[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI601706B - PNbZT強介電體薄膜之製造方法 - Google Patents

PNbZT強介電體薄膜之製造方法 Download PDF

Info

Publication number
TWI601706B
TWI601706B TW103105197A TW103105197A TWI601706B TW I601706 B TWI601706 B TW I601706B TW 103105197 A TW103105197 A TW 103105197A TW 103105197 A TW103105197 A TW 103105197A TW I601706 B TWI601706 B TW I601706B
Authority
TW
Taiwan
Prior art keywords
thin film
ferroelectric thin
pnbzt
film
composition
Prior art date
Application number
TW103105197A
Other languages
English (en)
Other versions
TW201446701A (zh
Inventor
土井利浩
桜井英章
曽山信幸
Original Assignee
三菱綜合材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱綜合材料股份有限公司 filed Critical 三菱綜合材料股份有限公司
Publication of TW201446701A publication Critical patent/TW201446701A/zh
Application granted granted Critical
Publication of TWI601706B publication Critical patent/TWI601706B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • B05D1/38Successively applying liquids or other fluent materials, e.g. without intermediate treatment with intermediate treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • H01L28/56
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Formation Of Insulating Films (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

PNbZT強介電體薄膜之製造方法
本發明係有關PNbZT強介電體薄膜之製造方法。其詳細為,本發明係有關藉由溶膠凝膠法形成使用於薄膜電容器之介電體層等的PNbZT強介電體薄膜之方法。更詳細為,係有關Nb未同時摻混矽等(以下稱為共摻混),而係以高濃度摻混於PZT強介電體薄膜中,而大幅提升電容率等之強介電體特性之PNbZT強介電體薄膜之製造方法等。
本案係基於2013年3月26日所申請的日本國專利申請第2013-063179號主張優先權,且授用其內容。
例如,藉由溶膠凝膠法等之化學溶液法(Chemical Solution Deposition,CSD法)形成由鈦酸鋯酸鉛(以下稱為「PZT」)等之鈣鈦礦型氧化物所形成的PZT系強介電體薄膜時,已知除了Pb等之形成主原料的金屬元素以外摻混施體原子而形成時,可提升電容率等之強介電體特性等(例如參考Jian Zhong et al.“Effect of Nb Doping on Highly{100}-Textured PZT Films Grown on CSD-Prepared PbTiO3 Seed Layers”,Integrated Ferroelectrics。具體上係採用構成PZT系強介電體薄膜的Pb、Ti、Zr原子等之中,A部位原子之部分Pb被三價鑭或鉍部分取代的方法,或B部位原子之Ti或Zr被五價Nb(鈮)或W(鎢)部分取代的方法等。PZT添加少量鑭之PLZT等也為其一例。採用該等方法之先前技術如所揭示的,介電體層係使用以Pb(ZrxTiyMz)O3(式中M為由Nb、Ta、V中所選出的至少一種,x+y+z=1)之組成式表示的介電體膜之電容器及其製造方法等(例如參考特開2005-72474號公報(請求項1~4、段落[0008]、段落[0061])。即,特開2005-72474號公報所揭示之方法中,係摻混Nb原子、Ta原子或V原子而形成介電體膜。
又,利用溶膠凝膠法形成強介電體薄膜時係與先前合成陶瓷相同,藉由焙燒等之熱平衡步驟進行。經由熱平衡步驟時,為了使化合物中之電荷保持中性,需添加大量價數不同之原子,結果會析出異物而有無法以單相得到相的化合物之缺點。因此使用溶膠凝膠法形成強介電體薄膜時,例如PZT系強介電體薄膜摻混五價Nb等時,其摻混量需受限。為了克服該問題且可大量摻混,先前合成陶瓷時係採用共摻混受體子及矽之方法。如上述特開 2005-72474號公報所揭示,既使使用溶膠凝膠法形成強介電體薄膜,同樣地可採用混合矽等之燒結助劑的方法。但共摻混該類Si原子等時,無法充分引出電容率等之強介電體特性。又,“Effect of Nb Doping on Highly{100}-Textured PZT Films Grown on CSD-Prepared PbTiO3 Seed Layers”所記載的以4原子%之較高濃度摻混Nb而形成的強介電體薄膜中,因添加比例為4原子%之Nb的強介電體薄膜比較添加比例為3原子%之強介電體薄膜時,具有較低之介電係數、壓電定數的特性,故幾乎無法得到摻混高濃度之Nb的效果。推斷其因為,既使為了以熱平衡步驟成膜而使原料摻混高濃度之Nb,成膜後之薄膜中也無法使Nb充分混入PZT中。即,“Effect of Nb Doping on Highly{100}-Textured PZT Films Grown on CSD-Prepared PbTiO3 Seed Layers”中,未揭示藉由摻混高濃度之Nb以提升強介電體薄膜之特性的技術。
