TWI631438B - Method of controlling flatness of epitaxial wafer - Google Patents
Method of controlling flatness of epitaxial wafer Download PDFInfo
- Publication number
- TWI631438B TWI631438B TW106103288A TW106103288A TWI631438B TW I631438 B TWI631438 B TW I631438B TW 106103288 A TW106103288 A TW 106103288A TW 106103288 A TW106103288 A TW 106103288A TW I631438 B TWI631438 B TW I631438B
- Authority
- TW
- Taiwan
- Prior art keywords
- epitaxial
- difference
- flatness
- zdds
- epitaxial wafer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 235000012431 wafers Nutrition 0.000 claims abstract description 178
- 230000007547 defect Effects 0.000 claims abstract description 72
- 239000000758 substrate Substances 0.000 claims description 59
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 238000009795 derivation Methods 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 4
- 238000000407 epitaxy Methods 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 36
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 8
- 239000005052 trichlorosilane Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 238000004886 process control Methods 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
本案揭露一種磊晶晶圓之平坦度之控制方法,這種方法包含獲得藉由給定磊晶反應器生產的磊晶晶圓的平坦度缺陷率圖形,獲得關係圖形,此關係圖形表示磊晶層的生長條件與用於關係的磊晶晶圓的差量Z軸雙導數(Z-axis Double Derivatives;ZDDs)之間的關係,藉由給定磊晶反應器中的第一磊晶反應器,獲得第一生長條件下產生的至少一個取樣磊晶晶圓的差量ZDD,以及基於關係圖形調整第一生長條件。The present invention discloses a method for controlling the flatness of an epitaxial wafer, which comprises obtaining a flatness defect rate graph of an epitaxial wafer produced by a given epitaxial reactor, and obtaining a relationship graph, the relationship graph representing epitaxy The relationship between the growth conditions of the layer and the Z-axis Double Derivatives (ZDDs) of the epitaxial wafers used in the relationship, by the first epitaxial reactor in a given epitaxial reactor And obtaining a difference ZDD of the at least one sample epitaxial wafer generated under the first growth condition, and adjusting the first growth condition based on the relationship graph.
Description
本發明係關於一種磊晶晶圓之平坦度之控制方法。The present invention relates to a method of controlling the flatness of an epitaxial wafer.
在摻雜有雜質比如硼的具有低比電阻的矽晶圓上,矽磊晶層被摻雜相對少量的具有相對高比電阻的雜質,透過使得此矽磊晶層生長由此形成矽磊晶晶圓,通常矽磊晶晶圓在高溫時具有高收集能力、低閂鎖特性以及高耐滑動缺陷。On a germanium wafer having a low specific resistance doped with impurities such as boron, the germanium epitaxial layer is doped with a relatively small amount of impurities having a relatively high specific resistance, and the germanium epitaxial layer is grown to thereby form germanium epitaxial. Wafers, typically 矽 epitaxial wafers have high collection capacity, low latch-up characteristics, and high resistance to sliding defects at high temperatures.
這種磊晶晶圓所需要的品質項包含平坦度、顆粒污染水平等,以及用於磊晶層的項包含厚度均勻性、比電阻、金屬污染、堆疊缺陷、滑動移位等。The quality items required for such epitaxial wafers include flatness, particle contamination levels, etc., and the terms used for the epitaxial layer include thickness uniformity, specific resistance, metal contamination, stacking defects, sliding shift, and the like.
可以測量晶圓的厚度,以及利用測量的晶圓厚度測量晶圓的邊緣的平坦度。The thickness of the wafer can be measured and the flatness of the edge of the wafer can be measured using the measured wafer thickness.
因此,本發明提供一種磊晶晶圓之平坦度之控制方法,實質上避免習知技術之限制與缺陷所導致的一或多個問題。Accordingly, the present invention provides a method of controlling the flatness of an epitaxial wafer that substantially obviates one or more of the problems caused by the limitations and disadvantages of the prior art.
本發明之目的在於提供一種磊晶晶圓之平坦度之控制方法,其中進行製程控制,這樣無論基板的形狀或者基板的平坦度水平如何,缺陷率均被降低。It is an object of the present invention to provide a method for controlling the flatness of an epitaxial wafer in which process control is performed such that the defect rate is lowered regardless of the shape of the substrate or the flatness level of the substrate.
本發明其他的優點、目的和特徵將在如下的說明書中部分地加以闡述,並且本發明其他的優點、目的和特徵對於本領域的普通技術人員來說,可以透過本發明如下的說明得以部分地理解或者可以從本發明的實踐中得出。本發明的目的和其它優點可以透過本發明所記載的說明書和申請專利範圍中特別指明的結構並結合圖式部份,得以實現和獲得。Other advantages, objects, and features of the invention will be set forth in part in the description which follows, It is understood or can be derived from the practice of the invention. The objectives and other advantages of the invention will be realized and attained by the <RTIgt;
為了獲得本發明的這些目的和其他特徵,現對本發明作具體化和概括性的描述,一種磊晶晶圓之平坦度之控制方法包含獲得藉由給定磊晶反應器生產的磊晶晶圓的平坦度缺陷率圖形,獲得關係圖形,此關係圖形表示磊晶層的生長條件與用於關係的磊晶晶圓的差量Z軸雙導數(Z-axis Double Derivatives;ZDDs)之間的關係,藉由給定磊晶反應器中的第一磊晶反應器,獲得第一生長條件下產生的至少一個取樣磊晶晶圓的差量ZDD,以及基於關係圖形調整第一生長條件。In order to achieve these and other features of the present invention, the present invention is embodied and broadly described. A method of controlling the flatness of an epitaxial wafer includes obtaining an epitaxial wafer produced by a given epitaxial reactor. The flatness defect rate pattern is obtained by obtaining a relationship graph indicating the relationship between the growth conditions of the epitaxial layer and the Z-axis Double Derivatives (ZDDs) of the epitaxial wafers used for the relationship. The difference ZDD of the at least one sampled epitaxial wafer produced under the first growth condition is obtained by a first epitaxial reactor in the given epitaxial reactor, and the first growth condition is adjusted based on the relationship pattern.
這種方法更包含基於至少一個取樣磊晶晶圓之差量ZDD與平坦度缺陷率圖形,計算校正值,以及基於校正值與關係圖形調整第一生長條件。The method further includes calculating a correction value based on the difference ZDD and the flatness defect rate pattern of the at least one sampled epitaxial wafer, and adjusting the first growth condition based on the correction value and the relationship pattern.
獲得平坦度缺陷率圖形包含獲得基板之邊緣扇形地點前側參考地點最小平方平面導子(Edge sector Site Front side reference Q (Site least squares plane) Derivations;ESFQDs)與Z軸雙導數(Z-axis Double Derivatives;ZDDs),獲得基於這些基板形成的磊晶晶圓的差量ZDDs與邊緣扇形地點前側參考地點最小平方平面範圍(Edge sector Site Front side reference Q (Site least squares plane) Ranges;ESFQRs),基於磊晶晶圓的ESFQRs判定磊晶晶圓的平坦度缺陷,以及基於基板的ESFQDs與磊晶晶圓的差量ZDDs,獲得磊晶晶圓的平坦度缺陷率圖形。Obtaining the flatness defect rate graph includes obtaining the edge sector site front side reference Q (Site least squares plane Derivations; ESFQDs) and the Z-axis double Derivatives ;ZDDs), obtaining the difference ZDDs of the epitaxial wafers formed based on the substrates and the edge sector Site Front side reference Q (Site least squares planes Ranges; ESFQRs), based on the Lei The ESFQRs of the wafer determine the flatness defect of the epitaxial wafer, and the difference ZDDs of the ESFQDs and the epitaxial wafer based on the substrate, and obtain the flatness defect rate graph of the epitaxial wafer.
