[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI632660B - Semiconductor structure and method of manufacturing the same - Google Patents

Semiconductor structure and method of manufacturing the same Download PDF

Info

Publication number
TWI632660B
TWI632660B TW106118070A TW106118070A TWI632660B TW I632660 B TWI632660 B TW I632660B TW 106118070 A TW106118070 A TW 106118070A TW 106118070 A TW106118070 A TW 106118070A TW I632660 B TWI632660 B TW I632660B
Authority
TW
Taiwan
Prior art keywords
conductive
conductive layer
conductivity type
layer
region
Prior art date
Application number
TW106118070A
Other languages
Chinese (zh)
Other versions
TW201904004A (en
Inventor
吳政璁
林鑫成
胡鈺豪
林文新
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW106118070A priority Critical patent/TWI632660B/en
Application granted granted Critical
Publication of TWI632660B publication Critical patent/TWI632660B/en
Publication of TW201904004A publication Critical patent/TW201904004A/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

一種半導體結構,包括一基底、一第一井區、一第一摻雜區、一第二井區、一第二摻雜區、一場氧化層、一第一導電層、一第一絕緣層以及一第二導電層。基底具有一第一導電型。第一井區形成在基底之中,並具有一第二導電型。第一摻雜區形成在第一井區之中,並具有第二導電型。第二井區形成在基底之中,並具有第一導電型。第二摻雜區形成在第二井區之中,並具有第一導電型。場氧化層設於基底上,並位於第一與第二摻雜區之間。第一導電層重疊場氧化層。第一絕緣層重疊第一導電層。第二導電層重疊第一絕緣層。 A semiconductor structure includes a substrate, a first well region, a first doped region, a second well region, a second doped region, a field oxide layer, a first conductive layer, a first insulating layer, and a second conductive layer. The substrate has a first conductivity type. The first well region is formed in the substrate and has a second conductivity type. The first doped region is formed in the first well region and has a second conductivity type. The second well region is formed in the substrate and has a first conductivity type. The second doped region is formed in the second well region and has a first conductivity type. The field oxide layer is disposed on the substrate and between the first and second doped regions. The first conductive layer overlaps the field oxide layer. The first insulating layer overlaps the first conductive layer. The second conductive layer overlaps the first insulating layer.

Description

半導體結構及其製造方法 Semiconductor structure and method of manufacturing same

本發明係有關於一種半導體結構,特別是有關於一種具有堆疊結構的半導體結構。 The present invention relates to a semiconductor structure, and more particularly to a semiconductor structure having a stacked structure.

一般而言,積體電路通常包括許多電子元件。電子元件包括主動元件及被動元件。主動元件包括電晶體。另外,被動元件包括電阻、電容及電感。在習知的積體電路中,係利用金屬線連接多個獨立的電子元件,但卻造成電路所需的面積增加。另外,在封裝時,需要一條導線連接兩元件,因而造成成本增加。 In general, integrated circuits typically include many electronic components. Electronic components include active components and passive components. The active component includes a transistor. In addition, passive components include resistors, capacitors, and inductors. In conventional integrated circuits, a plurality of separate electronic components are connected by metal wires, but the area required for the circuit is increased. In addition, in packaging, a wire is required to connect the two components, resulting in an increase in cost.

本發明提供一種半導體結構,包括一基底、一第一井區、一第一摻雜區、一第二井區、一第二摻雜區、一場氧化層、一第一導電層、一第一絕緣層以及一第二導電層。基底具有一第一導電型。第一井區形成在基底之中,並具有一第二導電型。第一摻雜區形成在第一井區之中,並具有第二導電型。第二井區形成在基底之中,並具有第一導電型。第二摻雜區形成在第二井區之中,並具有第一導電型。場氧化層設於基底上,並位於第一與第二摻雜區之間。第一導電層重疊場氧化層。第一絕緣層重疊第一導電層。第二導電層重疊第一絕緣層。 The present invention provides a semiconductor structure including a substrate, a first well region, a first doped region, a second well region, a second doped region, a field oxide layer, a first conductive layer, and a first An insulating layer and a second conductive layer. The substrate has a first conductivity type. The first well region is formed in the substrate and has a second conductivity type. The first doped region is formed in the first well region and has a second conductivity type. The second well region is formed in the substrate and has a first conductivity type. The second doped region is formed in the second well region and has a first conductivity type. The field oxide layer is disposed on the substrate and between the first and second doped regions. The first conductive layer overlaps the field oxide layer. The first insulating layer overlaps the first conductive layer. The second conductive layer overlaps the first insulating layer.

本發明另提供一種半導體結構的製造方法,包括提供一基底,其具有一第一導電型;形成一第一井區在基底之中,其中第一井區具有一第二導電型;形成一第一摻雜區在第一井區之中,其中第一摻雜區具有第二導電型;形成一第二井區在基底之中,其中第二井區具有第一導電型;形成一第二摻雜區在第二井區之中,其中第二摻雜區具有第一導電型;形成一場氧化層在基底上,其中場氧化層位於第一與第二摻雜區之間;形成一第一導電層在場氧化層上;形成一第一絕緣層在第一導電層上;以及形成一第二導電層在第一絕緣層上。 The present invention further provides a method of fabricating a semiconductor structure, comprising: providing a substrate having a first conductivity type; forming a first well region in the substrate, wherein the first well region has a second conductivity type; forming a first a doped region is in the first well region, wherein the first doped region has a second conductivity type; forming a second well region in the substrate, wherein the second well region has a first conductivity type; forming a second The doped region is in the second well region, wherein the second doped region has a first conductivity type; a field oxide layer is formed on the substrate, wherein the field oxide layer is located between the first and second doped regions; forming a first A conductive layer is on the field oxide layer; a first insulating layer is formed on the first conductive layer; and a second conductive layer is formed on the first insulating layer.

本發明另提供一種半導體結構的製造方法,包括:提供一基底,其具有一第一導電型;形成一第一井區在基底之中,其中第一井區具有一第二導電型;形成一第一摻雜區在第一井區之中,其中第一摻雜區具有第二導電型;形成一第二井區在基底之中,其中第二井區具有第一導電型;形成一第二摻雜區在第二井區之中,其中第二摻雜區具有第一導電型;形成一第三摻雜區在第二井區之中,其中第三摻雜區具有第二導電型;形成一場氧化層在基底上,其中場氧化層位於第一與第三摻雜區之間;形成一閘極於基底上,其中閘極重疊部分場氧化層及第二井區,並且與第一、第二及第三摻雜區構成一電晶體,第一摻雜區作為電晶體的汲極,第二摻雜區作為電晶體的基極,第三摻雜區作為電晶體的源極;形成一第一導電層在場氧化層上,其中第一導電層與閘極在空間上彼此分隔;形成一第一絕緣層在第一導電層上;以及形成一第二導電層在第一絕緣層上。 The present invention further provides a method of fabricating a semiconductor structure, comprising: providing a substrate having a first conductivity type; forming a first well region in the substrate, wherein the first well region has a second conductivity type; forming a The first doped region is in the first well region, wherein the first doped region has a second conductivity type; forming a second well region in the substrate, wherein the second well region has a first conductivity type; forming a first The second doped region is in the second well region, wherein the second doped region has a first conductivity type; a third doped region is formed in the second well region, wherein the third doped region has a second conductivity type Forming a layer of oxide on the substrate, wherein the field oxide layer is between the first and third doped regions; forming a gate on the substrate, wherein the gate overlaps a portion of the field oxide layer and the second well region, and 1. The second and third doped regions constitute a transistor, the first doped region serves as a drain of the transistor, the second doped region serves as a base of the transistor, and the third doped region serves as a source of the transistor Forming a first conductive layer on the field oxide layer, wherein the first conductive layer and the gate Spatially separated from one another; a first insulating layer formed on the first conductive layer; and forming a second conductive layer on the first insulating layer.

100、200、300、400‧‧‧半導體結構 100, 200, 300, 400‧‧‧ semiconductor structure

110、210、311、411‧‧‧基底 110, 210, 311, 411‧‧‧ base

121、122、221、222、321~323、421~423‧‧‧井區 121, 122, 221, 222, 321~323, 421~423‧‧

131、132、231、232、331~333、431~434‧‧‧摻雜區 131, 132, 231, 232, 331~333, 431~434‧‧‧ doped areas

140、240、340、441、442‧‧‧場氧化層 140, 240, 340, 441, 442‧‧ ‧ field oxide layer

150、350‧‧‧堆疊結構 150, 350‧‧‧ stacked structure

151、152、251、252、351、352、451、452‧‧‧導電層 151, 152, 251, 252, 351, 352, 451, 452‧‧ ‧ conductive layer

161~163、261、262、361、362、461、462‧‧‧絕緣層 161~163, 261, 262, 361, 362, 461, 462‧‧‧ insulation

E1~E4‧‧‧導電端 E1~E4‧‧‧ Conductive end

171、172、371~374‧‧‧走線 171, 172, 371~374‧‧‧ trace

312、412‧‧‧磊晶層 312, 412‧‧‧ epitaxial layer

353、453‧‧‧閘極 353, 453‧‧ ‧ gate

V11~V16、V31~V38‧‧‧導孔 V11~V16, V31~V38‧‧‧guide hole

X‧‧‧方向 X‧‧‧ direction

W1、W2‧‧‧寬度 W1, W2‧‧‧ width

D1、D2‧‧‧二極體 D1, D2‧‧‧ diode

R1~R4‧‧‧電阻 R1~R4‧‧‧ resistor

GND‧‧‧接地位準 GND‧‧‧ Grounding level

HV‧‧‧高壓信號 HV‧‧‧High voltage signal

Q‧‧‧電晶體 Q‧‧‧Optocrystal

第1A圖為本發明之半導體結構的剖面示意圖。 Figure 1A is a schematic cross-sectional view of a semiconductor structure of the present invention.

