述維持時間。In view of this, the main purpose of this creation is to provide a redundant power supply system that can prolong the maintenance time after power failure, based on the circuit architecture of a typical redundant power supply system, without switching to a larger capacity output capacitor. Under the premise, the maintenance time can be effectively extended.
本創作可延長斷電後維持時間的冗餘電源供應系統,供連接一負載系統的一輸入電容器,該冗餘電源供應系統包含: 複數電源供應器,其彼此並聯而供連接該輸入電容器,各該電源供應器的一直流輸出側與該輸入電容器之間連接至少一或閘防逆流元件,且該直流輸出側具有一輸出電容器; 複數維持控制電路,分別對應連接在該等電源供應器的直流輸出側與該負載系統之間,各該維持控制電路包含: 至少一電感器,串聯於該至少一或閘防逆流元件; 至少一電子開關,連接於該電感器與該至少一或閘防逆流元件的串聯節點與各該電源供應器的直流輸出側之間;以及 一控制器,連接各該電源供應器的直流輸出側與該至少一電子開關的一控制端,以判斷所述直流輸出側所輸出的直流電源是否低於一下限值,而控制該至少一電子開關導通與否。The present invention can extend a redundant power supply system for maintaining the time after power-off for an input capacitor connected to a load system, the redundant power supply system comprising: a plurality of power supplies connected in parallel with each other for connecting the input capacitors At least one or anti-backflow component is connected between the DC output side of the power supply and the input capacitor, and the DC output side has an output capacitor; a plurality of sustain control circuits respectively corresponding to the DC connected to the power supply Between the output side and the load system, each of the sustain control circuits includes: at least one inductor connected in series to the at least one or anti-backflow component; at least one electronic switch connected to the inductor and the at least one or anti-backflow a series connection node of the component and a DC output side of each of the power supplies; and a controller connecting a DC output side of each of the power supplies and a control end of the at least one electronic switch to determine the DC output side Whether the output DC power is lower than a lower limit, and controlling whether the at least one electronic switch is turned on or not.
根據本創作,當該等電源供應器正常運作時,於每一組電源供應器與維持控制電路中,該控制器可判斷出有直流電源的輸出,該控制器控制電子開關為開路狀態,此時,該電源供應器輸出的直流電源可傳送至該負載系統。當該等電源供應器突然停止運作時,該控制器可判斷出沒有直流電源的輸出,該控制器則控制該電子開關為間歇性導通狀態,由各電源供應器的輸出電容器與各電感器對該負載系統的輸入電容器釋放能量,使該輸入電容器的端電壓得以維持一段時間才遞減,或以更緩慢的速度遞減,進而延長該維持時間,舉例來說,本創作提供的維持時間可為典型冗餘電源供應系統所能提供維持時間的1.5倍以上,讓該負載系統有更充裕的時間以完成斷電後的緊急處理程序。According to the present invention, when the power supplies are in normal operation, in each of the power supply and maintenance control circuits, the controller can determine the output of the DC power supply, and the controller controls the electronic switch to be in an open state. The DC power output from the power supply can be transmitted to the load system. When the power supply suddenly stops operating, the controller can determine that there is no output of the DC power supply, and the controller controls the electronic switch to be in an intermittent conduction state, and the output capacitors of the respective power supply suppliers and the respective inductor pairs The input capacitor of the load system releases energy such that the terminal voltage of the input capacitor is maintained for a period of time to decrease, or decreases at a slower rate, thereby extending the hold time. For example, the maintenance time provided by the present application can be typical. The redundant power supply system can provide more than 1.5 times the maintenance time, allowing the load system to have more time to complete the emergency processing after power failure.
另一方面,和大容量的電容器相比,本創作的維持控制電路僅包含控制器、電感器、二極體或電晶體等電子零件,本創作維持控制電路所付出的成本更低,且體積更小,不會引起系統整體機構設計的不便,克服先前技術所述採用大容量電容器所衍生的問題。On the other hand, compared with large-capacity capacitors, the proposed maintenance control circuit only contains electronic components such as controllers, inductors, diodes or transistors, and the cost of maintaining the control circuit is lower and the volume is small. Smaller, it will not cause the inconvenience of the overall system design of the system, overcoming the problems caused by the use of large-capacity capacitors as described in the prior art.