獲得磊晶晶圓的差量ZDDs與ESFQRs包含獲得磊晶晶圓的ZDDs與ESFQRs,以及使用基板之ZDDs與磊晶晶圓之ZDDs之間的差值,獲得磊晶晶圓之差量ZDDs。Obtaining the difference between the ZDDs and the ESFQRs of the epitaxial wafers includes obtaining the ZDDs and ESFQRs of the epitaxial wafers, and using the difference between the ZDDs of the substrate and the ZDDs of the epitaxial wafers to obtain the difference ZDDs of the epitaxial wafers.
計算校正值包含基於平坦度缺陷率圖形之缺陷率設定目標區段,以及基於至少一個取樣磊晶晶圓之差量ZDD與目標區段,計算校正值。Calculating the correction value includes setting a target segment based on a defect rate of the flatness defect rate graph, and calculating a correction value based on the difference ZDD of the at least one sampled epitaxial wafer and the target segment.
判定磊晶晶圓的平坦度缺陷時,基於磊晶晶圓之ESFQRs與預定參考值之比較結果,判定磊晶晶圓之平坦度缺陷。預定參考值為100奈米至120奈米。When determining the flatness defect of the epitaxial wafer, the flatness defect of the epitaxial wafer is determined based on the comparison result of the ESFQRs of the epitaxial wafer with a predetermined reference value. The predetermined reference value is from 100 nm to 120 nm.
在磊晶晶圓之平坦度缺陷率圖形中,X軸表示基板之ESFQDs,Y軸表示磊晶晶圓之差量ZDDs,以及基於基板之ESFQDs與磊晶晶圓之差量ZDDs,磊晶晶圓之缺陷率被劃分為複數個區域。In the flatness defect rate graph of the epitaxial wafer, the X axis represents the ESFQDs of the substrate, the Y axis represents the difference ZDDs of the epitaxial wafer, and the difference between the ESFQDs of the substrate and the epitaxial wafer ZDDs, epitaxial crystal The defect rate of the circle is divided into a plurality of regions.
獲得關係圖形時,獲得在不同生長條件下產生的用於關係的磊晶晶圓的差量ZDDs,以及使用這些生長條件與獲得的該等用於關係的磊晶晶圓的差量ZDDs,獲得關係圖形。When the relationship pattern is obtained, the difference ZDDs of the epitaxial wafers for relationship generated under different growth conditions are obtained, and the difference ZDDs of the epitaxial wafers obtained by using these growth conditions and the obtained relationship are obtained. Relationship graphics.
獲得關係圖形之生長條件與第一生長條件包含氫氣的流速、TCS的流速或生長溫度。The growth conditions and first growth conditions for obtaining the relationship pattern include the flow rate of hydrogen, the flow rate of the TCS, or the growth temperature.
設定目標區段時,目標區段係為其中基板之ESFQDs之全範圍內的平坦度缺陷率小於預定參考值之區段。預定參考值為0.1%至15%。When the target segment is set, the target segment is a segment in which the flatness defect rate in the entire range of the ESFQDs of the substrate is less than a predetermined reference value. The predetermined reference value is 0.1% to 15%.
校正值係為屬於目標區段之預定目標值與至少一個取樣磊晶晶圓之差量ZDD之間的差值。The correction value is the difference between the predetermined target value belonging to the target segment and the difference ZDD of the at least one sample epitaxial wafer.
預定目標值為目標區段之下限、上限或者中數。The predetermined target value is the lower limit, upper limit, or median of the target zone.
調整第一生長條件時,第一生長條件被調整為第二生長條件,第二生長條件對應在第一磊晶反應器之第一生長條件下透過增加校正值至差量ZDD而獲得的數值。When the first growth condition is adjusted, the first growth condition is adjusted to a second growth condition corresponding to a value obtained by increasing the correction value to the difference ZDD under the first growth condition of the first epitaxial reactor.
本發明之另一方面,一種磊晶晶圓之平坦度之控制方法包含:獲得第一基板之邊緣扇形地點前側參考地點最小平方平面導子(Edge sector Site Front side reference Q (Site least squares plane) Derivations;ESFQDs)與第一Z軸雙導數(Z-axis Double Derivatives;ZDDs),獲得基於第一基板形成的第一磊晶晶圓之邊緣扇形地點前側參考地點最小平方平面範圍(Edge sector Site Front side reference Q (Site least squares plane) Ranges;ESFQRs)與第二Z軸雙導數(ZDDs),獲得第一磊晶晶圓之第一差量ZDDs,基於第一磊晶晶圓之ESFQRs判定第一磊晶晶圓之平坦度缺陷,以及獲得平坦度缺陷率,獲得關係圖形,關係圖形表示第二磊晶晶圓之磊晶層生長條件與第二磊晶晶圓之第二ZDDs之間的關係,獲得在第一生長條件下產生的至少一個第三磊晶晶圓的第二差量ZDD,基於該第二差量ZDD與平坦度缺陷率圖形計算校正值;以及基於校正值與關係圖形,調整第一生長條件為第二生長條件。In another aspect of the present invention, a method for controlling the flatness of an epitaxial wafer includes: obtaining an edge sector Site Front side reference Q (Site least squares plane) of an edge of a first substrate. Derivations; ESFQDs) and the first Z-axis Double Derivatives (ZDDs), obtaining the edge-shaped location of the first epitaxial wafer based on the first substrate, the front-side reference location, the least square plane range (Edge sector Site Front) Side reference Q (Site least squares plane) Ranges; ESFQRs) and a second Z-axis double derivative (ZDDs), obtain a first difference ZDDs of the first epitaxial wafer, and determine the first based on the ESFQRs of the first epitaxial wafer The flatness defect of the epitaxial wafer and the flatness defect rate are obtained, and the relationship graph is obtained, and the relationship graph represents the relationship between the epitaxial layer growth condition of the second epitaxial wafer and the second ZDDs of the second epitaxial wafer. Obtaining a second difference ZDD of the at least one third epitaxial wafer generated under the first growth condition, and calculating a correction based on the second difference ZDD and the flatness defect rate graph ; Correction value based on the relationship between the graphics, the second adjusting the first growth conditions the growth conditions.
這種方法更包含在第二生長條件下產生磊晶晶圓。This method further includes producing an epitaxial wafer under the second growth conditions.
獲得關係圖形包含依照相同生長條件項之不同數值,透過在第二基板上生長磊晶層產生第二磊晶晶圓,獲得產生的第二磊晶晶圓之差量ZDDs,以及使用相同生長條件項之不同數值與第二磊晶晶圓之差量ZDDs,獲得關係圖形。Obtaining a relationship graph includes generating a second epitaxial wafer by growing an epitaxial layer on the second substrate according to different values of the same growth condition item, obtaining a difference ZDDs of the generated second epitaxial wafer, and using the same growth condition The difference between the value of the item and the difference ZDDs of the second epitaxial wafer is obtained as a relational graph.
