TWI638251B - Modal detection system - Google Patents
Modal detection system Download PDFInfo
- Publication number
- TWI638251B TWI638251B TW106102036A TW106102036A TWI638251B TW I638251 B TWI638251 B TW I638251B TW 106102036 A TW106102036 A TW 106102036A TW 106102036 A TW106102036 A TW 106102036A TW I638251 B TWI638251 B TW I638251B
- Authority
- TW
- Taiwan
- Prior art keywords
- detectors
- modality
- machine
- vibration
- spindle device
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 11
- 238000006073 displacement reaction Methods 0.000 claims abstract description 9
- 238000005070 sampling Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 4
- 238000013016 damping Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000005314 correlation function Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Landscapes
- Numerical Control (AREA)
Abstract
一種模態偵測系統,包含一個工具機、一個偵測單元,及一個處理單元。該工具機包括一個機台、相對該機台沿一個隨機路徑移動的一個工作台,及設置在該機台且在該工作台位移時產生自體振動的一個主軸裝置。該平作台沿同一方向的最大位移量不大於100mm。該偵測單元包括散佈在該主軸裝置的數個偵測器,每一個偵測器量測該主軸裝置產生自體振動時的振幅及振動頻率,而輸出一個感測信號。該處理單元與該等偵測器相互通訊,且接收該等感測信號後,根據前述振幅及頻率,獲得數個模態參數。藉此,利用該工作台往不同方向作小量而快速的來回運動,使該主軸裝置能夠模擬真實加工狀態產生自動振動,而能夠提升模態分析結果的準確度,且設備成本低。A modality detection system includes a machine tool, a detection unit, and a processing unit. The machine tool includes a machine table, a table that moves along a random path relative to the machine table, and a spindle device that is disposed on the machine table and generates self-vibration when the table is displaced. The maximum displacement of the flat table in the same direction is not more than 100 mm. The detecting unit includes a plurality of detectors dispersed on the spindle device, and each of the detectors measures an amplitude and a vibration frequency of the spindle device to generate an autogenous vibration, and outputs a sensing signal. The processing unit and the detectors communicate with each other, and after receiving the sensing signals, obtain a plurality of modal parameters according to the amplitude and the frequency. Thereby, the small and rapid movement back and forth in different directions by the worktable enables the spindle device to simulate the real processing state to generate automatic vibration, and can improve the accuracy of the modal analysis result, and the equipment cost is low.
Description
本發明是有關於一種偵測系統,特別是指一種用於取得模態參數的模態偵測系統。The invention relates to a detection system, in particular to a modal detection system for obtaining modal parameters.
一般工具機在加工過程中,會因為振動頻率接近結構的自然頻率,發生共振效應,使工具機的響應增大而不穩定,並影響加工精度。因此,藉由模態分析(Operation Modal Analysis,OMA),了解結構件的模態頻率、模態振型、模態阻尼比等,將有助於改善工具機的加工效能。In the process of machining, the machine tool will have a resonance effect due to the vibration frequency approaching the natural frequency of the structure, which makes the response of the machine tool increase and unstable, and affects the machining accuracy. Therefore, by using the Modal Analysis (OMA), understanding the modal frequency, mode shape, and modal damping ratio of the structural members will help improve the machining efficiency of the machine tool.
傳統上,要對工具機進行模態分析(Operation Modal Analysis,OMA),須要提供一個已知且準確大小的力。目前的主要做法是使用衝擊鎚敲擊工具機的結構件,或以激振器激振工具機的結構件。Traditionally, to perform a Modal Analysis (OMA) on a machine tool, it is necessary to provide a force of known and accurate magnitude. The current main practice is to use a hammer to strike the structural components of the machine tool, or to excite the structural components of the machine tool with an exciter.