本發明之目的為,提供PZT系強介電體薄膜未同時摻混矽等,而係摻混高濃度之Nb,可大幅提升電容率等之強介電體特性的PNbZT強介電體薄膜之形成方法。
本發明之第1觀點為一種PNbZT強介電體薄膜之製造方法,其特徵為,藉由將形成由不含Nb之鈦酸鋯酸鉛(PZT)系複合鈣鈦礦膜所形成的強介電體薄膜用之 組成物,塗佈於形成於基板上之底層電極上,煅燒後焙燒進行結晶化而形成厚45~90nm之結晶化促進層後,藉由將形成由B部位原子(Zr、Ti)之合計100原子%中含有4~10原子%之Nb的鈦酸鋯鈮酸鉛(PNbZT)系複合鈣鈦礦膜所形成之強介電體薄膜用的組成物,塗佈於上述所形成的結晶化促進層上,將該塗膜煅燒後焙燒進行結晶化,而於上述底層電極上形成PNbZT強介電體薄膜。
本發明之第2觀點為一種複合電子構件,其為具有藉由第1觀點之方法所形成的PNbZT強介電體薄膜之薄膜電容器、電容器、IPD、DRAM儲存器用電容器、層合電容器、電晶體之閘絕緣體、不揮發性儲存器、焦電型紅外線檢驗元件、壓電元件、電氣光學元件、作動器、共振器、超音波馬達、電氣開關、光學開關或LC雜訊濾器元件。
本發明之第1觀點的PNbZT強介電體薄膜之製造方法中,形成於基板上之底層電極上於塗佈形成PNbZT強介電體薄膜用的組成物之前,預先形成具有一定膜厚之作為結晶化促進層用的由不含Nb之鈦酸鋯酸鉛(PZT)複合鈣鈦礦膜所形成的強介電體薄膜。藉此可如先前般無需共摻混Si原子等下摻混Nb,且以高濃度摻混,故可形成大幅提升電容率等之強介電體特性的PNbZT強介電體薄膜。又,可減少漏電流。
本發明之第2觀點之方法所製造的薄膜電容器等為,因備有具有非常優良的電容率等之強介電體特性的由上述本發明之製造方法所得的PNbZT強介電體薄膜作為介電體層等用,故可得優良電氣特性及壽命信賴性。
10‧‧‧基板
11‧‧‧底層電極
12‧‧‧結晶化促進層
13a‧‧‧PNbZT之塗膜
圖1為,表示本發明之PNbZT強介電體薄膜的製造方法一實施形態中一步驟之剖面模式圖。
圖2為,表示本發明之製造方法一實施形態所得的PNbZT強介電體薄膜之剖面模式圖。
圖3為,表示實施例1-1的XRD圖型之圖表。
圖4為,以SEM(Scanning Electron Microscope,掃描型電子顯微鏡)觀察實施例1-1所得的PNbZT強介電體薄膜之表面時的照片圖。
圖5為,以SEM觀察比較例2-2所得的PNbZT強介電體薄膜之表面時的照片圖。
較佳之實施態樣
下面將基於圖面說明實施本發明之形態。
本實施形態為,例如使用於薄膜電容器等之介電體層的PZT系強介電體薄膜中,特別是以Nb作為施體原子摻混於PZT強介電體薄膜而得的PNbZT強介電體 薄膜之形成方法。本實施形態之形成方法如圖1、圖2所示,塗佈形成PNbZT強介電體薄膜13用的組成物之前,係於形成於基板10上之底層電極11上,形成具有一定膜厚之作為結晶化促進層12用的由不含Nb之鈦酸鋯酸鉛(PZT)複合鈣鈦礦膜所形成的強介電體薄膜(以下稱為PZT強介電體薄膜)。
結晶化促進層12,即PZT強介電體薄膜形成用之組成物中,作為構成形成薄膜後具有鈣鈦礦構造之複合金屬氧化物用的原料用之PZT先驅物的含有比例為,可賦予所希望之金屬原子比。具體上較佳之比例為,以一般式:PbyZr1-xTixO3表示時可得符合x為0.4≦x≦0.6、y為1.0≦y≦1.25之金屬原子比。又,可形成PZT添加La元素之PLaZT或添加Mn元素之PMnZT等作為結晶化促進層12用。
PZT先驅物較佳為,介有氧或氮原子鍵結Pb、La、Zr或Ti等之各金屬元素與有機基所得的化合物。例如金屬烷氧化物、金屬二元醇錯合物、金屬三元醇錯合物、金屬羧酸鹽、金屬β-二酮基錯合物、金屬β-二酮酯錯合物、金屬β-亞胺基酮錯合物及金屬胺基錯合物所成群中所選出之1種或2種以上。特佳之化合物為,金屬烷氧化物、其部分水解物、有機酸鹽。
具體之Pb化合物、La化合物如,乙酸鉛:Pb(OAc)2、乙酸鑭:La(OAc)3等之乙酸鹽,或鉛二異丙氧化物:Pb(OiPr)2、鑭三異丙氧化物:La(OiPr)3等之烷 氧化物。Ti化合物如,鈦四乙氧化物:Ti(OEt)4、鈦四異丙氧化物:Ti(OiPr)4、鈦四n-丁氧化物:Ti(OnBu)4、鈦四異丁氧化物:Ti(OiBu)4、鈦四t-丁氧化物:Ti(OtBu)4、鈦二甲氧基二異丙氧化物:Ti(OMe)2(OiPr)2等之烷氧化物。Zr化合物較佳為,與上述Ti化合物相同之烷氧化物類。金屬烷氧化物可直接使用,但為了促進分解可使用其部分水解物。又,Mn化合物如,乙酸錳、2-乙基己酸錳或環烷酸錳等。
調製上述組成物時,係將該等原料溶解於適當溶劑,調製為適合塗佈之濃度。溶劑可使用羧酸、醇(例如乙醇、1-丁醇、二醇以外之多價醇)、酯、酮類(例如丙酮、甲基乙基酮)、醚類(例如二甲基醚、二乙基醚)、環鏈烷類(例如環己烷、環己醇)、芳香族系(例如苯、甲苯、二甲苯)、其他之四氫呋喃等,或使用該等2種以上之混合溶劑。其中就蒸發速度與溶解性之觀點,特佳為1-丁醇、乙醇或丙二醇。