第1B及1C圖為本發明之導電層的可能俯視圖。 1B and 1C are diagrams of possible top views of the conductive layer of the present invention.

第1D圖為本發明之半導體結構100的等效電路示意圖。 1D is a schematic diagram of an equivalent circuit of the semiconductor structure 100 of the present invention.

第2A圖為本發明之半導體結構的另一可能剖面示意圖。 2A is another possible cross-sectional view of the semiconductor structure of the present invention.

第2B圖為第2A圖場氧化層的俯視圖。 Fig. 2B is a plan view of the field oxide layer of Fig. 2A.

第3A圖為本發明之半導體結構之另一可能剖面示意圖。 Figure 3A is another schematic cross-sectional view of the semiconductor structure of the present invention.

第3B圖為本發明之半導體結構的等效電路示意圖。 3B is a schematic diagram of an equivalent circuit of the semiconductor structure of the present invention.

第4A圖為本發明之半導體結構的另一剖面示意圖。 4A is another schematic cross-sectional view of the semiconductor structure of the present invention.

第4B圖為本發明之半導體結構的一可能俯視圖。 Figure 4B is a diagram of a possible top view of the semiconductor structure of the present invention.

第5A~5C圖為本發明之半導體結構的製造方法。 5A-5C illustrate a method of fabricating a semiconductor structure of the present invention.

第6A~6C圖為本發明之半導體結構的製造方法。 6A to 6C are views showing a method of manufacturing a semiconductor structure of the present invention.

為以下針對本發明一些實施例之半導體結構及其製造方法作詳細說明。應了解的是,以下之敘述提供許多不同的實施例或例子,用以實施本發明一些實施例之不同樣態。以下所述特定的元件及排列方式僅為簡單清楚描述本發明一些實施例。當然,這些僅用以舉例而非本發明之限定。此外,在不同實施例中可能使用重複的標號或標示。這些重複僅為了簡單清楚地敘述本發明一些實施例,不代表所討論之不同實施例及/或結構之間具有任何關連性。再者,當述及一第一材料層位於一第二材料層上或之上時,包括第一材料層與第二材料層直接接觸之情形。或者,亦可能間隔有一或更多其他材料層之 情形,在此情形中,第一材料層與第二材料層之間可能不直接接觸。 The semiconductor structure and its manufacturing method for some embodiments of the present invention are described in detail below. It will be appreciated that the following description provides many different embodiments or examples for implementing the various embodiments of the invention. The specific elements and arrangements described below are merely illustrative of some embodiments of the invention. Of course, these are by way of example only and not as a limitation of the invention. Moreover, repeated numbers or labels may be used in different embodiments. These repetitive examples are merely illustrative of some embodiments of the invention, and are not intended to represent any of the various embodiments and/or structures discussed. Furthermore, when a first material layer is on or above a second material layer, the first material layer is in direct contact with the second material layer. Or, it is possible to have one or more layers of other materials In this case, there may be no direct contact between the first material layer and the second material layer.

第1A圖為本發明之半導體結構的剖面示意圖。如圖所示,半導體結構100包括一基底110、井區121、122、摻雜區131、132、一場氧化層140以及一堆疊結構150。基底110具有一第一導電型。在一可能實施例中,基底110係為一矽基底或絕緣層上覆矽(silicon on insulator;SOI)基底或其它適當的半導體基底。 Figure 1A is a schematic cross-sectional view of a semiconductor structure of the present invention. As shown, the semiconductor structure 100 includes a substrate 110, well regions 121, 122, doped regions 131, 132, a field oxide layer 140, and a stacked structure 150. The substrate 110 has a first conductivity type. In one possible embodiment, substrate 110 is a germanium or silicon on insulator (SOI) substrate or other suitable semiconductor substrate.

井區121形成在基底110之中,並具有一第二導電型。在本實施例中,第二導電型與第一導電型相異。舉例而言,第一導電型為P型,第二導電型為N型。在其它實施例中,第一導電型為N型,第二導電型為P型。在一些實施例中,井區121係為一高壓井區。井區121可藉由離子佈植步驟形成。例如,當第二導電型為N型時,可於預定形成井區121之區域佈植磷離子或砷離子以形成井區121。然而,當第二導電型為P型時,可於預定形成井區121之區域佈植硼離子或銦離子以形成井區121。 The well region 121 is formed in the substrate 110 and has a second conductivity type. In this embodiment, the second conductivity type is different from the first conductivity type. For example, the first conductivity type is a P type, and the second conductivity type is an N type. In other embodiments, the first conductivity type is N-type and the second conductivity type is P-type. In some embodiments, well zone 121 is a high pressure well zone. Well zone 121 can be formed by an ion implantation step. For example, when the second conductivity type is N-type, phosphorus ions or arsenic ions may be implanted in a region where the well region 121 is to be formed to form the well region 121. However, when the second conductivity type is a P-type, boron ions or indium ions may be implanted in a region where the well region 121 is to be formed to form the well region 121.

井區122形成在基底110之中,並具有第一導電型。在一可能實施例中,井區122的摻雜濃度高於基底110的摻雜濃度。在本實施例中,井區122接觸井區121,但並非用以限制本發明。在其它實施例中,井區121與122在空間上彼此分隔(spaced apart)。井區122亦可藉由離子佈植步驟形成。例如,當第一導電型為P型時,可於預定形成井區122之區域佈植硼離子或銦離子以形成井區122。然而,當第一導電型為N型時,可 於預定形成井區122之區域佈植磷離子或砷離子以形成井區122。 The well region 122 is formed in the substrate 110 and has a first conductivity type. In one possible embodiment, the doping concentration of the well region 122 is higher than the doping concentration of the substrate 110. In the present embodiment, well zone 122 contacts well zone 121, but is not intended to limit the invention. In other embodiments, the well regions 121 and 122 are spatially spaced apart from each other. The well region 122 can also be formed by an ion implantation step. For example, when the first conductivity type is a P-type, boron ions or indium ions may be implanted in a region where the well region 122 is to be formed to form the well region 122. However, when the first conductivity type is N type, Phosphorus or arsenic ions are implanted in the region where the well region 122 is intended to form to form the well region 122.

摻雜區131形成在井區121之中,並具有第二導電型。在一可能實施例中,摻雜區131可藉由離子佈植步驟形成。在本實施例中,摻雜區131的摻雜濃度高於井區121的摻雜濃度。在另一可能實施例中,摻雜區131可作為一二極體的陰極。 The doped region 131 is formed in the well region 121 and has a second conductivity type. In a possible embodiment, the doped region 131 can be formed by an ion implantation step. In the present embodiment, the doping concentration of the doping region 131 is higher than the doping concentration of the well region 121. In another possible embodiment, the doped region 131 can serve as a cathode for a diode.

摻雜區132形成在井區122之中,並具有第一導電型。在一可能實施例中,摻雜區132可藉由離子佈植步驟形成。在本實施例中,摻雜區132的摻雜濃度高於井區122的摻雜濃度。在另一可能實施例中,且摻雜區132可作為一二極體的陽極。 Doped region 132 is formed in well region 122 and has a first conductivity type. In a possible embodiment, the doped region 132 can be formed by an ion implantation step. In the present embodiment, the doping concentration of the doping region 132 is higher than the doping concentration of the well region 122. In another possible embodiment, the doped region 132 can serve as the anode of a diode.

場氧化層140設於基底110上,並位於摻雜區131與132之間。在本實施例中,場氧化層140延伸進入井區121。如圖所示,場氧化層140與摻雜區131在空間上彼此分隔,但並非用以限制本發明。在其它實施例中,場氧化層140可能直接接觸摻雜區131。 The field oxide layer 140 is disposed on the substrate 110 and between the doping regions 131 and 132. In the present embodiment, the field oxide layer 140 extends into the well region 121. As shown, the field oxide layer 140 is spatially separated from the doped regions 131, but is not intended to limit the invention. In other embodiments, the field oxide layer 140 may directly contact the doped region 131.