惟,使用衝擊鎚敲擊的方式,只能在停機的狀態下進行,模態分析結果會因為與實際加工方式有落差,而產生誤差。使用激振器的方式,會因為頻率周期固定,無法得到隨機激振,模態分析結果同樣會產生誤差,且用於工具機的激振器須配合使用輸出功率較大的放大器,進而提高量測成本。However, the method of using the impact hammer to strike can only be carried out in the state of shutdown, and the modal analysis result will have an error due to the difference with the actual processing mode. The use of the exciter will result in random excitation due to the fixed frequency period. The modal analysis results will also produce errors, and the exciter used in the machine tool must be combined with an amplifier with a large output power to increase the amount. Measuring costs.
因此,本發明的目的,即在提供一種能夠提升模態分析結果的準確度,且設備成本低的模態偵測系統。Accordingly, it is an object of the present invention to provide a modality detection system capable of improving the accuracy of modal analysis results and having a low equipment cost.
於是,本發明模態偵測系統,用於取得數個模態參數,以進行操作模態分析,該模態偵測系統包含:一個工具機、一個偵測單元,及一個處理單元。Therefore, the modality detecting system of the present invention is configured to obtain a plurality of modal parameters for performing operational modal analysis, and the modal detecting system comprises: a machine tool, a detecting unit, and a processing unit.
該工具機包括一個機台、相對該機台沿一個隨機路徑移動的一個工作台,及設置在該機台且在該工作台位移時產生自體振動的一個主軸裝置,該工作台沿同一方向的最大位移量不大於100mm。The machine tool includes a machine table, a table moving along a random path relative to the machine table, and a spindle device disposed on the machine table and generating self-vibration when the table is displaced, the table is in the same direction The maximum displacement is no more than 100mm.
該偵測單元包括散佈在該主軸裝置的數個偵測器,每一個偵測器量測該主軸裝置產生自體振動時的振幅及振動頻率,而輸出一個感測信號。The detecting unit includes a plurality of detectors dispersed on the spindle device, and each of the detectors measures an amplitude and a vibration frequency of the spindle device to generate an autogenous vibration, and outputs a sensing signal.
該處理單元與該等偵測器相互通訊,且接收該等感測信號後,根據前述振幅及頻率,獲得模態參數。The processing unit communicates with the detectors, and after receiving the sensing signals, obtains modal parameters according to the amplitude and frequency.
本發明的功效在於:利用該工作台往不同方向作小量而快速的來回運動,使該主軸裝置能夠模擬真實加工狀態產生自動振動,而能夠提升模態分析結果的準確度,且設備成本低。The utility model has the advantages of: using the worktable to make small and rapid back and forth movements in different directions, so that the spindle device can simulate the real processing state to generate automatic vibration, and can improve the accuracy of the modal analysis result, and the equipment cost is low. .
參閱圖1、圖2與圖3,本發明模態偵測系統的一個實施例,包含一個工具機1、一個偵測單元2,及一個處理單元3。Referring to FIG. 1, FIG. 2 and FIG. 3, an embodiment of the modality detecting system of the present invention comprises a power tool 1, a detecting unit 2, and a processing unit 3.
該工具機1包括一個機台11、相對該機台11沿一個隨機路徑S移動的一個工作台12、設置在該機台11的一個主軸裝置13,及驅動該工作台12位移的一個馬達單元14。在本實施例中,該工作台12能夠沿一條X軸方向、一條Y軸方向位移,使該隨機路徑S局限在二維空間內,在位移過程中,該工作台12沿同一方向的最大位移量不大於100mm,且移動速率≧0.6m/s。該主軸裝置13具有沿一條Z軸方向設置在該機台11的一個立柱131,及依循該立柱131沿該Z軸方向相對該工作台12位移的一個主軸頭132。The machine tool 1 comprises a machine table 11, a table 12 moving along a random path S relative to the machine table 11, a spindle device 13 disposed on the machine table 11, and a motor unit for driving the table 12 to be displaced. 14. In this embodiment, the table 12 can be displaced along an X-axis direction and a Y-axis direction, so that the random path S is confined in a two-dimensional space, and the maximum displacement of the table 12 in the same direction during the displacement process. The amount is not more than 100 mm, and the moving speed is m0.6 m/s. The spindle unit 13 has a column 131 disposed on the table 11 along a Z-axis direction, and a spindle head 132 that is displaced relative to the table 12 in the Z-axis direction in accordance with the column 131.
