TWI611198B - Low-altitude wind-cutting warning system and method for predicting low-altitude wind cutting - Google Patents
Low-altitude wind-cutting warning system and method for predicting low-altitude wind cutting Download PDFInfo
- Publication number
- TWI611198B TWI611198B TW103110375A TW103110375A TWI611198B TW I611198 B TWI611198 B TW I611198B TW 103110375 A TW103110375 A TW 103110375A TW 103110375 A TW103110375 A TW 103110375A TW I611198 B TWI611198 B TW I611198B
- Authority
- TW
- Taiwan
- Prior art keywords
- low
- observation
- parameter data
- wind
- unit time
- Prior art date
Links
Landscapes
- Geophysics And Detection Of Objects (AREA)
- Traffic Control Systems (AREA)
Description
本發明涉及航空的氣象觀測預警系統及氣象預測的方法,特別是一種低空風切警告系統及預測低空風切的方法。 The invention relates to a meteorological observation and early warning system for aviation and a method for predicting weather, in particular to a low-altitude wind-cut warning system and a method for predicting low-altitude wind cutting.
風切對航空造成顯著的危害,對飛安構成威脅,雖然風切在大氣中各種高度都可能出現,但在最低層-低於500公尺(1,600英呎)範圍發生的風切,對在機場跑道走廊(runway corridor)的飛機/航空器是一大威脅。當飛機在爬升離場和降落進場階段(aircraft landing and taking off),其空速和高度都接近臨界值,因此,飛機在遭遇低空風切時更難以及時因應,進而安全避過風切造成的危害。 Wind cuts pose a significant hazard to aviation and pose a threat to Fei'an. Although wind cuts may occur at various heights in the atmosphere, wind cuts occur at the lowest level - below 500 meters (1,600 miles). Aircraft/aircraft in the airport runway corridor is a major threat. When the aircraft is landing and taking off, its airspeed and altitude are close to the critical value. Therefore, it is more difficult for the aircraft to respond in time to the low-altitude wind cut, thus safely avoiding the wind cut. Hazard.
第一代低空風切警告系統(Phase-1 Low Level Wind Shear Alert System,以下簡稱LLWAS)最初是在1970年代由美國聯邦航空總署(Federal Aviation Administration,FAA)發展出來偵測大尺度的天氣系統,包括海風鋒面(sea breeze fronts)、陣風鋒面(gust fronts)、冷鋒(cold fronts)以及暖鋒(warm fronts)。美國國家大氣研究中心(National Center for Atmospheric Research,NCAR),在1983~1988年間又發展出一套加強系統(Phase-II LLWAS),系統透過頂風或順風強度,來偵測位在跑道或跑道兩端離到場1~3海浬的低空風切或小尺度微爆氣流,Phase-II LLWAS可以偵測到90%以上的風切,但還有10%以下的風切警告失敗率。之後,NCAR再將Phase-II LLWAS 改良成為第三代低空風切警告系統(Phase-III LLWAS),Phase-III LLWAS系統透過位於機場跑道向外延伸3海浬範圍內的離到場走廊的1000英呎(300公尺)以下的風切偵測能力(UCAR,1992)。目前NCAR更將系統與機場都卜勒雷達結合,發展成為LLWAS-NE;再將原裝設LLWAS-II機場低空風切系統升級且採用LLWAS-NE演算法,成為LLWAS-RS系統。 The first generation of Low-Level Wind Shear Alert System (LLWAS) was originally developed by the Federal Aviation Administration (FAA) in the 1970s to detect large-scale weather systems. These include the sea breeze fronts, the gust fronts, the cold fronts, and the warm fronts. The National Center for Atmospheric Research (NCAR) developed a set of strengthening systems (Phase-II LLWAS) between 1983 and 1988. The system detects the position on the runway or runway through the top wind or downwind strength. The low-altitude wind cut or small-scale micro-explosive airflow from the 1~3 sea otter can detect more than 90% of the wind cut, but there is also a wind-cut warning failure rate below 10%. After that, NCAR will again Phase-II LLWAS Improved to become the third-generation low-altitude wind-cutting warning system (Phase-III LLWAS), the Phase-III LLWAS system is less than 1,000 miles (300 meters) away from the arrival corridor within 3 nautical miles of the airport runway Wind cut detection capability (UCAR, 1992). At present, NCAR has combined the system with the airport Doppler radar to develop into LLWAS-NE. The original LLWAS-II airport low-altitude wind-cutting system is upgraded and the LLWAS-NE algorithm is used to become the LLWAS-RS system.
低空風切警報系統已被廣泛使用作為機場的低空風切偵測 設備,由於LLWAS對於偵測機場的風場變化相當靈敏,進而提供飛機在爬升離場和降落進場階段更為可靠與安全的保障,為了獲得準確與即時的風場變化資訊,因此LLWAS系統中用於偵測風場變化的測風站的設置位置極為重要。LLWAS系統中測風站至少需要6~8座,而且測風站的設置位置應以能夠獲得最佳的測風結果為首要的考量;依據LLWAS測風站間基本架設原則,測風站間的最佳距離為2~5公里,不得小於1公里,且任三個測風站所圍成的三角形中任一內角不得小於25度,依據此一架設原則,在選擇及尋找合適的測風站設置地點實有相當的困難。 Low-altitude wind-cut warning system has been widely used as a low-altitude air-cut detection at airports Equipment, because LLWAS is very sensitive to detecting changes in the wind field of the airport, and thus provides more reliable and safe protection for the aircraft during the climb and exit and landing, in order to obtain accurate and immediate wind field change information, therefore in the LLWAS system The location of the wind station used to detect wind field changes is extremely important. In the LLWAS system, the wind measurement station needs at least 6~8 seats, and the setting position of the wind measurement station should be the first consideration to obtain the best wind measurement result; according to the basic erection principle between the LLWAS wind measurement stations, between the wind measurement stations The optimum distance is 2~5 km, not less than 1 km, and any inner corner of the triangle enclosed by any three wind measurement stations shall not be less than 25 degrees. According to this erection principle, the appropriate wind is selected and searched. It is quite difficult to set up a station.
目前LLWAS所採用的測風站的設置位置受機場所在地理位 置的影響最為明顯,為了找到最佳測風結果的設置位置,在實務上面臨的困難通常包括地形及人造建築物的影響及限制,例如某些鄰海的機場可能因為部份腹地為海洋而無法設置測風站(例如高雄國際機場),而鄰近城市的機場又容易因為較高之建築物對風場的阻擋或干擾(例如臺北的松山機場),而無法找到合適的設置位置,為了克服上述的限制並因應設置位置的實際情況,已知的一種測風站係採用測風塔的設計,目前使用的測風塔通常包括直接設置於地面和設置於建築物屋頂兩種,設置於地面者的塔高多 超過20公尺,設置於屋頂者的塔高多為7~10公尺。另一方面,遍佈於各地的測風站若是採用無線電通訊裝置將觀測獲得的資料傳回LLWAS的主機,又需要克服無線電波受到地形或建築物阻擋的問題。因此,機場在選擇建置LLWAS的過程中很容易因為腹地不足的問題,而無法使用LLWAS。另一方面依據LLWAS設計原理上,當超過3個測風站出現問題,其運算結果將變為不可信,測風站的設置位置也需考慮到是否易於維護的問題。 At present, the location of the wind measurement station used by LLWAS is affected by the geographic location of the airport. The impact is most obvious. In order to find the location of the best wind measurement results, the practical difficulties usually include the influence and limitations of terrain and man-made buildings. For example, some airports in the adjacent sea may be partly because the hinterland is the ocean. It is impossible to set up a wind station (such as Kaohsiung International Airport), and the airport in the neighboring city is easy to block or interfere with the wind field (such as Songshan Airport in Taipei), and it is impossible to find a suitable setting position. The above-mentioned restrictions and in view of the actual situation of the location, a known wind measurement station adopts the design of the wind tower, and the currently used wind tower usually includes two types which are directly disposed on the ground and disposed on the roof of the building, and are disposed on the ground. Tagodo More than 20 meters, the height of the tower is more than 7 to 10 meters. On the other hand, if a wind station stationed everywhere uses a radio communication device to transmit the observed data back to the host of the LLWAS, it is necessary to overcome the problem that the radio wave is blocked by the terrain or the building. Therefore, in the process of choosing to build LLWAS, the airport is very easy to use LLWAS because of the shortage of hinterland. On the other hand, according to the design principle of LLWAS, when there are problems in more than three wind measurement stations, the operation result will become unreliable, and the setting position of the wind measurement station also needs to consider whether it is easy to maintain.
本發明提出了一種低空風切警告系統及預測低空風切的方法,可以解決機場腹地不足無法架設現有的低空風切警告系統(LLWAS)的問題。 The invention proposes a low-altitude wind-cut warning system and a method for predicting low-altitude wind-cutting, which can solve the problem that the airport hinterland is insufficient to set up the existing low-altitude wind-cut warning system (LLWAS).