獲得第二差量ZDD包含在第一生長條件下,透過在複數個第三基板上生長磊晶層,產生複數個第三磊晶晶圓,以及獲得第三磊晶晶圓之差量ZDDs,以及設定所獲得的第三磊晶晶圓之差量ZDDs的平均值為第二差量ZDD。Obtaining a second difference amount ZDD included in the first growth condition, by growing an epitaxial layer on the plurality of third substrates, generating a plurality of third epitaxial wafers, and obtaining a difference ZDDs of the third epitaxial wafer, And setting an average value of the difference ZDDs of the obtained third epitaxial wafer to a second difference amount ZDD.
計算校正值包含設定平坦度缺陷圖形之目標區段,其中平坦度缺陷率小於預定參考值;以及計算校正值這樣第二差量ZDD屬於目標區段。Calculating the correction value includes setting a target segment of the flatness defect pattern, wherein the flatness defect rate is less than a predetermined reference value; and calculating the correction value such that the second difference ZDD belongs to the target segment.
調整第一生長條件至第二生長條件時,藉由與校正值對應的生長條件改變第一生長條件。When the first growth condition is adjusted to the second growth condition, the first growth condition is changed by the growth conditions corresponding to the correction value.
可以理解的是,如上所述的本發明之概括說明和隨後所述的本發明之詳細說明均是具有代表性和解釋性的說明,並且是為了進一步揭示本發明之申請專利範圍。It is to be understood that the foregoing general description of the invention and the claims
現在將結合圖式部份對本發明的較佳實施方式作詳細說明。實施例之以下描述中,將要理解當每一元件(膜)、區域、墊或者結構被稱為位於基板、另一元件(膜)、區域或墊或者圖案「之上」或「之下」時,它可直接地位於另一元件「之上」或「之下」,或者間接地形成為兩者之間具有一或多個介入元件。另外,還要理解將基於圖示描述一個元件「之上」或「之下」。另外,圖示中,相同或相似的元件即便處於不同的圖示中也由相同的參考標號表示。Preferred embodiments of the present invention will now be described in detail in conjunction with the drawings. In the following description of the embodiments, it will be understood that when each element (film), region, pad or structure is referred to as being "above" or "under" the substrate, another element (film), region or pad or pattern. It may be located "on" or "below" another element or indirectly formed with one or more intervening elements between the two. In addition, it is to be understood that an element will be described as "above" or "below". In addition, in the drawings, the same or similar elements are denoted by the same reference numerals even in different drawings.
圖1係為本發明一個實施例之磊晶晶圓之平坦度之控制方法之流程圖。1 is a flow chart of a method for controlling the flatness of an epitaxial wafer according to an embodiment of the present invention.
請參考圖1,本發明一個實施例之磊晶晶圓之平坦度之控制方法包含獲得平坦度缺陷率圖形(步驟S110)、獲得表示生長條件與差量ZDDs之間關係的關係圖形(步驟S120)、獲得差量ZDD2(步驟S130)、基於差量ZDD2與平坦度缺陷率圖形計算校正值(步驟S140)、基於校正值與關係圖形調整生長條件(步驟S150),以及在經過調整的生長條件下製造磊晶晶圓(步驟S160)。Referring to FIG. 1 , a method for controlling flatness of an epitaxial wafer according to an embodiment of the present invention includes obtaining a flatness defect rate pattern (step S110), and obtaining a relationship graph indicating a relationship between a growth condition and a difference ZDDs (step S120). And obtaining the difference ZDD2 (step S130), calculating the correction value based on the difference ZDD2 and the flatness defect rate pattern (step S140), adjusting the growth condition based on the correction value and the relationship pattern (step S150), and the adjusted growth condition The epitaxial wafer is fabricated (step S160).
基於用於測試的基板的邊緣扇形地點前側參考Q(地點最小平方平面)導子(Edge sector Site Front side reference Q (Site least squares plane) Derivation;ESFQD)以及用於測試的磊晶晶圓之差量ZDDs(Z-axis Double Derivative;ZDD),,獲得平坦度缺陷率圖形(步驟S110)。The difference between the edge sector site front side reference Q (Site least squares plane Derivation; ESFQD) and the epitaxial wafer used for testing based on the edge of the substrate used for the test ZDDs (Z-axis Double Derivative; ZDD), a flatness defect rate pattern is obtained (step S110).
圖2係為更加詳細地表示獲取圖1所示實施例之平坦度缺陷率圖形(步驟S110)之流程圖。Fig. 2 is a flow chart showing in more detail the acquisition of the flatness defect rate pattern of the embodiment shown in Fig. 1 (step S110).
請參考圖2,獲取平坦度缺陷率圖形(步驟S110)包含獲取用於測試的基板的ESFQDs與ZDDs(以下被稱為ZDD1s)(步驟S210)、獲取差量ZDD1s(步驟S220)、判斷用於測試的磊晶晶圓的平坦度缺陷(步驟S230),以及獲取平坦度缺陷率圖形(步驟S240)。Referring to FIG. 2, obtaining a flatness defect rate pattern (step S110) includes acquiring ESFQDs and ZDDs (hereinafter referred to as ZDD1s) of the substrate for testing (step S210), acquiring a difference ZDD1s (step S220), and determining for The flatness defect of the tested epitaxial wafer (step S230), and the flatness defect rate pattern are acquired (step S240).
首先,獲取ESFQDs與ZDD1s(步驟S210)。First, ESFQDs and ZDD1s are acquired (step S210).
ESFQD係為邊緣扇形地點前側參考地點最小平方平面導子(Edge sector Site Front side reference Q (Site least squares plane) Derivation)之縮寫字,以及具有正(+)值或負(-)值。The ESFQD is an abbreviation of the Edge Sector Site Front Side Reference Q (Site least squares plane Derivation) and has a positive (+) value or a negative (-) value.
圖7A係為ESFQD與ESFQR之示意圖,以及圖7B係為圖7A沿線a-b之剖面示意圖。7A is a schematic diagram of ESFQD and ESFQR, and FIG. 7B is a schematic cross-sectional view along line a-b of FIG. 7A.
請參考圖7A與圖7B,從參考平面測量藉由指定角度θ(例如,θ=5˚)透過徑向分割晶圓W1的一個表面(例如,前側)而獲得的地點(例如,S1)的區段(section)401的厚度。另外,測量晶圓W1的一個表面的區段401中晶圓W1的厚度的最大值與最小值。例如,參考面PLANE為晶圓W1的一個表面的理想平面,例如z=0之平面。Referring to FIGS. 7A and 7B, a location (eg, S1) obtained by radially dividing the surface (eg, the front side) of the wafer W1 by a specified angle θ (eg, θ=5 ̊) is measured from the reference plane. The thickness of the section 401. In addition, the maximum value and the minimum value of the thickness of the wafer W1 in the section 401 of one surface of the wafer W1 are measured. For example, the reference plane PLANE is an ideal plane of one surface of the wafer W1, such as a plane of z=0.
區段401係為從地點(例如,S1)之第一點P1至第二點P2的區段,第一點P1係為距離晶圓W1的邊緣E1指定距離S2(例如,1毫米至2毫米)的點,以及第二點P2係為沿朝向晶圓W1的中央c方向距離第一點P1指定距離(例如,10毫米)的點。The segment 401 is a segment from a first point P1 to a second point P2 of a location (eg, S1), the first point P1 being a specified distance S2 from the edge E1 of the wafer W1 (eg, 1 mm to 2 mm) The point of the second point P2 is a point at a predetermined distance (for example, 10 mm) from the first point P1 toward the center c direction of the wafer W1.