該偵測單元2包括數個偵測器21。在本實施例中,該等偵測器21共有24個,且給予編號1~編號24,分別散佈在該主軸裝置13的立柱131與主軸頭132上,且分別鄰近該立柱131的數個邊緣與該主軸頭132的數個邊緣。每一個偵測器21量測該立柱131或該主軸頭132產生自體振動時的振幅及振動頻率,而輸出一個感測信號M。且每一個偵測器21可以是壓電式加速度計、或三軸加速度計,取樣頻率為4 Hz~1kHz,可量測的頻寬為0 至500Hz。The detecting unit 2 includes a plurality of detectors 21. In this embodiment, the detectors 21 have a total of 24, and the numbers 1 to 24 are respectively distributed on the column 131 and the spindle head 132 of the spindle device 13, and are respectively adjacent to the edges of the column 131. A number of edges with the spindle head 132. Each of the detectors 21 measures the amplitude and vibration frequency of the column 131 or the spindle head 132 when the self-vibration is generated, and outputs a sensing signal M. Each of the detectors 21 can be a piezoelectric accelerometer or a three-axis accelerometer with a sampling frequency of 4 Hz to 1 kHz and a measurable bandwidth of 0 to 500 Hz.
該處理單元3與該等偵測器21相互通訊,且接收該等感測信號M後,根據前述振幅及頻率,獲得模態頻率、模態振型、模態阻尼比等模態參數。The processing unit 3 communicates with the detectors 21, and after receiving the sensing signals M, obtains modal parameters such as a modal frequency, a mode shape, and a modal damping ratio according to the amplitude and the frequency.
值得說明的是,在本實施例中,該隨機路徑S是先由該處理單元3隨機產生亂數,再以路徑指令 (NC) 方式輸入該工具機1。另外,該處理單元3可以內建在遠端的電腦,或內建在該工具機1。It should be noted that, in this embodiment, the random path S is randomly generated by the processing unit 3, and then input into the machine tool 1 by a path command (NC). In addition, the processing unit 3 can be built in at the remote computer or built into the machine tool 1.
進行模態分析時,該工具機1會驅動該工作台12根據該隨機路徑S的軌跡沿該X軸方向、或該Y軸方向,以最大位移量不大於100mm,且移動速率≧0.6m/s的速度,快速的往、返位移與停頓,使該立柱131、該主軸132產生自體振動,而前述自體振動的激振力來源主要來自於該馬達單元14所產生的振動,及該工作台12位移速度改變、或停頓瞬間、或方向改變時的慣性力。During the modal analysis, the machine tool 1 drives the table 12 according to the trajectory of the random path S along the X-axis direction, or the Y-axis direction, with a maximum displacement of no more than 100 mm, and a moving rate of m0.6 m/ The speed of s, the rapid backward and backward displacement and the pause, the column 131 and the main shaft 132 generate self-vibration, and the excitation force of the self-vibration is mainly derived from the vibration generated by the motor unit 14, and The displacement speed of the table 12 is changed, or the moment of pause, or the inertial force when the direction is changed.
藉此,在該工作台12位移的過程中,每一個偵測器21會量測各別位置的振幅及振動頻率,而輸出一種接近白噪音(White Noise)的該感測信號M。Thereby, during the displacement of the table 12, each of the detectors 21 measures the amplitude and the vibration frequency of the respective positions, and outputs a sensing signal M close to white noise.