請參考圖1,本創作可延長斷電後維持時間的冗餘電源供應系統10供連接負載系統L的輸入電容器C SYS,由該冗餘電源供應系統10輸出直流電源V DC給該負載系統L。當該負載系統L檢測出該輸入電容器C SYS的端電壓低於一門檻電壓,該負載系統L係直接關閉。其中,從該負載系統L未接收該直流電源V DC開始,至該輸入電容器C SYS的端電壓低於該門檻電壓的持續時間稱為一維持時間。 Referring to FIG. 1, the redundant power supply system 10 for extending the maintenance time after power-off is provided for the input capacitor C SYS connected to the load system L, and the DC power supply V DC is output from the redundant power supply system 10 to the load system L. . When the load system L detects that the terminal voltage of the input capacitor C SYS is lower than a threshold voltage, the load system L is directly turned off. The duration from when the load system L does not receive the DC power source V DC and the terminal voltage of the input capacitor C SYS is lower than the threshold voltage is referred to as a sustain time.
該冗餘電源供應系統10包含複數電源供應器11、對應連接各該電源供應器11的至少一或閘(ORing)防逆流元件12以及複數維持控制電路13。圖1所示實施例僅以兩個電源供應器11為例說明,但不以此為限。或者,本創作亦可由所述電源供應器11、或閘(ORing)防逆流元件12以及維持控制電路13所構成。The redundant power supply system 10 includes a plurality of power supplies 11 , at least one ORing anti-backflow component 12 corresponding to each of the power supplies 11 , and a plurality of sustain control circuits 13 . The embodiment shown in FIG. 1 is exemplified by two power supplies 11 as an example, but is not limited thereto. Alternatively, the present creation may be constituted by the power supply 11, the ORing anti-backflow element 12, and the sustain control circuit 13.
如圖1所示,該等電源供應器11彼此並聯而供連接該負載系統L的輸入電容器C SYS,形成多對一(即:多個電源供應器11對一個負載系統L)的連接結構。其中,各該電源供應器11具有一直流輸出側,各該電源供應器11的直流輸出側通過所述或閘防逆流元件12而連接該負載系統L。舉例來說,各該電源供應器11主要包含一交流/直流電源轉換電路、一功率因數校正電路與一直流/直流電源轉換電路,該交流/直流電源轉換電路具有一交流輸入側,該交流輸入側從市電接收一交流電源,該直流/直流電源轉換電路具有該直流輸出側以輸出經轉換後的一直流電源V DC,各該電源供應器11所輸出的直流電源V DC通過所述或閘防逆流元件12而提供給負載系統L。該等維持控制電路13分別對應連接該等電源供應器11的直流輸出側,形成一對一(即:一個電源供應器11對一個維持控制電路13)的連接結構。 As shown in FIG. 1, the power supplies 11 are connected in parallel with each other to connect the input capacitors C SYS of the load system L to form a connection structure of many to one (ie, a plurality of power supplies 11 to one load system L). Each of the power supplies 11 has a DC output side, and the DC output side of each of the power supplies 11 is connected to the load system L through the OR gate anti-backflow element 12. For example, each of the power supply 11 mainly includes an AC/DC power conversion circuit, a power factor correction circuit, and a DC/DC power conversion circuit. The AC/DC power conversion circuit has an AC input side, and the AC input. The side receives an AC power from the mains, the DC/DC power conversion circuit has the DC output side to output the converted DC power V DC , and the DC power V DC output by each of the power supplies 11 passes through the OR gate The backflow prevention element 12 is provided to the load system L. The sustain control circuits 13 are respectively connected to the DC output sides of the power supplies 11 to form a one-to-one connection structure (ie, one power supply 11 to one sustain control circuit 13).
該等維持控制電路13分別對應連接在該等電源供應器11的直流輸出側與該負載系統L之間,請參考圖2至圖6所示的實施例,其僅以複數電源供應器11當中的任一個電源供應器11與對應的一個維持控制電路13為例說明,其中,各該電源供應器11的直流輸出側具有一電源端111與一接地端112,該電源端111與該接地端112之間設有一輸出電容器C DC。各該維持控制電路13包含至少一電感器131、至少一電子開關132與一控制器133。 The maintenance control circuits 13 are respectively connected between the DC output side of the power supply 11 and the load system L. Referring to the embodiment shown in FIG. 2 to FIG. 6, only the plurality of power supplies 11 are included. For example, the power supply 11 and the corresponding one of the power supply 11 have a power terminal 111 and a ground terminal 112. The power terminal 111 and the ground terminal An output capacitor C DC is provided between 112. Each of the sustain control circuits 13 includes at least one inductor 131, at least one electronic switch 132, and a controller 133.