如果晶圓W1的一個表面位於參考平面(例如,Z=0)上方,則ESFQD具有正(+)值(+EXFQD值),以及如果晶圓W1的表面處於參考平面(例如,Z=0)下方,則ESFQD具有負(-)值(-EXFQD值)。If one surface of the wafer W1 is above the reference plane (eg, Z=0), the ESFQD has a positive (+) value (+EXFQD value), and if the surface of the wafer W1 is in a reference plane (eg, Z=0) Below, the ESFQD has a negative (-) value (-EXFQD value).
ESFQD可具區段形401的晶圓厚度的平均值,例如,透過將區段401中晶圓W1的厚度積分而獲得的數值。The ESFQD may have an average value of the wafer thickness of the segment shape 401, for example, a value obtained by integrating the thickness of the wafer W1 in the segment 401.
ESFQR為邊緣扇形地點前側參考地點最小平方平面範圍(Edge sector Site Front side reference Q (Site least squares plane) Range)之縮寫字,以及對應一種表示晶圓的平坦度的方法,以下將加以描述。The ESFQR is an abbreviation of the Edge Sector Site Front Side Reference Q (Site least squares plane) range, and a method corresponding to the flatness of the wafer, which will be described below.
ESFQR被定義為區段401中晶圓W1的測量厚度的最大值(MAX)與最小值(MIN)之間的差值(MAX-MIN)。The ESFQR is defined as the difference (MAX-MIN) between the maximum (MAX) and minimum (MIN) of the measured thickness of the wafer W1 in the segment 401.
ZDD係為Z軸雙導數(Z-axis Double Derivative)之縮寫字,為表示晶圓的邊緣的表面的滾離度的參數,由此表示晶圓的邊緣的表面的曲率。The ZDD is an abbreviation of the Z-axis Double Derivative, which is a parameter indicating the degree of roll-off of the surface of the edge of the wafer, thereby indicating the curvature of the surface of the edge of the wafer.
假設徑向方向中晶圓的表面為xyz坐標系之xy平面,z軸方向為晶圓的厚度方向。如果晶圓的前側與背側的兩個參考面之間的中途點在Z軸坐標值為0,則晶圓的前側與背側的厚度的輪廓(profiles)被表示為Z函數。It is assumed that the surface of the wafer in the radial direction is the xy plane of the xyz coordinate system, and the z-axis direction is the thickness direction of the wafer. If the midway point between the two reference faces of the front side and the back side of the wafer has a Z-axis coordinate value of 0, the profiles of the thicknesses of the front side and the back side of the wafer are expressed as a Z function.
當計算0˚至360˚範圍內的晶圓的前側與背側的半徑R的平均Z值時,獲得Z軸方向晶圓的整體的平均徑向輪廓,以及透過將獲得的平均徑向輪廓微分兩次而獲得ZDD。When calculating the average Z value of the radius R of the front side and the back side of the wafer in the range of 0 ̊ to 360 ,, the overall average radial profile of the wafer in the Z-axis direction is obtained, and the average radial profile obtained by the differential is obtained. Get ZDD twice.
就是說,由以下的方程1定義ZDD。That is, ZDD is defined by Equation 1 below.
[方程1][Equation 1]
透過上述方法獲得或計算用於測試的基板的ESFQDs與ZDD1s。另外,當購買用於測試的基板時,用於測試的基板的ESFQDs與ZDD1s具有已知數值。The ESFQDs and ZDD1s of the substrate used for the test were obtained or calculated by the above method. In addition, the ESFQDs and ZDD1s of the substrate used for the test have known values when the substrate for testing is purchased.
此後,獲得基於用於測試的基板形成的用於測試的磊晶晶圓的差量ZDDs(以下被稱為「差量ZDD1s」)與ESFQRs(以下被稱為「ESFQR1s」)(步驟S220)。Thereafter, the difference ZDDs (hereinafter referred to as "difference ZDD1s") and ESFQRs (hereinafter referred to as "ESFQR1s") of the epitaxial wafer for testing formed based on the substrate for testing are obtained (step S220).
圖3係為圖2所示之本發明一個實施例中獲取差量ZDD1s與ESFQR1s之流程圖(步驟S220)。3 is a flow chart for obtaining the difference ZDD1s and ESFQR1s in one embodiment of the present invention shown in FIG. 2 (step S220).
請參考圖3,透過生長用於測試的基板上的磊晶層,產生用於測試的磊晶晶圓(步驟S310)。Referring to FIG. 3, an epitaxial wafer for testing is generated by growing an epitaxial layer on a substrate for testing (step S310).
使用N個既定磊晶反應器(N為> 1的自然數),透過在用於測試的M個基板上生長磊晶層,產生用於測試的M個磊晶晶圓(M為> 1的自然數)。Using M predetermined epitaxial reactors (N is a natural number > 1), M epitaxial wafers were produced by testing the epitaxial layers on the M substrates used for testing (M > 1) Natural number).
各個N個磊晶反應器在從用於測試的M個基板中隨機選擇的基板上生長磊晶層(M為> 1的自然數)。Each of the N epitaxial reactors grew an epitaxial layer (M is a natural number > 1) on a substrate randomly selected from the M substrates used for the test.
用於測試的基板被劃分為與N個磊晶反應器對應的N組,以及各個N個磊晶反應器的每一個在屬於N個組對應其一的基板上生長磊晶層。The substrate used for the test is divided into N groups corresponding to the N epitaxial reactors, and each of the N epitaxial reactors grows an epitaxial layer on a substrate belonging to one of the N groups.
舉個例子,假設既定的磊晶反應器的數目為10且用於測試的基板的數目為30,000,每一磊晶反應器在用於測試的30,000個基板中隨機選擇的3,000個基板上生長磊晶層,從而能夠生產用於測試的30,000個磊晶晶圓。For example, assume that the number of established epitaxial reactors is 10 and the number of substrates used for testing is 30,000, and each epitaxial reactor grows on 3,000 substrates randomly selected from 30,000 substrates used for testing. The layer is crystallized to produce 30,000 epitaxial wafers for testing.
此後,獲得產生的用於測試的磊晶晶圓的每一個的ZDD(以下被稱為「ZDD2」)與ESFQR1(步驟S320)。Thereafter, ZDD (hereinafter referred to as "ZDD2") and ESFQR1 of each of the generated epitaxial wafers for testing are obtained (step S320).
為了獲得ESFQR1,可應用圖7A與7B所示的方法,以及為了獲得ZDD2,可應用上述方法以獲得ZDD1。In order to obtain ESFQR1, the methods shown in FIGS. 7A and 7B can be applied, and in order to obtain ZDD2, the above method can be applied to obtain ZDD1.
舉個例子,獲得上述用於測試的30,000個磊晶晶圓的30,000個ZDD2s與30,000個ESFQR1s。For example, 30,000 ZDD2s and 30,000 ESFQR1s were obtained for the 30,000 epitaxial wafers described above.
此後,獲得用於測試的磊晶晶圓的每一個的差量ZDD(以下稱為「差量ZDD1(Delta ZDD1)」)(步驟S330)。這裡,差量ZDD被定義為磊晶晶圓的ZDD與磊晶晶圓的基板的ZDD之間的差值。Thereafter, the difference ZDD (hereinafter referred to as "difference ZDD1 (Delta ZDD1)") of each of the epitaxial wafers for testing is obtained (step S330). Here, the difference ZDD is defined as the difference between the ZDD of the epitaxial wafer and the ZDD of the substrate of the epitaxial wafer.