具體上羧酸較佳為使用n-丁酸、α-甲基丁酸、i-戊酸、2-乙基丁酸、2,2-二甲基丁酸、3,3-二甲基丁酸、2,3-二甲基丁酸、3-甲基戊酸、4-甲基戊酸、2-乙基戊酸、3-乙基戊酸、2,2-二甲基戊酸、3,3-二甲基戊酸、2,3-二甲基戊酸、2-乙基己酸、3-乙基己酸。
又,酯較佳為使用乙酸乙酯、乙酸丙酯、乙酸n-丁酯、乙酸sec-丁酯、乙酸tert-丁酯、乙酸異丁酯、乙酸n-戊酯、乙酸sec-戊酯、乙酸tert-戊酯、乙酸 異戊酯,醇較佳為使用1-丙醇、2-丙醇、1-丁醇、2-丁醇、異丁醇、1-戊醇、2-戊醇、2-甲基-2-戊醇、2-甲氧基乙醇。
組成物100質量%中上述PZT先驅物所佔之比例較佳為氧化物換算下為5~30質量%之範圍。未達下限值時難形成具有充分膜厚之膜,又會使生產性變差。另外超過上限值時會提高黏性,而難均勻塗佈。其中PZT先驅物之比例又以氧化物換算下10~25質量%為佳。此時氧化物換算下之比例係指,假設組成物所含之金屬元素全為氧化物時,組成物100質量%中金屬氧化物所佔之比例。
又,必要時上述組成物可添加作為安定化劑用之(安定化劑分子數)/(金屬原子數)為0.2~3程度的β-二酮類(例如乙醯丙酮、七氟丁醯三甲基乙醯甲烷、二三甲基乙醯甲烷、三氟乙醯丙酮、苯醯丙酮等)、β-酮酸類(例如乙醯乙酸、丙醯乙酸、苯醯乙酸等)、β-酮酯類(例如上述酮酸之甲酯、丙酯、丁酯等之低級烷基酯類)、含氧酸類(例如乳酸、乙醇酸、α-羥基丁酸、水楊酸等)、上述含氧酸之低級烷基酯類、羥基酮類(例如二丙酮醇、乙偶姻等)、二元醇、三元醇、高級羧酸、烷醇胺類(例如二乙醇胺、三乙醇胺、單乙醇胺)、多價胺等。其中安定化劑較佳為β-二酮類之乙醯丙酮。
調製上述組成物時,首先準備上述Pb化合物等之PZT先驅物,並採取能賦予上述所希望之金屬原子 比的量。將採取之上述PZT先驅物與溶劑投入反應容器內,較佳於氮環境中,以130~170℃之溫度回流反應0.5~5小時調製合成液。回流後較佳為藉由常壓蒸餾或減壓蒸餾之方法進行脫溶劑。又,添加乙醯丙酮等之安定化劑時,較佳於投入PZT先驅物的同時添加,於氮環境中以130~170℃之溫度回流0.5~5小時。
回流後藉由室溫下放冷,較佳使合成液冷卻至室溫~40℃之溫度。其後添加丁醇等之其他溶劑,攪拌進行稀釋,調整為使製造後組成物100質量%中PZT先驅物所佔比例為氧化物換算下10~25質量%。
又,調製組成物後較佳為利用過濾處理等去除微粒,使粒徑0.5μm以上(特別是0.3μm以上最佳為0.2μm以上)之微粒個數為組成物每1mL為50個/mL以下。組成物中粒徑0.5μm以上之微粒個數超過50個/mL時,會使長期保存安定性變差。該組成物中粒徑0.5μm以上之微粒個數又以較少為佳,特佳為30個/mL以下。
調製後處理組成物使微粒個數如上述般之方法無特別限定,例如可為下述方法。第1種方法為,使用市售孔徑為0.2μm之膜濾器,以注射器壓送之過濾法。第2種方法為,組合使用市售孔徑為0.05μm之膜濾器與加壓槽之加壓過濾法。第3種方法為,組合使用上述第2種方法所使用的濾器與溶液循環槽之循環過濾法。
既使任何方法也會因組成物之壓送壓力,而 使濾器之微粒捕捉率不同。一般已知壓力較低可提高捕捉率,特別是第1種方法、第2種方法中,為了實現使粒徑0.5μm以上之微粒個數為50個以下之條件,較佳於低壓下使組成物非常緩慢通過濾器。適合形成由此調製所得的上述結晶化促進層之市售組成物如,三菱馬特里股份公司製之PZT-E1等。
又,形成PZT強介電體薄膜所使用的組成物中,除了上述PZT先驅物外,另含有35質量%之丙二醇、14質量%之乙醯丙醇與35質量%之丁醇。又,形成PZT強介電體薄膜所使用的組成物中,較佳為含有乙醇、2-丙醇或1-辛醇。
結晶化促進層12係由,將上述組成物塗佈於底層電極11上形成塗膜(溶膠膜)後進行煅燒,再焙燒進行結晶化,即藉由溶膠凝膠法使厚為45~90nm之條件形成。塗佈法無特別限制,例如旋轉塗佈、浸漬塗佈、LSMCD(Liquid Source Misted Chemical Deposition)法或靜電噴霧法等。
基板10會因其用途等而異,例如藉由本實施形態之方法形成薄膜電容器等之介電體層時,係使用形成底層電極之矽板或藍寶石基板等的耐熱性基板。形成於基板上之底層電極係使用Pt、Ir或Ru等之不會與具有導電性之PZT強介電體薄膜反應之材料。又,可使用基板上介有密合層及絕緣體膜等形成底層電極之基板等。具體如,具有Pt/Ti/SiO2/Si、Pt/TiO2/SiO2/Si、Pt/IrO/Ir/SiO2/Si、 Pt/TiN/SiO2/Si、Pt/Ta/SiO2/Si、Pt/Ir/SiO2/Si之層合構造(底層電極/密合層/絕緣體膜/基板)之基板等。另外壓電元件及焦電型紅外線檢驗元件等可使用矽基板、SiO2/Si基板、藍寶石基板等之耐熱性基板。
底層電極11也可由濺鍍法、真空蒸鍍法等之氣相成長法,或藉由網版印刷法、噴霧法或液滴吐出法等塗佈電極用糊料形成之溶膠凝膠法等所形成。本實施形態之形成方法中,特別是底層電極之結晶較佳為,使用塗佈上述組成物之面的垂直方向優先配向於[111]或[100]之底層電極。如此易形成結晶化促進層。
於底層電極11上形成塗膜後煅燒該塗膜,再焙燒進行結晶化。煅燒時使用熱板或RTA等,以一定條件進行。煅燒之目的為,去除溶劑及使金屬化合物進行熱分解或水解而轉化為複合氧化物,故較佳於空氣中、氧化環境中或含水蒸氣環境中進行。既使於空氣中加熱,也可藉由空氣中之濕氣充分確保水解所必須之水分。由塗佈組成物起至煅燒之步驟也可為,重覆數次至煅燒之步驟而得所希望之膜厚後,最後一併進行焙燒。又,煅燒時之溫度較佳為285~315℃,該溫度下之保持時間較佳為1~5小時。