圖2所示的第一實施例中,各該維持控制電路13包含一電感器131、一電子開關132與一控制器133,且各該電源供應器11的直流輸出側連接一個或閘防逆流元件12。該電感器131串聯於該或閘防逆流元件12,其中,該電感器131的一端連接該電源端111,該或閘防逆流元件12連接該負載系統L的輸入電容器C SYS,該電子開關132連接於該電感器131與該或閘防逆流元件12的串聯節點n與該接地端112之間。該電子開關132可為一電晶體而具有一第一端、一第二端與一控制端,例如該第一端可為汲極端(Drain),該第二端可為源極端(Source),該控制端可為閘極端(Gate),該第一端連接該串聯節點n,該第二端連接該接地端112;該或閘防逆流元件12可為防逆流二極體(ORing diode),其陽極端連接該電感器131的另一端,其陰極端連接該負載系統L的輸入電容器C SYS。該控制器133連接該電源供應器11與該電子開關132的控制端,以根據所述直流輸出側是否輸出直流電源V DC,而控制該電子開關132導通與否。 In the first embodiment shown in FIG. 2, each of the sustain control circuits 13 includes an inductor 131, an electronic switch 132 and a controller 133, and the DC output side of each of the power supplies 11 is connected to one or the anti-backflow. Element 12. The inductor 131 is connected in series to the OR gate anti-backflow element 12, wherein one end of the inductor 131 is connected to the power terminal 111, and the OR gate anti-backflow element 12 is connected to the input capacitor CSYS of the load system L. The electronic switch 132 Connected between the inductor 131 and the series node n of the or gate anti-backflow element 12 and the ground terminal 112. The electronic switch 132 can be a transistor having a first end, a second end, and a control end. For example, the first end can be a drain, and the second end can be a source. The control terminal may be a gate terminal, the first terminal is connected to the series node n, and the second terminal is connected to the ground terminal 112. The gate anti-backflow component 12 may be an anti-backflow diode (ORing diode). Its anode end is connected to the other end of the inductor 131, and its cathode end is connected to the input capacitor C SYS of the load system L. The controller 133 is connected to the power supply 11 and the control end of the electronic switch 132 to control whether the electronic switch 132 is turned on or not according to whether the DC output side outputs the DC power supply V DC .
舉例來說,如圖2所示,該控制器133可連接該電源端111以偵測該直流電源V DC的大小,當該控制器133判斷出該直流電源V DC大於或等於一下限值,判斷有直流電源V DC的輸出;反之,當該控制器133判斷出該直流電源V DC低於該下限值,判斷無直流電源V DC的輸出。或者,該控制器133也可進一步通過一光耦合器134(photo-coupler)連接到該電源供應器11的交流輸入側,以直接偵測是否有該交流電源V AC的輸入,若無交流電源V AC的輸入,當然不會有所述直流電源V DC的輸出。 For example, as shown in FIG. 2, the controller 133 can be connected to the power terminal 111 to detect the size of the DC power source V DC . When the controller 133 determines that the DC power source V DC is greater than or equal to a lower limit value, It is determined that there is an output of the DC power source V DC ; conversely, when the controller 133 determines that the DC power source V DC is lower than the lower limit value, it is determined that there is no output of the DC power source V DC . Alternatively, the controller 133 may be further connected to the AC input side of the power supply 11 via a photocoupler 134 to directly detect whether there is an input of the AC power supply V AC . The input of V AC , of course, does not have the output of the DC power supply V DC .
以下以一範例說明本創作第一實施例的電路動作,請參考圖1與圖2,當所有的電源供應器11正常運作時,該等電源供應器11同時輸出直流電源V DC以提供給該負載系統L。於每一組電源供應器11與維持控制電路13中,當該控制器133判斷出有直流電源V DC的輸出,該控制器133控制該電子開關132為開路狀態,此時,該直流電源V DC通過該電感器131與該或閘防逆流元件12而達到該負載系統L,各該電源供應器11的輸出電容器C DC以及該負載系統L的輸入電容器C SYS根據該直流電源V DC而儲能,該電感器131可濾除該直流電源V DC的切換漣波(switching ripple)與高頻雜訊。 The circuit operation of the first embodiment of the present invention is described below by way of an example. Referring to FIG. 1 and FIG. 2, when all the power supplies 11 are in normal operation, the power supplies 11 simultaneously output a DC power supply V DC for supply to the same. Load system L. In each of the power supply 11 and the maintenance control circuit 13, when the controller 133 determines that there is an output of the DC power supply V DC , the controller 133 controls the electronic switch 132 to be in an open state. At this time, the DC power supply V The DC reaches the load system L through the inductor 131 and the OR gate anti-backflow element 12, and the output capacitor C DC of each of the power supply 11 and the input capacitor C SYS of the load system L are stored according to the DC power supply V DC The inductor 131 can filter the switching ripple and high frequency noise of the DC power source V DC .