而該處理單元3接收該等感測信號M後,會獲得各別位置之X軸方向-Y軸方向的響應分佈情形,以編號2、6、12之偵測器21的量測結果,及圖4X方向之響應訊號的時域圖,與圖5相對前述X方向之響應訊號的相關函數圖為例,並以表1的數據資料說明如下: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表1 </td></tr><tr><td> 偵測器編號 </td><td> 軸向 </td><td><img wi="9" he="24" file="TWI638251B_D0001.tif" img-format="jpg"></img> (g) </td><td><img wi="38" he="24" file="02_image003.jpg" img-format="jpg"></img></td><td><img wi="47" he="24" file="02_image005.jpg" img-format="jpg"></img></td><td><img wi="47" he="24" file="02_image007.jpg" img-format="jpg"></img></td><td> 偏態係數 </td><td> 峰度係數 </td></tr><tr><td> 2 </td><td> X軸方向 </td><td> 0.023 </td><td> 55.39 </td><td> 92.11 </td><td> 98.87 </td><td> 0.068 </td><td> 3.329 </td></tr><tr><td> 6 </td><td> X軸方向 </td><td> 0.014 </td><td> 49.99 </td><td> 92.56 </td><td> 99.83 </td><td> -0.015 </td><td> 2.412 </td></tr><tr><td> 12 </td><td> X軸方向 </td><td> 0.016 </td><td> 61.87 </td><td> 95.76 </td><td> 99.94 </td><td> -0.016 </td><td> 2.512 </td></tr><tr><td> 2 </td><td> Y軸方向 </td><td> 0.016 </td><td> 70.24 </td><td> 94.78 </td><td> 99.380 </td><td> 0.088 </td><td> 3.360 </td></tr><tr><td> 6 </td><td> Y軸方向 </td><td> 0.013 </td><td> 70.15 </td><td> 94.48 </td><td> 99.45 </td><td> 0.038 </td><td> 3.420 </td></tr><tr><td> 12 </td><td> Y軸方向 </td><td> 0.016 </td><td> 70.17 </td><td> 94.47 </td><td> 99.32 </td><td> 0.067 </td><td> 3.565 </td></tr></TBODY></TABLE>After receiving the sensing signals M, the processing unit 3 obtains the response distribution of the X-axis direction-Y-axis direction of the respective positions, and the measurement results of the detectors 21 of No. 2, 6, and 12, and The time domain diagram of the response signal in the direction of FIG. 4X is compared with the correlation function diagram of the response signal of the X direction in FIG. 5, and the data of Table 1 is described as follows: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 1 </td></tr><tr><td> Detector number< /td><td> Axial</td><td><img wi="9" he="24" file="TWI638251B_D0001.tif" img-format="jpg"></img> (g) < /td><td><img wi="38" he="24" file="02_image003.jpg" img-format="jpg"></img></td><td><img wi="47 " he="24" file="02_image005.jpg" img-format="jpg"></img></td><td><img wi="47" he="24" file="02_image007.jpg " img-format="jpg"></img></td><td> skew coefficient </td><td> kurtosis coefficient </td></tr><tr><td> 2 </ Td><td> X-axis direction</td><td> 0.023 </td><td> 55.39 </td><td> 92.11 </td><td> 98.87 </td><td> 0.068 </ Td><td> 3.329 </td></tr><tr><td> 6 </td><td> X-axis direction</td><td> 0.014 </td><td> 49.99 </td ><td> 92.56 </td><td> 99.83 </td><td> -0.015 </td><td> 2.412 </td></tr><tr><td> 12 </td>< Td> X-axis direction </td><td> 0.016 </td><td> 61.87 </td><td> 95.76 </td><td> 99.94 </td><td> -0.016 </td> <td> 2.512 </td></tr><tr><td> 2 </td><td> Y-axis direction</td><td> 0.016 </td><td> 70.24 </td>< Td> 94.78 </td><td> 99.380 </td><td> 0.088 </td><td> 3.360 </td></tr><tr><td> 6 </td><td> Y-axis direction</td><td> 0.013 </td><td> 70.15 </td><td> 94.48 </td><td> 99.45 </td><td> 0.038 </td><td> 3.420 </td></tr><tr ><td> 12 </td><td> Y-axis direction</td><td> 0.016 </td><td> 70.17 </td><td> 94.47 </td><td> 99.32 </td ><td> 0.067 </td><td> 3.565 </td></tr></TBODY></TABLE>
其中,μ是平均值, 為標準差,表示數據資料的離散程度,其定義為:在一組資料數據中,各個變異數與平均值的分散程度。因此,較大的標準差代表大部分的資料數據與平均值之間的差異性較大;反之,較小的標準差代表大部分的資料數據與平均值的差異性較小,表示大部分的資料數據較接近於平均值。 Where μ is the average value, As the standard deviation, it indicates the degree of dispersion of data data, which is defined as the degree of dispersion of each variance and the average value in a set of data. Therefore, the larger standard deviation represents a larger difference between most of the data and the mean; on the contrary, the smaller standard deviation means that most of the data differs from the mean, indicating that most of the data The data is closer to the average.