焙燒為以結晶化溫度以上之溫度焙燒煅燒後之塗膜而結晶化的步驟,如此可得由不含Nb之PZT強介電體薄膜所形成的結晶化促進層。該結晶化步驟之焙燒環境較佳為O2、N2、Ar、N2O或H2等或該等之混合氣體 等。焙燒係以600~700℃進行0.5~5分鐘左右。焙燒也可以急速加熱處理(RTA處理)進行。以RTA處理進行焙燒時,其升溫速度較佳為10~50℃/秒。
藉由以上步驟可於底層電極11上形成結晶化促進層12。結晶化促進層之厚度限定為上述範圍之原因為,結晶化促進層之厚度未達下限值時會形成海島狀之膜,而使作為促進結晶化用之層用的機能不足,又,超過上限值時會降低最終形成之後述的PNbZT強介電體薄膜所含的Nb量,而無法得到提升電容率等之強介電體特性的效果。結晶化促進層之厚度可藉由組成物之塗佈量(凝膠膜之膜厚)等而調整。
又,結晶化促進層較佳為,其結晶之[100]優先配向於層厚方向而形成。相對於[100]之結晶化係以加速結晶化速度,使結晶化促進層優先配向於[100]之方式形成時,也易使形成於結晶化促進層上之PNbZT強介電體薄膜優先配向於[100],而加速焙燒時之結晶化速度。因焙燒時之結晶化係以速度論支配之條件進行,故可加速焙燒時之結晶化速度,因此所形成的PNbZT強介電體薄膜之結晶中易取得高濃度的Nb。為了得到結晶面被優先配向於[100]之結晶化促進層較佳為,將組成物之塗佈量調整為使結晶化促進層之厚度為上述45~90nm,較佳為60~75nm,及使用具有優先配向於[111]之Pt底層電極的基板。
藉由上述方法形成結晶化促進層12後,將形 成由鈦酸鋯鈮酸鉛(PNbZT)系複合鈣鈦礦膜所形成的強介電體薄膜(以下稱為PNbZT強介電體薄膜)用之組成物塗佈於結晶化促進層12上,形成PNbZT之塗膜(凝膠膜)13a。塗佈法無特別限定,可使用與上述形成結晶化促進層時之塗佈法相同的旋轉塗佈法等。
形成PNbZT強介電體薄膜用之組成物為,上述PZT強介電體薄膜用之組成物中摻混Nb之組成物,調製時除了Pb化合物、Zr化合物、Ti化合物以外,投入Zr化合物、Ti化合物時另加入Nb化合物外,其他可藉由相同材料、相同方法調製。即,本發明之PNbZT強介電體薄膜的形成方法中,形成PNbZT強介電體薄膜用之組成物中不添加先前必備的矽等之燒結助劑,而係以摻混高濃度之Nb形成PNbZT強介電體薄膜。因此可充分引出起因於摻混Nb之效果,大幅提升電容率等之強介電體特性等。又,組成物100質量%中上述PZT先驅物及Nb化合物所佔比例較佳為,氧化物換算下10~25質量%之範圍。未達下限值時會降低生產性,又,超過上限值時難均勻塗佈。
Nb化合物與上述PZT先驅物相同,較佳為金屬烷氧化物等般Nb元素介有該氧或氮原子鍵結有機基之化合物。具體如,鈮五乙氧化物、2-乙基己酸鈮等。
加入組成物之Nb化合物的比例為,組成物所含的鈣鈦礦B部位原子(Zr、Ti)之合計100原子%中添加4~10原子%的Nb。因此本實施形態之形成方法中,比 較先前係大量摻混Nb而形成。藉由預先形成上述所定之結晶化促進層,可大量摻混Nb而形成之技術性理由為,結晶化促進層具有幾乎相同的格子定數,因此推斷例如藉由導入上述具有優先配向於[100]之結晶的強介電體薄膜,以速度論支配之條件進行結晶成長時,易均勻因溶Nb原子。Nb未達下限值時將無法得到起因於添加Nb之上述效果,又,超過上限值時膜會產生裂痕。其中Nb化合物之比例較佳為,B部位原子(Zr、Ti)之合計100原子%中添加6~8原子%之Nb。又,B部位原子係指,Pb、Zr、Ti中之Zr與Ti。適合形成由此調製所得的上述PNbZT強介電體薄膜用之市售組成物如,三菱馬特里股份公司製之PNbZT-E1等。
形成PNbZT之塗膜13a後,將該塗膜煅燒,再培燒進行結晶化。煅燒時係使用熱板或RTA等,以一定條件進行。煅燒時與上述形成結晶化促進層時之煅燒相同,較佳於空氣中、氧化環境中或含水蒸氣環境中進行。又,煅燒前,為了去除特別是低沸點溶劑及吸附之水分,可使用熱板等以70~90℃之溫度進行0.5~5分鐘的低溫加熱。
又,此時之煅燒為了充分去除溶劑等,而進一步提高抑制裂化之效果,或促進膜構造之細緻化,可進行變更加熱保持溫度之二段煅燒。藉由一段煅燒進行煅燒時之溫度較佳為275~325℃,該溫度下之保持時間較佳為3~10分鐘。又,由塗佈組成物起至煅燒之步驟也可 為,重覆數次至煅燒之步驟而得所希望之膜厚後,最後一併進行焙燒。
焙燒為,以結晶化溫度以上之溫度焙燒煅燒後之PNbZT塗膜而結晶化之步驟。該結晶化步驟之焙燒環境較佳為O2、N2、Ar、N2O或H2等,或該等之混合氣體等。焙燒係以600~700℃進行0.5~5分鐘。焙燒也可以急速加熱處理(RTA處理)進行。以RTA處理進焙燒時,其升溫速度較佳為10~50℃/秒。
藉由上述可於未共摻混矽等,而摻混高濃度之Nb下形成提升電容率等之強介電體特性的PNbZT強介電體薄膜。
由本實施形態之方法所得的PNbZT系強介電體薄膜因具有非常優良之電容率等之強介電體特性,故適用為製造薄膜電容器、電容器、IPD、DRAM儲存器用電容器、層合電容器、電晶體之閘絕緣體、不揮發性儲存器、焦電型紅外線檢驗元件、壓電元件、電氣光學元件、作動器、共振器、超音波馬達、電氣開關、光學開關或LC雜訊濾器元件之複合電子構件時的構成材料。
實施例
下面將詳細說明本發明之實施例及比較例。
<實施例1-1>
準備作為形成結晶化促進層用之PZT強介電體薄膜 形成組成物用金屬組成比為115/53/47(Pb/Zr/Ti),使用溶劑1-丁醇稀釋而將先驅物濃度(Pb源、Zr源、Ti源之合計)調整為氧化物換算下12質量%的PZT溶膠凝膠液(三菱馬特里股份公司製,商品名:PZT-E1)。又,準備作為形成PNbZT強介電體薄膜用之組成物用,金屬組成物為115/8/47.8/44.2(Pb/Nb/Zr/Ti),使用溶劑1-丁醇稀釋而將先驅物濃度(Pb源、Nb源、Zr源、Ti源之合計)調整為氧化物換算下15質量%之PNbZT溶膠凝膠液(三菱馬特里股份公司製,商品名:PNbZT-E1)。即,該組成物中,B部位原子(Zr、Ti)之合計100原子%中含有8原子%之Nb。