當所有的電源供應器11突然停止運作時,例如突然關機或交流電源V AC突然跳電,所有的電源供應器11未輸出直流電源V DC,該輸出電容器C DC釋放儲能而導致其端電壓遞減,以致於每一組電源供應器11與維持控制電路13中,該控制器133判斷所述直流電源V DC低於該下限值時,該控制器133則控制該電子開關132為間歇性導通狀態,例如該控制器133可輸出一脈衝寬度調變(Pulse Width Modulation, PWM)信號給該電子開關132的控制端。請參考圖2,使各該電源供應器11的輸出電容器C DC、該電感器131、該或閘防逆流元件12、該電子開關132與該控制器133形成一升壓電路(Boost converter),升壓電路的工作原理已為公眾知悉,在此不加以詳述。 When all of the power supply 11 to stop working abruptly, the sudden shutdown e.g. V AC or AC power to jump suddenly, all of the DC power source V DC power supply 11 does not output, the output capacitor C DC release of stored energy caused by the terminal voltage Decreasing, so that in each group of power supply 11 and maintenance control circuit 13, when the controller 133 determines that the DC power source V DC is lower than the lower limit value, the controller 133 controls the electronic switch 132 to be intermittent. In the on state, for example, the controller 133 can output a Pulse Width Modulation (PWM) signal to the control terminal of the electronic switch 132. Referring to FIG. 2, the output capacitor C DC of the power supply 11 , the inductor 131 , the or anti-backflow component 12 , the electronic switch 132 and the controller 133 form a boost converter. The working principle of the booster circuit is known to the public and will not be described in detail here.
所以,和不具有升壓電路的典型冗餘電源供應系統相比,本創作是在當所有電源供應器11停止輸出直流電源V DC時,該輸出電容器C DC通過該升壓電路釋放儲能給該負載系統L的輸入電容器C SYS,讓該輸入電容器C SYS接收升壓後的電壓,故該輸入電容器C SYS的端電壓得以維持一段時間才遞減,或以更緩慢的速度遞減,進而延長該維持時間,讓該負載系統L有更充裕的該維持時間以完成斷電後的緊急處理程序。 Therefore, compared with a typical redundant power supply system without a booster circuit, the present invention is to discharge the stored energy to the output capacitor C DC through the booster circuit when all the power supplies 11 stop outputting the DC power supply V DC The input capacitor C SYS of the load system L allows the input capacitor C SYS to receive the boosted voltage, so that the terminal voltage of the input capacitor C SYS is maintained for a period of time to be decremented, or decreased at a slower speed, thereby extending the The time is maintained to allow the load system L to have more sufficient maintenance time to complete the emergency processing procedure after the power is turned off.
請參考圖3所示的第二實施例,於每一組電源供應器11與維持控制電路13中,各該電源供應器11通過複數或閘防逆流元件12連接該負載系統L,該維持控制電路13包含複數電感器131、複數電子開關132與一控制器133。該等電感器131分別串聯於該等或閘防逆流元件12,該等電子開關132分別連接於該等電感器131與該等或閘防逆流元件的串聯節點n與各該電源供應器11的直流輸出側之間。具體來說,各該電感器131的一端連接該電源端111,各該或閘防逆流元件12連接該負載系統L的輸入電容器C SYS,各該電子開關132連接於各該電感器131與各該或閘防逆流元件12的串聯節點n與該接地端112之間,該控制器133連接該等電子開關132的控制端。所以,各該電源供應器11的輸出電容器C DC、該等或閘防逆流元件12、該等電感器131、該等電子開關132與該控制器133可於交流電源斷電後形成複數升壓電路。 Referring to the second embodiment shown in FIG. 3, in each of the power supply 11 and the maintenance control circuit 13, each of the power supplies 11 is connected to the load system L through a plurality of or anti-backflow elements 12, the maintenance control Circuit 13 includes a plurality of inductors 131, a plurality of electronic switches 132, and a controller 133. The inductors 131 are respectively connected in series to the OR gate anti-backflow component 12, and the electronic switches 132 are respectively connected to the series node n of the inductors 131 and the gate anti-backflow components and the power supply 11 Between the DC output sides. Specifically, one end of each of the inductors 131 is connected to the power terminal 111, and each of the gate anti-backflow elements 12 is connected to the input capacitor C SYS of the load system L. Each of the electronic switches 132 is connected to each of the inductors 131 and Between the series node n of the OR gate anti-backflow element 12 and the ground terminal 112, the controller 133 is connected to the control terminals of the electronic switches 132. Therefore, the output capacitor C DC of the power supply 11 , the or the anti-backflow prevention component 12 , the inductors 131 , the electronic switches 132 , and the controller 133 can form a complex boost after the AC power is cut off. Circuit.