而偏態系數(Cofficient of Skewness)用於描述數據資料組偏離平均值的程度,峰態系數(Cofficient of Kurtosis)用於描述分佈狀態的高峰程度。當偏態系數=0,表示分佈狀態為對稱分佈,當偏態系數>0,表示分佈狀態為右偏或正偏分佈,當偏態系數<0,表示分佈狀態為左偏或負偏分佈,當峰度係數=3,表示分佈狀態之峰度為常態峰,當峰度係數>3,表示分佈狀態之峰度為高狹峰,當峰度係數<3,表示分佈狀態之峰度為低闊峰。The Cofficient of Skewness is used to describe the degree to which the data set deviates from the mean. The Cofficient of Kurtosis is used to describe the peak degree of the distribution. When the skewness coefficient = 0, it indicates that the distribution state is a symmetric distribution. When the skewness coefficient is >0, it indicates that the distribution state is right-bias or positive-biased distribution. When the skewness coefficient is <0, it indicates that the distribution state is left-biased or negative-biased. When the kurtosis coefficient=3, it indicates that the kurtosis of the distribution state is a normal peak. When the kurtosis coefficient is >3, it indicates that the kurtosis of the distribution state is a high-narrow peak. When the kurtosis coefficient is <3, it indicates that the kurtosis of the distribution state is low. Broad peaks.
由表1的量測結果顯示,本發明的分佈狀態分佈大致與常態分佈曲線吻合,但其峰態係數並非完全等同於常態分佈,且分佈呈現高闊峰或低闊峰。但整體而言分佈仍具一定的隨機性,進而推測該工作台2移動時施予該工具機2整體之激振力為隨機激振,確實能夠猜得更接近白噪音的感測信號M,進而以能夠利用隨機子空間識別法(Stochastic Subspace Identification, SSI)識別出該工具機1的獲得模態頻率、模態振型、模態阻尼比等模態參數。由於本領域中具有通常知識者根據以上說明可以推知擴充細節,因此不多加說明。The measurement results of Table 1 show that the distribution state distribution of the present invention is substantially consistent with the normal distribution curve, but the kurtosis coefficient is not completely equivalent to the normal distribution, and the distribution exhibits a high peak or a low peak. However, the distribution is still random as a whole, and it is presumed that the excitation force applied to the power tool 2 when the table 2 is moved is random excitation, and it is indeed possible to guess the sensing signal M which is closer to white noise. Further, the modal parameters such as the modal frequency, the mode shape, and the modal damping ratio of the machine tool 1 can be identified by using Stochastic Subspace Identification (SSI). Since the general knowledge in the art can infer the details of the expansion based on the above description, it will not be explained.
經由以上的說明,可將前述實施例的優點歸納如下:Through the above description, the advantages of the foregoing embodiments can be summarized as follows:
本發明利用該工作台12往不同方向作小量而快速的來回運動,使該主軸裝置13能夠模擬真實加工狀態產生自動振動,而能夠提升模態分析結果的準確度,且設備成本低。The invention utilizes the worktable 12 to make small and rapid back and forth movements in different directions, so that the spindle device 13 can simulate the real processing state to generate automatic vibration, and can improve the accuracy of the modal analysis result, and the equipment cost is low.