首先將上述準備之PZT溶膠凝膠液滴入形成於Pt/TiOx/SiO2/Si基板上的結晶優先配向於[111]之Pt(底層電極)上,藉由以3000rpm之回轉速度進行15秒旋轉塗佈,於上述底層電極上形成塗膜(凝膠膜)。其次使用熱板,於大氣中藉由300℃之溫度下保持5分鐘之方法,對形成於上述基板上之塗膜進行煅燒。又,重覆進行3次由塗佈組成物起至煅燒之步驟。其次於氧氣中,使用RTA以10℃/s之升溫速度由室溫升至700℃,藉由該溫度下保持1分鐘之方法進行焙燒。如此可形成具有表1所示之膜厚,及由具有結晶配向性之PZT強介電體薄膜所形成的結晶化促進層。
接著將上述準備之PNbZT溶膠凝膠液滴入上述形成之結晶化促進層上,藉由以3000rpm之回轉速度旋 轉塗佈15秒,可於上述結晶化促進層上形成PNbZT之塗膜(凝膠膜)。其次使用熱板,於大氣中藉由300℃之溫度下保持5分鐘之方法,對形成於上述結晶化促進層上之塗膜進行煅燒。又,重覆進行3次由塗佈組成物至煅燒之步驟。其次於氧氣中,使用RTA以10℃/s之升溫速度由室溫升溫至700℃,藉由該溫度下保持1分鐘之方法進行焙燒。如此可於底層電極上形成PNbZT強介電體薄膜。
<實施例1-2、1-3及比較例1-1~比較例1-3>
除了將PZT溶膠凝膠液之塗佈量調整為,使結晶化促進層之厚度為表1所示之厚度外,與實施例1-1相同於底層電極上形成PNbZT強介電體薄膜。又,比較例1-1中,PZT溶膠凝膠液之塗佈量為0,即未形成結晶化促進層,而係將PNbZT溶膠凝膠液直接塗佈於底層電極上,以與實施例1-1相同之條件進行煅燒、焙燒等,形成PNbZT強介電體薄膜。
<實施例2-1、2-2及比較例2-1、比較例2-2>
除了藉由變更製造上述PNbZT溶膠凝膠液時之添加組成,使結晶化促進層中之Nb添加量變更為表1所示之比例外,與實施例1-1相同於底層電極上形成PNbZT強介電體薄膜。
<比較試驗及評估>
相對於實施例1-1~2-2及比較例1-1~2-2所形成的PNbZT強介電體薄膜,評估結晶化促進層與PNbZT強介電體薄膜之厚度、底層電極與結晶化促進層之結晶配向性、PNbZT強介電體薄膜之膜組織(有無裂化)、電氣特性(電容率)、漏電流密度。該些結果係如表1所示。
(1)厚度:使用分光橢圓對稱法(J.A.Woollam公司製,模型:M-2000D1)測定形成PNbZT強介電體薄膜之前的結晶化促進層之剖面的厚度(總厚度)。又,使用相同裝置測定形成後之PNbZT強介電體薄膜的剖面之厚度。
(2)優先配向面:以使用X線衍射裝置(XRD;Bruker公司製:MXP18HF)測定所得的衍射結果中,強度較高之配向面作為優先配向面。又,圖3為,以實施例1-1之XRD圖型作為代表圖。
(3)電容率:使用強介電體評估裝置(aix ACCT公司製,TF-analyzer2000)測定。具體為,藉由濺鍍法於所成之PNbZT強介電體薄膜的表面上形成200μm之電極後,使用RTA於氧環境中以700℃之溫度進行修補退火1分鐘而得的薄膜電容器作為試驗用樣品,測定該等之電容率。
(4)漏電流密度:將5V之直流電壓施加於測定電容率之膜上,測定漏電流(leak current)密度。
(5)膜組織:使用上述測定膜厚用之掃描型電 子顯微鏡藉由SEM畫像觀察膜表面之組織。又,藉由SEM畫像觀察有無裂痕。以此時所觀察之實施例1-1及比較例2-2之膜表面的照片作為代表圖,如圖4、圖5所示。
由表1得知,比較實施例1-1~1-3與比較例1-1~1-3時,未形成結晶化促進層下形成PNbZT強介電體薄膜的比較例1-1中,既使摻混高濃度之Nb,電容比較實施例1-1~1-3時為大幅降低之值。又,所形成的結 晶化促進層之厚度未達45nm的比較例1-2中,結晶化促進層係形成海島狀無規配向(無配向)之膜,所得PNbZT強介電體薄膜之電容率比較實施例1-1~1-3時為大幅降低之值。又,所形成的結晶化促進層之厚度超過90nm的比較例1-3中,雖可某程度提升電容率,但膜全體之PNbZT比例較少,因此無法得到充分因應Nb摻混量之效果。相對地形成所希望之結晶化促進層而形成PNbZT強介電體薄膜的實施例1-1~1-3中,可得充分藉由摻混高濃度之Nb的效果,而大幅提升電容率。
又,比較實施例2-1、2-2與比較例2-1、2-2時,B部位原子(Zr、Ti)之合計100原子%中Nb所佔比例未達4原子%之比較例2-1中,雖可某程度提升電容率,但比較實施例2-1、2-2時無法得到充分結果。又,Nb添加量較少,故比較實施例2-1、2-2時漏電流密度為較高之值。又,Nb比例超過10原子%之比較例2-2中,電容率雖為較高之值,但形成後之PNbZT強介電體薄膜會產生裂痕,故漏電流密度為非常高之值。相對地係以高濃度且控制於所希望之比例含有Nb的實施例2-1、2-2中不會產生裂痕,且可得充分的藉由摻混高濃度Nb之效果,而大幅提升電容率。
上述所說明為本發明之較佳實施例,但本發明非限定於該等實施例。未脫離本發明之要旨的範圍內,可附加、省略或取代結構及其他變更。本發明非限定於前述說明,僅限定於所附之申請範圍。
[產業上利用可能性]
本發明可利用於製造薄膜電容器、電容器、IPD、DRAM儲存器用電容器、層合電容器、電晶體之閘絕緣體、不揮發性儲存器、焦電型紅外線檢驗元件、壓電元件、電氣光學元件、作動器、共振器、超音波馬達、電氣開關、光學開關或LC雜訊濾器元件之複合電子構件。
10‧‧‧基板
11‧‧‧底層電極
12‧‧‧結晶化促進層
13a‧‧‧PNbZT之塗膜