堆疊結構150形成於場氧化層140之上,並接觸場氧化層140。在本實施例中,堆疊結構150至少包括兩導電層151、152以及一絕緣層161。如圖所示,導電層151形成於場氧化層140之上,並直接接觸場氧化層140。導電層151重疊並直接接觸場氧化層140。導電層151材料可為金屬、金屬氧化物、金屬氮化物、金屬合金、金屬矽化物、其它任何適合之導電材料、或上述之組合。舉例而言,導電層151的材料為SiCr、金屬或Poly。在其它實施例中,導電層151係使用無摻雜多晶(non-doped poly)。本發明並不限定導電層151的延伸形狀。導 電層151延伸的方向可能保持不變或改變多次。舉例而言,導電層151係以長條狀(strip)、彎曲狀或是螺旋狀延伸。在本實施例中,導電層151可等效成一第一電阻。藉由控制導電層151的植入濃度及延伸形狀,便可控制導電層151的等效阻抗。 Stack structure 150 is formed over field oxide layer 140 and contacts field oxide layer 140. In the embodiment, the stacked structure 150 includes at least two conductive layers 151, 152 and an insulating layer 161. As shown, a conductive layer 151 is formed over the field oxide layer 140 and directly contacts the field oxide layer 140. The conductive layer 151 overlaps and directly contacts the field oxide layer 140. The conductive layer 151 material can be a metal, a metal oxide, a metal nitride, a metal alloy, a metal halide, any other suitable conductive material, or a combination thereof. For example, the material of the conductive layer 151 is SiCr, metal or Poly. In other embodiments, the conductive layer 151 is a non-doped poly. The present invention does not limit the extended shape of the conductive layer 151. guide The direction in which the electrical layer 151 extends may remain unchanged or change multiple times. For example, the conductive layer 151 extends in a strip shape, a curved shape, or a spiral shape. In this embodiment, the conductive layer 151 can be equivalent to a first resistor. The equivalent impedance of the conductive layer 151 can be controlled by controlling the implantation concentration and the extended shape of the conductive layer 151.

絕緣層161形成於井區121、122、摻雜區131、132、場氧化層140以及導電層151之上,並電性隔離導電層151及152。絕緣層161之材料包括氧化物、氮化物、氮氧化物、低介電常數材料、其它任何適合之絕緣材料、或上述之組合,且可藉由化學氣相沉積步驟形成。 The insulating layer 161 is formed on the well regions 121, 122, the doping regions 131, 132, the field oxide layer 140, and the conductive layer 151, and electrically isolates the conductive layers 151 and 152. The material of the insulating layer 161 includes an oxide, a nitride, an oxynitride, a low dielectric constant material, any other suitable insulating material, or a combination thereof, and may be formed by a chemical vapor deposition step.

導電層152形成於絕緣層161之上,並重疊導電層151。導電層152材料可為金屬、金屬氧化物、金屬氮化物、金屬合金、金屬矽化物、其它任何適合之導電材料、或上述之組合。舉例而言,導電層152的材料為SiCr、金屬或Poly。在其它實施例中,導電層152也是使用無摻雜多晶。本發明並不限定導電層152的延伸形狀。在一可能實施例中,導電層152係以直線、彎曲狀或是螺旋狀延伸。在另一可能實施例中,導電層152的延伸形狀相同或不同於導電層151的延伸形狀。在本實施例中,導電層152可等效成一第二電阻。藉由控制導電層152的植入濃度及延伸形狀,便可控制導電層152的等效阻抗。在一可能實施例中,導電層152的等效阻抗不同或相同於導電層151的等效阻抗。 The conductive layer 152 is formed over the insulating layer 161 and overlaps the conductive layer 151. The conductive layer 152 material can be a metal, a metal oxide, a metal nitride, a metal alloy, a metal halide, any other suitable conductive material, or a combination thereof. For example, the material of the conductive layer 152 is SiCr, metal or Poly. In other embodiments, conductive layer 152 also uses undoped poly. The invention does not limit the extended shape of the conductive layer 152. In a possible embodiment, the conductive layer 152 extends in a straight line, a curved shape, or a spiral shape. In another possible embodiment, the conductive layer 152 has the same extension shape or different from the extended shape of the conductive layer 151. In this embodiment, the conductive layer 152 can be equivalent to a second resistor. The equivalent impedance of the conductive layer 152 can be controlled by controlling the implantation concentration and the extended shape of the conductive layer 152. In a possible embodiment, the equivalent impedance of the conductive layer 152 is different or the same as the equivalent impedance of the conductive layer 151.

另外,在其它實施例中,當導電層151、152的電位相同時,則導電層151、絕緣層161與導電層152所形成的等效電容的容值幾乎為零。在其它實施例中,堆疊結構150係由 更多的導電層以及絕緣層所構成。舉例而言,假設堆疊結構150具有第一至第三導電層。在此例中,第一導電層直接接觸場氧化層140。一第一絕緣層形成於第一導電層之上。接著,第二導電層形成於第一絕緣層之上,並重疊第一導電層。之後,一第二絕緣層形成於第二導電層之上。接著,第三導電層形成於第二絕緣層之上,並重疊第二導電層。為方便說明,以下僅以兩導電層為例。 In addition, in other embodiments, when the potentials of the conductive layers 151, 152 are the same, the capacitance of the equivalent capacitance formed by the conductive layer 151, the insulating layer 161 and the conductive layer 152 is almost zero. In other embodiments, the stacked structure 150 is comprised of More conductive layers and insulating layers are formed. For example, assume that the stacked structure 150 has first to third conductive layers. In this example, the first conductive layer directly contacts the field oxide layer 140. A first insulating layer is formed over the first conductive layer. Next, a second conductive layer is formed over the first insulating layer and overlaps the first conductive layer. Thereafter, a second insulating layer is formed over the second conductive layer. Next, a third conductive layer is formed over the second insulating layer and overlaps the second conductive layer. For convenience of explanation, the following only takes two conductive layers as an example.

第1B及1C圖為本發明之導電層151與152的可能俯視圖。在第1B圖中,導電層151與152均以螺旋狀延伸。如圖所示,導電層151具有導電端E1與E2,並且導電層152具有導電端E3與E4。在一可能實施例中,導電層151的寬度W1約略等於導電層152的寬度W2,但並非用以限制本發明。在其它實施例中,導電層151的寬度W1可能大於或小於導電層152的寬度W2。 1B and 1C are diagrams of possible top views of conductive layers 151 and 152 of the present invention. In Fig. 1B, the conductive layers 151 and 152 each extend in a spiral shape. As shown, the conductive layer 151 has conductive ends E1 and E2, and the conductive layer 152 has conductive ends E3 and E4. In a possible embodiment, the width W1 of the conductive layer 151 is approximately equal to the width W2 of the conductive layer 152, but is not intended to limit the present invention. In other embodiments, the width W1 of the conductive layer 151 may be greater or smaller than the width W2 of the conductive layer 152.

在一可能實施例中,導電層151完全重疊導電層152,故導電層151的導電端E1重疊導電層152的導電端E3,並且導電層151的導電端E2重疊導電層152的導電端E4。在另一可能實施例中,導電層151並未完全地重疊導電層152。舉例而言,導電層151重疊部分的導電層152。 In a possible embodiment, the conductive layer 151 completely overlaps the conductive layer 152, so the conductive end E1 of the conductive layer 151 overlaps the conductive end E3 of the conductive layer 152, and the conductive end E2 of the conductive layer 151 overlaps the conductive end E4 of the conductive layer 152. In another possible embodiment, the conductive layer 151 does not completely overlap the conductive layer 152. For example, the conductive layer 151 overlaps a portion of the conductive layer 152.

在其它實施例中,導電層151的導電端E1不完全或完全重疊導電層152的導電端E3。另外,導電層151的導電端E2可能不完全或完全重疊導電層152的導電端E4。在第1B圖中,導電層151的導電端E1完全重疊導電層152的導電端E3,並且導電層151的導電端E2完全重疊導電層152的導電端E4。 In other embodiments, the conductive end E1 of the conductive layer 151 does not completely or completely overlap the conductive end E3 of the conductive layer 152. In addition, the conductive end E2 of the conductive layer 151 may not completely or completely overlap the conductive end E4 of the conductive layer 152. In FIG. 1B, the conductive end E1 of the conductive layer 151 completely overlaps the conductive end E3 of the conductive layer 152, and the conductive end E2 of the conductive layer 151 completely overlaps the conductive end E4 of the conductive layer 152.

在第1C圖中,導電層151的形狀不同於導電層152 的形狀。在本實施例中,導電層151係為長條型,往方向X延伸。然而,導電層152為螺旋狀,其延伸的方向並不固定。 In FIG. 1C, the shape of the conductive layer 151 is different from that of the conductive layer 152. shape. In the present embodiment, the conductive layer 151 is elongated and extends in the direction X. However, the conductive layer 152 is spiral and its direction of extension is not fixed.

請回到第1A圖,在一可能實施例中,半導體結構100更包括絕緣層162、163以及走線171、172。絕緣層162形成於絕緣層161之上。走線171與172形成於絕緣層162之上。絕緣層163形成於走線171與172之上。 Returning to FIG. 1A, in a possible embodiment, the semiconductor structure 100 further includes insulating layers 162, 163 and traces 171, 172. An insulating layer 162 is formed over the insulating layer 161. Traces 171 and 172 are formed over the insulating layer 162. An insulating layer 163 is formed over the traces 171 and 172.