以下方程2定義差量ZDD1。Equation 2 below defines the difference ZDD1.
[方程 2][Equation 2]
已經完成獲得差量ZDD1s與ESFQR1s(步驟S220)以後,基於用於測試的磊晶晶圓的ESFQR1s判定用於測試的磊晶晶圓的平坦度缺陷(步驟S230)。After the difference ZDD1s and ESFQR1s are obtained (step S220), the flatness defect of the epitaxial wafer for testing is determined based on the ESFQR1s of the epitaxial wafer for testing (step S230).
舉個例子,依照用於測試的磊晶晶圓的ESFQR1s與預定參考值之間的比較結果,判定用於測試的磊晶晶圓的平坦度缺陷。這裡,預定參考值為100奈米~120奈米。舉個例子,預定參考值為110奈米。For example, the flatness defect of the epitaxial wafer used for the test is determined according to the comparison between the ESFQR1s of the epitaxial wafer for testing and a predetermined reference value. Here, the predetermined reference value is from 100 nm to 120 nm. For example, the predetermined reference value is 110 nm.
舉個例子,如果用於測試的磊晶晶圓的ESFQR1超出預定參考值,用於測試的磊晶晶圓的平坦度被判定為有缺陷,以及如果用於測試的磊晶晶圓的ESFQR1為預定參考值或者少於預定參考值,則用於測試的磊晶晶圓的平坦度被判定為無缺陷。For example, if the ESFQR1 of the epitaxial wafer used for testing exceeds a predetermined reference value, the flatness of the epitaxial wafer used for the test is determined to be defective, and if the ESFQR1 of the epitaxial wafer used for the test is The predetermined reference value or less than the predetermined reference value, the flatness of the epitaxial wafer used for the test is determined to be defect-free.
此後,基於EDFQDs與差量ZDD1s獲得用於測試的磊晶晶圓的平坦度缺陷率圖形(步驟S240)。Thereafter, a flatness defect rate pattern of the epitaxial wafer for testing is obtained based on the EDFQDs and the difference ZDD1s (step S240).
圖4係為表示步驟S240中獲得的平坦度缺陷率圖形之圖形。Fig. 4 is a diagram showing a flatness defect rate pattern obtained in step S240.
請參考圖4,X軸表示用於測試的基板的ESFQDs,以0為中心依照預定間隔(例如,25奈米)劃分,以及X軸的單位為奈米。Referring to FIG. 4, the X-axis represents the ESFQDs of the substrate used for the test, which is divided by 0 at a predetermined interval (for example, 25 nm), and the unit of the X-axis is nanometer.
Y軸表示用於測試的磊晶晶圓的差量ZDDs,以0為中心依照預定間隔(例如,5或10)劃分,The Y axis represents the difference ZDDs of the epitaxial wafers used for the test, and is divided by 0 at a predetermined interval (for example, 5 or 10).
基於ESFQDs與差量ZDD1s,用於測試的磊晶晶圓的缺陷率被劃分為複數個區域,例如區域1至20。Based on the ESFQDs and the difference ZDD1s, the defect rate of the epitaxial wafer used for the test is divided into a plurality of regions, for example, regions 1 to 20.
每一區域1至20的缺陷率係為被判定為有缺陷的用於測試的磊晶晶圓的數目與對應區域中包含的用於測試的磊晶晶圓的數目的比率。The defect rate for each of the regions 1 to 20 is the ratio of the number of epitaxial wafers for testing determined to be defective to the number of epitaxial wafers for testing included in the corresponding regions.
舉個例子,區域1中缺陷率為0意味著,區域1中包含的用於測試的全部磊晶晶圓都無缺陷。For example, a defect rate of 0 in Zone 1 means that all of the epitaxial wafers included in Zone 1 for testing are defect free.
此後,獲得平坦度缺陷率圖形(步驟S110)以後,獲得磊晶層的生長條件與用於關係的磊晶晶圓之差量ZDDs之間的關係或者其關係圖形(步驟S120)。依照另一實施例,交換步驟S110與步驟S120。依照再一實施例,可以同時進行步驟S110與步驟S120。Thereafter, after the flatness defect rate pattern is obtained (step S110), the relationship between the growth conditions of the epitaxial layer and the difference ZDDs of the epitaxial wafers for the relationship or the relationship pattern thereof is obtained (step S120). According to another embodiment, step S110 and step S120 are exchanged. According to still another embodiment, step S110 and step S120 can be performed simultaneously.
舉個例子,依照生長條件的相同生長條件項的不同數值,透過在用於關係的基板上生長磊晶層,產生用於關係的磊晶晶圓。舉個例子,生長條件項包含三氯矽烷(Trichlorosilane;TCS)的流速、氫氣的流速、生長溫度等。For example, epitaxial wafers for relationships are created by growing epitaxial layers on substrates used for relationships in accordance with different values of the same growth condition terms of growth conditions. For example, the growth condition term includes the flow rate of trichlorosilane (TCS), the flow rate of hydrogen, the growth temperature, and the like.
此後,獲得相同生長條件項的不同數值產生的用於關係的磊晶晶圓的差量ZDDs。然後,使用生長條件項的不同數值以及用於關係的磊晶晶圓的差量ZDDs,獲得關係圖形。另外,使用關係圖形獲得關於關係的關係方程(例如,線性關係方程)。舉個例子,用於關係的基板係為單獨的或者不同于用於測試的基板的基板。Thereafter, the difference ZDDs of the epitaxial wafers for the relationship generated by the different values of the same growth condition term are obtained. Then, the relationship graph is obtained using different values of the growth condition terms and the difference ZDDs of the epitaxial wafers for the relationship. In addition, a relational graph (for example, a linear relationship equation) about a relationship is obtained using a relational graph. For example, the substrate used for the relationship is a substrate that is separate or different from the substrate used for testing.
圖5A係為表示用於關係的磊晶晶圓的差量ZDDs與被供應以生長磊晶層的氫氣流速之間的關係的圖形,圖5B係為表示用於關係的磊晶晶圓的差量ZDDs與磊晶層生長溫度之間的關係的圖形,以及圖5C係為用於關係的磊晶晶圓的差量ZDDs與被供應以生長磊晶層的TCS流速之間的關係的圖形。5A is a graph showing the relationship between the difference ZDDs of the epitaxial wafers for the relationship and the hydrogen flow rate supplied to grow the epitaxial layer, and FIG. 5B is the difference indicating the epitaxial wafers for the relationship. A graph of the relationship between the amount of ZDDs and the growth temperature of the epitaxial layer, and FIG. 5C is a graph of the relationship between the difference ZDDs of the epitaxial wafers for the relationship and the flow rate of the TCS supplied to grow the epitaxial layer.
圖5A至圖5C中,◆表示改變生長條件(TCS的流速、氫氣的流速與生長溫度)時獲得的用於關係的磊晶晶圓的差量ZDDs的實驗結果。In FIGS. 5A to 5C, ◆ indicates an experimental result of the difference ZDDs of the epitaxial wafers for the relationship obtained when the growth conditions (the flow rate of the TCS, the flow rate of the hydrogen gas, and the growth temperature) are changed.