Claims (2)

  1. 一種PNbZT強介電體薄膜之製造方法,其特徵為將形成由不含Nb之鈦酸鋯酸鉛(PZT)系複合鈣鈦礦(perovskite)膜所形成的強介電體薄膜用之組成物塗佈於形成於基板上之底層電極上,煅燒後藉由焙燒進行結晶化,形成厚45~90nm之結晶化促進層,將形成由與B部位原子(Zr、Ti)之合計100原子%中含有4~10原子%之Nb的鈦酸鋯鈮酸鉛(PNbZT)系複合鈣鈦礦膜所形成之強介電體薄膜用之組成物塗佈於前述所形成的結晶化促進層上,形成PNbZT之塗膜,將前述塗膜煅燒後,藉由焙燒進行結晶化,而於前述底層電極上形成PNbZT強介電體薄膜;其中前述底層電極係在塗佈前述組成物之面之垂直方向上優先配向於[111]之Pt底層電極,結晶化促進層係結晶面被優先配向於[100]之結晶化促進層。
  2. 一種複合電子構件,其特徵為具有藉由如請求項1之方法所形成之PNbZT強介電體薄膜的薄膜電容器、電容器、IPD、DRAM儲存器用電容器、層合電容器、電晶體之閘絕緣體、不揮發性儲存器、焦電型紅外線檢驗元件、壓電元件、電氣光學元件、作動器、共振器、超音波馬達、電氣開關、光學開關或LC雜訊濾器元件。
TW103105197A 2013-03-26 2014-02-18 PNbZT強介電體薄膜之製造方法 TWI601706B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013063179A JP6036460B2 (ja) 2013-03-26 2013-03-26 PNbZT強誘電体薄膜の形成方法