在本實施例中,走線171透過導孔V11~V13電性連接摻雜區132、導電層152的導電端E3與導電層151的導電端E1。走線172透過導孔V14~V16電性連接導電層152的導電端E4、導電層151的導電端E2與摻雜區131。在一可能實施例中,走線172用以傳送一接地位準。 In this embodiment, the traces 171 are electrically connected to the doped region 132, the conductive end E3 of the conductive layer 152, and the conductive end E1 of the conductive layer 151 through the via holes V11-V13. The trace 172 is electrically connected to the conductive end E4 of the conductive layer 152, the conductive end E2 of the conductive layer 151, and the doped region 131 through the via holes V14-V16. In a possible embodiment, the trace 172 is used to transmit a ground level.

第1D圖為本發明之半導體結構100的等效電路示意圖。如圖所示,半導體結構100包括一二極體D1以及電阻R1、R2。由於走線171電性連接摻雜區132、導電層152的導電端E3與導電層151的導電端E1,並且走線172電性連接導電層152的導電端E4、導電層151的導電端E2與摻雜區131,因此,在第1D圖中,二極體D1以及電阻R1、R2彼此並聯,但並非用以限制本發明。本發明並不限定二極體D1以及電阻R1、R2之間的連接關係。在其它實施例中,二極體D1以及電阻R1、R2之一者可能串聯二極體D1以及電阻R1、R2之另一者。 1D is a schematic diagram of an equivalent circuit of the semiconductor structure 100 of the present invention. As shown, the semiconductor structure 100 includes a diode D1 and resistors R1, R2. The trace 171 is electrically connected to the doped region 132, the conductive end E3 of the conductive layer 152 and the conductive end E1 of the conductive layer 151, and the trace 172 is electrically connected to the conductive end E4 of the conductive layer 152 and the conductive end E2 of the conductive layer 151. With the doped region 131, therefore, in the first DD, the diode D1 and the resistors R1, R2 are connected in parallel, but are not intended to limit the present invention. The present invention does not limit the connection relationship between the diode D1 and the resistors R1, R2. In other embodiments, one of the diode D1 and the resistors R1, R2 may be connected in series with the diode D1 and the other of the resistors R1, R2.

在本實施例中,第1A圖的摻雜區131作為二極體D1的陰極,並且摻雜區132作為二極體D1的陽極。另外,第1D圖中的電阻R1代表第1A圖的導電層151的等效阻抗。電阻R2代表導電層152的等效阻抗。 In the present embodiment, the doped region 131 of FIG. 1A serves as the cathode of the diode D1, and the doped region 132 serves as the anode of the diode D1. Further, the resistor R1 in Fig. 1D represents the equivalent impedance of the conductive layer 151 of Fig. 1A. Resistor R2 represents the equivalent impedance of conductive layer 152.

第2A圖為本發明之半導體結構的另一可能剖面示意圖。如圖所示,半導體結構200包括一基底210、井區221、222、摻雜區231、232、場氧化層240、導電層251、252以及絕緣層261、262。在本實施例中,場氧層化240係為一環形結構,圍繞摻雜區231。另外,導電層251的形狀不同於導電層252的形狀。在本實施例中,導電層251係為一環形結構,並且導電層252為一螺旋結構。由於第2A圖的基底210、井區221、222、摻雜區231、232、場氧化層240、導電層251、252以及絕緣層261、262的特性與半導體結構100的基底110、井區121、122與摻雜區131、132、場氧化層140、導電層151、152以及絕緣層161、162的特性相似,故不再贅述。 2A is another possible cross-sectional view of the semiconductor structure of the present invention. As shown, the semiconductor structure 200 includes a substrate 210, well regions 221, 222, doped regions 231, 232, field oxide layer 240, conductive layers 251, 252, and insulating layers 261, 262. In the present embodiment, the field oxide stratification 240 is a ring structure surrounding the doped region 231. In addition, the shape of the conductive layer 251 is different from the shape of the conductive layer 252. In the embodiment, the conductive layer 251 is a ring structure, and the conductive layer 252 is a spiral structure. Due to the characteristics of the substrate 210, the well regions 221, 222, the doping regions 231, 232, the field oxide layer 240, the conductive layers 251, 252, and the insulating layers 261, 262 of FIG. 2A and the substrate 110 and the well region 121 of the semiconductor structure 100 The characteristics of the 122 and the doped regions 131, 132, the field oxide layer 140, the conductive layers 151, 152, and the insulating layers 161, 162 are similar, and therefore will not be described again.

第2B圖為第2A圖場氧化層240的俯視圖。如圖所示,場氧化240為一環形結構,圍繞摻雜區231。在本實施例,摻雜區231為圓形。另外,導電層251也是環形結構,重疊場氧化層240。在此例中,導電層252為螺旋結構,重疊導電層251。在其它實施例中,導電層251係為螺旋結構,而導電層252為環形結構。在一些實施例中,導電層251與252均為螺旋結構,如第1B圖所示,或是導電層251與252均為環形結構。 Fig. 2B is a plan view of the field oxide layer 240 of Fig. 2A. As shown, field oxide 240 is a ring structure surrounding doped region 231. In the present embodiment, the doping region 231 is circular. In addition, the conductive layer 251 is also a ring structure, and the field oxide layer 240 is overlapped. In this example, the conductive layer 252 has a spiral structure, and the conductive layer 251 is overlapped. In other embodiments, the conductive layer 251 is a spiral structure and the conductive layer 252 is a ring structure. In some embodiments, the conductive layers 251 and 252 are both spiral structures, as shown in FIG. 1B, or the conductive layers 251 and 252 are both annular structures.

本發明並不限定導電層251與252的形狀。導電層251的形狀可能相同或不同於導電層252的形狀。另外,當導電層251及252的形狀相同時,導電層251及252的面積可能相同或不同。再者,當導電層251及252的形狀相同時,導電層251可能完全重疊或部分重疊導電層252。 The shape of the conductive layers 251 and 252 is not limited by the present invention. The shape of the conductive layer 251 may be the same or different from the shape of the conductive layer 252. In addition, when the shapes of the conductive layers 251 and 252 are the same, the areas of the conductive layers 251 and 252 may be the same or different. Moreover, when the shapes of the conductive layers 251 and 252 are the same, the conductive layer 251 may completely overlap or partially overlap the conductive layer 252.

第3A圖為本發明之半導體結構之另一可能剖面示 意圖。如圖所示,半導體結構300包括一基底311、一磊晶層312、井區321~323、摻雜區331~333、一場氧化層340、一堆疊結構350以及一閘極353。基底311具有一第一導電型。由於基底311的特性與第1A圖的基底110相似,故不再贅述。磊晶層312設置在基底311之中,並具有第一導電型。在其它實施例中,磊晶層312可省略。 3A is another possible cross-sectional view of the semiconductor structure of the present invention. intention. As shown, the semiconductor structure 300 includes a substrate 311, an epitaxial layer 312, well regions 321-323, doped regions 331-333, a field oxide layer 340, a stacked structure 350, and a gate 353. The substrate 311 has a first conductivity type. Since the characteristics of the substrate 311 are similar to those of the substrate 110 of FIG. 1A, they will not be described again. The epitaxial layer 312 is disposed in the substrate 311 and has a first conductivity type. In other embodiments, the epitaxial layer 312 can be omitted.

井區321~323形成於磊晶層312中。在本實施例中,井區321與322在空間上彼此分隔,並且井區321位於井區323之中。在一可能實施例中,透過磊晶成長形成磊晶層312之後,可在磊晶層312內依序進行摻雜製程(例如,離子佈值)及熱擴散等製程,使井區321~323延伸於磊晶層312內。在其它實施例中,井區323係為一深高壓井區(deep high voltage well)。 The well regions 321 to 323 are formed in the epitaxial layer 312. In the present embodiment, well zones 321 and 322 are spatially separated from one another and well zone 321 is located within well zone 323. In a possible embodiment, after the epitaxial layer 312 is formed by epitaxial growth, a doping process (eg, ion cloth value) and thermal diffusion processes may be sequentially performed in the epitaxial layer 312 to make the well region 321~323. Extending in the epitaxial layer 312. In other embodiments, the well zone 323 is a deep high voltage well.

在本實施例中,井區321與323具有第二導電型,而井區322具有第一導電型。在一些實施例中,井區321~323可藉由離子佈植步驟形成。以井區321為例,當第二導電型為N型時,可於預定形成井區321之區域佈植磷離子或砷離子以形成井區321。然而,當第二導電型為P型時,可於預定形成井區321之區域佈植硼離子或銦離子以形成井區321。 In the present embodiment, the well regions 321 and 323 have a second conductivity type, and the well region 322 has a first conductivity type. In some embodiments, the well regions 321-323 can be formed by an ion implantation step. Taking the well region 321 as an example, when the second conductivity type is N-type, phosphorus ions or arsenic ions may be implanted in a region where the well region 321 is to be formed to form the well region 321. However, when the second conductivity type is a P-type, boron ions or indium ions may be implanted in a region where the well region 321 is to be formed to form the well region 321.