本發明提出的低空風切警告系統的一實施例構造,包括:一觀測設備,設置於選定的觀測點,觀測設備用於取得觀測點的氣象參數資料,所述氣象參數資料包含:風速、氣壓、氣溫和露點溫度其中的至少三種和三種以上的組合,觀測設備至少包含一通訊裝置用以發送取得的氣象參數資料;以及一主機,接收觀測設備經由觀測所獲得的的氣象參數資料,運行一低空風切演譯法處理各個觀測點的氣象參數資料,依據處理結果發佈低空風切警報。 An embodiment of the low-altitude wind-cut warning system of the present invention comprises: an observation device disposed at a selected observation point, and the observation device is configured to obtain meteorological parameter data of the observation point, wherein the meteorological parameter data comprises: wind speed and air pressure At least three or more combinations of temperature and dew point temperature, the observation device includes at least one communication device for transmitting the obtained meteorological parameter data; and a host receiving the meteorological parameter data obtained by the observation device via the observation, and operating one The low-altitude wind-cutting interpretation method processes the meteorological parameter data of each observation point, and issues a low-altitude wind-cutting alarm according to the processing result.
本發明提出的預測低空風切的方法的一種實施例,包含:在選定的觀測點設置觀測設備;以一預設的取樣頻率偵測觀測點的氣象參數資料,所述氣象參數資料包含:觀測點的風速、氣壓、氣溫和露點溫度其中的至少三種和三種以上 的組合;產生各個氣象參數資料的單位時間變化量以及和所述的各個氣象參數資料的單位時間變化量對應的一門檻值;將所述各個氣象參數資料的單位時間變化量和對應的門檻值進行比較;在至少三種所述氣象參數資料的單位時間變化量超出對應的門檻值時發出低空風切警報。 An embodiment of the method for predicting low-altitude wind-cutting according to the present invention comprises: setting an observation device at a selected observation point; and detecting meteorological parameter data of the observation point at a preset sampling frequency, the meteorological parameter data comprising: observation At least three or more of the wind speed, air pressure, temperature and dew point temperature a combination of the unit time variation of each meteorological parameter data and a threshold value corresponding to the unit time variation of each meteorological parameter data; the unit time variation of the respective meteorological parameter data and the corresponding threshold value A comparison is made; a low-altitude wind-cutting alarm is issued when the unit time variation of at least three of the meteorological parameter data exceeds a corresponding threshold value.
在本發明方法步驟的一實施例包含:計算二觀測點的相對氣壓梯度的單位時間變化量,決定和相對氣壓梯度對應的一門檻值,以及將二觀測點的相對氣壓梯度的單位時間變化量和所述對應的門檻值進行比較。 An embodiment of the method steps of the present invention comprises: calculating a unit time change amount of a relative gas pressure gradient of two observation points, determining a threshold value corresponding to the relative gas pressure gradient, and a unit time change amount of the relative gas pressure gradient of the two observation points Compare with the corresponding threshold value.
在本發明預測低空風切的方法的一實施例,其中選定的觀測點的位置包含:機場跑道的兩端位置。 In an embodiment of the method of the invention for predicting low altitude wind cutting, wherein the selected observation point location comprises: both ends of the airport runway.
在本發明預測低空風切的方法的一實施例,其中選定的觀測點的位置包含:機場跑道的中段位置。 In an embodiment of the method of the present invention for predicting low altitude wind cutting, wherein the location of the selected observation point comprises: a midsection of the airport runway.
在本發明預測低空風切的方法的一實施例,其中選定的觀測點的位置包含:機場跑道兩端向外延伸3海浬範圍內。 In an embodiment of the method for predicting low-altitude wind cutting of the present invention, wherein the selected observation point is located, the two ends of the airport runway extend outward within 3 nautical miles.
在本發明預測低空風切的方法一實施例,包含:一預測風切發生位置的步驟。 An embodiment of the method for predicting low-altitude wind-cutting according to the present invention comprises: a step of predicting a location where the wind-cut occurs.
在本發明預測低空風切的方法一實施例,其中預測風切發生位置的步驟包含:單一觀測點偵測所得的至少三種氣象參數資料的單位時間變化量超出對應的門檻值時,警告該單一觀測點的位置為低空風切發生 位置。 In an embodiment of the method for predicting low-altitude wind-cutting, the step of predicting the position of the wind-cutting comprises: warning the single unit when the unit time variation of the at least three meteorological parameter data obtained by the single observation point exceeds the corresponding threshold value The position of the observation point is low-level wind cut position.
在本發明預測低空風切的方法一實施例,其中預測風切發生位置的步驟包含:相鄰的二觀測點偵測所得的至少三種氣象參數資料的單位時間變化量超出對應的門檻值時,警告該二觀測點之間的區域為低空風切發生位置。 In an embodiment of the method for predicting low-altitude wind-cutting, the step of predicting the location of the wind-cutting comprises: when the unit time variation of the at least three meteorological parameter data detected by the adjacent two observation points exceeds the corresponding threshold value, Warning that the area between the two observation points is the position where the low-level wind cut occurs.
在本發明預測低空風切的方法一實施例,其中預測風切發生位置的步驟包含:相鄰的三觀測點偵測所得的至少三種氣象參數資料的單位時間變化量超出對應的門檻值時,警告該三觀測點所圍成的三角形區域為低空風切發生位置。 In an embodiment of the method for predicting low-altitude wind-cutting, the step of predicting the location of the wind-cutting comprises: when the unit time variation of the at least three meteorological parameter data detected by the adjacent three observation points exceeds the corresponding threshold value, Warning that the triangular area enclosed by the three observation points is the position where the low-level wind cut occurs.
有關本發明的其他功效及實施例的詳細內容,配合圖式說明如下。 The details of other functions and embodiments of the present invention are described below in conjunction with the drawings.
10‧‧‧主機 10‧‧‧Host
11‧‧‧通訊單元 11‧‧‧Communication unit
20‧‧‧觀測設備 20‧‧‧Observation equipment
21‧‧‧通訊裝置 21‧‧‧Communication device
W1‧‧‧跑道 W1‧‧ Runway
P-1,P-2‧‧‧跑道的兩端位置 P-1, P-2‧‧‧ both ends of the runway
P-3‧‧‧跑道的中段位置 Middle position of the P-3‧‧‧ runway
A1‧‧‧二觀測點之間的區域 Area between A1‧‧‧ observation points
A2‧‧‧三觀測點所圍成的三角形區域 The triangular area enclosed by the A2‧‧‧ observation points
S1‧‧‧在選定的觀測點設置觀測設備 S1‧‧‧Set observation equipment at selected observation points
S2‧‧‧以一預設的取樣頻率偵測觀測點的氣象參數資料,所述氣象參數資料包含:氣壓、氣溫、露點溫度和二觀測點的相對氣壓梯度其中的至少三種和三種以上的組合 S2‧‧‧ detects the meteorological parameter data of the observation point by a preset sampling frequency, the meteorological parameter data includes: at least three of the air pressure, the air temperature, the dew point temperature and the relative pressure gradient of the two observation points, and a combination of three or more
S3‧‧‧產生各個氣象參數資料的單位時間變化量以及和所述的各個氣象參數資料的單位時間變化量對應的一門檻值 S3‧‧‧ generates a unit time change amount of each meteorological parameter data and a threshold value corresponding to the unit time change amount of each meteorological parameter data
S4‧‧‧將所述各個氣象參數資料的單位時間變化量和對應的門檻值進行比較 S4‧‧‧Compare the unit time variation of each meteorological parameter data with the corresponding threshold value
S5‧‧‧在所述氣象參數資料的單位時間變化量其中的至少三種超出對應的門檻 值時發出低空風切警報 S5‧‧‧ at least three of the unit time variations of the meteorological parameter data exceed the corresponding threshold Low-altitude wind-cut alarm
第1圖,為本發明系統的一實施例,顯示系統的功能方塊圖。 Figure 1 is a functional block diagram of a display system in accordance with an embodiment of the system of the present invention.
第2圖,為本發明方法的一實施例的步驟流程圖。 2 is a flow chart showing the steps of an embodiment of the method of the present invention.
第3圖,為本發明系統中觀測點的分佈建置位置的一種實施例。 Figure 3 is an embodiment of the location of the distribution of observation points in the system of the present invention.
第4A~4C圖,顯示在觀測日D1依據本發明方法在松山機場預設的二個觀測點經由觀測所獲得的風速分佈圖,以及觀測日D1之各時段中風速大於20KT出現秒數之分佈圖。 4A~4C, showing the wind speed distribution map obtained by observation at two observation points preset at Songshan Airport according to the method of the present invention on the observation day D1, and the distribution of the number of seconds in which the wind speed is greater than 20KT in each period of the observation day D1. Figure.
第5A~5C圖,顯示在觀測日D1,依據本發明方法在松山機場於相同之二個觀測點經由觀測所獲得的氣壓跳動分佈圖,以及氣壓跳動數值超過二個標準差範圍的發生時段及其頻率分佈圖。 Figures 5A to 5C show the air pressure jitter distribution obtained by observation at the same two observation points at Songshan Airport according to the method of the present invention, and the occurrence period of the air pressure jitter value exceeding two standard deviation ranges and Its frequency distribution map.
第6A~6B圖,顯示在觀測日D1,依據本發明方法在松山機場於相同的二個觀測點經由觀測所獲得的氣壓,經由計算後獲得的相對氣壓梯度的單位時間變化量分佈圖,以及氣壓梯度跳動超過2個標準差的發生時段及次數分佈圖。 Figures 6A-6B show the distribution of the unit time variation of the relative pressure gradient obtained by calculation at the observation point D1, the air pressure obtained at the same two observation points at the Songshan Airport according to the method of the present invention, and The occurrence of time and frequency distribution of the gas pressure gradient over 2 standard deviations.