圖5A至圖5C中,表示在多個不同生長條件(例如,5個生長條件)下產生的用於關係的磊晶晶圓的差量ZDDs。In FIGS. 5A to 5C, the difference ZDDs of the epitaxial wafers for relationship generated under a plurality of different growth conditions (for example, 5 growth conditions) are shown.
舉個例子,在每一不同生長條件下,用於關係的磊晶晶圓的差量ZDDs為用於關係的磊晶晶圓的預定數目(例如,10)的平均值。For example, under each different growth condition, the difference ZDDs of the epitaxial wafers used for the relationship is the average of a predetermined number (eg, 10) of epitaxial wafers for the relationship.
使用基於在不同生長條件下產生的用於關係的磊晶晶圓的差量ZDDs獲得的關係圖形,獲得近似表示生長條件與差量ZDDs之間關係的線性方程y1、y2與y3。圖5A至圖5C中,R2 表示實驗結果與線性方程y1、y2及y3之間的近似度。Linear equations y1, y2, and y3 that approximate the relationship between growth conditions and the difference ZDDs are obtained using a relational graph obtained based on the difference ZDDs of the epitaxial wafers for relationship generated under different growth conditions. In FIGS. 5A to 5C, R 2 represents the degree of approximation between the experimental results and the linear equations y1, y2, and y3.
獲得平坦度缺陷率圖形(步驟S110)以及獲得關係圖形(步驟S120)以後,獲得磊晶反應器期待使用的當前差量ZDD(以下稱為「差量ZDD2」)(步驟S130)。為了獲得差量ZDD2,可以應用上述獲得差量ZDD1的方法。After obtaining the flatness defect rate pattern (step S110) and obtaining the relationship pattern (step S120), the current difference amount ZDD (hereinafter referred to as "difference amount ZDD2") expected to be used by the epitaxial reactor is obtained (step S130). In order to obtain the difference ZDD2, the above method of obtaining the difference ZDD1 can be applied.
舉個例子,在N個既定磊晶反應器中,使用當前期望使用的磊晶反應器,在第一生長條件下,透過在至少一個取樣基板上生長磊晶層,產生至少一個取樣磊晶晶圓,以及獲得至少一個取樣磊晶晶圓的差量ZDD作為差量ZDD2。By way of example, at least one sampled epitaxial crystal is produced by growing an epitaxial layer on at least one of the sampled substrates in the first set of epitaxial reactors using the currently desired epitaxial reactor under the first growth conditions. A circle, and a difference ZDD of at least one sampled epitaxial wafer is obtained as the difference ZDD2.
舉個例子,在第一生長條件下,使用當前期望使用的第一磊晶反應器,透過在複數個取樣基板(例如,5個取樣基板)上生長磊晶層,產生複數個取樣磊晶圓,獲得產生的取樣磊晶晶圓的差量ZDDs,以及獲得的產生的取樣磊晶晶圓的差量ZDDs的平均值用作差量ZDD2。For example, under the first growth conditions, a plurality of sampled epitaxes are generated by growing an epitaxial layer on a plurality of sampling substrates (for example, five sampling substrates) using a first epitaxial reactor that is currently desired to be used. The difference ZDDs of the generated sample epitaxial wafers and the obtained average value of the difference ZDDs of the generated sample epitaxial wafers are used as the difference ZDD2.
這裡,第一生長條件的項與獲取關係圖形時的生長條件的項一致。舉個例子,第一生長條件與獲取關係圖形時的生長條件包含TCS的流速、氫氣的流速或者生長溫度,如以上結合圖5A至圖5C所述。雖然這個實施例代表性地表示第一生長條件為包含3個生長條件項,但是本揭露並非限制于此。舉個例子,第一磊晶反應器的第一生長條件中包含與磊晶晶圓的差量ZDD具有線性關係的其他生長條件項。Here, the term of the first growth condition coincides with the term of the growth condition at the time of acquiring the relationship graph. For example, the first growth condition and the growth conditions at which the relationship pattern is acquired include the flow rate of the TCS, the flow rate of hydrogen, or the growth temperature, as described above in connection with Figures 5A-5C. Although this embodiment representatively indicates that the first growth condition is including three growth condition items, the present disclosure is not limited thereto. For example, the first growth conditions of the first epitaxial reactor include other growth condition terms that have a linear relationship with the delta ZDD of the epitaxial wafer.
此後,基於圖4所示的差量ZDD2與平坦度缺陷率圖形計算差量ZDD2的校正值(步驟S140)。Thereafter, the correction value of the difference amount ZDD2 is calculated based on the difference amount ZDD2 shown in FIG. 4 and the flatness defect rate pattern (step S140).
圖6係為圖1所示本發明一個實施例之計算校正值的流程圖。Figure 6 is a flow chart for calculating a correction value for an embodiment of the present invention shown in Figure 1.
請參考圖6,計算校正值(步驟S140)包含設定目標區段(步驟S410)與計算校正值(步驟S420)。Referring to FIG. 6, the calculation of the correction value (step S140) includes setting the target section (step S410) and calculating the correction value (step S420).
基於圖4所示的平坦度缺陷率圖形,設定差量ZDDs的目標區段(步驟S410)。The target section of the difference amount ZDDs is set based on the flatness defect rate graph shown in FIG. 4 (step S410).
舉個例子,差量ZDDs的目標區段為其中平坦度缺陷率圖形中用於測試的基板的ESFQDs的全範圍(例如,-75至25)內的平坦度缺陷率少于預定參考值的區段。這裡,預定參考值為0.1%至15%。For example, the target segment of the differential ZDDs is a region in which the flatness defect rate in the full range (for example, -75 to 25) of the ESFQDs of the substrate for testing in the flatness defect rate pattern is less than a predetermined reference value. segment. Here, the predetermined reference value is 0.1% to 15%.
舉個例子,如果在圖4中,預定參考值關於基板的ESFQDs的全範圍被設定為0.1%至15%,差量ZDDs的目標區段包含區域3、8、13與18,以及目標區段的差量ZDDs為0奈米至-5奈米。差量ZDDs為0奈米至-5奈米的區段中,基板的ESFQD範圍中平坦度缺陷率小於4 %。For example, if in FIG. 4, the full range of the predetermined reference value with respect to the ESFQDs of the substrate is set to 0.1% to 15%, the target section of the difference ZDDs includes the areas 3, 8, 13, and 18, and the target section. The difference in ZDDs is from 0 nm to -5 nm. In the section where the difference ZDDs is from 0 nm to -5 nm, the flatness defect rate in the ESFQD range of the substrate is less than 4%.
依照另一實施例,考慮到基板的ESFQDs,設定差量ZDDs的目標區段。舉個例子,如果被置於第一磊晶反應器內的基板的ESFQDs的範圍被限制於0奈米至-50奈米,則依照預定參考值設定差量ZDDs的目標區段。舉個例子,如果預定參考值被設定為0.5%,則差量ZDDs的目標區段包含區域8與13。According to another embodiment, the target segment of the difference ZDDs is set in consideration of the ESFQDs of the substrate. For example, if the range of ESFQDs of the substrate placed in the first epitaxial reactor is limited to 0 nm to -50 nm, the target segment of the difference ZDDs is set in accordance with a predetermined reference value. For example, if the predetermined reference value is set to 0.5%, the target segment of the difference ZDDs includes regions 8 and 13.