摻雜區331形成在井區321之中,並具有第二導電型。摻雜區332與333形成在井區322之中。摻雜區333位於摻雜區331與332之間。在本實施例中,摻雜區332具有第一導電型,而摻雜區333具有第二導電型。在一可能實施例中,摻雜區331~333可藉由離子佈植步驟形成。以摻雜區331為例,當第二導電型為N型時,可於預定形成摻雜區331之區域佈植磷離子或 砷離子以形成摻雜區331。然而,當第二導電型為P型時,可於預定形成摻雜區331之區域佈植硼離子或銦離子以形成摻雜區331。在本實施例中,摻雜區331與333的摻雜濃度高於井區321的摻雜濃度,並且摻雜區332的摻雜濃度高於井區322的摻雜濃度。 The doped region 331 is formed in the well region 321 and has a second conductivity type. Doped regions 332 and 333 are formed in well region 322. Doped region 333 is located between doped regions 331 and 332. In the present embodiment, the doping region 332 has a first conductivity type, and the doping region 333 has a second conductivity type. In a possible embodiment, the doping regions 331 to 333 can be formed by an ion implantation step. Taking the doping region 331 as an example, when the second conductivity type is N-type, phosphorus ions may be implanted in a region where the doping region 331 is to be formed or Arsenic ions form a doped region 331. However, when the second conductivity type is a P-type, boron ions or indium ions may be implanted in a region where the doping region 331 is to be formed to form the doping region 331. In the present embodiment, the doping concentration of the doping regions 331 and 333 is higher than the doping concentration of the well region 321 , and the doping concentration of the doping region 332 is higher than the doping concentration of the well region 322 .

場氧化層340設於基底311上,並位於摻雜區331與333之間。在本實施例中,場氧化層340延伸進入井區321。場氧化層340直接接觸摻雜區331,但並非用以限制本發明。在其它實施例中,場氧化層340可能與摻雜區331可在空間上彼此分隔。 The field oxide layer 340 is disposed on the substrate 311 and between the doping regions 331 and 333. In the present embodiment, field oxide layer 340 extends into well region 321. Field oxide layer 340 is in direct contact with doped region 331, but is not intended to limit the invention. In other embodiments, the field oxide layer 340 may be spatially separated from the doped regions 331.

堆疊結構350形成於場氧化層340之上,並接觸場氧化層340。在本實施例中,堆疊結構350包括導電層351、352以及一絕緣層361,但並非用以限制本發明。在其它實施例中,堆疊結構350具有其它數量的導電層以及絕緣層。由於堆疊結構350的特性與第1圖的堆疊結構150相似,故不再贅述。在一可能實施例中,導電層351、352的電位相同,故導電層351、絕緣層361與導電層352所形成的等效電容的容值幾乎為零。 Stack structure 350 is formed over field oxide layer 340 and contacts field oxide layer 340. In the present embodiment, the stacked structure 350 includes conductive layers 351, 352 and an insulating layer 361, but is not intended to limit the present invention. In other embodiments, the stacked structure 350 has other numbers of conductive layers as well as insulating layers. Since the characteristics of the stacked structure 350 are similar to those of the stacked structure 150 of FIG. 1, they will not be described again. In a possible embodiment, the potentials of the conductive layers 351 and 352 are the same, so the capacitance of the equivalent capacitance formed by the conductive layer 351, the insulating layer 361 and the conductive layer 352 is almost zero.

閘極353設置在基底311之上,位於摻雜區331與333之間,並重疊部分場氧化層340與部分井區322。在本實施例中,閘極353與導電層351係為同一道製程所形成,並且閘極353與導電層351在空間上彼此分隔。在一可能實施例中,閘極353與導電層351的材料相同。在本實施例中,閘極353與摻雜區331~333構成一電晶體,其中摻雜區331作為該電晶體的汲極(drain),摻雜區332作為該電晶體的基極(bulk),摻雜區333作 為該電晶體的源極(source)。 A gate 353 is disposed over the substrate 311 between the doped regions 331 and 333 and overlaps a portion of the field oxide layer 340 with a portion of the well region 322. In the present embodiment, the gate 353 and the conductive layer 351 are formed in the same process, and the gate 353 and the conductive layer 351 are spatially separated from each other. In a possible embodiment, the gate 353 is the same material as the conductive layer 351. In this embodiment, the gate 353 and the doping regions 331 333 333 form a transistor, wherein the doping region 331 serves as a drain of the transistor, and the doping region 332 serves as a base of the transistor (bulk) ), doped area 333 Is the source of the transistor.

在本實施例中,半導體結構300更包括一絕緣層362。絕緣層362形成於絕緣層361與導電層352之上。由於絕緣層361與362的特性與第1A圖的絕緣層161與162相似,故不再贅述。 In the embodiment, the semiconductor structure 300 further includes an insulating layer 362. The insulating layer 362 is formed over the insulating layer 361 and the conductive layer 352. Since the characteristics of the insulating layers 361 and 362 are similar to those of the insulating layers 161 and 162 of FIG. 1A, they will not be described again.

半導體結構300更包括走線371~374。走線371~374形成在絕緣層362之上。走線371透過導孔V31與V32電性連接摻雜區332與333。在一可能能實施例中,走線371用以傳送接地位準GND予摻雜區332與333。 The semiconductor structure 300 further includes traces 371-374. Traces 371 to 374 are formed over the insulating layer 362. The trace 371 is electrically connected to the doped regions 332 and 333 through the via holes V31 and V32. In a possible embodiment, traces 371 are used to transfer ground level GND pre-doped regions 332 and 333.

走線372透過導孔V33與V34電性連接閘極353及導電層351的一導電端E1。在本實施例中,為方便走線372電性連接導電端E1,導電端E1並未重疊導電層352的導電端E3,但並非用以限制本發明。在其它實施例中,導電端E1可能重疊部分導電端E3。在一可能實施例中,走線372更耦接一外接的二極體D2的陰極。在此例中,二極體D2的陽極可能耦接走線371。 The trace 372 is electrically connected to the gate 353 and a conductive end E1 of the conductive layer 351 through the via holes V33 and V34. In the present embodiment, in order to facilitate the electrical connection of the conductive terminal E1, the conductive terminal E1 does not overlap the conductive end E3 of the conductive layer 352, but is not intended to limit the present invention. In other embodiments, the conductive end E1 may overlap a portion of the conductive end E3. In a possible embodiment, the trace 372 is further coupled to the cathode of an external diode D2. In this example, the anode of diode D2 may be coupled to trace 371.

走線373透過導孔V35電性連接導電層352的導電端E3。在一可能實施例中,走線373傳送接地位準GND予導電端E3。走線374透過導孔V36與V37電性連接導電層352的導電端E4以及導電層351的導電端E2。另外,走線374透過導孔V38電性連接摻雜區331。在一可能實施例中,走線374用以接收一高壓信號HV。 The trace 373 is electrically connected to the conductive end E3 of the conductive layer 352 through the via hole V35. In a possible embodiment, trace 373 transmits ground level GND to conductive terminal E3. The trace 374 is electrically connected to the conductive end E4 of the conductive layer 352 and the conductive end E2 of the conductive layer 351 through the via holes V36 and V37. In addition, the trace 374 is electrically connected to the doped region 331 through the via hole V38. In a possible embodiment, trace 374 is used to receive a high voltage signal HV.

第3B圖為本發明之半導體結構300的等效電路示意圖。如圖所示,半導體結構300包括一電晶體Q、電阻R3及R4。在本實施例中,電晶體Q係由閘極353、摻雜區331~333所 構成,其中摻雜區331作為電晶體Q的汲極,摻雜區332作為電晶體Q的基極,摻雜區333作為電晶體Q的源極。另外,電阻R3代表導電層351的等效阻抗。電阻R4代表導電層352的等效阻抗。在本實施例中,藉由走線371~374,電晶體Q的汲極接收高壓信號HV,並耦接電阻R3與R4。另外,電晶體Q的閘極電性連接電阻R3以及二極體D2的陰極。電晶體Q的源極與基極接收接地位準GND。 FIG. 3B is a schematic diagram of an equivalent circuit of the semiconductor structure 300 of the present invention. As shown, the semiconductor structure 300 includes a transistor Q, resistors R3 and R4. In this embodiment, the transistor Q is composed of a gate 353 and doped regions 331 to 333. The composition is such that the doped region 331 serves as the drain of the transistor Q, the doped region 332 serves as the base of the transistor Q, and the doped region 333 serves as the source of the transistor Q. In addition, the resistor R3 represents the equivalent impedance of the conductive layer 351. Resistor R4 represents the equivalent impedance of conductive layer 352. In this embodiment, the drain of the transistor Q receives the high voltage signal HV through the traces 371-374, and is coupled to the resistors R3 and R4. In addition, the gate of the transistor Q is electrically connected to the resistor R3 and the cathode of the diode D2. The source and base of the transistor Q receive the ground level GND.