需說明的是,在圖3所示的第二實施例中,該控制器133進行升壓操作時,該控制器133可採相位延遲法,以平均分配該等電子開關132的導通相位差,例如當有m個電子開關132,則每兩電子開關132的相位差為 ,藉此,可使該輸出電容器C DC釋放出的電流平均分配在各升壓電路,達到分流(current sharing)的效果,讓各升壓電路中的電感器131與或閘防逆流元件12所承受的電流較小,且對於電感器131的設計也更為簡單。 It should be noted that, in the second embodiment shown in FIG. 3, when the controller 133 performs a boosting operation, the controller 133 may adopt a phase delay method to evenly distribute the conduction phase difference of the electronic switches 132. For example, when there are m electronic switches 132, the phase difference of each of the two electronic switches 132 is Thereby, the current released by the output capacitor C DC can be evenly distributed in each boosting circuit to achieve the effect of current sharing, so that the inductor 131 and the gate anti-backflow component 12 in each boosting circuit are The current tolerated is small and the design of the inductor 131 is also simpler.
前述第一、第二實施例的或閘防逆流元件12是以防逆流二極體(ORing diode)為例,此外,該或閘防逆流元件12的另一實施例可為電晶體元件(ORing MOS)。舉例來說,請參考圖4,該或閘防逆流元件12具有一第一端、一第二端與一控制端,該第一端與第二端可分別為汲極端(Drain)或源極端(Source),該控制端可為閘極端(Gate),該控制端連接該控制器133的一輸出端,該閘防逆流元件12的第一端與第二端分別連接該控制器133的兩輸入端,以供該控制器133偵測第一端之端電壓Va與第二端之端電壓Vb;該第一端與該第二端之間具有本體二極體(body diode)121,該本體二極體121的陽極端朝向各該電源供應器11的直流輸出側,陰極端則朝向該負載系統L。具體來說,請參考圖4所示的實施例,該本體二極體121的陽極端連接該電感器131,其陰極端連接該負載系統L的輸入電容器C SYS。 The foregoing anti-backflow element 12 of the first and second embodiments is exemplified by an anti-backflow diode (ORing diode). Further, another embodiment of the or gate anti-backflow element 12 may be a transistor element (ORing). MOS). For example, referring to FIG. 4, the gate anti-backflow component 12 has a first end, a second end, and a control end, and the first end and the second end are respectively Drain or source terminals. (Source), the control terminal may be a gate terminal, the control terminal is connected to an output end of the controller 133, and the first end and the second end of the gate anti-backflow component 12 are respectively connected to the controller 133 The input end is configured for the controller 133 to detect the terminal voltage Va of the first end and the terminal voltage Vb of the second end; the first end and the second end have a body diode 121, The anode end of the body diode 121 faces the DC output side of each of the power supplies 11, and the cathode end faces the load system L. Specifically, referring to the embodiment shown in FIG. 4, the anode end of the body diode 121 is connected to the inductor 131, and the cathode end thereof is connected to the input capacitor C SYS of the load system L.