第7A~7C圖,顯示在觀測日D1,依據本發明方法在松山機場於相同之二個觀測點經由觀測所獲得的氣溫跳動分佈圖,以及氣溫跳動數值超過二個標準差範圍的發生時段及其頻率分佈圖。 Figures 7A to 7C show the temperature jitter map obtained by observation at the same two observation points at Songshan Airport according to the method of the present invention, and the occurrence period of the temperature jitter value exceeding the two standard deviation ranges and Its frequency distribution map.
第8A~8C圖,顯示在觀測日D1,依據本發明方法在松山機場於相同之二個觀測點經由觀測所獲得的露點溫度跳動分佈圖,以及露點溫度跳動數值超過二個標準差範圍的發生時段及其頻率分佈圖。 Figures 8A-8C show the dew point temperature jitter distribution obtained by observation at the same two observation points at Songshan Airport according to the method of the present invention on the observation day D1, and the occurrence of the dew point temperature jitter value exceeding the range of two standard deviations. Time period and its frequency distribution map.
第9A~9B圖,為現有松山機場之低空風切警告系統(LLWAS)在某一實際觀測日D1於各時段發佈低空風切警報的次數分佈圖,以及在各時段線發佈低空風切警報的總數統計圖。 Figures 9A~9B are the distribution maps of the low-altitude wind-cutting alarms issued by the existing low-altitude wind-cutting warning system (LLWAS) of Songshan Airport on each actual observation day D1, and the low-altitude wind-cutting alarms are issued on each timeline. Total statistics.
第10圖,為本發明方法的一實施方式示意圖,繪示依據二個觀測點之氣象參數資料預測風切發生位置的情形。 FIG. 10 is a schematic view showing an embodiment of the method of the present invention, illustrating a situation in which a wind cut occurs at a position based on meteorological parameter data of two observation points.
第11圖,為本發明方法的一實施方式示意圖,繪示依據三個觀測點之氣象參數資料預測風切發生位置的情形。 11 is a schematic diagram of an embodiment of a method according to the present invention, illustrating a situation in which a wind cut occurs at a position based on meteorological parameter data of three observation points.
請參閱第1圖,為本發明低空風切警告系統的一實施例構造 的功能方塊圖,包括:一主機10和設置於預定觀測點用於觀測氣象參數資料的觀測設備20,所述的氣象參數資料包含:風速、氣壓、氣溫和露點溫度其中的至少三種和三種以上的組合,觀測設備20包含一通訊裝置21用以 將氣象參數資料發送至主機10,通訊裝置21的實施方式包含:無線通訊裝置和網路通訊裝置其中的任一種和其組合,可以視觀測點的通訊條件和地理條件選擇適當的通訊裝置。 Please refer to FIG. 1 , which illustrates an embodiment of a low-altitude wind-cut warning system of the present invention. The functional block diagram includes: a host 10 and an observation device 20 disposed at a predetermined observation point for observing meteorological parameter data, wherein the meteorological parameter data includes at least three or more of a wind speed, a gas pressure, a temperature, and a dew point temperature. The combination device 20 includes a communication device 21 for The meteorological parameter data is sent to the host 10, and the implementation of the communication device 21 includes: any one of the wireless communication device and the network communication device, and a combination thereof, and the appropriate communication device can be selected according to the communication condition and the geographical condition of the observation point.
主機10具有資料儲存、通訊和運行程式的能力,主機10的一 種實施方式是透過電腦加以實現,例如一般的個人電腦(personal computer)或是伺服器(server)皆可適用,主機10至少具有一通訊單元11能與觀測設備20的通訊裝置21進行通訊,用以取得觀測設備20觀測獲得的氣象參數資料,通訊單元11的實施方式包含:無線通訊裝置和網路通訊裝置其中的任一種和其組合。 The host 10 has the ability to store, communicate, and run programs, one of the hosts 10 The implementation is implemented by a computer, such as a general personal computer or a server. The host 10 has at least one communication unit 11 capable of communicating with the communication device 21 of the observation device 20. In order to obtain the meteorological parameter data obtained by the observation device 20, the implementation of the communication unit 11 includes any one of a wireless communication device and a network communication device, and a combination thereof.
本發明所提出預測低空風切的方法中包含一低空風切演譯 法,所述的低空風切演譯法係透過電腦程式化的手段成為主機10所運行的程式,主機10透過運行程式(低空風切演譯法)的方式記錄各個觀測點的氣象參數資料,主機10再依據取得的氣象參數資料計算各個觀測點的風速、氣壓、氣溫和露點溫度的單位時間變化量,以及計算二觀測點的相對氣壓梯度的單位時間變化量,主機10再將所述氣象參數資料的單位時間變化量和對應的門檻值進行比較,在所述至少三種氣象參數資料的單位時間變化量超出對應的門檻值時發出低空風切警報。 The method for predicting low-altitude wind cutting proposed by the present invention includes a low-altitude wind cut interpretation In the method, the low-altitude wind-cutting translation method is a program run by the host computer 10 by means of computer stylization, and the host computer 10 records the meteorological parameter data of each observation point by running a program (low-level wind-cutting translation method). The host 10 further calculates the unit time change amount of the wind speed, the air pressure, the air temperature and the dew point temperature of each observation point according to the obtained meteorological parameter data, and calculates the unit time change amount of the relative air pressure gradient of the two observation points, and the host 10 further refers to the weather. The unit time change amount of the parameter data is compared with the corresponding threshold value, and a low altitude wind cut alarm is issued when the unit time change amount of the at least three weather parameter data exceeds the corresponding threshold value.
機場在穩定大氣之下,一般氣象要素如氣壓、氣溫和濕度的 觀測,其每秒或每分鐘前後觀測數值跳動幅度,通常是在一定範圍內,若跳動範圍是近似於常態分佈的機率分佈,約68%數值分佈在距離平均值有1個標準差之內的範圍,約95%數值分佈在距離平均值有2個標準差之內的範圍。在不穩定大氣之下,該等氣象要素跳動大,可能會超出2個標準差之範 圍。 The airport is under a stable atmosphere, and general meteorological elements such as air pressure, temperature and humidity Observed, the amplitude of the jitter is observed every second or every minute, usually within a certain range. If the jitter range is a probability distribution that approximates the normal distribution, about 68% of the value is within 1 standard deviation of the average value. Range, about 95% of the value is distributed within a range of 2 standard deviations from the mean. Under the unstable atmosphere, these meteorological elements are beating and may exceed the standard deviation of two standards. Wai.
所述的低空風切演譯法的運行過程,具體而言就是本發明方 法中關於氣象參數資料的處理步驟(例如計算氣象參數資料的單位時間變化量和比較的步驟),在本發明的一實施例,所述的低空風切演算法包含:(1)計算各個觀測點的氣象參數資料的單位時間變化量;(2)通過統計的方式計算上述每個氣象參數資料的單位時間變化量的標準差,將二個標準差設為每個氣象參數資料的單位時間變化量所對應的門檻值;以及(3)將所述氣象參數的單位時間變化量和對應的門檻值進行比較,在所述氣象參數的單位時間變化量其中的至少三種超出對應的門檻值時發出低空風切警報。換言之,氣象參數資料的單位時間變化量在未超過二個標準差的範圍之內,即表示為未發生低空風切的氣象條件,在下文中將會舉實際的觀測及預測例子作進一步的說明。 The operation process of the low-altitude wind-cutting translation method is specifically the present invention In the method of processing meteorological parameter data in the method (for example, calculating a unit time variation amount of the meteorological parameter data and a step of comparing), in an embodiment of the invention, the low-altitude wind cutting algorithm comprises: (1) calculating each observation The unit time variation of the meteorological parameter data of the point; (2) Calculate the standard deviation of the unit time variation of each meteorological parameter data by statistical means, and set the two standard deviations as the unit time change of each meteorological parameter data. And (3) comparing the unit time change amount of the meteorological parameter with a corresponding threshold value, and issuing at least three of the unit time change amounts of the meteorological parameter exceeding a corresponding threshold value Low altitude wind cut alarm. In other words, the unit time variation of the meteorological parameter data is within the range of not exceeding two standard deviations, that is, the meteorological condition in which no low-altitude wind cut occurs, and the actual observation and prediction examples will be further explained below.
所述氣象參數資料的單位時間變化量包含:風速、氣壓、氣 溫和露點溫度的單位時間變化量,以及二觀測點的相對氣壓梯度的單位時間變化量。所述氣象參數資料的單位時間變化量係指在一單位時間(可以是秒或分鐘為單位時間的長度)前後的氣象參數的經由觀測獲得的資料的差值,例如氣壓係以每1秒觀測一次的方式觀測(單位時間長度為1秒),則當前1秒觀測獲得的氣壓值和前一秒觀測獲得的氣壓值的差值。因此,所述的氣象參數的單位時間變化量可以由下列式(1)表示。 The unit time variation of the meteorological parameter data includes: wind speed, air pressure, gas The amount of change in the unit time of the mild dew point temperature, and the amount of change in the relative pressure gradient of the two observation points per unit time. The unit time variation of the meteorological parameter data refers to the difference of the data obtained by observation of the meteorological parameters before and after the unit time (which may be the length of the unit time of seconds or minutes), for example, the air pressure is observed every 1 second. The observation method in one time (the length of time per unit time is 1 second), the difference between the air pressure value obtained by the current 1 second observation and the air pressure value obtained by the previous second observation. Therefore, the unit time variation amount of the meteorological parameter can be expressed by the following formula (1).