此後,基於期望使用的用於第一磊晶反應器的當前取樣磊晶晶圓的差量ZDD2與目標區段,計算校正值(步驟S420)。此後,使用校正值校正差量ZDD2,從而屬於目標區段。Thereafter, a correction value is calculated based on the difference ZDD2 of the current sample epitaxial wafer desired to be used for the first epitaxial reactor and the target segment (step S420). Thereafter, the difference value ZDD2 is corrected using the correction value so as to belong to the target section.
舉個例子,校正值為屬於目標區段的預定目標值與差量ZDD2之間的差值。這裡,屬於目標區段的預定目標值為目標區段中的下限、上限或中數。For example, the correction value is the difference between the predetermined target value belonging to the target zone and the difference ZDD2. Here, the predetermined target value belonging to the target zone is the lower limit, upper limit, or median in the target zone.
舉個例子,如果目標區段的為0奈米至-5奈米的區段,差量ZDD2為7,以及預定目標值為目標區段中的中數(例如,-2.5奈米),校正值為從預定目標值(例如,-2.5)減去差量ZDD(例如,7)獲得的數值(例如,-9.5)。For example, if the target segment is a segment of 0 nm to -5 nm, the difference ZDD2 is 7, and the predetermined target value is the median in the target segment (for example, -2.5 nm), corrected The value is a value obtained by subtracting the difference ZDD (for example, 7) from a predetermined target value (for example, -2.5) (for example, -9.5).
此後,基於校正值與關係圖形,調整第一磊晶反應器的生長條件(步驟S150)。藉由與校正值對應的生長條件,改變第一磊晶反應器的當前第一生長條件。Thereafter, the growth conditions of the first epitaxial reactor are adjusted based on the correction value and the relationship pattern (step S150). The current first growth condition of the first epitaxial reactor is varied by growth conditions corresponding to the correction values.
舉個例子,在第一生長條件下,調整第一生長條件為第二生長條件,第二生長條件對應透過增加校正值至差量ZDD而獲得的數值。For example, under the first growth condition, the first growth condition is adjusted to a second growth condition, and the second growth condition corresponds to a value obtained by increasing the correction value to the difference ZDD.
舉個例子,假設校正值為-9.5且第一磊晶反應器的氫氣的當前流速為90標準升每分鐘(slm)。參考圖5A之線性方程(y1=0.5111x-36.817),氫氣的當前流速(90 slm)的差量ZDD為9.182。For example, assume a correction value of -9.5 and the current flow rate of hydrogen in the first epitaxial reactor is 90 standard liters per minute (slm). Referring to the linear equation of Figure 5A (y1 = 0.5111x - 36.817), the difference in the current flow rate of hydrogen (90 slm), ZDD, is 9.182.
透過增加校正值(-9.5)至差量ZDD (9.182)獲得-0.318的數值,以及在氫氣的線性方程中,如果y1的數值為-0.318,則x的數值為72.352。因此,出於校正目的,第一磊晶反應器的氫氣的流速從90 slm被調整為72.352 slm。The value of -0.318 is obtained by adding the correction value (-9.5) to the difference ZDD (9.182), and in the linear equation of hydrogen, if the value of y1 is -0.318, the value of x is 72.352. Therefore, for calibration purposes, the flow rate of hydrogen in the first epitaxial reactor was adjusted from 90 slm to 72.352 slm.
舉個例子,假設校正值為-9.5,以及第一磊晶反應器的當前溫度為1,130℃。參考圖5B的線性方程(y2=0.6308x-700.71),當前溫度為1,130℃的差量ZDD為12.094,以及出於校正目的,第一磊晶反應器的溫度從1,130℃被調整至大約1,123℃。For example, assume a correction value of -9.5 and a current temperature of the first epitaxial reactor of 1,130 °C. Referring to the linear equation of Figure 5B (y2 = 0.6308x - 700.71), the current temperature is 1, 130 ° C, the difference ZDD is 12.094, and for calibration purposes, the temperature of the first epitaxial reactor is adjusted from 1,130 ° C to about 1,123 ° C .
另外,請參考圖5C,出於校正目的,調整第一磊晶反應器的TCS的流速。In addition, referring to FIG. 5C, the flow rate of the TCS of the first epitaxial reactor is adjusted for calibration purposes.
最終,調整生長條件(步驟S150)以後,第一磊晶反應器在經過調整的生長條件下產生磊晶晶圓(步驟S160)。如果第一磊晶反應器在經過調整的生長條件下產生磊晶晶圓,無論圖4所示基板的ESFQD值如何,缺陷率處於可控制的範圍內的可能性很高,由此,進行製程控制,從而降低缺陷率。Finally, after the growth conditions are adjusted (step S150), the first epitaxial reactor generates an epitaxial wafer under the adjusted growth conditions (step S160). If the first epitaxial reactor produces epitaxial wafers under adjusted growth conditions, regardless of the ESFQD value of the substrate shown in FIG. 4, there is a high probability that the defect rate is within a controllable range, thereby performing a process Control to reduce the defect rate.
就是說,ZDD值依照基板的平坦度水平而變化,但是無論基板的平坦度水平如何,可以均勻地保持ZDD值,以及在實施例中,差量ZDDs的控制範圍被設定為具有低缺陷率的區段,由此,無論基板的形狀或平坦度如何,進行製程控制,從而降低缺陷率。That is, the ZDD value varies depending on the flatness level of the substrate, but the ZDD value can be uniformly maintained regardless of the flatness level of the substrate, and in the embodiment, the control range of the difference ZDDs is set to have a low defect rate. The section, whereby the process control is performed regardless of the shape or flatness of the substrate, thereby reducing the defect rate.
從以上描述顯然可看出,本發明一個實施例之磊晶晶圓的平坦度控制方法中,無論基板的形狀或平坦度如何,進行製程控制,從而降低缺陷率。As apparent from the above description, in the flatness control method of the epitaxial wafer according to an embodiment of the present invention, process control is performed regardless of the shape or flatness of the substrate, thereby reducing the defect rate.
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. It is within the scope of the invention to be modified and modified without departing from the spirit and scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention.
W1‧‧‧晶圓W1‧‧‧ wafer
S1‧‧‧地點S1‧‧‧Location
c‧‧‧中央c‧‧‧Central
θ‧‧‧指定角度θ‧‧‧Specified angle
P1‧‧‧第一點P1‧‧‧ first point
P2‧‧‧第二點P2‧‧‧ second point
401‧‧‧區段Section 401‧‧‧
E1‧‧‧邊緣Edge of E1‧‧
S2‧‧‧指定距離S2‧‧‧Specified distance
MAX‧‧‧最大值MAX‧‧‧max
MIN‧‧‧最小值MIN‧‧‧min
PLANE‧‧‧參考面PLANE‧‧‧ reference surface
圖1係為本發明一個實施例之磊晶晶圓之平坦度之控制方法之流程圖。 圖2係為更加詳細地表示獲取圖1所示平坦度之缺陷率圖形之流程圖。 圖3係為圖2所示之本發明一個實施例中獲取ZDD1s與ESFQR1s之流程圖。 圖4係為表示步驟S240中獲得的平坦度缺陷率圖形之圖形。 圖5A係為差量ZDDs與被供應以生長磊晶層之氫氣流速之間的關係的圖形。 圖5B係為差量ZDDs與磊晶層生長溫度之間的關係的圖形。 圖5C係為差量ZDDs與被供應以生長磊晶層之TCS流速之間的關係的圖形。 圖6係為圖1所示本發明實施例之校正值之計算之流程圖。 圖7A係為ESFQD與ESFQR之示意圖。 圖7B係為圖7A沿線a-b之剖面示意圖。1 is a flow chart of a method for controlling the flatness of an epitaxial wafer according to an embodiment of the present invention. Fig. 2 is a flow chart showing the defect rate pattern for obtaining the flatness shown in Fig. 1 in more detail. 3 is a flow chart for obtaining ZDD1s and ESFQR1s in an embodiment of the present invention shown in FIG. 2. Fig. 4 is a diagram showing a flatness defect rate pattern obtained in step S240. Figure 5A is a graph of the relationship between the differential ZDDs and the hydrogen flow rate supplied to grow the epitaxial layer. Fig. 5B is a graph showing the relationship between the difference ZDDs and the growth temperature of the epitaxial layer. Figure 5C is a graph of the relationship between the differential ZDDs and the TCS flow rate supplied to grow the epitaxial layer. Figure 6 is a flow chart showing the calculation of the correction value of the embodiment of the present invention shown in Figure 1. Figure 7A is a schematic diagram of ESFQD and ESFQR. Figure 7B is a schematic cross-sectional view taken along line a-b of Figure 7A.
Claims (16)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
??10-2016-0012849 | 2016-02-02 | ||
KR1020160012849A KR101810643B1 (en) | 2016-02-02 | 2016-02-02 | Method of controling a flatness of a epitaxial wafer |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201732469A TW201732469A (en) | 2017-09-16 |
TWI631438B true TWI631438B (en) | 2018-08-01 |
Family
ID=59500938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106103288A TWI631438B (en) | 2016-02-02 | 2017-01-26 | Method of controlling flatness of epitaxial wafer |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR101810643B1 (en) |
TW (1) | TWI631438B (en) |
WO (1) | WO2017135604A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018200415A1 (en) * | 2018-01-11 | 2019-07-11 | Siltronic Ag | Semiconductor wafer with epitaxial layer |
CN110852021B (en) * | 2018-07-26 | 2024-02-06 | 上海新昇半导体科技有限公司 | Method for obtaining epitaxial flatness based on simulation mode |
KR102331799B1 (en) | 2019-03-06 | 2021-11-29 | 에스케이실트론 주식회사 | Method for evaluating wafer |
CN113644017B (en) * | 2020-04-27 | 2024-07-09 | 上海新昇半导体科技有限公司 | Method for positioning wafer and semiconductor manufacturing equipment |
EP3957776A1 (en) | 2020-08-17 | 2022-02-23 | Siltronic AG | Method for depositing an epitaxial layer on a substrate wafer |
EP3996130B1 (en) | 2020-11-09 | 2023-03-08 | Siltronic AG | Method for depositing an epitaxial layer on a substrate wafer |
CN115821234A (en) * | 2022-12-13 | 2023-03-21 | 杭州富芯半导体有限公司 | Method for improving surface flatness of thin film |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201306109A (en) * | 2011-04-26 | 2013-02-01 | Shinetsu Handotai Kk | Semiconductor wafer and method of manufacturing same |
TWI512797B (en) * | 2011-01-24 | 2015-12-11 | United Microelectronics Corp | Planarization method applied in process of manufacturing semiconductor component |
TWI515767B (en) * | 2009-02-10 | 2016-01-01 | 馬克專利公司 | A hardmask process for forming a reverse tone image using polysilazane |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001302395A (en) * | 2000-04-20 | 2001-10-31 | Sumitomo Metal Ind Ltd | Manufacturing method of high flatness epitaxial wafer |
JP3897963B2 (en) * | 2000-07-25 | 2007-03-28 | 株式会社Sumco | Semiconductor wafer and manufacturing method thereof |
KR100830997B1 (en) | 2006-12-21 | 2008-05-20 | 주식회사 실트론 | Silicon epitaxial wafer manufacturing method with improved flatness |
JP2009267159A (en) * | 2008-04-25 | 2009-11-12 | Sumco Techxiv株式会社 | Device and method for manufacturing semiconductor wafer |
KR20100121837A (en) * | 2009-05-11 | 2010-11-19 | 주식회사 실트론 | Epitaxial wafer with controlled flatness in edge sector and manufacturing method therefor |
-
2016
- 2016-02-02 KR KR1020160012849A patent/KR101810643B1/en active IP Right Grant
-
2017
- 2017-01-20 WO PCT/KR2017/000724 patent/WO2017135604A1/en active Application Filing
- 2017-01-26 TW TW106103288A patent/TWI631438B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI515767B (en) * | 2009-02-10 | 2016-01-01 | 馬克專利公司 | A hardmask process for forming a reverse tone image using polysilazane |
TWI512797B (en) * | 2011-01-24 | 2015-12-11 | United Microelectronics Corp | Planarization method applied in process of manufacturing semiconductor component |
TW201306109A (en) * | 2011-04-26 | 2013-02-01 | Shinetsu Handotai Kk | Semiconductor wafer and method of manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
TW201732469A (en) | 2017-09-16 |
KR101810643B1 (en) | 2017-12-19 |
WO2017135604A1 (en) | 2017-08-10 |
KR20170091931A (en) | 2017-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI631438B (en) | Method of controlling flatness of epitaxial wafer | |
JP6035982B2 (en) | Epitaxial silicon wafer manufacturing method and epitaxial silicon wafer | |
TW201724248A (en) | Method for epitaxially coating semiconductor wafers, and semiconductor wafer | |
US9957637B2 (en) | Method of producing epitaxial wafer | |
CN113109363B (en) | Method for representing defects in silicon crystal | |
JP2017011239A (en) | Epitaxial silicon wafer manufacturing method | |
JP2013170104A (en) | Method for producing epitaxial silicon carbide wafer | |
JP5444874B2 (en) | Epitaxial silicon wafer manufacturing method | |
JP2010118487A (en) | Method of evaluating epitaxial wafer and method for manufacturing epitaxial wafer | |
JP6870587B2 (en) | Evaluation method of silicon single crystal and manufacturing method of silicon wafer | |
CN113257700B (en) | Calibration method of hydrogen chloride high-temperature etching equipment | |
TWI681185B (en) | Method for characterizing the interstitial oxygen concentration in a semiconductor ingot | |
KR101029140B1 (en) | Single crystal, single crystal wafer and epitaxial wafer, and single crystal growing method | |
KR20100121837A (en) | Epitaxial wafer with controlled flatness in edge sector and manufacturing method therefor | |
JP5942939B2 (en) | Epitaxial wafer manufacturing method | |
KR101862158B1 (en) | A method of manufacturing a epitaxial wafer | |
JP2000100737A (en) | Manufacture of epitaxial wafer | |
JP2021500302A (en) | Semiconductor wafer composed of single crystal silicon | |
JP4911042B2 (en) | Single crystal wafer and epitaxial wafer | |
JP5453967B2 (en) | Epitaxial wafer and method for manufacturing the same | |
CN109509704A (en) | The preparation method and epitaxial silicon wafer of epitaxial silicon wafer | |
JP2023060720A (en) | Method for Evaluating Eccentricity of Substrate Mounting Position in Epitaxial Growth Apparatus and Method for Manufacturing Epitaxial Wafer Using the Evaluation Method | |
CN117552104A (en) | Epitaxial growth method and device | |
JP6372709B2 (en) | Epitaxial wafer manufacturing method | |
JP6500792B2 (en) | Method of evaluating quality of epitaxial wafer and method of manufacturing the same |