請參考圖4,當該控制器133判斷出有直流電源V DC的輸出時,該控制器133係控制該電子開關132為開路狀態,且控制該或閘防逆流元件12為導通狀態,讓該直流電源V DC傳送到該負載系統L。反之,當該控制器133判斷無直流電源V DC的輸出時,該控制器133則控制該電子開關132與該或閘防逆流元件12為同步間歇性導通狀態,以使該電源供應器11的輸出電容器C DC、該電感器131、該本體二極體121、該電子開關132與該控制器133形成升壓電路(Boost converter)。另一方面,當該控制器133判斷出該本體二極體121處在逆向偏壓時(即:Va>Vb),代表恐有故障電流通過,該控制器133係立刻控制該或閘防逆流元件12為開路狀態,以隔離該電供應器11,避免故障電流進入電源供應器11的直流輸入側。在本實施例中,和先前技術所述的或閘防逆流電晶體與控制器的技術相比,本實施例在硬體方面僅進一步設置電感器131與電子開關132等電子零件而已,故本實施例硬體成本低廉。 Referring to FIG. 4, when the controller 133 determines that there is an output of the DC power source V DC , the controller 133 controls the electronic switch 132 to be in an open state, and controls the OR gate anti-backflow element 12 to be in an on state. The DC power source V DC is delivered to the load system L. On the other hand, when the controller 133 determines that there is no output of the DC power source V DC , the controller 133 controls the electronic switch 132 to be in a synchronous intermittent conduction state with the OR gate anti-backflow element 12 to make the power supply 11 The output capacitor C DC , the inductor 131 , the body diode 121 , the electronic switch 132 and the controller 133 form a boost converter. On the other hand, when the controller 133 determines that the body diode 121 is in the reverse bias (ie, Va>Vb), indicating that the fault current is passed, the controller 133 immediately controls the gate or the backflow prevention. The component 12 is in an open state to isolate the electrical supply 11 from fault currents entering the DC input side of the power supply 11. In this embodiment, compared with the technology of the prior art or the anti-backflow transistor and the controller, the present embodiment only further provides electronic components such as the inductor 131 and the electronic switch 132 in terms of hardware. The embodiment hardware is inexpensive.
關於各該維持控制電路的其它可行實施例請參考圖5,於各該維持控制電路中,該電感器131的一端連接該輸入電容器C SYS,該或閘防逆流元件12連接該電源供應器11的電源端111,該電子開關132連接於該電感器131與該或閘防逆流元件12的串聯節點n與該電源供應器11的接地端112之間。舉例來說,該或閘防逆流元件12可為二極體或電晶體的本體二極體(body diode),其陽極端連接該電源端111,其陰極端連接所述電感器132。該電子開關132可為二極體或電晶體的本體二極體(body diode),其陰極端與陽極端分別連接該串聯節點n與該接地端112。所以,該輸出電容器C DC、該或閘防逆流元件12、該電感器132、該電子開關132與所述控制器(圖中未示)可於交流電源斷電後形成一降壓電路(Buck converter),降壓電路的工作原理已為公眾知悉,在此不加以詳述。 For other possible embodiments of the sustain control circuit, please refer to FIG. 5. In each of the sustain control circuits, one end of the inductor 131 is connected to the input capacitor C SYS , and the gate anti-backflow element 12 is connected to the power supply 11 . The power terminal 111 is connected between the inductor 131 and the series node n of the OR gate anti-backflow element 12 and the ground terminal 112 of the power supply 11 . For example, the OR gate anti-backflow element 12 can be a body diode of a diode or a transistor having an anode terminal connected to the power terminal 111 and a cathode terminal connected to the inductor 132. The electronic switch 132 can be a body diode of a diode or a transistor, and the cathode end and the anode end are respectively connected to the series node n and the ground terminal 112. Therefore, the output capacitor C DC , the or gate anti-backflow element 12 , the inductor 132 , the electronic switch 132 and the controller (not shown) can form a step-down circuit after the AC power is cut off (Buck Converter), the working principle of the step-down circuit has been known to the public and will not be described in detail here.
於各該維持控制電路中,各該維持控制電路中可進一步包含一旁通開關,以圖6為例,但不以圖6所示的實施例為限,該旁通開關14連接在各該電源供應器11的電源端111與該負載系統L的輸入電容器C SYS之間,使該旁通開關14與串聯的該或閘防逆流元件12及該電感器131形成並聯;所述控制器(圖中未示)連接該旁通開關14的一控制端。舉例來說,該旁通開關14可為一電晶體而具有一第一端、一第二端與一控制端,該第一端與該第二端可分別為汲極端(Drain)或源極端(Source),該控制端可為閘極端(Gate)。 In each of the sustain control circuits, each of the sustain control circuits may further include a bypass switch, which is exemplified in FIG. 6, but not limited to the embodiment shown in FIG. 6, the bypass switch 14 is connected to each of the power supplies. Between the power terminal 111 of the supplier 11 and the input capacitor C SYS of the load system L, the bypass switch 14 is connected in parallel with the OR gate anti-backflow element 12 and the inductor 131 connected in series; the controller A control terminal of the bypass switch 14 is connected. For example, the bypass switch 14 can be a transistor having a first end, a second end, and a control end, and the first end and the second end can be Drain or source extremities, respectively. (Source), the control terminal can be a gate.