本發明更可量測該工具機1在不同工作點下的模態頻率與模態振型,且前述量測數據可以傳送給遠端,使遠端的工具機廠得知世界各地產品的狀況,從而縮短維修時間 (down-time)。The invention can more accurately measure the modal frequency and the mode shape of the machine tool 1 under different working points, and the foregoing measurement data can be transmitted to the remote end, so that the remote tool machine factory can know the condition of the products around the world. , thereby reducing the down-time.
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the simple equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still Within the scope of the invention patent.
<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1········ 工具機 11······ 機台 12······ 工作台 13······ 主軸裝置 131····· 立柱 132····· 主軸頭 14······ 馬達單元 </td><td> 2········ 偵測單元 21······ 偵測器 X······· X軸方向 Y······· Y軸方向 Z········ Z軸方向 S········ 隨機路徑 M······· 感測信號 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 1········ Machine Tool 11······ Machine 12 ······ Workbench 13······ Spindle unit 131····· Column 132····· Spindle head 14······ Motor unit </td><td> 2· ······· Detecting unit 21······ Detector X······· X-axis direction Y······· Y-axis direction Z······· · Z-axis direction S········ Random path M······· Sensing signal</td></tr></TBODY></TABLE>
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一張立體圖,說明本發明模態偵測系統的一個實施例; 圖2是該實施例的一張方塊圖; 圖3是一張軌跡圖,說明該實施例中的一個工作台沿一個隨機路徑位移; 圖4是一張X方向之響應訊號的時域圖;及 圖5是一張相對前述X方向之響應訊號的相關函數圖。Other features and advantages of the present invention will be apparent from the embodiments of the present invention, wherein: FIG. 1 is a perspective view illustrating an embodiment of the modality detection system of the present invention; FIG. 2 is an embodiment of the present invention; Figure 3 is a trajectory diagram illustrating a table in this embodiment displaced along a random path; Figure 4 is a time domain diagram of a response signal in the X direction; and Figure 5 is a A correlation function diagram of the response signal with respect to the aforementioned X direction.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106102036A TWI638251B (en) | 2017-01-20 | 2017-01-20 | Modal detection system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106102036A TWI638251B (en) | 2017-01-20 | 2017-01-20 | Modal detection system |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201827964A TW201827964A (en) | 2018-08-01 |
TWI638251B true TWI638251B (en) | 2018-10-11 |
Family
ID=63960187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106102036A TWI638251B (en) | 2017-01-20 | 2017-01-20 | Modal detection system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI638251B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI684839B (en) * | 2018-11-30 | 2020-02-11 | 財團法人金屬工業研究發展中心 | Method for diagnosing state of dies in fastener making machine and computer program product thereof |
TWI775204B (en) * | 2020-11-03 | 2022-08-21 | 國立中興大學 | Modal Detection System |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI756780B (en) * | 2020-08-13 | 2022-03-01 | 國立屏東科技大學 | Frame of a vehicle and designing method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4109185A (en) * | 1976-12-27 | 1978-08-22 | Mcdonnell Douglas Corporation | Servo system employing digital components |
US5819202A (en) * | 1995-06-14 | 1998-10-06 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for detecting an abnormality of a control system |
US5913955A (en) * | 1998-02-12 | 1999-06-22 | Sandia Corporation | Vibration damping method and apparatus |
US6484109B1 (en) * | 1998-05-20 | 2002-11-19 | Dli Engineering Coporation | Diagnostic vibration data collector and analyzer |
US20120010744A1 (en) * | 2009-04-10 | 2012-01-12 | Nt Engineering Kabushiki Kaisha | Method and device for suppressing chattering of work machine |
TWM449055U (en) * | 2012-10-12 | 2013-03-21 | Goodway Machine Corp | Dynamic balance computing device for spindle of machine tool |
TW201332708A (en) * | 2012-02-10 | 2013-08-16 | 中原大學 | Tool chatter surveillance method |
TW201334911A (en) * | 2012-02-24 | 2013-09-01 | Optica Tech Co Ltd | Method and apparatus for detecting the break of the cutter of the machine tool automatically |
TW201615335A (en) * | 2014-10-17 | 2016-05-01 | 三菱電機股份有限公司 | Vibration cutting process diagnosing device |