Xi=Yi-Yi-1 (式1)Xi 代表這一秒鐘或這一分鐘與前一秒鐘或前一分鐘氣象參數之觀測差值(下文稱”跳動值”或”單位時間變化量”其意相同) X i =Y i -Y i-1 (Formula 1) X i represents the observed difference between this second or this minute and the previous or previous minute meteorological parameters (hereinafter referred to as the "jitter value" or "unit" The amount of time change "is the same)
Yi 代表這一秒鐘或這一分鐘氣象參數之觀測值;Yi-1代表前一秒鐘或前一分鐘氣象參數之觀測值;。 Y i represents the observation of the meteorological parameter of this second or minute; Y i-1 represents the observation of the weather parameter of the previous second or previous minute;
計算每個氣象參數資料的單位時間變化量的標準差σ的一種實施方式如下,首先計算氣象參數的單位時間變化量的平均值如下列式(2),如果平均值接近0時,則分成正和負值兩部分,分開計算標準差σ。例如,氣壓、氣溫和露點溫度,其每秒或每分鐘跳動值平均接近0,則其每秒或每分鐘跳動正與負值,分成兩部分,分別計算標準差σ。氣壓梯度每秒跳動平均值幾乎大於0,就直接計算標準差σ如下列式(3)所示。 An embodiment for calculating the standard deviation σ of the unit time variation amount of each meteorological parameter data is as follows. First, the average value of the unit time change amount of the meteorological parameter is calculated as the following formula (2), and if the average value is close to 0, it is divided into positive The negative value is divided into two parts, and the standard deviation σ is calculated separately. For example, for air pressure, air temperature, and dew point temperature, the beat value per second or minute averages close to zero, then the positive or negative values are beaten every second or every minute, divided into two parts, and the standard deviation σ is calculated separately. The average gradient of the gas pressure gradient per second is almost greater than 0, and the standard deviation σ is directly calculated as shown in the following formula (3).
請參閱第2圖,繪示了本發明方法的一實施例的步驟流程, 包括:S1.在選定的觀測點設置觀測設備;S2.以一預設的取樣頻率(如1次/秒)偵測觀測點的氣象參數資料,所述氣象參數資料包含:風速、氣壓、氣溫和露點溫度其中的至少三種和三種以上的組合;S3.產生各個氣象參數資料的單位時間變化量以及和所述的各個氣象參數資料的單位時間變化量對應的一門檻值;S4.將所述各個氣象參數資料的單位時間變化量和對應的門檻值進行比較;S5.在所述氣象參數資料的單位時間變化量其中的至少三種超出對應的 門檻值時發出低空風切警報。 Referring to FIG. 2, a flow chart of an embodiment of the method of the present invention is illustrated. Including: S1. setting the observation device at the selected observation point; S2. detecting the meteorological parameter data of the observation point at a preset sampling frequency (such as 1 time/second), the weather parameter data includes: wind speed, air pressure, temperature And a combination of at least three and three or more of the dew point temperatures; S3. generating a unit time change amount of each meteorological parameter data and a threshold value corresponding to the unit time change amount of each meteorological parameter data; S4. Comparing the unit time change amount of each meteorological parameter data with the corresponding threshold value; S5. at least three of the unit time change amounts of the meteorological parameter data exceed the corresponding A low-altitude wind-cut alarm is issued when the threshold is exceeded.
在本發明方法步驟的一實施例另包含:計算二觀測點的相對 氣壓梯度的單位時間變化量,決定和相對氣壓梯度對應的一門檻值,以及將二觀測點的相對氣壓梯度的單位時間變化量和所述對應的門檻值進行比較,其中所述的氣壓梯度是指二個觀測點在同一時間的氣壓差值。 An embodiment of the method step of the present invention further comprises: calculating a relative position of the two observation points The amount of change in the pressure gradient per unit time, determining a threshold corresponding to the relative pressure gradient, and comparing the amount of change in the relative pressure gradient of the two observation points with the corresponding threshold value, wherein the pressure gradient is Refers to the difference in air pressure between two observation points at the same time.
在本發明預測低空風切的方法的一實施例,其中選定的觀測 點的位置包含:機場的跑道W1的兩端位置P-1和P-2、機場跑道W1的中段位置P-3以及跑道W1兩端向外延伸3海浬範圍內的其中任一位置和其組合。請參閱第3圖,為本發明系統中觀測點的分佈建置位置的一種實施例,現有的氣象觀測設備例如測風塔基本上係設置在機場跑道W1的兩端位置P-1和P-2和跑道的中段位置P-3。依據現有LLWAS系統的建置標準至少需要6~8座測風塔,如果只有在機場跑道W1之上述位置設置測風塔是不夠的,然而透過本發明方法,在機場腹地不足的情形下即使只在跑道W1的兩端位置P-1和P-2和跑道W1的中段位置P-3設置測風塔,以及其他用於觀測本發明所述之氣象參數的氣象觀測設備20,仍可實現預測低空風切以及發出低空風警切警報的目的。 An embodiment of the method of predicting low altitude wind cutting in accordance with the present invention, wherein selected observations The position of the point includes: both positions P-1 and P-2 of the runway W1 of the airport, the middle position P-3 of the airport runway W1, and any position within the range of 3 nautical miles extending from both ends of the runway W1 and combination. Please refer to FIG. 3, which is an embodiment of the position of the distribution of observation points in the system of the present invention. The existing meteorological observation equipment such as the wind tower is basically disposed at the two ends P-1 and P- of the airport runway W1. 2 and the middle position of the runway is P-3. According to the existing LLWAS system, at least 6 to 8 wind towers are required. If only the wind tower is installed at the above-mentioned location of the airport runway W1, it is not enough to use the method of the present invention, even if the airport has insufficient hinterland. A wind tower is provided at both end positions P-1 and P-2 of the runway W1 and a middle position P-3 of the runway W1, and other meteorological observation devices 20 for observing the meteorological parameters described in the present invention can still achieve prediction Low-altitude wind cuts and the purpose of issuing low-altitude wind alert warnings.
本發明系統的觀測設備20的一種實施方式,包含:風速量測 儀、氣壓計、氣溫計和露點溫度計,依據本發明方法的實施例,若是某一觀測點的氣象參數資料的單位時間變化量其中的至少三種超出對應的門檻值即可預測將會發生低空風切,換言之,觀測點的觀測設備20包含風速量測儀、氣壓計、氣溫計和露點溫度計其中的至少三種和三種以上的組合;在本發明的一實施例,為了確保觀測設備20觀測獲得的氣象參數資料不會 因為儀器故障而發生資料錯誤或偏差的問題,任一個觀測點的同一種觀測設備20可以同時設置至少三個(例如三個氣壓計),再以同種類之三個觀測設備20經由觀測獲得的氣象參數資料取其平均值作為該觀測點的氣象參數資料;在本發明的一種實施例中,主機10所運行的程式還包含一資料檢查功能,用於排除錯誤的氣象參數資料,具體而言,同種類之三個觀測設備20經由觀測獲得的三筆氣象參數資料中若有一筆的數據與另兩筆的數據有明顯的差異,例如相差大於某一預設的誤差比例(如+5%和-5%),可視為觀測設備20發生故障,在此種情形下只取另二筆象氣參數資料的平均值作為該觀測點的氣象參數資料。 An embodiment of the observation device 20 of the system of the present invention comprises: wind speed measurement Apparatus, barometer, temperature meter and dew point thermometer, according to an embodiment of the method of the present invention, if at least three of the unit time variations of meteorological parameter data of a certain observation point exceed the corresponding threshold value, it is predicted that low air wind will occur Cut, in other words, the observation device 20 of the observation point includes at least three or a combination of three or more of an air velocity measuring instrument, a barometer, a temperature meter, and a dew point thermometer; in an embodiment of the present invention, in order to ensure observation by the observation device 20 Meteorological parameters will not The problem of data errors or deviations due to instrument failure, the same observation device 20 of any observation point can be set at least three (for example, three barometers) at the same time, and then obtained by observation with three observation devices 20 of the same kind. The meteorological parameter data takes the average value as the meteorological parameter data of the observation point; in an embodiment of the present invention, the program run by the host 10 further includes a data checking function for eliminating erroneous meteorological parameter data, specifically The data of one of the three meteorological parameters obtained by the observation of the three types of observation equipment 20 of the same kind is significantly different from the data of the other two, for example, the phase difference is greater than a certain preset error ratio (such as +5%). And -5%) can be regarded as the failure of the observation device 20. In this case, only the average value of the other two image parameters is taken as the meteorological parameter data of the observation point.
接著以現有松山機場之低空風切警告系統(LLWAS)在某一觀測日D1逐時發佈低空風切警報的次數分佈圖作為參照的資料,與本發明方法於松山機場二個觀測點分別在跑道的東邊(下文簡稱為跑道R28)和跑道的西邊(下文簡稱為跑道R10)於同一觀測日D1經由觀測獲得的每秒氣象參數資料進行對照說明,說明利用本發明方法進行低空風切預測並發出警報的方式。 Then, using the low-altitude wind-cutting warning system (LLWAS) of the existing Songshan Airport, the distribution map of the low-altitude wind-cutting alarms is issued on a certain observation day D1 as the reference data, and the two methods of the method of the present invention at the Songshan Airport are respectively on the runway. The east side (hereinafter referred to as runway R28) and the west side of the runway (hereinafter referred to as runway R10) are compared with the meteorological parameters per second obtained by observation on the same observation day D1, indicating that the low-altitude wind cut prediction is issued and issued by the method of the present invention. The way the alert is made.
首先請參閱第9A圖,為現有松山機場之低空風切警告系統(LLWAS)在某一實際觀測日D1於各時段發佈低空風切警報(包含輕度風切警報-LGT、中度風切警報-MOD和強烈風切警報-SEV)的次數分佈圖(圖中縱軸以頻率-Frequency表示該時段的次數),第9B圖顯示了在各時段線發佈低空風切警報的總數統計圖(各時段中輕度、中度和強烈風切警報的總數)。由圖中的內容可以瞭解松山機場於0100-0600UTC(世界標準時間,Coordinated Universal Time)和0900-1300UTC兩段時間,低空風切警告系統 在機場發出風切警告,總計分別達196次和133次之多。在前一段時間每小時發出2-57次;在後一時段每小時發出7-115次,其中於0300-0500UTC發出輕度風切警告56次和中度風切警告113次,最為頻繁;於1000UTC,1小時之內發出風切警告,輕度、中度和強烈風切分別有9次、92次和14次,最多且強烈。 First, please refer to Figure 9A for the low-altitude wind-cutting warning system (LLWAS) of the existing Songshan Airport on a certain actual observation day D1 (including mild wind-cut warning-LGT, moderate wind-cutting alarm) - MOD and strong wind cut alarm - SEV) number distribution map (the vertical axis in the figure shows the number of times in the frequency-Frequency), and Figure 9B shows the total number of low-altitude wind-cut alarms released in each timeline (each The total number of mild, moderate, and strong wind cut alarms during the time period). From the contents of the picture, we can understand that Songshan Airport has two time periods from 0100-0600UTC ( C oordinated U niversal T ime) and 0090-1300 UTC. The low-altitude wind-cut warning system issued wind-cut warnings at the airport, totaling 196 times respectively. And 133 times. It was issued 2-57 times per hour in the previous period; 7-115 times per hour in the latter period, of which 56 times of mild wind-cutting warning and 113 times of moderate wind-cutting warning were issued at 0300-0500UTC, most frequently; 1000UTC, the wind cut warning was issued within 1 hour. The mild, moderate and strong wind cuts were 9 times, 92 times and 14 times respectively, the most and strong.
請參閱第4A~4B圖,顯示在同一觀測日D1,依據本發明方法在松山機場預設的二個觀測點(跑道R28和跑道R10)經由觀測所獲得的風速分佈圖,第4C圖則是顯示跑道R10和跑道R28在觀測日D1之各時段中風速大於20KT(knot)出現秒數之分佈圖(圖中縱軸以頻率-Frequency表示該時段的秒數)。如第4A圖和第4B圖所示,其中顯示機場跑道R10和跑道R28風速都有超過20KT之時段,與0100-0600UTC和1100-1300UTC兩個風切警報發佈的時段相當。分析0100-0600UTC鋒面前強勁西風跑道R10和跑道R28風速大於20KT,每小時出現頻率分別約為188-1103秒和135-1157秒,與機場發布低空風切警告時段每小時約為2-57次,兩者相當一致。尤其於0300-0700UTC風速大於20KT,每小時出現秒數多,風切警告也多。大雷雨發生時段(1027-1106UTC),跑道R10和跑道R28風速大於20KT發生頻率,每小時為60-69秒,而機場風切警告在1800L,1小時之內發出風切警告,輕度、中度和強烈風切警告各有9次、92次和14次,風切出現115次,次數最多且出現最強。顯示機場在鋒面前強勁西風以及大雷雨期間,風速大於20KT發生頻率與機場低空風切發生頻率有密切相關。故在此一觀測實例中,依據本發明的方法可以依據風速的歷史資料經過統計後將20KT設為風速的單位時間變化量的門檻值,當預設之觀測點的風速的單位時間變化量大於此門 檻值即可預測即將發生低空風切。 Please refer to Figures 4A-4B for the wind speed distribution obtained by observation at two observation points (runway R28 and runway R10) pre-set at Songshan Airport according to the method of the present invention on the same observation day D1, and Figure 4C is A distribution map showing the number of seconds in which the wind speed of the runway R10 and the runway R28 is greater than 20KT (knot) in each period of the observation day D1 (the vertical axis in the figure represents the number of seconds of the period in frequency-Frequency). As shown in Figures 4A and 4B, it shows that both the airport runway R10 and the runway R28 wind speeds have a time period of more than 20KT, which is equivalent to the time period when the two wind-cutting alarms of 0100-0600 UTC and 1100-1300 UTC are released. Analysis of the strong west wind track R10 and runway R28 wind speed in front of the 0100-0600UTC front is greater than 20KT, the hourly frequency is about 188-1103 seconds and 135-1157 seconds respectively, and the airport issued a low-altitude wind-cut warning period of about 2-57 times per hour. The two are quite consistent. Especially at 0300-0700UTC wind speed is greater than 20KT, there are more seconds per hour, and there are more wind-cut warnings. During the thunderstorm (1027-1106 UTC), the runway R10 and runway R28 wind speed is greater than 20KT, 60-69 seconds per hour, and the airport wind cut warning is 1800L, within one hour, the wind cut warning, mild, medium The degree and strong wind cut warnings were 9 times, 92 times and 14 times, and the wind cuts were 115 times, the most frequent and the strongest. It shows that during the strong west wind and the thunderstorm in front of the front, the frequency of wind speed greater than 20KT is closely related to the frequency of low-altitude wind cuts at the airport. Therefore, in this observation example, the method according to the present invention can set 20KT as the threshold value of the unit time change of the wind speed according to the historical data of the wind speed, and the unit time change of the wind speed of the preset observation point is greater than This door Depreciation can predict the impending low-altitude wind cut.
請參閱第5A~5B圖,顯示在觀測日D1,依據本發明方法在 松山機場於相同之二個觀測點(跑道R28和跑道R10)經由觀測所獲得的氣壓跳動分佈圖(即為氣壓的單位時間變化量分佈圖),第5C圖顯示跑道R10和跑道R28氣壓跳動數值(即為氣壓的單位時間變化量)超過二個標準差範圍的發生時段及其頻率分佈圖(圖中縱軸以頻率-Frequency表示該時段氣壓跳動數值超過二個標準差發生的次數)。如第5A~5B圖所示,圖中跑道R10(跑道R28)的氣壓跳動集中在0.181~-0.172hPa(0.177~-0.191hPa)間之範圍,也即氣壓跳動95%數值分佈在距離平均值有2個標準差之內。而跑道R10(跑道R28)的氣壓跳動大於0.181hPa和小於-0.172hPa(大於0.177hPa和小於-0.191hPa)間之範圍,也即氣壓跳動超過2個標準差,發生頻率之主要時段與0100-0700UTC和0900-1300UTC兩個風切時段發生之時段相當。如第5C圖所示其中於0200-0600UTC時段,R10和R28兩者合計頻率為1-15次,而同一時段低空風切警告次數則為2-57次。唯一在0100UTC時段R10和R28氣壓跳動沒有超過2個標準差,而低空風切警告則發布5次警告;在0700-0800UTC R10和R28氣壓跳動超過2個標準差發生1-6次,而低空風切系統卻沒有發布警告。在1000-1100UTC時段R10和R28氣壓跳動超過2個標準差,發生3-14次,同一時段低空風切警告次數則為11-115次,其中在機場大雷雨發生時段(1027-1106UTC),氣壓跳動幅度很大和頻率很多,低空風切警告次數有高達115次之多。唯一在0900UTC時段R10和R28氣壓跳動超過2個標準差,而低空風切警告則發布7次警告;在1200UTC時段R10和R28氣壓跳動超過2個標準差發生14次,而低空風切系統卻沒有發布警告。顯示機場氣壓跳動超 過2個標準差,其發生頻率與低空風切發生頻率有密切相關,尤其在大雷雨時段兩者相關更為密切。故在此一觀測實例中,依據本發明的方法可以依據氣壓跳動值的歷史資料計算後,將氣壓的單位時間變化量的二個標準差設為氣壓的單位時間變化量的門檻值,當預設之觀測點的氣壓的單位時間變化量大於此門檻值即可預測即將發生低空風切。 Please refer to Figures 5A-5B for the observation day D1, according to the method of the present invention. The air pressure jitter distribution map obtained by observation at Songshan Airport at the same two observation points (runway R28 and runway R10) (ie, the unit time change distribution map of air pressure), and the 5C chart shows the air pressure jump value of runway R10 and runway R28. (that is, the amount of change in pressure per unit time) exceeds the occurrence period of the two standard deviation ranges and its frequency distribution map (the vertical axis in the figure shows the number of times the air pressure jitter value exceeds two standard deviations in this period by frequency-Frequency). As shown in Figures 5A-5B, the air pressure jump of runway R10 (runway R28) is concentrated in the range between 0.181~-0.172hPa (0.177~-0.191hPa), that is, 95% of the air pressure is distributed in the distance average. There are 2 standard deviations. The runout of runway R10 (runway R28) is greater than the range between 0.181hPa and less than -0.172hPa (greater than 0.177hPa and less than -0.191hPa), that is, the air pressure beats more than 2 standard deviations, the main frequency of occurrence frequency and 0100- The 0700UTC and 0090-1300UTC periods are equivalent to the two wind cut periods. As shown in Fig. 5C, in the period of 0200-0600 UTC, the total frequency of R10 and R28 is 1-15 times, and the number of low-altitude wind-cut warnings in the same period is 2-57 times. The only time during the 0100UTC period is that the R10 and R28 air bounces do not exceed 2 standard deviations, while the low-altitude wind cut warnings issue 5 warnings; at 0700-0800 UTC R10 and R28 air bounces more than 2 standard deviations occur 1-6 times, while the low-altitude wind The system was not released with warnings. During 1000-1100 UTC period, R10 and R28 air pressure beat more than 2 standard deviations, 3-14 times occur, and the number of low-altitude wind-cut warnings in the same period is 11-115 times, including the airport thunderstorm occurrence period (1027-1106 UTC), air pressure. The beating range is large and the frequency is high, and the number of low-altitude wind-cutting warnings is as high as 115 times. The only R10 and R28 air pressure beats more than 2 standard deviations during the 0900 UTC period, while the low altitude wind cut warning issued 7 warnings; during the 1200 UTC period, the R10 and R28 air pressure beats more than 2 standard deviations 14 times, while the low altitude air cut system does not. Issue a warning. Show airport air bounce After two standard deviations, the frequency of occurrence is closely related to the frequency of low-altitude wind-cutting, especially in the case of heavy thunderstorms. Therefore, in this observation example, the method according to the present invention can calculate the threshold value of the unit time change amount of the air pressure based on the historical data of the air pressure jump value, and set the threshold value of the unit time change amount of the air pressure as the threshold value. The unit time change of the air pressure at the observation point is greater than the threshold value to predict the impending low-altitude wind cut.
請參閱第6A圖,顯示在觀測日D1,依據本發明方法在松山 機場於相同之二個觀測點(跑道R28和跑道R10)經由觀測所獲得的氣壓,經由本發明的主機10計算後獲得的跑道R28和跑道R10的相對氣壓梯度的單位時間變化量分佈圖,所述的氣壓梯度是指二個觀測點在同一時間的氣壓差值,第6A圖顯示的氣壓梯度表示以在跑道R10觀測獲得的氣壓值減去在跑道R28觀測獲得的氣壓值,第6B圖,顯示氣壓梯度跳動(即為氣壓梯度的單位時間變化量)超過2個標準差的發生時段及次數分佈圖(圖中縱軸以頻率-Frequency表示該時段氣壓梯度跳動數值超過二個標準差發生的次數)。如第6A圖所示,圖中氣壓梯度變動集中在0.090~0.479hPa之範圍,也即95%數值分佈在距離平均值有2個標準差之內。而其氣壓梯度跳動大於0.479hPa和小於0.090hPa,也即氣壓梯度跳動超過2個標準差,其發生頻率之主要時段與0100-0700UTC和0900-1300UTC兩個風切時段發生之時段相當(如第6B圖所示)。其中於0300-0600UTC時段,氣壓梯度跳動超過2個標準差有180-360次,而同一時段低空風切警告次數則為2-57次。唯一在0100-0200UTC時段氣壓梯度跳動沒有超過2個標準差,而低空風切警告則發布5-20次警告;在0700UTC氣壓梯度跳動超過2個標準差發生360次,而低空風切系統卻沒有發布警告。在1000-1100UTC時段氣壓梯度跳動超過2個標準差發生180-720 次,同一時段低空風切警告次數則為11-115次,其中在機場大雷雨發生時段(1027-1106UTC),氣壓梯度跳動幅度大和頻率多,低空風切警告次數有高達115次之多。唯一在0900UTC時段氣壓梯度跳動沒有超過2個標準差,而低空風切警告則發布7次警告;在1200UTC時氣壓梯度跳動超過2個標準差發生1438次,而低空風切系統卻沒有發布警告。顯示機場氣壓梯度跳動超過2個標準差,其發生頻率與低空風切發生頻率有密切相關,尤其在大雷雨兩者氣壓梯度跳動更大且頻率更高,相同地,低空風切已也更強,頻率也更高。因此在此一觀測實例中,依據本發明的方法可以依據氣壓梯度的單位時間變化量的歷史資料計算後將二個標準差設為氣壓梯度的單位時間變化量的門檻值,當二預設之觀測點之間的氣壓梯度的單位時間變化量大於此門檻值即可預測即將發生低空風切。 Please refer to Figure 6A, which shows the observation day D1, according to the method of the present invention in Songshan The unit time variation distribution map of the relative pressure gradient of the runway R28 and the runway R10 obtained by the airport at the same two observation points (runway R28 and runway R10) via the observation of the host 10 of the present invention. The air pressure gradient refers to the air pressure difference between the two observation points at the same time. The air pressure gradient shown in Fig. 6A represents the air pressure value obtained by observing the runway R10 minus the air pressure value observed on the runway R28, Fig. 6B. Shows the occurrence period and frequency distribution of the pressure gradient jitter (that is, the unit time variation of the pressure gradient) exceeding 2 standard deviations (the vertical axis in the figure shows the occurrence of the pressure gradient jitter value exceeding two standard deviations in this period by frequency-Frequency frequency). As shown in Fig. 6A, the pressure gradient variation in the figure is concentrated in the range of 0.090 to 0.479 hPa, that is, the 95% numerical value distribution is within 2 standard deviations from the average value. The pressure gradient jitter is greater than 0.479hPa and less than 0.090hPa, that is, the pressure gradient beats more than 2 standard deviations, and the main period of occurrence frequency is equivalent to the period of the two wind cut periods of 0100-0700UTC and 0090-1300UTC (such as Figure 6B shows). In the period of 0300-0600 UTC, the pressure gradient jumps more than 2 standard deviations 180-360 times, while the low-altitude wind-cut warnings in the same period is 2-57 times. The only pressure gradient in the 0100-0200UTC period does not exceed 2 standard deviations, while the low-altitude wind-cut warning releases 5-20 warnings; in the 0700UTC pressure gradient, more than 2 standard deviations occur 360 times, while the low-altitude wind-cutting system does not. Issue a warning. At 1000-1100 UTC, the pressure gradient jumps more than 2 standard deviations and occurs 180-720 The number of low-altitude wind-cutting warnings in the same period was 11-115 times. In the event of a thunderstorm at the airport (1027-1106 UTC), the pressure gradient jumped at a large amplitude and frequency, and the number of low-altitude wind-cut warnings was as high as 115 times. The only pressure gradient jump in the 0900UTC period did not exceed 2 standard deviations, while the low-altitude wind-cut warning issued 7 warnings; at 1200UTC, the pressure gradient jumped more than 2 standard deviations 1438 times, while the low-altitude wind-cutting system did not issue a warning. It shows that the atmospheric pressure gradient of the airport exceeds 2 standard deviations, and its frequency is closely related to the frequency of low-altitude wind-cutting. Especially in the case of large thunderstorms, the pressure gradients are larger and the frequency is higher. Similarly, the low-altitude wind cutting is also stronger. The frequency is also higher. Therefore, in this observation example, the method according to the present invention can calculate the threshold value of the unit time variation of the air pressure gradient according to the historical data of the unit time variation of the air pressure gradient, when the second preset is The unit time variation of the pressure gradient between the observation points is greater than this threshold to predict the impending low-altitude wind cut.
請參閱第7A~7B圖,顯示在觀測日D1,依據本發明方法在 松山機場於相同之二個觀測點(跑道R10和跑道R28)經由觀測所獲得的氣溫跳動分佈圖(即為氣溫的單位時間變化量分佈圖),第7C圖顯示跑道R10和跑道R28氣溫跳動數值(即為氣溫的單位時間變化量)超過二個標準差範圍的發生時段及其頻率分佈圖(圖中縱軸以頻率-Frequency表示該時段氣溫跳動數值超過二個標準差發生的次數)。如第7A~7B圖所示,跑道R10和跑道R28的氣溫跳動集中在-0.201~0.195℃(-0.238~0.232℃)間之範圍,也即氣溫跳動95%數值分佈在距離平均值有2個標準差之內。而跑道R10(跑道R28)氣溫跳動在-0.201~0.195℃(-0.238~0.232℃)範圍之外,也即氣溫跳動超過2個標準差,其發生頻率之主要時段與0100-0700UTC和0900-1300UTC兩個風切時段發生之時段相當。其中於0100-0600UTC時段,跑道R10和跑道R28兩者合計 頻率為2-15次,而同一時段低空風切警告次數則為2-57次。唯一在0700UTC跑道R10和跑道R28氣溫跳動超過2個標準差發生3次,而低空風切系統卻沒有發布警告。另外,在1000-1100UTC時段跑道R10和跑道R28氣溫跳動超過2個標準差,發生1-3次,同一時段低空風切警告次數則為11-115次,其中在機場大雷雨發生時段(1027-1106UTC),氣溫跳動幅度很大(跑道R28在1038UTC跳動-0.4℃、跑道R10在1034UTC跳動-0.5℃),低空風切警告次數有高達115次之多。唯一在0900UTC時段跑道R10和跑道R28氣溫跳動沒有超過2個標準差,而低空風切警告則發布7次警告。顯示機場在鋒面前強勁西風和雷雨時段,氣溫跳動超過2個標準差,其發生頻率與低空風切發生頻率有密切相關,尤其在大雷雨時段兩者相關更為密切。故在此一觀測實例中,依據本發明的方法可以依據氣溫的單位時間變化量的歷史資料計算後將氣溫的單位時間變化量的二個標準差設為氣溫的單位時間變化量的門檻值,當預設之觀測點的氣溫的單位時間變化量大於此門檻值即可預測即將發生低空風切。 Please refer to Figures 7A-7B for the observation day D1, according to the method of the present invention. The temperature jitter profile obtained by the observation of Songshan Airport at the same two observation points (runway R10 and runway R28) (ie, the distribution of temperature per unit time), and the 7C chart shows the runout value of runway R10 and runway R28. (that is, the amount of change in temperature per unit time) exceeds the occurrence period of the two standard deviation ranges and its frequency distribution map (the vertical axis in the figure shows the number of times the temperature jitter value exceeds two standard deviations in this period by frequency-Frequency). As shown in Figures 7A-7B, the temperature jitter of runway R10 and runway R28 is concentrated between -0.201~0.195°C (-0.238~0.232°C), that is, the temperature jumps 95%. The value is distributed in the distance average. Within the standard deviation. The runway R10 (runway R28) temperature jump is outside the range of -0.201~0.195 °C (-0.238~0.232 °C), that is, the temperature jumps more than 2 standard deviations, the main period of its frequency is 0100-0700UTC and 0090-1300UTC The time period during which the two wind cut periods occur is equivalent. In the period of 0100-0600 UTC, the total of runway R10 and runway R28 The frequency is 2-15 times, and the number of low-altitude wind-cut warnings in the same period is 2-57 times. The only time at 0700UTC runway R10 and runway R28 temperature jumped more than 2 standard deviations three times, while the low-altitude wind cutting system did not issue a warning. In addition, during the 1000-1100 UTC period, the runway R10 and runway R28 temperature jumped more than 2 standard deviations, 1-3 times occurred, and the number of low-altitude wind-cut warnings in the same period was 11-115 times, which occurred during the airport thunderstorm (1027- 1106UTC), the temperature is very large (runway R28 is at 1038UTC -0.4°C, runway R10 is at 1034UTC -0.5°C), and the number of low-altitude wind-cut warnings is as high as 115 times. The only runway R10 and runway R28 temperature jitter did not exceed 2 standard deviations during the 0900 UTC period, while the low altitude wind cut warning issued 7 warnings. It shows that the airport has strong west wind and thunderstorm time in front of the front. The temperature jumps more than 2 standard deviations, and its frequency is closely related to the frequency of low-altitude wind cuts, especially in the case of heavy thunderstorms. Therefore, in this observation example, the method according to the present invention can calculate the threshold value of the unit time variation of the temperature as the threshold value of the temperature per unit time change according to the historical data of the unit time variation of the temperature. When the unit time change of the temperature of the preset observation point is greater than the threshold value, the upcoming low-altitude wind cut can be predicted.
請參閱第8A~8B圖,顯示在觀測日D1,依據本發明方法在松山機場於相同之二個觀測點(跑道R10和跑道R28)經由觀測所獲得的露點溫度跳動分佈圖(即為露點溫度的單位時間變化量分佈圖),第8C圖顯示跑道R10和跑道R28露點溫度跳動數值(即為露點溫度的單位時間變化量)超過二個標準差範圍的發生時段及其頻率分佈圖(圖中縱軸以頻率-Frequency表示該時段露點溫度跳動數值超過二個標準差發生的次數)。如第8A~8B圖所示,跑道R10和跑道R28的露點溫度跳動集中在-0.633~0.633℃(-0.468~0.432℃)間之範圍,也即露點溫度跳動95%數值分佈在距離平均值有 2個標準差之內。而跑道R10(跑道R28)露點溫度跳動在-0.633~0.633℃(-0.468~0.432℃)範圍之外,也即露點溫度跳動超過2個標準差,其發生頻率之主要時段與0100-0700UTC和0900-1300UTC兩個風切時段發生之時段相當。其中於0100-0600UTC時段,跑道R10和跑道R28兩者合計頻率為2-21次,而同一時段低空風切警告次數則為2-57次。唯一在0700UTC,跑道R10和跑道R28露點溫度跳動超過2個標準差,發生1次,而低空風切系統則沒有發布警告。另外,在1100UTC時段,跑道R28露點溫度跳動超過2個標準差,發生1次,同一時段低空風切警告次數則為11次,其中在機場大雷雨發生時段(1027-1106UTC),跑道R28在1034UTC和1035UTC露點溫度跳動幅度很大,分別為-1.0℃和0.7℃。唯一在0900-1000UTC時段跑道R10和跑道R28露點溫度跳動都沒有超過2個標準差,而低空風切警告則發布7-115次警告。顯示機場在鋒面前強勁西風和雷雨時段,露點溫度跳動超過2個標準差,其發生頻率與低空風切發生頻率有密切相關,尤其在大雷雨時段兩者相關更為密切。故在此一觀測實例中,依據本發明的方法可以依據露點溫度的單位時間變化量的歷史資料計算後,將露點溫度的單位時間變化量的二個標準差設為露點溫度的單位時間變化量的門檻值,當預設之觀測點的露點溫度的單位時間變化量大於此門檻值即可預測即將發生低空風切。 Please refer to Figures 8A-8B for the dew point temperature jitter distribution obtained by observation at the same two observation points (runway R10 and runway R28) at Songshan Airport according to the method of the present invention (ie, the dew point temperature). The unit time variation distribution map), Figure 8C shows the runway R10 and runway R28 dew point temperature jitter value (that is, the unit time variation of the dew point temperature) over the two standard deviation range of the occurrence period and its frequency distribution map (in the figure) The vertical axis represents the number of times the dew point temperature jitter value exceeds two standard deviations in this period by frequency-Frequency. As shown in Figures 8A-8B, the dew point temperature runout of runway R10 and runway R28 is concentrated between -0.633 and 0.633 °C (-0.468~0.432 °C), that is, the dew point temperature jumps 95% of the value distribution in the distance average. Within 2 standard deviations. The runway temperature of runway R10 (runway R28) is outside the range of -0.633~0.633°C (-0.468~0.432°C), that is, the dew point temperature jumps more than 2 standard deviations, and the main period of frequency is 0100-0700UTC and 0900. -1300UTC The period of the two wind cut periods is equivalent. In the period of 0100-0600 UTC, the total frequency of runway R10 and runway R28 is 2-21 times, while the number of low-altitude wind-cut warnings in the same period is 2-57 times. The only time at 0700 UTC, Runway R10 and Runway R28 dew point temperature jumped more than 2 standard deviations, occurred once, while the low-altitude wind cut system did not issue a warning. In addition, during the 1100 UTC period, the runway R28 dew point temperature jumped more than 2 standard deviations, occurred once, and the number of low-altitude wind-cut warnings in the same period was 11 times, including the airport thunderstorm occurrence period (1027-1106 UTC) and the runway R28 at 1034 UTC. And the 1035UTC dew point temperature jumps a lot, -1.0 ° C and 0.7 ° C. The only runway R10 and runway R28 dew point temperature jumps did not exceed 2 standard deviations during the 0900-1000 UTC period, while the low-altitude wind-cut warning issued 7-115 warnings. It shows that the airport has strong west wind and thunderstorm time in front of the front. The dew point temperature beats more than 2 standard deviations, and its frequency is closely related to the frequency of low-altitude wind cuts, especially in the case of heavy thunderstorms. Therefore, in this observation example, the method according to the present invention can calculate the two standard deviations of the unit time change amount of the dew point temperature as the unit time change amount of the dew point temperature after calculating the historical data of the unit time change amount of the dew point temperature. The threshold value, when the unit time change of the dew point temperature of the preset observation point is greater than the threshold value, the low-altitude wind cut is predicted.
由以上的說明可以瞭解,本發明預測低空風切的方法,藉由 發現單一觀測點經由觀測所得的氣象參數資料的單位時間變化量超出對應門檻值時,即可預測即將發生低空風,且低空風切的發生位置即為該單一觀測點的位置。在本發明預測低空風切的方法一實施例,為了提升預測風切發生的可靠度與正確性,係在單一觀測點經由觀測所得的氣象參數資料 的單位時間變化量其中的至少三種超出對應的門檻值時,警告該單一觀測點的位置為風切發生位置,換言之,即是指包含風速、氣壓、氣溫、露點溫度和氣壓梯度這些氣象參數其中至少三種的單位時間變化量超出門檻值時,就能預測即將發生低空風切並對該觀測點的所在位置發出低空風切警告。 It can be understood from the above description that the present invention predicts a method of low-altitude wind cutting by It is found that when the unit time variation of the observed meteorological parameter data exceeds the corresponding threshold value, the low-altitude wind is predicted, and the position of the low-altitude wind cut is the position of the single observation point. In an embodiment of the method for predicting low-altitude wind-cutting according to the present invention, in order to improve the reliability and correctness of predicting wind-cutting, the meteorological parameter data obtained through observation at a single observation point is When at least three of the unit time variations exceed the corresponding threshold value, the position of the single observation point is warned that the wind cut occurs, in other words, the meteorological parameters including wind speed, air pressure, air temperature, dew point temperature, and air pressure gradient. When at least three of the unit time changes exceed the threshold, it is possible to predict the impending low-altitude wind cut and issue a low-altitude wind-cut warning to the location of the observation point.
如第10圖所示,在本發明預測低空風切的方法的另一實施 例,其中預測風切發生位置的步驟包含:相鄰的二觀測點偵測所得的氣象參數資料的單位時間變化量其中的至少三種超出對應的門檻值時,警告該二觀測點之間的區域A1為低空風切發生位置。 As shown in FIG. 10, another implementation of the method for predicting low-altitude wind cutting in the present invention For example, the step of predicting the position of the wind cut comprises: warning at least three of the unit time changes of the meteorological parameter data detected by the adjacent two observation points beyond the corresponding threshold value, and warning the area between the two observation points A1 is the position where the low-altitude wind cut occurs.
如第11圖所示,在本發明預測低空風切的方法的另一實施 例,其中預測風切發生位置的步驟包含:相鄰的三觀測點偵測所得的氣象參數資料的單位時間變化量其中的至少三種超出對應的門檻值時,警告該三觀測點所圍成的三角形區域A2為低空風切發生位置。 Another embodiment of the method for predicting low-altitude wind cutting in the present invention is shown in FIG. For example, the step of predicting the position of the wind cut comprises: when at least three of the unit time changes of the meteorological parameter data detected by the adjacent three observation points exceed the corresponding threshold value, warning the three observation points to be enclosed The triangular area A2 is a low-altitude wind-cutting position.
由以上的實施內容可以瞭解,本發明提出的低空風切警告系 統及預測低空風切的方法,只要發現某一觀測點的氣象參數資料的單位時間變化量其中的至少三種超出對應的門檻值就能預測該觀測點的所在位置即將發生低空風切,換言之,透過本發明提出的方法及警告系統,即使只在機場跑道的兩端、機場跑道的中段位置和機場跑道兩端向外延伸3海浬範圍內的其中任一種和其組合的位置設置觀測設備20,或是仍可實現低空風切預測及警告的目的,同時能解決機場腹地不足無法架設現有低空風切警告系統(LLWAS)的問題。 It can be understood from the above implementation that the low-altitude wind-cut warning system proposed by the present invention The method of predicting low-altitude wind cuts, as long as at least three of the unit time changes of the meteorological parameter data of a certain observation point are found to exceed the corresponding threshold value, it can be predicted that the position of the observation point is about to be low-altitude, in other words, Through the method and the warning system proposed by the present invention, the observation device 20 is disposed even at only the two ends of the airport runway, the middle position of the airport runway, and the position of any one of the three sea otters extending outward at both ends of the airport runway. Or, the goal of low-altitude wind cut prediction and warning can still be achieved, and it can solve the problem that the existing low-altitude wind-cut warning system (LLWAS) cannot be set up in the airport hinterland.
雖然本發明已透過上述之實施例揭露如上,然其並非用以限 定本發明,任何熟習相像技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之請求項所界定者為準。 Although the present invention has been disclosed above through the above embodiments, it is not intended to be limiting. In the present invention, any skilled person skilled in the art will be able to make some modifications and refinements without departing from the spirit and scope of the invention, and therefore the scope of the invention shall be determined by the scope of the appended claims. .
S1‧‧‧在選定的觀測點設置觀測設備 S1‧‧‧Set observation equipment at selected observation points
S2‧‧‧以一預設的取樣頻率偵測觀測點的氣象參數資料,所述氣象參數資料包含:風速、氣壓、氣溫和露點溫度其中的至少三種和三種以上的組合 S2‧‧‧ detects the meteorological parameter data of the observation point with a preset sampling frequency, the meteorological parameter data includes: at least three of the wind speed, air pressure, air temperature and dew point temperature, and a combination of three or more
S3‧‧‧產生各個氣象參數資料的單位時間變化量以及和所述的各個氣象參數資料的單位時間變化量對應的一門檻值 S3‧‧‧ generates a unit time change amount of each meteorological parameter data and a threshold value corresponding to the unit time change amount of each meteorological parameter data
S4‧‧‧將所述各個氣象參數資料的單位時間變化量和對應的門檻值進行比較 S4‧‧‧Compare the unit time variation of each meteorological parameter data with the corresponding threshold value
S5‧‧‧在所述氣象參數資料的單位時間變化量其中的至少三種超出對應的門檻值時發出低空風切警報 S5‧‧‧A low-altitude wind-cutting alarm is issued when at least three of the unit time variations of the meteorological parameter data exceed the corresponding threshold value
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103110375A TWI611198B (en) | 2014-03-19 | 2014-03-19 | Low-altitude wind-cutting warning system and method for predicting low-altitude wind cutting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103110375A TWI611198B (en) | 2014-03-19 | 2014-03-19 | Low-altitude wind-cutting warning system and method for predicting low-altitude wind cutting |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201537206A TW201537206A (en) | 2015-10-01 |
TWI611198B true TWI611198B (en) | 2018-01-11 |
Family
ID=54850859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103110375A TWI611198B (en) | 2014-03-19 | 2014-03-19 | Low-altitude wind-cutting warning system and method for predicting low-altitude wind cutting |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI611198B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12123743B2 (en) * | 2021-04-23 | 2024-10-22 | Honeywell International Inc. | Methods and systems for detecting wind shear conditions in an urban airspace |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201217826A (en) * | 2010-10-04 | 2012-05-01 | Seiko Epson Corp | Weather variation forecast information providing system and weather variation forecast information providing method |
US8234068B1 (en) * | 2009-01-15 | 2012-07-31 | Rockwell Collins, Inc. | System, module, and method of constructing a flight path used by an avionics system |
CN202676934U (en) * | 2012-07-03 | 2013-01-16 | 潍坊大禹水文科技有限公司 | Full-automatic meteorological observation system |
CN101881842B (en) * | 2010-04-02 | 2013-10-30 | 刘文祥 | Network weather |
-
2014
- 2014-03-19 TW TW103110375A patent/TWI611198B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8234068B1 (en) * | 2009-01-15 | 2012-07-31 | Rockwell Collins, Inc. | System, module, and method of constructing a flight path used by an avionics system |
CN101881842B (en) * | 2010-04-02 | 2013-10-30 | 刘文祥 | Network weather |
TW201217826A (en) * | 2010-10-04 | 2012-05-01 | Seiko Epson Corp | Weather variation forecast information providing system and weather variation forecast information providing method |
CN202676934U (en) * | 2012-07-03 | 2013-01-16 | 潍坊大禹水文科技有限公司 | Full-automatic meteorological observation system |
Also Published As
Publication number | Publication date |
---|---|
TW201537206A (en) | 2015-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9612328B1 (en) | Weather radar system and method for estimating vertically integrated liquid content | |
US7868811B1 (en) | Weather radar system and method using data from a lightning sensor | |
US8089391B1 (en) | Weather radar system and method using data from a lightning sensor | |
US9691288B2 (en) | System and method for sending in-flight weather alerts | |
EP3070501B1 (en) | Prediction of ice crystal presence in a volume of airspace | |
US7383131B1 (en) | Airborne volcanic ash cloud and eruption detection system and method | |
US7389164B1 (en) | Systems and methods for automatic detection of QFE operations | |
EP0938688B1 (en) | Frozen precipitation accumulation alert system | |
US9244166B1 (en) | System and method for ice detection | |
EP2431765B1 (en) | Systems and methods for remote detection of volcanic plumes using satellite signals | |
JP2013054005A (en) | Weather variation information providing system, weather variation information providing method, weather variation information providing program and recording medium | |
Hon et al. | Application of LIDAR‐derived eddy dissipation rate profiles in low‐level wind shear and turbulence alerts at H ong K ong I nternational A irport | |
US11181665B2 (en) | Systems and methods for monitoring updrafts in clouds | |
US20130328715A1 (en) | Millimeter wave radar system for and method of weather detection | |
US9846230B1 (en) | System and method for ice detection | |
US9581727B1 (en) | Severe weather situational awareness system and related methods | |
US7761197B2 (en) | Method and device for detecting air turbulence in the environment of an aircraft | |
TWI678549B (en) | Method and system for weather observation based on mobile electronic device | |
Buzdugan et al. | A comparative study of sodar, lidar wind measurements and aircraft derived wind observations | |
US9612333B2 (en) | System for sharing atmospheric data | |
Politovich et al. | The Juneau terrain-induced turbulence alert system | |
TWI611198B (en) | Low-altitude wind-cutting warning system and method for predicting low-altitude wind cutting | |
CN105891078B (en) | Sand devil sand dust mass concentration quantitative inversion evaluation method based on wind profile radar | |
Mott et al. | Atmospheric pressure calibration to improve accuracy of transponder-based aircraft operations counting technology | |
Hon et al. | Terrain-induced turbulence intensity during tropical cyclone passage as determined from airborne, ground-based, and remote sensing sources |