在一可能實施例中,二極體D2係獨立在半導體結構300之外。如圖所示,二極體D2的陰極耦接電晶體Q的閘極,並且二極體D2的陽極接收接地位準GND。在一可能實施例中,二極體D2係為一高壓元件。另外,由於電阻R3串聯二極體D2,故可快速地導通電晶體Q。再者,由於電阻R4並聯電晶體Q,故可降低電晶體Q的漏電流。在本實施例中,電阻R3、R4與電晶體Q整合在同一半導體結構中。 In a possible embodiment, the diode D2 is independent of the semiconductor structure 300. As shown, the cathode of the diode D2 is coupled to the gate of the transistor Q, and the anode of the diode D2 receives the ground level GND. In a possible embodiment, the diode D2 is a high voltage component. In addition, since the resistor R3 is connected in series with the diode D2, the crystal Q can be electrically conducted. Furthermore, since the resistor R4 is connected in parallel with the transistor Q, the leakage current of the transistor Q can be reduced. In the present embodiment, the resistors R3, R4 and the transistor Q are integrated in the same semiconductor structure.

第4A圖為本發明之半導體結構的另一剖面示意圖。第4A圖相似第3A圖,不同之處在於,半導體結構400的場氧化層441為環形結構,其包圍場氧化層442與摻雜區431。另外,摻雜區431亦為環形結構,圍繞場氧化層442。在本實施例中,導電層451與452係以螺旋狀在場氧化層441上延伸,但並非用限制本發明。只要導電層451與452重疊場氧化層441,導電層451與452的形狀可能相同或不同。由於導電層451與452的特性與第3圖的導電層351與352相似,故不再贅述。另外,由於第4圖的基底411、磊晶層412、井區421~423、摻雜區431~433、場氧化層441以及閘極453的特性與第3A圖的基底311、磊晶層312、 井區321~323、摻雜區331~333、場氧化層340以及閘極353的特性相似,故不再贅述。 4A is another schematic cross-sectional view of the semiconductor structure of the present invention. 4A is similar to FIG. 3A except that the field oxide layer 441 of the semiconductor structure 400 is a ring-shaped structure that surrounds the field oxide layer 442 and the doped region 431. In addition, the doped region 431 is also a ring structure surrounding the field oxide layer 442. In the present embodiment, the conductive layers 451 and 452 are spirally extended on the field oxide layer 441, but the invention is not limited thereto. As long as the conductive oxide layers 451 and 452 overlap the field oxide layer 441, the shapes of the conductive layers 451 and 452 may be the same or different. Since the characteristics of the conductive layers 451 and 452 are similar to those of the conductive layers 351 and 352 of FIG. 3, they will not be described again. In addition, the characteristics of the substrate 411, the epitaxial layer 412, the well regions 421 to 423, the doped regions 431 to 433, the field oxide layer 441, and the gate 453 of FIG. 4 are the same as those of the substrate 311 and the epitaxial layer 312 of FIG. , The characteristics of the well regions 321 to 323, the doped regions 331 to 333, the field oxide layer 340, and the gate 353 are similar, and therefore will not be described again.

第4B圖為本發明之半導體結構400的一可能俯視圖。如圖所示,場氧化層442為圓形。在此例中,摻雜區431係為一環形結構,其圍繞場氧化層442。場氧化層441為一環形結構,圍繞摻雜區431。在本實施例中,導電層451與452均為螺旋狀,重疊場氧化層441。閘極453為一環形結構,圍繞場氧化層441,並重疊部分場氧化層441。井區422為一環形結構,圍繞閘極453。如圖所示,井區422裡的摻雜區433圍繞閘極453。井區422裡的摻雜區432圍繞摻雜區433。 FIG. 4B is a diagram of a possible top view of the semiconductor structure 400 of the present invention. As shown, the field oxide layer 442 is circular. In this example, doped region 431 is an annular structure that surrounds field oxide layer 442. The field oxide layer 441 is a ring structure surrounding the doped region 431. In the present embodiment, the conductive layers 451 and 452 are both spiral, and the field oxide layer 441 is overlapped. The gate 453 is an annular structure surrounding the field oxide layer 441 and overlapping a portion of the field oxide layer 441. The well region 422 is a ring structure that surrounds the gate 453. As shown, doped region 433 in well region 422 surrounds gate 453. Doped region 432 in well region 422 surrounds doped region 433.

第5A~5C圖為本發明之半導體結構100的製造方法。請參照第5A圖,提供一基底110,例如矽基底或絕緣層上覆矽(SOI)基底或其它適當的半導體基底,其具有一第一導電型。接著,可依序藉由摻雜製程(例如,離子佈值)及熱擴散等製程,在基底110內形成井區121與122,其中井區121的導電型不同於基底110,而井區122的導電型相同於基底110。 5A-5C illustrate a method of fabricating the semiconductor structure 100 of the present invention. Referring to FIG. 5A, a substrate 110, such as a germanium substrate or an insulating layer overlying germanium (SOI) substrate or other suitable semiconductor substrate having a first conductivity type is provided. Then, the well regions 121 and 122 may be formed in the substrate 110 by processes such as doping process (for example, ion cloth value) and thermal diffusion, wherein the conductivity type of the well region 121 is different from the substrate 110, and the well region 122 The conductivity type is the same as the substrate 110.

請參照第5B圖,藉由摻雜製程(如離子佈值)在井區121內形成一摻雜區131,以及在井區122內形成一摻雜區132。在本實施例中,摻雜區131的導電型相同於井區121的導電型,而摻雜區132的導電型相同於井區122的導電型。在一可能實施例中,摻雜區131的摻雜濃度高於井區121的摻雜濃度,而摻雜區132的摻雜濃度高於井區122的摻雜濃度。另外,在基底110上形成隔離結構(如場氧化層140)。在本實施例中,場氧化層140延伸進入井區121,並位於摻雜區131與132之間。 Referring to FIG. 5B, a doping region 131 is formed in the well region 121 by a doping process (such as ion cloth value), and a doping region 132 is formed in the well region 122. In the present embodiment, the doping region 131 has the same conductivity type as the well region 121, and the doping region 132 has the same conductivity type as the well region 122. In a possible embodiment, the doping concentration of the doping region 131 is higher than the doping concentration of the well region 121, and the doping concentration of the doping region 132 is higher than the doping concentration of the well region 122. In addition, an isolation structure (such as field oxide layer 140) is formed on the substrate 110. In the present embodiment, field oxide layer 140 extends into well region 121 and is located between doped regions 131 and 132.

請參照第5C圖,在場氧化層140上形成導電層151,之後形成絕緣層161在導電層151之上。接著,形成導電層152在絕緣層161之上,再形成絕緣層162在導電層152之上。在本實施例中,導電層152重疊導電層151。在其它實施例中,可形成複數走線與內連線於半導體結構100中。由於本發明並不限定半導體結構100的內連線架構,故第5C圖並未顯示半導體結構100的內連線架構(如第1圖的走線171、172及導孔V11~V16)。 Referring to FIG. 5C, a conductive layer 151 is formed on the field oxide layer 140, and then an insulating layer 161 is formed over the conductive layer 151. Next, a conductive layer 152 is formed over the insulating layer 161, and an insulating layer 162 is formed over the conductive layer 152. In the present embodiment, the conductive layer 152 overlaps the conductive layer 151. In other embodiments, a plurality of traces and interconnects can be formed in the semiconductor structure 100. Since the present invention does not limit the interconnect structure of the semiconductor structure 100, the 5C diagram does not show the interconnect structure of the semiconductor structure 100 (such as the traces 171 and 172 and the vias V11 to V16 in FIG. 1).

第6A~6C圖為本發明之半導體結構300的製造方法。請參照第6A圖,提供一基底311,例如矽基底或絕緣層上覆矽(SOI)基底或其它適當的半導體基底,其具有一第一導電型。之,在基底311上形成一磊晶層312,其同樣具有第一導電型。透過磊晶成長形成磊晶層312後,依序藉由摻雜製程(例如,離子佈值)及熱擴散等製程,在磊晶層312內形成井區323與322。在本實施例中,井區323係為一深井區,其具有第二導電型。第二導電型相異於第一導電型。井區322具有第一導電型。另外,在井區323內形成井區321。在本實施例中,井區321具有第二導電型。 6A-6C illustrate a method of fabricating the semiconductor structure 300 of the present invention. Referring to FIG. 6A, a substrate 311, such as a germanium or insulating layer overlying (SOI) substrate or other suitable semiconductor substrate having a first conductivity type is provided. An epitaxial layer 312 is formed on the substrate 311, which also has a first conductivity type. After the epitaxial layer 312 is formed by epitaxial growth, the well regions 323 and 322 are formed in the epitaxial layer 312 by processes such as doping process (for example, ion cloth value) and thermal diffusion. In the present embodiment, the well region 323 is a deep well region having a second conductivity type. The second conductivity type is different from the first conductivity type. Well zone 322 has a first conductivity type. Additionally, a well zone 321 is formed within the well zone 323. In the present embodiment, the well region 321 has a second conductivity type.