當該控制器判斷出該電源供應器11可輸出直流電源V DC時,該控制器係導通該旁通開關14且控制該電子開關132為開路狀態,讓該電源供應器11輸出的直流電源可通過該旁通開關14而直接到達該負載系統L,因直流電源未通過該或閘防逆流元件12及該電感器131,故不造成損耗;反之,當該控制器判斷出該電源供應器11未輸出直流電源時,該控制器係控制該旁通開關14為開路狀態,並間歇性導通該電子開關132,以實施前述降壓電路,進而延長該維持時間。 When the controller determines that the power supply 11 can output the DC power supply V DC , the controller turns on the bypass switch 14 and controls the electronic switch 132 to be in an open state, so that the DC power output of the power supply 11 can be The bypass switch 14 directly reaches the load system L. Since the DC power source does not pass the gate anti-backflow component 12 and the inductor 131, no loss is caused; otherwise, when the controller determines the power supply 11 When the DC power supply is not output, the controller controls the bypass switch 14 to be in an open state, and intermittently turns on the electronic switch 132 to implement the step-down circuit to extend the maintenance time.
綜上所述,本創作是以典型冗餘電源供應系統的電路架構為基礎,請參考圖2至圖6,對每一電源供應器11連接一維持控制電路13,由該維持控制電路13提供延長所述維持時間的功能,而維持控制電路13僅包含控制器、電感器、二極體或電晶體等電子零件,和大容量的電容器相比,本創作維持控制電路13所付出的成本更低,且體積更小,不會引起系統整體機構設計的不便,故本創作整體得以在設置成本與獲得功效取得平衡。In summary, the present invention is based on the circuit architecture of a typical redundant power supply system. Referring to FIG. 2 to FIG. 6, each power supply 11 is connected to a maintenance control circuit 13 provided by the maintenance control circuit 13. The function of extending the sustain time is extended, and the sustain control circuit 13 includes only electronic components such as a controller, an inductor, a diode, or a transistor, and the cost of maintaining the control circuit 13 is higher than that of a large-capacity capacitor. Low, and smaller, does not cause inconvenience in the overall design of the system, so the overall creation of the creation can be balanced in terms of cost and efficiency.
10‧‧‧冗餘電源供應系統10‧‧‧Redundant power supply system
11‧‧‧電源供應器 11‧‧‧Power supply
111‧‧‧電源端 111‧‧‧Power terminal
112‧‧‧接地端 112‧‧‧ Grounding terminal
12‧‧‧或閘防逆流元件 12‧‧‧ or gate anti-backflow element
121‧‧‧本體二極體 121‧‧‧ Body diode
13‧‧‧維持控制電路 13‧‧‧Maintenance control circuit
131‧‧‧電感器 131‧‧‧Inductors
132‧‧‧電子開關 132‧‧‧Electronic switch
133‧‧‧控制器 133‧‧‧ Controller
134‧‧‧光耦合器 134‧‧‧Optocoupler
14‧‧‧旁通開關 14‧‧‧Bypass switch
30‧‧‧電源供應器 30‧‧‧Power supply
40‧‧‧負載系統 40‧‧‧Load system
50‧‧‧或閘防逆流二極體 50‧‧‧ or gate anti-countercurrent diode
CDC‧‧‧輸出電容器C DC ‧‧‧ output capacitor
VDC‧‧‧直流電源V DC ‧‧‧DC power supply
n‧‧‧串聯節點 N‧‧‧ tandem node
L‧‧‧負載系統 L‧‧‧ load system
CSYS‧‧‧輸入電容器C SYS ‧‧‧ input capacitor
C1‧‧‧輸出電容器C 1 ‧‧‧ output capacitor
C2‧‧‧輸入電容器C 2 ‧‧‧ input capacitor
Vo‧‧‧直流電源 Vo‧‧‧DC power supply
圖1:本創作可延長斷電後維持時間的冗餘電源供應系統的電路架構示意圖。 圖2:本創作之其中一電源供應器與對應的一維持控制電路的實施例電路示意圖(一)。 圖3:本創作之其中一電源供應器與對應的一維持控制電路的實施例電路示意圖(二)。 圖4:本創作之其中一電源供應器與對應的一維持控制電路的實施例電路示意圖(三)。 圖5:本創作之其中一電源供應器與對應的一維持控制電路的實施例電路示意圖(四)。 圖6:本創作之其中一電源供應器與對應的一維持控制電路的實施例電路示意圖(五)。 圖7:典型冗餘電源供應系統的電路架構示意圖。Figure 1: Schematic diagram of the circuit architecture of a redundant power supply system that extends the maintenance time after power failure. Figure 2 is a circuit diagram (1) of an embodiment of a power supply and a corresponding sustain control circuit of the present invention. Figure 3 is a circuit diagram (2) of an embodiment of a power supply and a corresponding sustain control circuit of the present invention. Figure 4 is a circuit diagram (3) of an embodiment of a power supply and a corresponding sustain control circuit of the present invention. Figure 5 is a circuit diagram (4) of an embodiment of a power supply and a corresponding sustain control circuit of the present invention. Figure 6 is a circuit diagram (5) of an embodiment of a power supply and a corresponding sustain control circuit of the present invention. Figure 7: Schematic diagram of the circuit architecture of a typical redundant power supply system.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106122348A TWI638501B (en) | 2017-07-04 | 2017-07-04 | Redundant power supply system that extends the hold time after power failure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106122348A TWI638501B (en) | 2017-07-04 | 2017-07-04 | Redundant power supply system that extends the hold time after power failure |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI638501B true TWI638501B (en) | 2018-10-11 |