Publications (2)

Publication Number Publication Date
TW201446701A TW201446701A (zh) 2014-12-16
TWI601706B true TWI601706B (zh) 2017-10-11

Family

ID=50101804

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103105197A TWI601706B (zh) 2013-03-26 2014-02-18 PNbZT強介電體薄膜之製造方法

Country Status (7)

Country Link
US (1) US10005101B2 (zh)
EP (1) EP2784802B1 (zh)
JP (1) JP6036460B2 (zh)
KR (1) KR102007543B1 (zh)
CN (1) CN104072135B (zh)
NO (1) NO2784802T3 (zh)
TW (1) TWI601706B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10242922B2 (en) * 2014-01-09 2019-03-26 Infineon Technologies Ag Circuit and method for internally assessing dielectric reliability of a semiconductor technology
US20170092841A1 (en) * 2015-09-29 2017-03-30 Canon Kabushiki Kaisha Substrate for piezoelectric body formation, method for manufacturing the same, piezoelectric substrate, and liquid ejection head
KR101910157B1 (ko) * 2018-08-06 2018-10-19 영창케미칼 주식회사 유무기 하이브리드 포토레지스트 공정액 조성물
CN110128169B (zh) * 2019-05-10 2021-05-18 济南大学 采用钙离子掺杂的SiO2膜对压电陶瓷表面进行改性的方法及其应用
CN111505005B (zh) * 2020-04-25 2021-05-18 中南大学 一种利用锆石快速判断脉状矿床成矿潜力的矿产勘查方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913117A (en) * 1995-03-20 1999-06-15 Samsung Electronics Co., Ltd. Method for manufacturing ferroelectric capacitor
CN1929038A (zh) * 2005-09-05 2007-03-14 精工爱普生株式会社 复合氧化物层压体、复合氧化物层压体的制造方法、装置
US20090246360A1 (en) * 2008-04-01 2009-10-01 Seiko Epson Corporation Oxide source material solution, oxide film, piezoelectric element, method for forming oxide film and method for manufacturing piezoelecytric element