請參照第6B圖,藉由摻雜製程(如離子佈值)在井區321內形成一摻雜區331,以及在井區322內形成摻雜區332與333。在本實施例中,摻雜區331與333的導電型相同於井區321的導電型,而摻雜區332的導電型相同於井區322的導電型。在一可能實施例中,摻雜區331與333的摻雜濃度高於井區321的摻雜濃度,而摻雜區332的摻雜濃度高於井區322的摻雜濃度。 另外,在基底311上形成一隔離結構(如場氧化層340)。在本實施例中,場氧化層340延伸進入井區321,並位於摻雜區331與333之間。 Referring to FIG. 6B, a doping region 331 is formed in the well region 321 by a doping process (eg, ion cloth value), and doped regions 332 and 333 are formed in the well region 322. In the present embodiment, the doping regions 331 and 333 have the same conductivity type as the well region 321, and the doping region 332 has the same conductivity type as the well region 322. In a possible embodiment, the doping concentrations of the doping regions 331 and 333 are higher than the doping concentration of the well region 321 , and the doping concentration of the doping region 332 is higher than the doping concentration of the well region 322 . In addition, an isolation structure (such as field oxide layer 340) is formed on the substrate 311. In the present embodiment, field oxide layer 340 extends into well region 321 and is located between doped regions 331 and 333.

請參照第6C圖,在場氧化層340上形成導電層351。另外,形成閘極353在基底311之上。在本實施例中,閘極353重疊部分井區322與部分場氧化層340。在一可能實施例中,閘極353與導電層351係由同一製程所形成,只不過閘極353與導電層351彼此絕緣。接著,形成絕緣層361在導電層351與閘極353之上,再形成導電層352在絕緣層361之上。在本實施例中,導電層352重疊導電層351,但並非用以限制本發明。在其它實施例中,導電層352可能重疊部分的導電層351。之後,形成絕緣層362在導電層352之上。由於本發明並不限定導電層351、352與其它結構(如摻雜區331~332或是閘極353)之間的連接關係,故第6C圖並未顯示內連線架構(如第3A圖的導孔V31~V38以及走線371~374)。 Referring to FIG. 6C, a conductive layer 351 is formed on the field oxide layer 340. In addition, the gate 353 is formed over the substrate 311. In the present embodiment, the gate 353 overlaps a portion of the well region 322 and a portion of the field oxide layer 340. In a possible embodiment, the gate 353 and the conductive layer 351 are formed by the same process, except that the gate 353 and the conductive layer 351 are insulated from each other. Next, an insulating layer 361 is formed over the conductive layer 351 and the gate 353, and a conductive layer 352 is formed over the insulating layer 361. In the present embodiment, the conductive layer 352 overlaps the conductive layer 351, but is not intended to limit the present invention. In other embodiments, conductive layer 352 may overlap a portion of conductive layer 351. Thereafter, an insulating layer 362 is formed over the conductive layer 352. Since the present invention does not limit the connection relationship between the conductive layers 351 and 352 and other structures (such as the doped regions 331 to 332 or the gate 353), the 6C diagram does not show the interconnect structure (eg, FIG. 3A). Guide holes V31~V38 and traces 371~374).

根據上述實施例,由於多個導電層形成於場氧化層之上,故可將多個電阻與至少一二極體或至少一電晶體整合在同一半導體基底中。再者,藉由控制導電層的數量,便可提供電阻的數量及阻值。另外,藉由控制導電層的摻雜濃度以及延伸形狀,便可控制電阻的等效阻抗。此外,適當地控制導電層的電位,便可令導電層之間的等效電容的容值約略等於零。 According to the above embodiment, since a plurality of conductive layers are formed over the field oxide layer, a plurality of resistors may be integrated in the same semiconductor substrate with at least one diode or at least one transistor. Furthermore, by controlling the number of conductive layers, the number and resistance of the resistors can be provided. In addition, the equivalent impedance of the resistor can be controlled by controlling the doping concentration and the extension shape of the conductive layer. In addition, by properly controlling the potential of the conductive layer, the capacitance of the equivalent capacitance between the conductive layers is approximately equal to zero.

除非另作定義,在此所有詞彙(包含技術與科學詞彙)均屬本發明所屬技術領域中具有通常知識者之一般理解。此外,除非明白表示,詞彙於一般字典中之定義應解釋為與其 相關技術領域之文章中意義一致,而不應解釋為理想狀態或過分正式之語態。 Unless otherwise defined, all terms (including technical and scientific terms) are used in the ordinary meaning In addition, unless explicitly stated, the definition of vocabulary in a general dictionary should be interpreted as The articles in the related art have the same meaning and should not be interpreted as an ideal state or an excessively formal voice.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾。舉例來,本發明實施例所系統、裝置或是方法可以硬體、軟體或硬體以及軟體的組合的實體實施例加以實現。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. . For example, the system, apparatus or method of the embodiments of the present invention may be implemented in a physical embodiment of a combination of hardware, software or hardware and software. Therefore, the scope of the invention is defined by the scope of the appended claims.

Claims (20)