TW201907637A TW201907637A (en) | 2019-02-16 |
Family
ID=64802840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106122348A TWI638501B (en) | 2017-07-04 | 2017-07-04 | Redundant power supply system that extends the hold time after power failure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI638501B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113872436A (en) * | 2020-06-30 | 2021-12-31 | 万国半导体国际有限合伙公司 | Phase redundancy power supply with ORING field effect transistor current sensing |
CN115642794A (en) * | 2022-12-24 | 2023-01-24 | 苏州瑞驱电动科技有限公司 | Synchronous rectification backflow prevention method for non-isolated booster circuit of hydrogen fuel cell system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201005458A (en) * | 2008-07-16 | 2010-02-01 | Acbel Polytech Inc | AC to DC power converter with hold up time function |
TW201306458A (en) * | 2011-07-20 | 2013-02-01 | Compuware Technology Inc | Pseudo bypass switching system |
-
2017
- 2017-07-04 TW TW106122348A patent/TWI638501B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201005458A (en) * | 2008-07-16 | 2010-02-01 | Acbel Polytech Inc | AC to DC power converter with hold up time function |
TW201306458A (en) * | 2011-07-20 | 2013-02-01 | Compuware Technology Inc | Pseudo bypass switching system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113872436A (en) * | 2020-06-30 | 2021-12-31 | 万国半导体国际有限合伙公司 | Phase redundancy power supply with ORING field effect transistor current sensing |
CN115642794A (en) * | 2022-12-24 | 2023-01-24 | 苏州瑞驱电动科技有限公司 | Synchronous rectification backflow prevention method for non-isolated booster circuit of hydrogen fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
TW201907637A (en) | 2019-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4527767B2 (en) | Power converter | |
US9024609B2 (en) | Circuit and method for providing hold-up time in a DC-DC converter | |
TWI493834B (en) | A power supply system and its power supply unit and method | |
US9543839B2 (en) | Voltage stabilizing circuit | |
US8395917B2 (en) | Redundant parallel non-isolated input converters | |
US7888918B2 (en) | Control circuit for multi-phase converter | |
US10804734B2 (en) | Redundant power supply system that prolongs the holdup time after a power failure | |
US8339110B2 (en) | Single stage hybrid charge pump | |
WO2006115959A2 (en) | Method and apparatus for providing uninterruptible power | |
CN105186859B (en) | Switching converter and method for discharging output terminal thereof | |
JP2007166783A (en) | Power transforming apparatus | |
JP2011172485A (en) | Power conversion apparatus | |
TWI638501B (en) | Redundant power supply system that extends the hold time after power failure | |
TWI575857B (en) | Step up dc converter | |
US10158291B1 (en) | DC/DC converter for high voltage applications with input voltage boost, input capacitor discharge and output capacitor compensation modes | |
CN109217450B (en) | Redundant power supply system capable of prolonging maintenance time after power failure | |
CN109104086B (en) | DC-DC converter with power factor correction function | |
CN111478605A (en) | Synchronous rectification control chip and AC-DC system | |
JP6902719B2 (en) | Converter system | |
TWI513160B (en) | Power supply system and its DC converter | |
TWI777313B (en) | Power device and operation method thereof | |
US9960636B2 (en) | Power supply system and direct-current converter thereof | |
US11217993B2 (en) | Conversion system with high voltage side and low voltage side | |
TWM512261U (en) | Electronic system | |
US11545891B2 (en) | Power device and operation method thereof |