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206788A (en) * 1991-12-12 1993-04-27 Ramtron Corporation Series ferroelectric capacitor structure for monolithic integrated circuits and method
WO2000017936A1 (en) 1998-09-24 2000-03-30 Telcordia Technologies, Inc. Ferroelectric thin films of reduced tetragonality
JP4479193B2 (ja) 2003-08-27 2010-06-09 セイコーエプソン株式会社 半導体装置
JP4192794B2 (ja) * 2004-01-26 2008-12-10 セイコーエプソン株式会社 圧電素子、圧電アクチュエーター、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、周波数フィルタ、発振器、電子回路、薄膜圧電共振器、及び電子機器
JP5103706B2 (ja) * 2004-07-30 2012-12-19 富士通株式会社 強誘電体キャパシタをもつ半導体装置及びその製造方法
JP2006120740A (ja) 2004-10-19 2006-05-11 Ngk Spark Plug Co Ltd 薄膜電子部品の製造方法
JP5109341B2 (ja) * 2006-11-14 2012-12-26 富士通セミコンダクター株式会社 半導体装置とその製造方法
JP4535076B2 (ja) * 2007-03-14 2010-09-01 セイコーエプソン株式会社 強誘電体キャパシタとその製造方法
EP1973177B8 (en) * 2007-03-22 2015-01-21 FUJIFILM Corporation Ferroelectric film, process for producing the same, ferroelectric device, and liquid discharge device
JP2009076571A (ja) * 2007-09-19 2009-04-09 Seiko Epson Corp 強誘電体キャパシタとその製造方法、及び強誘電体メモリ装置
JP5613910B2 (ja) * 2011-05-17 2014-10-29 三菱マテリアル株式会社 Pzt強誘電体薄膜の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913117A (en) * 1995-03-20 1999-06-15 Samsung Electronics Co., Ltd. Method for manufacturing ferroelectric capacitor
CN1929038A (zh) * 2005-09-05 2007-03-14 精工爱普生株式会社 复合氧化物层压体、复合氧化物层压体的制造方法、装置
US20090246360A1 (en) * 2008-04-01 2009-10-01 Seiko Epson Corporation Oxide source material solution, oxide film, piezoelectric element, method for forming oxide film and method for manufacturing piezoelecytric element

Also Published As

Publication number Publication date
US20140295172A1 (en) 2014-10-02
KR102007543B1 (ko) 2019-08-05
KR20140117262A (ko) 2014-10-07
EP2784802A1 (en) 2014-10-01
NO2784802T3 (zh) 2018-03-17
EP2784802B1 (en) 2017-10-18
JP6036460B2 (ja) 2016-11-30
CN104072135A (zh) 2014-10-01
CN104072135B (zh) 2018-04-20
JP2014189408A (ja) 2014-10-06
TW201446701A (zh) 2014-12-16
US10005101B2 (en) 2018-06-26

Similar Documents

Publication Publication Date Title
TWI549183B (zh) 強介電體薄膜之製造方法
JP5828293B2 (ja) Pzt強誘電体薄膜の製造方法
TWI601706B (zh) PNbZT強介電體薄膜之製造方法
WO2015030064A1 (ja) PNbZT薄膜の製造方法
KR102384736B1 (ko) Mn 도프의 PZT 계 압전체막 형성용 조성물 및 Mn 도프의 PZT 계 압전체막
JP6264447B2 (ja) Mn及びNbドープのPZT系圧電体膜形成用液組成物
TWI591205B (zh) Pzt系強介電體薄膜形成用組成物及其製造方法及使用該組成物之pzt系強介電體薄膜之形成方法
TWI635633B (zh) Pzt系壓電體膜之形成方法
JP6481394B2 (ja) MnドープのPZT系圧電体膜
US9251955B2 (en) PZT-based ferroelectric thin film and method of forming the same
JP6075152B2 (ja) Pzt系強誘電体薄膜形成用組成物の製造方法並びに該組成物を用いたpzt系強誘電体薄膜の形成方法
JP6183261B2 (ja) MnドープのPZT系圧電体膜形成用組成物
TWI648887B (zh) 摻雜Ce之PZT系壓電體膜
JP5417962B2 (ja) 強誘電体薄膜形成用組成物、強誘電体薄膜の形成方法並びに該方法により形成された強誘電体薄膜
JP5644975B2 (ja) Pzt強誘電体薄膜の製造方法
TW201600465A (zh) 摻雜Ce之PZT系壓電體膜形成用組成物