-
2017
- 2017-01-20 TW TW106102036A patent/TWI638251B/en not_active IP Right Cessation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4109185A (en) * | 1976-12-27 | 1978-08-22 | Mcdonnell Douglas Corporation | Servo system employing digital components |
US5819202A (en) * | 1995-06-14 | 1998-10-06 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for detecting an abnormality of a control system |
US5913955A (en) * | 1998-02-12 | 1999-06-22 | Sandia Corporation | Vibration damping method and apparatus |
US6484109B1 (en) * | 1998-05-20 | 2002-11-19 | Dli Engineering Coporation | Diagnostic vibration data collector and analyzer |
US20120010744A1 (en) * | 2009-04-10 | 2012-01-12 | Nt Engineering Kabushiki Kaisha | Method and device for suppressing chattering of work machine |
TW201332708A (en) * | 2012-02-10 | 2013-08-16 | 中原大學 | Tool chatter surveillance method |
TW201334911A (en) * | 2012-02-24 | 2013-09-01 | Optica Tech Co Ltd | Method and apparatus for detecting the break of the cutter of the machine tool automatically |
TWM449055U (en) * | 2012-10-12 | 2013-03-21 | Goodway Machine Corp | Dynamic balance computing device for spindle of machine tool |
TW201615335A (en) * | 2014-10-17 | 2016-05-01 | 三菱電機股份有限公司 | Vibration cutting process diagnosing device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI684839B (en) * | 2018-11-30 | 2020-02-11 | 財團法人金屬工業研究發展中心 | Method for diagnosing state of dies in fastener making machine and computer program product thereof |
TWI775204B (en) * | 2020-11-03 | 2022-08-21 | 國立中興大學 | Modal Detection System |
Also Published As
Publication number | Publication date |
---|---|
TW201827964A (en) | 2018-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI491847B (en) | Machine movement track measuring device, numerical control 〈nc〉tool machine and method for measuring machine movement track | |
JP5331802B2 (en) | Measuring instrument and method for correcting measurement error due to dynamic deformation thereof | |
US20170176244A1 (en) | Vibration mode determining apparatus | |
US11733673B2 (en) | Numerical control system and motor drive controller | |
US8432119B2 (en) | Method and apparatus for characterizing and enhancing the functional performance of machine tools | |
EP2013571B1 (en) | Method of error correction | |
KR102023560B1 (en) | Method of calibration of a mathematical model of a coordinate measuring machine for the compensation of dynamic errors due to deformation | |
CN110998253B (en) | Apparatus and method for performing impact excitation techniques | |
TWI638251B (en) | Modal detection system | |
JP5927904B2 (en) | Machine tool dynamic characteristics calculation device | |
CN103522125B (en) | Dynamic characteristic computing device and dynamic characteristic computational methods for lathe | |
CN104526465B (en) | A kind of method measuring point of a knife point vibration displacement | |
JP2018066731A (en) | Determining position of movable part of coordinate measuring machine | |
CN110186553A (en) | Vibration analysis device and vibration analysis method | |
JP6333785B2 (en) | Vibration analyzer that calculates the period of tool vibration relative to the workpiece | |
JP2017138115A (en) | Preload inspection method applied to linear slide | |
JP5983112B2 (en) | Machine tool dynamic characteristic calculation device and dynamic characteristic calculation method | |
Denkena et al. | Process monitoring with a force sensitive axis-slide for machine tools | |
JP5983113B2 (en) | Machine tool dynamic characteristic calculation device and dynamic characteristic calculation method | |
CN207248466U (en) | A kind of industrial robot vibrates path analysis system data acquisition device | |
JP5978768B2 (en) | Measuring system | |
Hsu et al. | Low-cost vibration and acceleration sensors module for the drilling processes monitoring | |
KR101392303B1 (en) | Frequency analyzing type magnetostriction displacement transducer using wavelet transformation | |
Zhao et al. | Study on pre-travel anisotropic characteristic of touch trigger probe and its calibration method | |
JP2019158385A (en) | measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |