[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI631488B - Transparent electrode patterned laminate and touch screen panel including the same - Google Patents

Transparent electrode patterned laminate and touch screen panel including the same Download PDF

Info

Publication number
TWI631488B
TWI631488B TW103113315A TW103113315A TWI631488B TW I631488 B TWI631488 B TW I631488B TW 103113315 A TW103113315 A TW 103113315A TW 103113315 A TW103113315 A TW 103113315A TW I631488 B TWI631488 B TW I631488B
Authority
TW
Taiwan
Prior art keywords
transparent electrode
electrode layer
layer
transparent
thickness
Prior art date
Application number
TW103113315A
Other languages
Chinese (zh)
Other versions
TW201445394A (en
Inventor
安基煥
河京秀
李有晟
韓龍鮮
Original Assignee
南韓商東友精細化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商東友精細化工有限公司 filed Critical 南韓商東友精細化工有限公司
Publication of TW201445394A publication Critical patent/TW201445394A/en
Application granted granted Critical
Publication of TWI631488B publication Critical patent/TWI631488B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

揭露的是一種透明電極層板以及具有該透明電極層板的觸控螢幕面板,該透明電極層板包括:具有透明介電層形成於其上的透明基板;以彼此連接的第一圖型以及彼此分開的第二圖型形成於該透明介電層上的第一透明電極層;沉積在該第一透明電極層上的絕緣層;以及第二透明電極層,其為被配置用以經由於該絕緣層中形成的接觸孔來彼此電連接該第二圖型的橋電極;其中該第一透明電極層具有20至200 nm的厚度,如果該第一透明電極層具有20 nm或更高至低於120 nm的厚度,則該第一透明電極層比上該第二透明電極層的厚度比(第一透明電極層的厚度/第二透明電極層的厚度)是0.15至0.375,以及如果該第一透明電極層具有120 nm或更高至200 nm或更低的厚度,則該第二透明電極層比上該第一透明電極層的厚度比(第二透明電極層的厚度/第一透明電極層的厚度)是0.60至1.50,藉此大大地減少不同位置上的反射率差異。 Disclosed is a transparent electrode layer and a touch screen panel having the transparent electrode layer, the transparent electrode layer comprising: a transparent substrate having a transparent dielectric layer formed thereon; a first pattern connected to each other and a second pattern separated from each other, a first transparent electrode layer formed on the transparent dielectric layer; an insulating layer deposited on the first transparent electrode layer; and a second transparent electrode layer configured to pass through Contact holes formed in the insulating layer are electrically connected to each other to the bridge electrode of the second pattern; wherein the first transparent electrode layer has a thickness of 20 to 200 nm if the first transparent electrode layer has 20 nm or higher a thickness of less than 120 nm, the thickness ratio of the first transparent electrode layer to the second transparent electrode layer (the thickness of the first transparent electrode layer / the thickness of the second transparent electrode layer) is 0.15 to 0.375, and if The first transparent electrode layer has a thickness of 120 nm or more to 200 nm or less, and the thickness ratio of the second transparent electrode layer to the first transparent electrode layer (the thickness of the second transparent electrode layer / first transparent) Thickness of electrode layer It is 0.60 to 1.50, thereby greatly reducing the difference in reflectance at different positions.

Description

透明電極圖型層板及含此之觸控螢幕面板Transparent electrode pattern layer board and touch screen panel containing the same

本發明有關一種透明電極層板以及包括該透明電極層板的觸控螢幕面板,且更特別的是有關一種具有低可見度的透明電極層板以及具有該透明電極層板的觸控螢幕面板。 The present invention relates to a transparent electrode layer and a touch screen panel including the same, and more particularly to a transparent electrode layer having low visibility and a touch screen panel having the transparent electrode layer.

一般而言,觸控螢幕是一種配備有特殊輸入裝置以藉由以使用者的手指或觸控筆碰觸該螢幕來接收位置輸入的螢幕。這種觸控螢幕不使用鍵盤,但具有多層層板的配置,其中,當使用者的手指或物體(例如觸控筆)碰觸在螢幕上顯示的特定特徵或位置時,該觸控螢幕識別該位置,並經由螢幕圖片直接接收資料,以實際上藉由於其中儲存的軟體在特定的位置處理資訊。 為了辨識所碰觸的位置而不降低在螢幕上顯示的影像可見度,一般而言需要使用預定圖型形成在其中的透明電極。 當在觸控螢幕面板中使用透明電極時,各種結構在相關技術中為已知的。例如,在觸控螢幕面板使用了玻璃-ITO薄膜-ITO薄膜(GFF)、玻璃-ITO薄膜(G1F)或只有玻璃(G2)的結構。 在這些之中,GFF是最常用的結構且包括以兩層用以實施X軸與Y軸所需的薄膜所形成的兩個透明電極(氧化銦錫,ITO)。GIF包括沉積在玻璃的後表面上的第一ITO薄膜,並類似於傳統方法使用薄膜作為第二ITO薄膜。G2是藉由在一片強化玻璃的後表面上沉積並圖型化用於X軸的ITO薄膜、在其上形成絕緣層、並圖型化另一層用於Y軸的ITO薄膜的方法所形成的結構。當電力消耗降低時,該GFF、G1F以及G2中的透光度以此順序增加,因此對於G2結構的研究是活躍地進行的。 然而,在使用圖型化透明電極的G2結構中,該透明電極的圖型部分以及非圖型部分(圖型開口)可能在視覺上彼此不同。因此,在該圖型部分以及該非圖型部分之間的反射率差異越大,反射率差異清楚地顯現,因此,作為顯示元件的外觀的可見度就會減少。特別是,在電容型觸控面板中,由於圖型透明電極是在顯示器的顯示單元的整個表面上形成,即使圖型化該透明電極層,該顯示裝置需要具有好的外觀。 為了改進這種問題,例如,日本專利公開案編號2008-98169揭露了一種透明的導電薄膜,其中包括具有不同折射係數的兩層的下塗層在透明基板以及透明導電層之間形成。此外,如同其具體實施例,上述專利進一步揭露了一種透明導電薄膜,其中具有折射係數1.7、作為高折射係數層的氧化矽錫層(具有10 nm或更高的厚度)、具有折射係數1.43、作為低折射係數層的二氧化矽層(具有30 nm的厚度)、以及具有折射係數1.95、作為透明導電層的ITO薄膜(具有15 nm的厚度)被連續地以此順序形成。 然而,由於圖型部分以及非圖型部分之間的差異清楚地顯現在上述專利中揭露的透明導電薄膜中,其仍不足以改進顯示裝置的外觀。 In general, a touch screen is a screen equipped with a special input device to receive position input by touching the screen with a user's finger or stylus. The touch screen does not use a keyboard, but has a multi-layered board configuration in which the touch screen is recognized when a user's finger or object (eg, a stylus) touches a particular feature or location displayed on the screen. The location and direct receipt of the data via the screen image to actually process the information at a particular location by the software stored therein. In order to identify the position touched without reducing the visibility of the image displayed on the screen, it is generally necessary to use a transparent electrode in which a predetermined pattern is formed. When a transparent electrode is used in a touch screen panel, various structures are known in the related art. For example, a glass-ITO film-ITO film (GFF), a glass-ITO film (G1F), or a glass-only (G2) structure is used for the touch screen panel. Among these, GFF is the most commonly used structure and includes two transparent electrodes (indium tin oxide, ITO) formed by two layers of films required to implement the X-axis and the Y-axis. The GIF includes a first ITO film deposited on the rear surface of the glass, and the film is used as the second ITO film similarly to the conventional method. G2 is formed by depositing and patterning an ITO film for an X-axis on an inner surface of a piece of tempered glass, forming an insulating layer thereon, and patterning another layer of ITO film for the Y-axis. structure. When the power consumption is lowered, the transmittance in the GFF, G1F, and G2 is increased in this order, and thus the study on the G2 structure is actively performed. However, in the G2 structure using the patterned transparent electrode, the pattern portion and the non-pattern portion (pattern opening) of the transparent electrode may be visually different from each other. Therefore, the greater the difference in reflectance between the pattern portion and the non-pattern portion, the difference in reflectance clearly appears, and therefore the visibility as the appearance of the display element is reduced. In particular, in the capacitive touch panel, since the pattern-type transparent electrode is formed on the entire surface of the display unit of the display, even if the transparent electrode layer is patterned, the display device needs to have a good appearance. In order to improve such a problem, for example, Japanese Patent Laid-Open Publication No. 2008-98169 discloses a transparent conductive film in which a two-layer undercoat layer having different refractive indices is formed between a transparent substrate and a transparent conductive layer. Further, as its specific embodiment, the above patent further discloses a transparent conductive film having a refractive index of 1.7, a lanthanum oxide layer as a high refractive index layer (having a thickness of 10 nm or higher), and a refractive index of 1.43. A ruthenium dioxide layer (having a thickness of 30 nm) as a low refractive index layer, and an ITO thin film (having a thickness of 15 nm) having a refractive index of 1.95 as a transparent conductive layer were successively formed in this order. However, since the difference between the pattern portion and the non-pattern portion clearly appears in the transparent conductive film disclosed in the above patent, it is still insufficient to improve the appearance of the display device.

因此,本發明的目的是提供一種由於在不同位置上反射率的些微差異而具有低可見度的透明電極層板。 此外,本發明的另一個目的是提供一種具有透明電極層板的觸控面板螢幕。 本發明的上述目的將藉由下述特徵來達成: (1)一種透明電極層板,包括:具有透明介電層形成於其上的透明基板;以彼此連接的第一圖型以及彼此分開的第二圖型形成於該透明介電層上的第一透明電極層;沉積在該第一透明電極層上的絕緣層;以及第二透明電極層,其為被配置用以經由於該絕緣層中形成的接觸孔來彼此電連接該第二圖型的橋電極;其中該第一透明電極層具有20至200 nm的厚度,如果該第一透明電極層具有20 nm或更高至低於120 nm的厚度,則該第一透明電極層比上該第二透明電極層的厚度比(第一透明電極層的厚度/第二透明電極層的厚度)是0.15至0.375,以及如果該第一透明電極層具有120 nm或更高至200 nm或更低的厚度,則該第二透明電極層比上該第一透明電極層的厚度比(第二透明電極層的厚度/第一透明電極層的厚度)是0.60至1.50。 (2)根據上述第(1)項所述的透明電極層板,其中該第一透明電極層以及該第二透明電極層分別具有1.8至2.2的折射係數。 (3)根據上述第(1)項所述的透明電極層板,其中該絕緣層具有1.4至1.6的折射係數。 (4)根據上述第(1)項所述的透明電極層板,其中該透明基板具有0.1至0.7 mm的厚度。 (5)根據上述第(1)項所述的透明電極層板,其中該透明基板具有1.4至1.6的折射係數。 (6)根據上述第(1)項所述的透明電極層板,其中多個透明介電層於該透明基板上形成。 (7)根據上述第(1)項所述的透明電極層板,其中該透明介電層具有1.4至2.5的折射係數。 (8)根據上述第(6)項所述的透明電極層板,其中該多個透明介電層的每一層具有1.4至2.5的折射係數。 (9)根據上述第(1)項所述的透明電極層板,其中該透明介電層具有50至80 nm的總厚度。 (10)根據上述第(1)項所述的透明電極層板,其中該絕緣層具有1,000至2,000 nm的厚度。 (11)根據上述第(1)項所述的透明電極層板,其中該第二透明電極層於該透明介電層上形成,該絕緣層於該第二透明電極層上形成,以及該第一透明電極層於該絕緣層上形成。 (12)根據上述第(1)項所述的透明電極層板,關於該透明電極層板,更包括在相對於該透明電極或該絕緣層形成於其上的該透明基板的表面的一側上的鈍化層。 (13)根據上述第(12)項所述的透明電極層板,其中該鈍化層具有2,000 nm或更低的厚度。 (14)根據上述第(12)項所述的透明電極層板,其中該鈍化層具有1.4至1.6的折射係數。 (15)一種觸控螢幕面板,包括根據上述第(1)至(14)項中任一項所述的透明電極層板。 根據如上所述的這些方面,由於本發明的透明電極層板具有分別以預定範圍來調整厚度的各種層,由於在不同位置上反射率的些微差異,其可由圖型透明電極結構造成,其可能表現出低可見度。 此外,根據本發明的透明電極層板,當將該透明電極層板應用至具有G2結構的觸控螢幕面板時,其可表現出高透光度以及低反射率,因此被有用地利用。 Accordingly, it is an object of the present invention to provide a transparent electrode laminate having low visibility due to slight differences in reflectance at different locations. Further, another object of the present invention is to provide a touch panel screen having a transparent electrode laminate. The above object of the present invention is achieved by the following features: (1) A transparent electrode laminate comprising: a transparent substrate having a transparent dielectric layer formed thereon; a first pattern connected to each other and separated from each other a second pattern forming a first transparent electrode layer on the transparent dielectric layer; an insulating layer deposited on the first transparent electrode layer; and a second transparent electrode layer configured to pass through the insulating layer Contact holes formed in the second to electrically connect the bridge electrodes of the second pattern; wherein the first transparent electrode layer has a thickness of 20 to 200 nm if the first transparent electrode layer has 20 nm or higher to less than 120 The thickness of nm, the thickness ratio of the first transparent electrode layer to the second transparent electrode layer (the thickness of the first transparent electrode layer / the thickness of the second transparent electrode layer) is 0.15 to 0.375, and if the first transparent The electrode layer has a thickness of 120 nm or more to 200 nm or less, and the thickness ratio of the second transparent electrode layer to the first transparent electrode layer (the thickness of the second transparent electrode layer / the first transparent electrode layer) The thickness) is 0.60 to 1.50. The transparent electrode layer plate according to the above item (1), wherein the first transparent electrode layer and the second transparent electrode layer respectively have a refractive index of 1.8 to 2.2. (3) The transparent electrode laminate according to the above item (1), wherein the insulating layer has a refractive index of 1.4 to 1.6. (4) The transparent electrode laminate according to the above item (1), wherein the transparent substrate has a thickness of 0.1 to 0.7 mm. (5) The transparent electrode laminate according to the above item (1), wherein the transparent substrate has a refractive index of 1.4 to 1.6. (6) The transparent electrode laminate according to the above item (1), wherein a plurality of transparent dielectric layers are formed on the transparent substrate. (7) The transparent electrode laminate according to the above item (1), wherein the transparent dielectric layer has a refractive index of 1.4 to 2.5. (8) The transparent electrode laminate according to the above item (6), wherein each of the plurality of transparent dielectric layers has a refractive index of 1.4 to 2.5. (9) The transparent electrode laminate according to the above item (1), wherein the transparent dielectric layer has a total thickness of 50 to 80 nm. (10) The transparent electrode laminate according to the above item (1), wherein the insulating layer has a thickness of 1,000 to 2,000 nm. The transparent electrode layer plate according to the above item (1), wherein the second transparent electrode layer is formed on the transparent dielectric layer, the insulating layer is formed on the second transparent electrode layer, and the first A transparent electrode layer is formed on the insulating layer. (12) The transparent electrode laminate according to the above (1), wherein the transparent electrode laminate further includes a side of a surface of the transparent substrate formed on the transparent electrode or the insulating layer Passivation layer on top. (13) The transparent electrode laminate according to the above item (12), wherein the passivation layer has a thickness of 2,000 nm or less. The transparent electrode laminate according to the above item (12), wherein the passivation layer has a refractive index of 1.4 to 1.6. (15) A touch screen panel comprising the transparent electrode laminate according to any one of the above items (1) to (14). According to these aspects as described above, since the transparent electrode layer plate of the present invention has various layers each having a thickness adjusted by a predetermined range, it may be caused by a pattern-type transparent electrode structure due to slight difference in reflectance at different positions, which may Shows low visibility. Further, according to the transparent electrode laminate of the present invention, when the transparent electrode laminate is applied to a touch panel having a G2 structure, it can exhibit high transmittance and low reflectance, and thus is usefully utilized.

100...第一透明電極層100. . . First transparent electrode layer

110...第一圖型110. . . First pattern

120...第二圖型120. . . Second pattern

200...第二透明電極層200. . . Second transparent electrode layer

300...絕緣層300. . . Insulation

400...接觸孔400. . . Contact hole

結合所附圖式,從下述詳細的描述將更清楚地了解本發明的上述以及其他的目的、特徵以及其他優勢,其中: 第1圖是示例根據本發明具體實施例的透明電極層板的示意性平面圖; 第2圖是示例根據本發明具體實施例的透明電極層板的單元方格的示意性平面圖;以及 第3圖是示例根據本發明具體實施例的透明電極層板的不同位置上的層板結構的示意性截面圖。 The above and other objects, features and other advantages of the present invention will become more <RTIgt; Schematic plan view; FIG. 2 is a schematic plan view illustrating a unit square of a transparent electrode laminate according to an embodiment of the present invention; and FIG. 3 is a view illustrating different positions of a transparent electrode laminate according to an embodiment of the present invention A schematic cross-sectional view of the laminate structure.

本發明揭露了一種透明電極層板以及具有該透明電極層板的觸控螢幕面板,該透明電極層板包括:具有透明介電層形成於其上的透明基板;以彼此連接的第一圖型以及彼此分開的第二圖型形成於該透明介電層上的第一透明電極層;沉積在該第一透明電極層上的絕緣層;以及第二透明電極層,其為被配置用以經由於該絕緣層中形成的接觸孔來彼此電連接該第二圖型的橋電極;其中該第一透明電極層具有20至200 nm的厚度,如果該第一透明電極層具有20 nm或更高至低於120 nm的厚度,則該第一透明電極層比上該第二透明電極層的厚度比(第一透明電極層的厚度/第二透明電極層的厚度)是0.15至0.375,以及如果該第一透明電極層具有120 nm或更高至200 nm或更低的厚度,則該第二透明電極層比上該第一透明電極層的厚度比(第二透明電極層的厚度/第一透明電極層的厚度)是0.60至1.50,藉此大大地減少不同位置上的反射率差異。 此後,參照範例以及比較性範例,將描述較佳的具體實施例以更具體地了解本發明。然而,本領域技術人員將領略的是,這種具體實施例是提供用以進一步了解本發明的精神,且不限制如同詳細描述以及所附申請專利範圍所揭露的將要保護的標的。 第1圖是示例根據本發明具體實施例的透明電極層板的示意性平面圖。 如同第1圖中所示例的,本發明的透明電極層板包括第一透明電極層100、第二透明電極層200、絕緣層300以及接觸孔400。此外,本發明的透明電極層板可於透明基板(未示出)上形成,且更包括在相對於該透明電極或該絕緣層形成於其上的該透明基板的表面的一側上的鈍化層(未示出)。 如同第1圖中所示例的,透明電極層板以預定圖型形成。第一透明電極層100以及第二透明電極層200提供了在使用者所碰觸的點上的位置資訊。該絕緣層300是沉積在該第一透明電極層100以及該第二透明電極層200之間,以彼此電隔離,且接觸孔400於絕緣層300中形成,以電連接該第一透明電極層100與該第二透明電極層200。 如上所述,透明電極層板的每個組件是以預定圖型形成的,且因為此圖型結構,本發明的透明電極層板取決於其位置而可包括各種層板結構。第2圖是示例根據本發明具體實施例的透明電極層板的單元方格的示意性平面圖。參見第2圖,取決於的不同位置,該透明電極層板可分別具有五種類型的層板結構。第3圖示意性地示例了分別在不同位置上的層板結構。 如同第3圖中所示例的,由於透明電極層板具有各種層狀結構,由於取決於其位置的這些各種層狀結構,對於不同位置的反射率、亮度、色度或諸如此類的差異可發生,且藉此不想要地增加了圖型可見度。因此,在傳統透明電極層板作為透明電極的功能是有限制的。 因此,為了解決上述問題,本發明的透明電極層板包括了具有在預定範圍中分別調整的厚度的透明電極層以及絕緣層,因此,其可能最小化在不同位置上反射率的差異。此後,將更詳細地描述根據本發明具體實施例的透明電極層板。 (透明電極層) 如同第1圖至第3圖中所示例,根據本發明具體實施例的透明電極層板包括第一透明電極層以及第二透明電極層。 第一透明電極層100可以彼此連接的第一圖型110以及彼此分開的第二圖型120來形成。該第一圖型110以及第二圖型120被配置在同一列或行方向,以提供在使用者碰觸的位置處的X及Y座標上的資訊。具體而言,當該使用者的手指或例如觸控筆的物體接觸於透明基板上時,所碰觸位置的電容被改變,且關於所改變電容的資訊經由該第一圖型110、第二圖型120、第二透明電極層200以及位置偵測線而被傳送至驅動電路(未示出)。此外,電容的差異被X以及Y輸入處理電路(未示出)轉換成電訊號,以測量所碰觸的位置,並且基於該電訊號來計算所碰觸位置的X以及Y座標。 就這一點而言,第一圖型110以及第二圖型120必須形成在相同的層(第一透明電極層)中,且各自的圖型必須彼此電連接,以偵測所碰觸的位置。然而,如上所述,該第一圖型110是彼此連接的,而該第二圖型120是以島狀形式彼此分開的,藉此需要額外的連接線以將該第二圖型120彼此電連接。 然而,連接線不應電連接至第一圖型110,因此,必須形成於與第一透明電極層100不同的層中。因此,第二透明電極層200是形成於與該第一透明電極層100不同的替代層中,以將該第二圖型120彼此電連接。也就是說,該第二透明電極層200是形成於與該第一透明電極層100不同的層中,使得該第二透明電極層200具有用於經由下面將描述的於絕緣層300中形成的接觸孔400來將該第一透明電極層100的該第二圖型120彼此電連接的橋電極的角色。 因此,在第2圖以及第3圖中,以及的位置分別代表其中第一透明電極層100以預定圖型形成來偵測所碰觸區域的部分,以及以及的位置分別代表其中配置第二透明電極層200以電連接以島狀形式形成的第二圖型120的部分。 在本文中,第二透明電極層200必須與第一透明電極層100的第一圖型110電隔離。因此,本發明的透明電極層板包括絕緣層300以及接觸孔400(第2圖中的),其將在下面描述。 在本發明中,第一透明電極層100可具有20至200 nm的厚度。如果該第一透明電極層100具有20 nm或更高至低於120 nm的厚度,則該第一透明電極層比上該第二透明電極層的厚度比(第一透明電極層的厚度/第二透明電極層的厚度)是0.15至0.375,較佳為0.17至0.3,且更佳為0.17至0.23,以及當該第一透明電極層100具有120 nm或更高至200 nm或更低的厚度時,該第二透明電極層比上該第一透明電極層的厚度比(第二透明電極層的厚度/第一透明電極層的厚度)是0.60至1.50,較佳為0.70至1.20,且更佳為0.8至1。 如果第一透明電極層100的厚度不在上述範圍內,在不同位置上的反射率差異可能會增加,因此導致圖型反射可見度的增加。具體而言,當其厚度低於20 nm時,觸控敏感度可藉由增加電阻而降低,而如果其厚度高於150 nm,透光度可能會惡化。 此外,較佳的是,第一以及第二透明電極層100以及200分別具有1.8至2.2的折射係數。當這些層具有在上述範圍內的折射係數時,可更加地改進反射率的降低。 本相關技術中已知的任何傳統導電材料可用於第一以及第二透明電極層100以及200,其無特別的限制。例如,用於形成透明電極的導電材料可包括氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化鋅(ZnO)、氧化銦鋅錫(IZTO)、氧化鎘錫(CTO)、聚(3,4-乙烯二氧噻吩)(PEDOT)、奈米碳管(CNT)、金屬線等等,其被單獨或以其二或更多種任何組合而使用。較佳的是使用氧化銦錫(ITO)。金屬線中所使用的金屬不特別受限,但可包括,例如,銀(Ag)、金、鋁、銅、鐵、鎳、鈦、碲、鎘等等,其被單獨或以其二或更多種任何組合而使用。 第一以及第二透明電極層100以及200可藉由各種薄膜沉積技術來形成,例如物理氣相沉積(PVD)方法、化學氣相沉積(CVD)方法或諸如此類。例如,該第一以及該第二透明電極層100以及200可藉由反應濺鍍來形成,其為PVD方法的範例。 此外,第一以及第二透明電極層100以及200可藉由印刷製程來形成。為了印刷出透明電極,在印刷製程期間可使用各種印刷方法,例如凹版偏位印刷、反轉偏位印刷、網版印刷、凹版印刷等等。特別是,當藉由印刷製程來形成該第一以及第二透明電極層100以及200時,該透明電極可由可印刷膏狀材料製成。例如,透明電極可由奈米碳管(CNT)、導電聚合物以及銀奈米線墨水製成。 在本發明中,第一透明電極層100以及第二透明電極層200的壓層順序不特別受限。因此,在本發明的另一個具體實施例中,可改變第3圖中所示出的該第一透明電極層100以及該第二透明電極層200的壓層順序。例如,第二透明電極層先形成於透明基板上而非該第一透明電極層上,絕緣層形成於其上,以及第一透明電極層形成於該絕緣層上。 (絕緣層以及接觸孔) 絕緣層300是在第一透明電極層100以及第二透明電極層200之間形成,以隔離該第一透明電極層100與該第二透明電極層200,以致於避免其間的電連接。然而,如同第2圖以及第3圖中所示例,當該第二透明電極層200電連接鄰近的該第一透明電極層100的第二圖型120時,該第二透明電極層200應與該第一透明電極層100電連接,因此,需要該絕緣層300未於其上形成的部分。因此,該絕緣層300未於其上形成的部分被稱為接觸孔400(第2圖中的)。因此,該第二透明電極層200與該第一透明電極層100(其第二圖型120)在接觸孔400中電連接。 在本發明中,絕緣層300可具有1,000至2,000 nm的厚度。如果該絕緣層300的厚度不在上述範圍內,在不同位置上的反射率差異可能會增加,因此增加了該圖型反射可見度。當其厚度低於1,000 nm時,觸控敏感度可藉由發生在透明電極之間減少的電容而降低,而如果其厚度大於2,000 nm,可能不會進一步獲得源自厚度增加的效果。 較佳的是,絕緣層300具有1.4至1.6的折射係數。當該絕緣層300具有在上述範圍內的折射係數時,可更加改進反射率的降低。 本相關技術中已知的任何傳統絕緣材料可用於絕緣層300,其無特別的限制。例如,該絕緣層300可使用金屬氧化物以想要的圖型來形成,例如二氧化矽、透明感光樹脂組成物,包括壓力克樹脂,或熱固性樹脂組成物。 例如,可使用沉積或印刷方法將絕緣層300形成於第一透明電極層100上。 在本發明中,接觸孔400可以以將絕緣層完全地形成於第一透明電極層100上,然後將多個孔洞形成於其中(孔洞方法)的這樣方法來形成,或者以除了該第一透明電極層100與第二透明電極層200電連接的部分之外,將絕緣層形成於該第一透明電極層100上的方式(島方法)的這樣方法來形成。 (透明基板) 透明基板是形成觸控螢幕面板的最外表面並與使用者的手指或例如觸控筆的物體直接接觸的一部分。本發明的透明電極層板是在相對於與該使用者的手指或該物體直接接觸的表面的一側上形成。 如果其具有高耐久性以足以保護觸控螢幕面板避免外力,並允許使用者非常好地觀看顯示器的話,透明基板可由任何材料製備,且可採用本相關技術中所使用的用於形成透明基板的任何材料,對其無特別的限制。例如,可使用玻璃、聚醚碸(PES)、聚丙烯酸酯(PAR)、聚醚醯亞胺(PEI)、聚萘二甲酸乙二酯(PEN)、聚對苯二甲酸乙二酯(PET)、聚苯硫醚(PPS)、聚烯丙醇酯、聚醯亞胺、聚碳酸酯(PC)、三醋酸纖維素(TAC)、醋酸丙酸纖維素(CAP)或諸如此類。較佳的是使用玻璃,且更佳的是使用強化玻璃。 根據本發明的透明基板可具有適當的厚度,例如,範圍從0.1至0.7 mm。當該透明基板具有上述範圍內的厚度時,可更加改進反射率的降低。 較佳的是,透明基板具有1.4至1.6的折射係數。當該透明基板具有上述範圍內的折射係數時,可更加改進反射率的降低。 (透明介電層) 根據本發明的透明電極層板包括在透明基板以及第一透明電極層之間形成的透明介電層,以致於改進觸控螢幕面板的光學均勻性。也就是說,該透明介電層作用用以減少由於在不同位置上的結構差異造成的光學特性差異,不同位置上的結構差異可能是由圖型透明電極結構造成。 透明介電層可由氧化鈮、二氧化矽、氧化鈰、氧化銦或諸如此類所形成,其可被單獨或以其二或更多種任何組合而使用。該透明介電層可藉由使用氣相沉積方法、濺鍍、離子電鍍製程或諸如此類而以薄膜形式來輕易地沉積。 在本發明中,如果需要的話,多個透明介電層是於透明基板上形成。在此情況中,該多個透明介電層的每一層可由彼此不同的材料所形成,並具有不同的折射係數以及厚度。 較佳的是,透明介電層具有1.4至2.5的折射係數,用於降低透明電極層板的反射率。當該多個透明介電層於透明基板上形成時,較佳的是其每一層具有1.8至2.2的折射係數。關於反射率降低,較佳的是,該透明介電層具有50至80 nm的厚度。當該透明基板包括形成於其上的該多個透明介電層時,其每一層可具有其總厚度不在上述範圍外的範圍內的厚度。 (鈍化層) 為了避免第一以及第二透明電極層100以及200被曝露至外部環境(水、空氣等等)而污染,如果需要的話,關於透明電極層板,本發明的透明電極層板在相對於該透明電極所附著至的表面的一側上可包括鈍化層。 鈍化層可藉由採用可用於絕緣層300的任何材料來製備。 根據本發明的鈍化層可具有適當的厚度,例如,2,000 nm或更低。當該鈍化層具有上述範圍內的厚度時,可更加改進反射率的降低。 較佳的是,鈍化層具有1.4至1.6的折射係數。當該鈍化層具有上述範圍內的折射係數時,可更加改進反射率的降低。 (黏結層) 為了附著至顯示器面板部分,本發明的透明電極層板可包括黏結層。該黏結層是藉由施加透明可固化樹脂組成物並固化該組成物(OCR),或將事先形成為薄膜形狀的黏結劑按壓至該透明電極層板(OCA)上來製備。 黏結層也可影響透明電極層板的反射率。因此,為了降低該透明電極層板的反射率,較佳的是,該黏結層具有適當的厚度以及折射係數。例如,該黏結層可具有0至250 μm的厚度以及1至1.6的折射係數。當該黏結層具有0 μm的厚度時,該透明電極層板不具有黏結層,且在該透明電極層板以及該觸控螢幕面板之間只形成了空氣間隙。例如,該黏結層不形成在該黏結層所形成的邊緣部分之外、將實際地顯示影像的該透明電極層板的部分上。 如上所述,由於透明電極層以及絕緣層具有預定範圍中的厚度,其可能最小化不同位置上的反射率差異,並顯著地改進該透明電極層板的透明度。因此,藉由將上述層板黏結至顯示器面板部分,本發明的透明電極層板可用於製造具有極佳透明度的觸控螢幕面板。 此後,將參照範例來描述較佳的具體實施例,以更具體地了解本發明。然而,對於本領域技術人員將顯而易見的是,這種具體實施例是提供用於示例的目的,且各種修飾以及改變是可能的,而不悖離本發明的範圍以及精神,且這種修飾以及改變充分地包括在如同所附申請專利範圍定義的本發明內。 範例 範例1至9以及比較性範例1至13 分別在範例1至9以及比較性範例1至13中製造出具有下面表1中所示出厚度的透明電極層板。然後,對於每個層板,在其上分別測量不同位置上的平均反射率,且該平均反射率的最大值以及最小值之間的差異示出於表1中。在本文中,平均反射率意指在400 nm至700 nm的範圍中的反射率的平均。 分別使用作為透明基板的玻璃(折射係數:1.51,消光係數:0)、作為透明介電層的具有Nb2O5薄膜(折射係數:2.32,消光係數:0)以及SiO2薄膜(折射係數:1.46,消光係數:0)的雙層、作為第一透明電極層的ITO薄膜(折射係數:1.8,消光係數:0.014)、作為第二透明電極層的ITO薄膜(折射係數:1.8,消光係數:0.014)以及作為絕緣層與鈍化層的壓克力絕緣材料(折射係數:1.51,消光係數:0),並參照具有550 nm波長的光來決定折射係數以及消光係數。 在表1的黏結層項目中說明的空氣意指該黏結層不在將要顯示影像的部分上形成,且該黏結層僅在表框(邊緣)部分上形成。 範例10至22以及比較性範例14至20 分別製造出具有下面表2中所示出的厚度的透明電極層板。然後,對於每個層板,在其上分別測量不同位置上的平均反射率,且該平均反射率的最大值以及最小值之間的差異示出於表2中。在本文中,平均反射率意指在400 nm至700 nm的範圍中的反射率的平均。 分別使用作為透明基板的玻璃(折射係數:1.51,消光係數:0)、作為透明介電層的具有Nb2O5薄膜(折射係數:2.32,消光係數:0)以及SiO2薄膜(折射係數:1.46,消光係數:0)的雙層、作為第一透明電極層的ITO薄膜(折射係數:1.975,消光係數:0.014)、作為第二透明電極層的ITO薄膜(折射係數:1.8,消光係數:0.014)以及作為絕緣層與鈍化層的壓克力絕緣材料(折射係數:1.51,消光係數:0),並參照具有550 nm波長的光來決定折射係數以及消光係數。 在表2的黏結層項目中說明的空氣意指該黏結層不在將要顯示影像的部分上形成,且該黏結層僅在表框(邊緣)部分上形成。 參見上述表1以及2,由於平均反射率的最大值以及最小值之間的差異是2%或更低,在不同位置上的反射率偏差小,藉此展現出低可見度。 相反的是,在比較性範例之中,有平均反射率的最大值以及最小值之間的差異超過2%的例子。因此,發現到的是,相較於範例,在不同位置上的反射率偏差大且可見度非常高。 此外,在所示出的比較性範例之中,比較性範例7以及20具有在本發明中所描述的範圍之外的第一透明電極層與第二透明電極層之間的厚度比,且平均反射率的差異是2%或更低,但這些比較性範例7以及20的該第一或該第二透明電極層分別具有10 nm或更低的厚度。當該透明電極層的厚度是10 nm或更低時,導電性減低,且因此未達到作為電極的基本功能。 就這一點而言,在120℃下,以不同的厚度將ITO薄膜沉積在長度50 mm、寬度50 mm以及0.7 mm厚度(50×50×0.7 mm)的玻璃基板上之後,在其一個中心點測量電阻,且測量結果示出於下面表3中。The invention discloses a transparent electrode layer board and a touch screen panel having the transparent electrode layer board, the transparent electrode layer board comprising: a transparent substrate having a transparent dielectric layer formed thereon; and a first pattern connected to each other And a second pattern formed on the transparent dielectric layer, a second transparent electrode layer formed on the transparent dielectric layer; an insulating layer deposited on the first transparent electrode layer; and a second transparent electrode layer configured to be configured The bridge electrode of the second pattern is electrically connected to each other due to contact holes formed in the insulating layer; wherein the first transparent electrode layer has a thickness of 20 to 200 nm if the first transparent electrode layer has 20 nm or higher To a thickness of less than 120 nm, the thickness ratio of the first transparent electrode layer to the second transparent electrode layer (the thickness of the first transparent electrode layer / the thickness of the second transparent electrode layer) is 0.15 to 0.375, and if The first transparent electrode layer has a thickness of 120 nm or more to 200 nm or less, and a thickness ratio of the second transparent electrode layer to the first transparent electrode layer (thickness of the second transparent electrode layer/first Transparent electrode layer Degree) is from 0.60 to 1.50, thereby greatly reducing the difference in reflectance at different positions. Hereinafter, preferred embodiments will be described to more specifically understand the present invention by referring to the examples and comparative examples. However, it will be apparent to those skilled in the art that the present invention is intended to provide a further understanding of the scope of the invention. Fig. 1 is a schematic plan view illustrating a transparent electrode laminate according to a specific embodiment of the present invention. As exemplified in FIG. 1, the transparent electrode layer plate of the present invention includes a first transparent electrode layer 100, a second transparent electrode layer 200, an insulating layer 300, and a contact hole 400. Further, the transparent electrode layer plate of the present invention may be formed on a transparent substrate (not shown), and further includes passivation on a side of the surface of the transparent substrate with respect to the transparent electrode or the insulating layer formed thereon Layer (not shown). As exemplified in Fig. 1, the transparent electrode laminate is formed in a predetermined pattern. The first transparent electrode layer 100 and the second transparent electrode layer 200 provide positional information at points touched by the user. The insulating layer 300 is deposited between the first transparent electrode layer 100 and the second transparent electrode layer 200 to be electrically isolated from each other, and the contact hole 400 is formed in the insulating layer 300 to electrically connect the first transparent electrode layer. 100 and the second transparent electrode layer 200. As described above, each component of the transparent electrode laminate is formed in a predetermined pattern, and because of this pattern structure, the transparent electrode laminate of the present invention may include various laminate structures depending on its position. Fig. 2 is a schematic plan view illustrating a unit square of a transparent electrode laminate according to a specific embodiment of the present invention. See Figure 2, depending on to The transparent electrode laminates can have five types of laminate structures, respectively, at different locations. Figure 3 schematically illustrates the to Laminate structure at different locations. As exemplified in FIG. 3, since the transparent electrode laminate has various layered structures, differences in reflectance, brightness, chromaticity, or the like for different positions may occur due to these various layered structures depending on their positions, And thereby undesirably increases the visibility of the pattern. Therefore, the function of the conventional transparent electrode layer as a transparent electrode is limited. Therefore, in order to solve the above problem, the transparent electrode layer sheet of the present invention includes a transparent electrode layer having a thickness adjusted in a predetermined range and an insulating layer, and therefore, it is possible to minimize the difference in reflectance at different positions. Hereinafter, a transparent electrode laminate according to a specific embodiment of the present invention will be described in more detail. (Transparent Electrode Layer) As illustrated in FIGS. 1 to 3, the transparent electrode layer according to an embodiment of the present invention includes a first transparent electrode layer and a second transparent electrode layer. The first transparent electrode layer 100 may be formed of a first pattern 110 connected to each other and a second pattern 120 separated from each other. The first pattern 110 and the second pattern 120 are arranged in the same column or row direction to provide information on the X and Y coordinates at the location touched by the user. Specifically, when the user's finger or an object such as a stylus touches the transparent substrate, the capacitance of the touched position is changed, and the information about the changed capacitance is via the first pattern 110, the second The pattern 120, the second transparent electrode layer 200, and the position detecting line are transmitted to a driving circuit (not shown). In addition, the difference in capacitance is converted into an electrical signal by X and Y input processing circuits (not shown) to measure the position touched, and the X and Y coordinates of the touched position are calculated based on the electrical signal. In this regard, the first pattern 110 and the second pattern 120 must be formed in the same layer (first transparent electrode layer), and the respective patterns must be electrically connected to each other to detect the touched position. . However, as described above, the first patterns 110 are connected to each other, and the second patterns 120 are separated from each other in an island form, thereby requiring an additional connection line to electrically connect the second patterns 120 to each other. connection. However, the connection line should not be electrically connected to the first pattern 110 and, therefore, must be formed in a different layer than the first transparent electrode layer 100. Therefore, the second transparent electrode layer 200 is formed in a different alternative layer from the first transparent electrode layer 100 to electrically connect the second patterns 120 to each other. That is, the second transparent electrode layer 200 is formed in a layer different from the first transparent electrode layer 100 such that the second transparent electrode layer 200 has a feature for forming in the insulating layer 300 via the following description. The hole 400 contacts the role of the bridge electrode that electrically connects the second pattern 120 of the first transparent electrode layer 100 to each other. Therefore, in the second and third figures, , as well as Positions respectively represent portions in which the first transparent electrode layer 100 is formed in a predetermined pattern to detect the touched area, and , as well as The positions respectively represent portions in which the second transparent electrode layer 200 is disposed to electrically connect the second pattern 120 formed in an island form. Herein, the second transparent electrode layer 200 must be electrically isolated from the first pattern 110 of the first transparent electrode layer 100. Therefore, the transparent electrode layer plate of the present invention includes the insulating layer 300 and the contact hole 400 (in FIG. 2 ), which will be described below. In the present invention, the first transparent electrode layer 100 may have a thickness of 20 to 200 nm. If the first transparent electrode layer 100 has a thickness of 20 nm or more to less than 120 nm, the thickness ratio of the first transparent electrode layer to the second transparent electrode layer (the thickness of the first transparent electrode layer / the first The thickness of the two transparent electrode layers is 0.15 to 0.375, preferably 0.17 to 0.3, and more preferably 0.17 to 0.23, and when the first transparent electrode layer 100 has a thickness of 120 nm or more to 200 nm or less The thickness ratio of the second transparent electrode layer to the first transparent electrode layer (the thickness of the second transparent electrode layer / the thickness of the first transparent electrode layer) is 0.60 to 1.50, preferably 0.70 to 1.20, and more Good is 0.8 to 1. If the thickness of the first transparent electrode layer 100 is out of the above range, the difference in reflectance at different positions may increase, thus causing an increase in the visibility of the pattern reflection. Specifically, when the thickness is less than 20 nm, the touch sensitivity can be lowered by increasing the resistance, and if the thickness is higher than 150 nm, the transmittance may be deteriorated. Further, it is preferable that the first and second transparent electrode layers 100 and 200 have refractive indices of 1.8 to 2.2, respectively. When these layers have a refractive index within the above range, the decrease in reflectance can be more improved. Any conventional conductive material known in the related art can be used for the first and second transparent electrode layers 100 and 200 without particular limitation. For example, the conductive material used to form the transparent electrode may include indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium zinc tin oxide (IZTO), cadmium tin oxide (CTO), poly (3) , 4-ethylenedioxythiophene) (PEDOT), carbon nanotubes (CNT), metal wires, and the like, which are used singly or in any combination of two or more thereof. It is preferred to use indium tin oxide (ITO). The metal used in the metal wire is not particularly limited, but may include, for example, silver (Ag), gold, aluminum, copper, iron, nickel, titanium, ruthenium, cadmium, or the like, which is alone or in two or more thereof. Use in any combination. The first and second transparent electrode layers 100 and 200 may be formed by various thin film deposition techniques such as a physical vapor deposition (PVD) method, a chemical vapor deposition (CVD) method, or the like. For example, the first and the second transparent electrode layers 100 and 200 may be formed by reactive sputtering, which is an example of a PVD method. Further, the first and second transparent electrode layers 100 and 200 may be formed by a printing process. In order to print a transparent electrode, various printing methods such as intaglio offset printing, reverse offset printing, screen printing, gravure printing, and the like can be used during the printing process. In particular, when the first and second transparent electrode layers 100 and 200 are formed by a printing process, the transparent electrode may be made of a printable paste material. For example, the transparent electrode can be made of a carbon nanotube (CNT), a conductive polymer, and a silver nanowire ink. In the present invention, the order of lamination of the first transparent electrode layer 100 and the second transparent electrode layer 200 is not particularly limited. Therefore, in another embodiment of the present invention, the lamination order of the first transparent electrode layer 100 and the second transparent electrode layer 200 shown in FIG. 3 can be changed. For example, the second transparent electrode layer is formed on the transparent substrate instead of the first transparent electrode layer, the insulating layer is formed thereon, and the first transparent electrode layer is formed on the insulating layer. (Insulating Layer and Contact Hole) The insulating layer 300 is formed between the first transparent electrode layer 100 and the second transparent electrode layer 200 to isolate the first transparent electrode layer 100 and the second transparent electrode layer 200 so as to avoid Electrical connection between them. However, as shown in FIG. 2 and FIG. 3, when the second transparent electrode layer 200 is electrically connected to the second pattern 120 of the adjacent first transparent electrode layer 100, the second transparent electrode layer 200 should be The first transparent electrode layer 100 is electrically connected, and therefore, a portion of the insulating layer 300 not formed thereon is required. Therefore, a portion of the insulating layer 300 not formed thereon is referred to as a contact hole 400 (in FIG. 2 ). Therefore, the second transparent electrode layer 200 and the first transparent electrode layer 100 (the second pattern 120 thereof) are electrically connected in the contact hole 400. In the present invention, the insulating layer 300 may have a thickness of 1,000 to 2,000 nm. If the thickness of the insulating layer 300 is not within the above range, the difference in reflectance at different positions may increase, thereby increasing the visibility of the pattern reflection. When the thickness is less than 1,000 nm, the touch sensitivity can be lowered by the reduced capacitance occurring between the transparent electrodes, and if the thickness is more than 2,000 nm, the effect derived from the thickness increase may not be further obtained. Preferably, the insulating layer 300 has a refractive index of 1.4 to 1.6. When the insulating layer 300 has a refractive index within the above range, the decrease in reflectance can be further improved. Any conventional insulating material known in the related art can be used for the insulating layer 300 without particular limitation. For example, the insulating layer 300 may be formed using a metal oxide in a desired pattern, such as cerium oxide, a transparent photosensitive resin composition, including a pressure gram resin, or a thermosetting resin composition. For example, the insulating layer 300 may be formed on the first transparent electrode layer 100 using a deposition or printing method. In the present invention, the contact hole 400 may be formed by such a method that a insulating layer is completely formed on the first transparent electrode layer 100, and then a plurality of holes are formed therein (hole method), or in addition to the first transparent The portion in which the electrode layer 100 is electrically connected to the second transparent electrode layer 200 is formed by such a method of forming an insulating layer on the first transparent electrode layer 100 (island method). (Transparent Substrate) A transparent substrate is a portion that forms the outermost surface of the touch screen panel and is in direct contact with a user's finger or an object such as a stylus. The transparent electrode laminate of the present invention is formed on one side with respect to a surface in direct contact with the user's finger or the object. The transparent substrate can be made of any material if it has high durability enough to protect the touch panel panel from external forces and allows the user to view the display very well, and can be used for forming a transparent substrate used in the related art. There are no special restrictions on any material. For example, glass, polyether oxime (PES), polyacrylate (PAR), polyether phthalimide (PEI), polyethylene naphthalate (PEN), polyethylene terephthalate (PET) can be used. ), polyphenylene sulfide (PPS), polyallyl alcohol ester, polyimide, polycarbonate (PC), cellulose triacetate (TAC), cellulose acetate propionate (CAP) or the like. It is preferred to use glass, and it is more preferable to use tempered glass. The transparent substrate according to the present invention may have a suitable thickness, for example, ranging from 0.1 to 0.7 mm. When the transparent substrate has a thickness within the above range, the decrease in reflectance can be further improved. Preferably, the transparent substrate has a refractive index of from 1.4 to 1.6. When the transparent substrate has a refractive index within the above range, the decrease in reflectance can be further improved. (Transparent Dielectric Layer) The transparent electrode layer according to the present invention includes a transparent dielectric layer formed between the transparent substrate and the first transparent electrode layer, so as to improve optical uniformity of the touch screen panel. That is to say, the transparent dielectric layer acts to reduce the difference in optical characteristics due to structural differences at different locations, and structural differences at different locations may be caused by the patterned transparent electrode structure. The transparent dielectric layer may be formed of ruthenium oxide, ruthenium dioxide, ruthenium oxide, indium oxide, or the like, which may be used singly or in any combination of two or more thereof. The transparent dielectric layer can be easily deposited in the form of a thin film by using a vapor deposition method, a sputtering process, an ion plating process, or the like. In the present invention, a plurality of transparent dielectric layers are formed on a transparent substrate, if necessary. In this case, each of the plurality of transparent dielectric layers may be formed of materials different from each other and have different refractive indices and thicknesses. Preferably, the transparent dielectric layer has a refractive index of 1.4 to 2.5 for reducing the reflectivity of the transparent electrode laminate. When the plurality of transparent dielectric layers are formed on a transparent substrate, it is preferred that each of the layers has a refractive index of 1.8 to 2.2. Regarding the decrease in reflectance, it is preferred that the transparent dielectric layer has a thickness of 50 to 80 nm. When the transparent substrate includes the plurality of transparent dielectric layers formed thereon, each of the layers may have a thickness whose total thickness is out of the range outside the above range. (Passive Layer) In order to prevent the first and second transparent electrode layers 100 and 200 from being contaminated by exposure to an external environment (water, air, etc.), the transparent electrode laminate of the present invention is, if necessary, a transparent electrode laminate A passivation layer may be included on a side of the surface to which the transparent electrode is attached. The passivation layer can be prepared by using any material that can be used for the insulating layer 300. The passivation layer according to the present invention may have a suitable thickness, for example, 2,000 nm or less. When the passivation layer has a thickness within the above range, the decrease in reflectance can be further improved. Preferably, the passivation layer has a refractive index of from 1.4 to 1.6. When the passivation layer has a refractive index within the above range, the decrease in reflectance can be further improved. (Bonding Layer) In order to adhere to the display panel portion, the transparent electrode laminate of the present invention may include a bonding layer. The adhesive layer is prepared by applying a transparent curable resin composition and curing the composition (OCR), or pressing a bonding agent previously formed into a film shape onto the transparent electrode layer (OCA). The bonding layer can also affect the reflectivity of the transparent electrode laminate. Therefore, in order to reduce the reflectance of the transparent electrode layer, it is preferred that the bonding layer has an appropriate thickness and a refractive index. For example, the bonding layer may have a thickness of 0 to 250 μm and a refractive index of 1 to 1.6. When the adhesive layer has a thickness of 0 μm, the transparent electrode laminate does not have a bonding layer, and only an air gap is formed between the transparent electrode laminate and the touch panel. For example, the adhesive layer is not formed on a portion of the transparent electrode laminate that will actually display an image outside the edge portion formed by the adhesive layer. As described above, since the transparent electrode layer and the insulating layer have a thickness in a predetermined range, it is possible to minimize the difference in reflectance at different positions, and remarkably improve the transparency of the transparent electrode layer. Therefore, the transparent electrode laminate of the present invention can be used to manufacture a touch panel having excellent transparency by bonding the above-mentioned laminate to the display panel portion. Hereinafter, preferred embodiments will be described with reference to examples to more specifically understand the present invention. However, it will be apparent to those skilled in the art that the present invention may be The changes are fully included in the invention as defined by the scope of the appended claims. Exemplary Examples 1 to 9 and Comparative Examples 1 to 13 Transparent electrode laminates having the thicknesses shown in Table 1 below were produced in Examples 1 to 9 and Comparative Examples 1 to 13, respectively. Then, for each of the laminates, the average reflectance at different positions was measured thereon, and the difference between the maximum value and the minimum value of the average reflectance is shown in Table 1. As used herein, average reflectance means the average of reflectance in the range of 400 nm to 700 nm. Glass as a transparent substrate (refractive index: 1.51, extinction coefficient: 0), Nb 2 O 5 film as a transparent dielectric layer (refractive index: 2.32, extinction coefficient: 0), and SiO 2 film (refractive index: 1.46, extinction coefficient: double layer of 0), ITO film as the first transparent electrode layer (refractive index: 1.8, extinction coefficient: 0.014), ITO film as the second transparent electrode layer (refractive index: 1.8, extinction coefficient: 0.014) and an acryl insulating material (refractive index: 1.51, extinction coefficient: 0) as an insulating layer and a passivation layer, and the refractive index and the extinction coefficient are determined with reference to light having a wavelength of 550 nm. The air described in the bonding layer item of Table 1 means that the bonding layer is not formed on the portion where the image is to be displayed, and the bonding layer is formed only on the bezel (edge) portion. Examples 10 to 22 and Comparative Examples 14 to 20 respectively produced transparent electrode laminates having the thicknesses shown in Table 2 below. Then, for each of the laminates, the average reflectance at different positions was measured thereon, and the difference between the maximum value and the minimum value of the average reflectance is shown in Table 2. As used herein, average reflectance means the average of reflectance in the range of 400 nm to 700 nm. Glass as a transparent substrate (refractive index: 1.51, extinction coefficient: 0), Nb 2 O 5 film as a transparent dielectric layer (refractive index: 2.32, extinction coefficient: 0), and SiO 2 film (refractive index: 1.46, extinction coefficient: double layer of 0), ITO film as first transparent electrode layer (refractive index: 1.975, extinction coefficient: 0.014), ITO film as second transparent electrode layer (refractive index: 1.8, extinction coefficient: 0.014) and an acryl insulating material (refractive index: 1.51, extinction coefficient: 0) as an insulating layer and a passivation layer, and the refractive index and the extinction coefficient are determined with reference to light having a wavelength of 550 nm. The air described in the bonding layer item of Table 2 means that the bonding layer is not formed on the portion where the image is to be displayed, and the bonding layer is formed only on the bezel (edge) portion. Referring to Tables 1 and 2 above, since the difference between the maximum value and the minimum value of the average reflectance is 2% or less, the reflectance deviation at different positions is small, thereby exhibiting low visibility. Conversely, among the comparative examples, there are examples in which the maximum value of the average reflectance and the difference between the minimum values exceed 2%. Therefore, it was found that the reflectance deviation at different positions is large and the visibility is very high compared to the example. Further, among the comparative examples shown, Comparative Examples 7 and 20 have a thickness ratio between the first transparent electrode layer and the second transparent electrode layer outside the range described in the present invention, and average The difference in reflectance is 2% or less, but the first or the second transparent electrode layers of these Comparative Examples 7 and 20 have a thickness of 10 nm or less, respectively. When the thickness of the transparent electrode layer is 10 nm or less, the conductivity is lowered, and thus the basic function as an electrode is not achieved. In this regard, after depositing the ITO film at a thickness of 50 mm, a width of 50 mm, and a thickness of 0.7 mm (50 × 50 × 0.7 mm) on a glass substrate at a temperature of 120 ° C, at a center point thereof The resistance was measured, and the measurement results are shown in Table 3 below.

參見表3,可看到的是,透明電極層不具有極佳的導電性,直到該電極具有至少10 nm的厚度。 Referring to Table 3, it can be seen that the transparent electrode layer does not have excellent conductivity until the electrode has a thickness of at least 10 nm.

Claims (15)

一種透明電極層板,包含:一透明基板,具有形成於其上的一透明介電層;一第一透明電極層,以彼此連接的第一圖型以及彼此分開的第二圖型形成於該透明介電層上;一絕緣層,沉積在該第一透明電極層上;以及一第二透明電極層,其為被配置用以經由於該絕緣層中形成的接觸孔來彼此電連接該第二圖型的一橋電極;其中該第一透明電極層具有20至200nm的一厚度,其中該第二透明電極層具有100至350nm的一厚度,如果該第一透明電極層具有20nm或更高至低於120nm的一厚度,則該第一透明電極層比上該第二透明電極層的一厚度比(第一透明電極層的厚度/第二透明電極層的厚度)是0.15至0.375,以及如果該第一透明電極層具有120nm或更高至200nm或更低的一厚度,則該第二透明電極層比上該第一透明電極層的一厚度比(第二透明電極層的厚度/第一透明電極層的厚度)是0.60至1.50。 A transparent electrode laminate comprising: a transparent substrate having a transparent dielectric layer formed thereon; a first transparent electrode layer formed in a first pattern connected to each other and a second pattern separated from each other a transparent dielectric layer; an insulating layer deposited on the first transparent electrode layer; and a second transparent electrode layer configured to electrically connect to each other via a contact hole formed in the insulating layer a bridge electrode of the second pattern; wherein the first transparent electrode layer has a thickness of 20 to 200 nm, wherein the second transparent electrode layer has a thickness of 100 to 350 nm, if the first transparent electrode layer has a thickness of 20 nm or higher a thickness of less than 120 nm, a thickness ratio of the first transparent electrode layer to the second transparent electrode layer (thickness of the first transparent electrode layer / thickness of the second transparent electrode layer) is 0.15 to 0.375, and if The first transparent electrode layer has a thickness of 120 nm or more to 200 nm or less, and a thickness ratio of the second transparent electrode layer to the first transparent electrode layer (thickness of the second transparent electrode layer/first Thickness of transparent electrode layer) It is 0.60 to 1.50. 如申請專利範圍第1項所述的透明電極層板,其中該第一透明電極層以及該第二透明電極層分別具有1.8至2.2的一折射係數。 The transparent electrode layer plate of claim 1, wherein the first transparent electrode layer and the second transparent electrode layer respectively have a refractive index of 1.8 to 2.2. 如申請專利範圍第1項所述的透明電極層板,其中該絕緣層具有1.4至1.6的一折射係數。 The transparent electrode laminate according to claim 1, wherein the insulating layer has a refractive index of 1.4 to 1.6. 如申請專利範圍第1項所述的透明電極層板,其中該透明基板具有0.1至0.7mm的一厚度。 The transparent electrode laminate according to claim 1, wherein the transparent substrate has a thickness of 0.1 to 0.7 mm. 如申請專利範圍第1項所述的透明電極層板,其中該透明基板具有1.4至1.6的一折射係數。 The transparent electrode laminate according to claim 1, wherein the transparent substrate has a refractive index of 1.4 to 1.6. 如申請專利範圍第1項所述的透明電極層板,其中多個透明介電層於該透明基板上形成。 The transparent electrode laminate according to claim 1, wherein a plurality of transparent dielectric layers are formed on the transparent substrate. 如申請專利範圍第1項所述的透明電極層板,其中該透明介電層具有1.4至2.5的一折射係數。 The transparent electrode laminate of claim 1, wherein the transparent dielectric layer has a refractive index of 1.4 to 2.5. 如申請專利範圍第6項所述的透明電極層板,其中該多個透明介電層的每一層具有1.4至2.5的一折射係數。 The transparent electrode laminate of claim 6, wherein each of the plurality of transparent dielectric layers has a refractive index of 1.4 to 2.5. 如申請專利範圍第1項所述的透明電極層板,其中該透明介電層具有50至80nm的一總厚度。 The transparent electrode laminate of claim 1, wherein the transparent dielectric layer has a total thickness of 50 to 80 nm. 如申請專利範圍第1項所述的透明電極層板,其中該絕緣層具有1,000至2,000nm的一厚度。 The transparent electrode laminate according to claim 1, wherein the insulating layer has a thickness of 1,000 to 2,000 nm. 如申請專利範圍第1項所述的透明電極層板,其中該第二透明電極層於該透明介電層上形成,該絕緣層於該第二透明電極層上形成,以及該第一透明電極層於該絕緣層上形成。 The transparent electrode layer plate of claim 1, wherein the second transparent electrode layer is formed on the transparent dielectric layer, the insulating layer is formed on the second transparent electrode layer, and the first transparent electrode A layer is formed on the insulating layer. 如申請專利範圍第1項所述的透明電極層板,關於該透明電極層板,更包含在相對於該透明電極或該絕緣層形成於其上的該透明基板的一表面的一側上的一鈍化層。 The transparent electrode layer plate according to claim 1, wherein the transparent electrode layer plate is further included on a side of a surface of the transparent substrate with respect to the transparent electrode or the insulating layer. A passivation layer. 如申請專利範圍第12項所述的透明電極層板,其中該鈍化層具有2,000nm或更低的一厚度。 The transparent electrode laminate according to claim 12, wherein the passivation layer has a thickness of 2,000 nm or less. 如申請專利範圍第12項所述的透明電極層板,其中該鈍化層具有1.4至1.6的一折射係數。 The transparent electrode laminate of claim 12, wherein the passivation layer has a refractive index of 1.4 to 1.6. 一種觸控螢幕面板,包含如申請專利範圍第1項至第14項中任一項所述的透明電極層板。 A touch screen panel comprising the transparent electrode laminate according to any one of claims 1 to 14.
TW103113315A 2013-05-23 2014-04-10 Transparent electrode patterned laminate and touch screen panel including the same TWI631488B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130058363A KR101865685B1 (en) 2013-05-23 2013-05-23 Transparent electrode pattern structure and touch screen panel having the same
??10-2013-0058363 2013-05-23

Publications (2)

Publication Number Publication Date
TW201445394A TW201445394A (en) 2014-12-01
TWI631488B true TWI631488B (en) 2018-08-01

Family

ID=51933733

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103113315A TWI631488B (en) 2013-05-23 2014-04-10 Transparent electrode patterned laminate and touch screen panel including the same

Country Status (3)

Country Link
KR (1) KR101865685B1 (en)
TW (1) TWI631488B (en)
WO (1) WO2014189204A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11216131B2 (en) 2014-11-20 2022-01-04 Dongwoo Fine-Chem Co., Ltd. Film touch sensor and manufacturing method therefor
KR101942294B1 (en) 2014-12-09 2019-01-25 동우 화인켐 주식회사 Touch screen panel and image display comprising the same
KR20160071735A (en) 2014-12-12 2016-06-22 동우 화인켐 주식회사 Film Touch Sensor and Method for Fabricating the Same
KR102276210B1 (en) * 2015-01-26 2021-07-12 동우 화인켐 주식회사 Film Touch Sensor and Method for Fabricating the Same
KR102374644B1 (en) * 2015-03-24 2022-03-15 삼성디스플레이 주식회사 Display device
KR102467806B1 (en) * 2015-10-23 2022-11-17 삼성디스플레이 주식회사 Organic light emitting display device and method of manufacturing an organic light emitting display device
KR102332579B1 (en) * 2016-03-31 2021-11-29 동우 화인켐 주식회사 Touch sensor
KR102430032B1 (en) * 2017-08-16 2022-08-04 동우 화인켐 주식회사 Transparent electrode laminate and method of fabricating the same
CN113140162A (en) * 2020-01-17 2021-07-20 群创光电股份有限公司 Spliced transparent display device and transparent display device for splicing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201124999A (en) * 2009-09-30 2011-07-16 Nitto Denko Corp Transparent conducting film and touch panel
TWM415362U (en) * 2010-11-09 2011-11-01 Tpk Touch Solutions Inc Capacitive touch panel
TWI355105B (en) * 2007-12-31 2011-12-21 Hon Hai Prec Ind Co Ltd Touchable control device
WO2012169864A2 (en) * 2011-06-10 2012-12-13 (주)삼원에스티 Touch panel sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603611B2 (en) 2005-05-26 2013-12-10 Gunze Limited Transparent planar body and transparent touch switch
JP4419146B2 (en) * 2005-06-13 2010-02-24 日東電工株式会社 Transparent conductive laminate
JP4998919B2 (en) * 2007-06-14 2012-08-15 ソニーモバイルディスプレイ株式会社 Capacitive input device
JP2012081663A (en) * 2010-10-12 2012-04-26 Sumitomo Metal Mining Co Ltd Transparent electrically conductive base material, and touch panel
WO2012091410A2 (en) * 2010-12-27 2012-07-05 전자부품연구원 Touch panel using a metal thin film, and method for manufacturing same
WO2012111519A1 (en) * 2011-02-15 2012-08-23 シャープ株式会社 Touch panel and display device provided with touch panel
KR101363151B1 (en) * 2011-09-06 2014-02-14 삼성전자주식회사 Transparent circuit substrate for touchscreen, method for fabricating the same and touchscreen comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI355105B (en) * 2007-12-31 2011-12-21 Hon Hai Prec Ind Co Ltd Touchable control device
TW201124999A (en) * 2009-09-30 2011-07-16 Nitto Denko Corp Transparent conducting film and touch panel
TWM415362U (en) * 2010-11-09 2011-11-01 Tpk Touch Solutions Inc Capacitive touch panel
WO2012169864A2 (en) * 2011-06-10 2012-12-13 (주)삼원에스티 Touch panel sensor

Also Published As

Publication number Publication date
KR20140137631A (en) 2014-12-03
KR101865685B1 (en) 2018-06-08
WO2014189204A1 (en) 2014-11-27
TW201445394A (en) 2014-12-01

Similar Documents

Publication Publication Date Title
TWI631488B (en) Transparent electrode patterned laminate and touch screen panel including the same
TWI509477B (en) Touch panel and method for manufacturing the same
US8603611B2 (en) Transparent planar body and transparent touch switch
TWI584180B (en) Transparent electrode pattern structure and touch screen panel having the same
JP4874145B2 (en) Transparent sheet and transparent touch switch
US20140333850A1 (en) Touch Panel and Method for Manufacturing the Same
US9489914B2 (en) Transparent electrode laminate and touch screen panel including the same
TWI712934B (en) Transparent electrode and electronic device including the same
TWI628563B (en) Touch-sensing electrode and touch screen panel including the same
KR102077548B1 (en) Transparent electrode pattern structure and touch screen panel having the same
TW201606595A (en) Touch screen panel
TW201512958A (en) Touch sensing electrode and touch screen panel
TWI612449B (en) Touch sensing electrode
CN105468184B (en) Transparent electrode laminate and touch screen panel including the same
TWI678648B (en) Touch screen panel and image display comprising the same
KR101241632B1 (en) Method for manufacturing touch panel
JP6446209B2 (en) Transparent electrode pattern laminate and touch screen panel provided with the same
TWI606382B (en) Touch screen panel
TWI623873B (en) Transparent electrode laminate and touch screen panel including the same
KR101427995B1 (en) Touch sensing electrode