一種半導體結構,包括:一基底,具有一第一導電型;一第一井區,形成在該基底之中,並具有一第二導電型;一第一摻雜區,形成在該第一井區之中,並具有該第二導電型;一第二井區,形成在該基底之中,並具有該第一導電型;一第二摻雜區,形成在該第二井區之中,並具有該第一導電型;一場氧化層,設於該基底上,並位於該第一與第二摻雜區之間;一第一導電層,重疊該場氧化層;一第一絕緣層,重疊該第一導電層;以及一第二導電層,重疊該第一絕緣層,其中該第一導電層直接接觸該場氧化層。 A semiconductor structure comprising: a substrate having a first conductivity type; a first well region formed in the substrate and having a second conductivity type; a first doped region formed in the first well And having the second conductivity type; a second well region formed in the substrate and having the first conductivity type; and a second doping region formed in the second well region And having the first conductivity type; a field oxide layer disposed on the substrate and located between the first and second doped regions; a first conductive layer overlapping the field oxide layer; a first insulating layer, Overlap the first conductive layer; and a second conductive layer overlapping the first insulating layer, wherein the first conductive layer directly contacts the field oxide layer. 如申請專利範圍第1項所述之半導體結構,其中該第一井區接觸該第二井區。 The semiconductor structure of claim 1, wherein the first well region contacts the second well region. 如申請專利範圍第1項所述之半導體結構,其中該第一導電層的形狀相同或不同於該第二導電層。 The semiconductor structure of claim 1, wherein the first conductive layer has the same shape or different from the second conductive layer. 如申請專利範圍第1項所述之半導體結構,其中該第一及第二導電層之至少一者係以螺旋狀延伸。 The semiconductor structure of claim 1, wherein at least one of the first and second conductive layers extends in a spiral shape. 如申請專利範圍第1項所述之半導體結構,其中該第一導電層具有一第一導電端以及一第二導電端,該第二導電層具有一第三導電端以及一第四導電端。 The semiconductor structure of claim 1, wherein the first conductive layer has a first conductive end and a second conductive end, the second conductive layer has a third conductive end and a fourth conductive end. 如申請專利範圍第5項所述之半導體結構,更包括: 一第一走線,用以傳送一接地位準予該第一導電端、該第三導電端以及該第二摻雜區;以及一第二走線,耦接該第二及第四導電端以及該第一摻雜區。 For example, the semiconductor structure described in claim 5 includes: a first trace for transmitting a ground potential to the first conductive end, the third conductive end and the second doped region; and a second trace coupled to the second and fourth conductive ends and The first doped region. 如申請專利範圍第6項所述之半導體結構,更包括:一第二絕緣層,重疊該第二導電層;以及一第三導電層,重疊該第二絕緣層,其中該第一及第二走線位於該第三導電層之上。 The semiconductor structure of claim 6, further comprising: a second insulating layer overlapping the second conductive layer; and a third conductive layer overlapping the second insulating layer, wherein the first and second The trace is located above the third conductive layer. 如申請專利範圍第1項所述之半導體結構,其中該第一導電型為P型,該第二導電型為N型。 The semiconductor structure of claim 1, wherein the first conductivity type is a P type and the second conductivity type is an N type. 如申請專利範圍第1項所述之半導體結構,其中該第一導電型為N型,該第二導電型為P型。 The semiconductor structure of claim 1, wherein the first conductivity type is an N type and the second conductivity type is a P type. 如申請專利範圍第1項所述之半導體結構,更包括:一磊晶層,設置在該基底之中,並具有該第一導電型,其中該第一及第二井區位於該磊晶層之中。 The semiconductor structure of claim 1, further comprising: an epitaxial layer disposed in the substrate and having the first conductivity type, wherein the first and second well regions are located in the epitaxial layer Among them. 如申請專利範圍第1項所述之半導體結構,其中該第一井區與該第二井區在空間上彼此分隔(spaced apart)。 The semiconductor structure of claim 1, wherein the first well region and the second well region are spatially separated from each other. 如申請專利範圍第11項所述之半導體結構,更包括:一第三摻雜區,設置於該第二井區之中,並位於該場氧化層與該第二摻雜區之間,並具有該第二導電型;一閘極,設置於該基底之上,位於該場氧化層與該第三摻雜區之間,並重疊部分該場氧化層,其中該閘極、該第一摻雜區與該第三摻雜區構成一電晶體。 The semiconductor structure of claim 11, further comprising: a third doped region disposed in the second well region and located between the field oxide layer and the second doped region, and Having the second conductivity type; a gate disposed on the substrate between the field oxide layer and the third doped region, and overlapping part of the field oxide layer, wherein the gate, the first doping The impurity region and the third doped region constitute a transistor. 如申請專利範圍第12項所述之半導體結構,其中該閘極與該第一導電層係為同一道製程所形成,該閘極與該第一導 電層在空間上彼此隔離。 The semiconductor structure of claim 12, wherein the gate and the first conductive layer are formed in the same process, the gate and the first guide The electrical layers are spatially isolated from one another. 如申請專利範圍第12項所述之半導體結構,其中該第一導電層具有一第一導電端以及一第二導電端,該第二導電層具有一第三導電端以及一第四導電端。 The semiconductor structure of claim 12, wherein the first conductive layer has a first conductive end and a second conductive end, the second conductive layer has a third conductive end and a fourth conductive end. 如申請專利範圍第14項所述之半導體結構,更包括:一第一走線,用以耦接該第二及第三摻雜區;一第二走線,用以耦接該閘極以及該第一導電端;一第三走線,用以耦接該第三導電端;以及一第四走線,用以耦接該第二導電端、該第四導電端以及該第一摻雜區。 The semiconductor structure of claim 14, further comprising: a first trace for coupling the second and third doped regions; a second trace for coupling the gate and a first conductive end; a third trace for coupling the third conductive end; and a fourth trace for coupling the second conductive end, the fourth conductive end, and the first doping Area. 如申請專利範圍第1項所述之半導體結構,更包括:一第四摻雜區,設置於該第一井區之中,位於該場氧化層的下方,並具有該第一導電型。 The semiconductor structure of claim 1, further comprising: a fourth doped region disposed in the first well region, below the field oxide layer, and having the first conductivity type. 如申請專利範圍第1項所述之半導體結構,其中該第一導電層的材料係為SiCr、金屬或Poly。 The semiconductor structure of claim 1, wherein the material of the first conductive layer is SiCr, metal or Poly. 一種半導體結構的製造方法,包括:提供一基底,其具有一第一導電型;形成一第一井區在該基底之中,其中該第一井區具有一第二導電型;形成一第一摻雜區在該第一井區之中,其中該第一摻雜區具有該第二導電型;形成一第二井區在該基底之中,其中該第二井區具有該第一導電型; 形成一第二摻雜區在該第二井區之中,其中該第二摻雜區具有該第一導電型;形成一場氧化層在該基底上,其中該場氧化層位於該第一與第二摻雜區之間;形成一第一導電層在該場氧化層上,其中該第一導電層直接接觸該場氧化層;形成一第一絕緣層在該第一導電層上;以及形成一第二導電層在該第一絕緣層上。 A method of fabricating a semiconductor structure, comprising: providing a substrate having a first conductivity type; forming a first well region in the substrate, wherein the first well region has a second conductivity type; forming a first a doped region in the first well region, wherein the first doped region has the second conductivity type; forming a second well region in the substrate, wherein the second well region has the first conductivity type ; Forming a second doped region in the second well region, wherein the second doped region has the first conductivity type; forming a field oxide layer on the substrate, wherein the field oxide layer is located in the first and the first Between the two doped regions; forming a first conductive layer on the field oxide layer, wherein the first conductive layer directly contacts the field oxide layer; forming a first insulating layer on the first conductive layer; and forming a The second conductive layer is on the first insulating layer. 一種半導體結構的製造方法,包括:提供一基底,其具有一第一導電型;形成一第一井區在該基底之中,其中該第一井區具有一第二導電型;形成一第一摻雜區在該第一井區之中,其中該第一摻雜區具有該第二導電型;形成一第二井區在該基底之中,其中該第二井區具有該第一導電型;形成一第二摻雜區在該第二井區之中,其中該第二摻雜區具有該第一導電型;形成一第三摻雜區在該第二井區之中,其中該第三摻雜區具有該第二導電型;形成一場氧化層在該基底上,其中該場氧化層位於該第一與第三摻雜區之間;形成一閘極於該基底上,其中該閘極重疊部分該場氧化層及該第二井區,並且與該第一、第二及第三摻雜區構成一電晶體, 該第一摻雜區作為該電晶體的汲極,該第二摻雜區作為該電晶體的基極,該第三摻雜區作為該電晶體的源極;形成一第一導電層在該場氧化層上,其中該第一導電層與該閘極在空間上彼此分隔,其中該第一導電層直接接觸該場氧化層;形成一第一絕緣層在該第一導電層上;以及形成一第二導電層在該第一絕緣層上。 A method of fabricating a semiconductor structure, comprising: providing a substrate having a first conductivity type; forming a first well region in the substrate, wherein the first well region has a second conductivity type; forming a first a doped region in the first well region, wherein the first doped region has the second conductivity type; forming a second well region in the substrate, wherein the second well region has the first conductivity type Forming a second doped region in the second well region, wherein the second doped region has the first conductivity type; forming a third doped region in the second well region, wherein the first doping region a third doped region having the second conductivity type; forming a field oxide layer on the substrate, wherein the field oxide layer is between the first and third doped regions; forming a gate on the substrate, wherein the gate Forming a portion of the field oxide layer and the second well region, and forming a transistor with the first, second, and third doped regions, The first doped region serves as a drain of the transistor, the second doped region serves as a base of the transistor, and the third doped region serves as a source of the transistor; forming a first conductive layer at the a field oxide layer, wherein the first conductive layer and the gate are spatially separated from each other, wherein the first conductive layer directly contacts the field oxide layer; forming a first insulating layer on the first conductive layer; and forming A second conductive layer is on the first insulating layer. 如申請專利範圍第19項所述之半導體結構的製造方法,其中該第一及第二導電層係以螺旋狀延伸。 The method of fabricating a semiconductor structure according to claim 19, wherein the first and second conductive layers extend in a spiral shape.
TW106118070A 2017-06-01 2017-06-01 Semiconductor structure and method of manufacturing the same TWI632660B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106118070A TWI632660B (en) 2017-06-01 2017-06-01 Semiconductor structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106118070A TWI632660B (en) 2017-06-01 2017-06-01 Semiconductor structure and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TWI632660B true TWI632660B (en) 2018-08-11
TW201904004A TW201904004A (en) 2019-01-16

Family

ID=63959657

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106118070A TWI632660B (en) 2017-06-01 2017-06-01 Semiconductor structure and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI632660B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080042236A1 (en) * 2006-08-18 2008-02-21 Chartered Semiconductor Manufacturing Ltd. Integrated circuit system employing gate shield and/or ground shield
CN105280612A (en) * 2014-06-05 2016-01-27 瑞萨电子株式会社 Semiconductor device
US20170125582A1 (en) * 2015-10-29 2017-05-04 Taiwan Semiconductor Manufacturing Company Ltd. High voltage semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080042236A1 (en) * 2006-08-18 2008-02-21 Chartered Semiconductor Manufacturing Ltd. Integrated circuit system employing gate shield and/or ground shield
CN105280612A (en) * 2014-06-05 2016-01-27 瑞萨电子株式会社 Semiconductor device
US20170125582A1 (en) * 2015-10-29 2017-05-04 Taiwan Semiconductor Manufacturing Company Ltd. High voltage semiconductor device

Also Published As

Publication number Publication date
TW201904004A (en) 2019-01-16

Similar Documents

Publication Publication Date Title
US11735485B2 (en) Integrated circuit devices with well regions and methods for forming the same
JP2012160510A (en) Semiconductor device and method of manufacturing the same
US20170213898A1 (en) Method and apparatus for mos device with doped region
TW201436046A (en) RF device and method for forming an RF device
US10262938B2 (en) Semiconductor structure having conductive layer overlapping field oxide
US9876006B2 (en) Semiconductor device for electrostatic discharge protection
US7485925B2 (en) High voltage metal oxide semiconductor transistor and fabricating method thereof
JP2010153762A (en) Semiconductor device and method of manufacturing the same
TWI587402B (en) High voltage semiconductor device and method for manufacturing the same
TWI632660B (en) Semiconductor structure and method of manufacturing the same
US9318482B2 (en) Semiconductor devices having high-resistance region and methods of forming the same
CN111883530B (en) Capacitor and preparation method thereof
CN109037178B (en) Semiconductor structure and manufacturing method thereof
US11049853B2 (en) ESD protection device with breakdown voltage stabilization
JP6707917B2 (en) Semiconductor device and manufacturing method thereof
US10714410B1 (en) Semiconductor structure
TWI670820B (en) Semiconductor structure
CN110634834B (en) Semiconductor structure
TWI763029B (en) Vertical bipolar transistor device
WO2023137974A1 (en) Semiconductor structure and preparation method for semiconductor structure
US20230326919A1 (en) Electrostatic discharge protection structure
TWI742221B (en) Trench metal oxide semiconductor device and manufacuring method thereof
KR200156159Y1 (en) Structure of capacitor
CN109216453B (en) High voltage semiconductor device and method for manufacturing the same
TWI655746B (en) Diode and diode string circuit