[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI685681B - Infrared diffuser - Google Patents

Infrared diffuser Download PDF

Info

Publication number
TWI685681B
TWI685681B TW107129768A TW107129768A TWI685681B TW I685681 B TWI685681 B TW I685681B TW 107129768 A TW107129768 A TW 107129768A TW 107129768 A TW107129768 A TW 107129768A TW I685681 B TWI685681 B TW I685681B
Authority
TW
Taiwan
Prior art keywords
infrared light
film
infrared
light absorbing
filter according
Prior art date
Application number
TW107129768A
Other languages
Chinese (zh)
Other versions
TW202009528A (en
Inventor
呂中漢
陳彥甫
陳哲宇
葉素敏
歐俊堯
謝峻誠
Original Assignee
白金科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 白金科技股份有限公司 filed Critical 白金科技股份有限公司
Priority to TW107129768A priority Critical patent/TWI685681B/en
Priority to CN201811019762.0A priority patent/CN110865430A/en
Application granted granted Critical
Publication of TWI685681B publication Critical patent/TWI685681B/en
Publication of TW202009528A publication Critical patent/TW202009528A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Filters (AREA)

Abstract

An infrared filter includes a photo-absorption film and a first optical film. The photo-absorption film includes a binder and a plurality of infrared absorption particles, where the infrared absorption particles are inorganic and distributed in the binder. The mean agglomerate particle size of the infrared absorption particles is less than 80nm. The first optical film is formed on one side of the photo-absorption film. The thickness of the infrared filter ranges between 10μm and 500μm, whereas the infrared cut-on wavelength of the infrared filter ranges between 600nm and 650nm. An average transmittance of the infrared filter which ranges in wavelength between 700nm and 1100nm is less than 1%, whereas an average transmittance of the infrared filter which ranges in wavelength between 430nm and 580nm is larger than 75%.

Description

紅外光濾光片Infrared filter

本發明是有關於一種光學元件,且特別是有關於一種濾光片。The present invention relates to an optical element, and particularly to an optical filter.

目前的行動裝置,例如智慧手機與平板電腦,大多已配備影像感測器(image sensor),以使行動裝置具有影像擷取的功能。上述影像感測器通常是互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor,以下簡稱CMOS)影像感測器(CMOS Image Sensor,CIS),其為一種晶片封裝體(chip package)。CMOS影像感測器所具有的CMOS晶片的響應波長(wavelength of response)不僅涵蓋可見光,而且也涵蓋紅外光以及紫外光。為了避免紅外光以及紫外光干擾影像感測器所擷取的影像,一般影像感測器會加裝濾光片以濾除不必要的紅外光與紫外光。Most current mobile devices, such as smartphones and tablets, have been equipped with an image sensor to enable the mobile device to have an image capturing function. The above image sensor is usually a complementary metal-oxide semiconductor (Complementary Metal-Oxide-Semiconductor, hereinafter referred to as CMOS) image sensor (CMOS Image Sensor, CIS), which is a chip package (chip package). The wavelength of response of the CMOS chip of the CMOS image sensor covers not only visible light, but also infrared light and ultraviolet light. In order to prevent infrared light and ultraviolet light from interfering with the image captured by the image sensor, a filter is generally installed in the image sensor to filter out unnecessary infrared light and ultraviolet light.

一般來說,影像感測器所裝設的紅外光濾光片有兩種:一種是藍玻璃紅外光吸收片,另一種是紅外光吸收樹脂薄膜。藍玻璃紅外光吸收片具有優異的光學表現,能幾乎完全吸收波長在700奈米(nm)至1100奈米範圍內的紅外光,以有效濾除紅外光,且藍玻璃紅外光吸收片還具有良好的可見光穿透率。此外,藍玻璃紅外光吸收片的主要材料為玻璃,所以也具有耐高溫的優點,即藍玻璃紅外光吸收片能夠承受迴焊(reflow)的高溫環境。然而,藍玻璃紅外光吸收片的製造需要進行多道步驟,包括熔解、成型、退火、切割、研拋以及鍍膜等,因此藍玻璃紅外光吸收片具有製造複雜以及不易量產的缺點。Generally speaking, there are two types of infrared light filters installed in the image sensor: one is a blue glass infrared light absorption sheet, and the other is an infrared light absorption resin film. The blue glass infrared light absorption sheet has excellent optical performance, and can almost completely absorb infrared light in the wavelength range of 700 nanometers (nm) to 1100 nanometers to effectively filter out infrared light, and the blue glass infrared light absorption sheet also has Good visible light transmittance. In addition, the main material of the blue glass infrared light absorption sheet is glass, so it also has the advantage of high temperature resistance, that is, the blue glass infrared light absorption sheet can withstand the high temperature environment of reflow (reflow). However, the manufacturing of the blue glass infrared light absorbing sheet requires multiple steps, including melting, forming, annealing, cutting, polishing, and coating. Therefore, the blue glass infrared light absorbing sheet has the disadvantages of complicated manufacturing and difficult mass production.

由於行動裝置所配備的影像感測器為晶片封裝體,其厚度通常小於或等於2公厘(mm),因此影像感測器所採用的紅外光濾光片必須要具有足夠薄的厚度,否則紅外光濾光片無法裝入於影像感測器中。然而,藍玻璃紅外光吸收片的加工困難,導致藍玻璃紅外光吸收片的厚度難以達到影像感測器的要求。加上,藍玻璃紅外光吸收片的主要材料為玻璃,所以藍玻璃紅外光吸收片也跟一般玻璃一樣具有易碎的缺點。縱使藍玻璃紅外光吸收片具有足夠薄的厚度而能裝設於影像感測器內,藍玻璃紅外光吸收片也會因行動裝置不慎遭到撞擊或摔落而容易碎裂。Since the image sensor equipped with the mobile device is a chip package, its thickness is usually less than or equal to 2 millimeters (mm), so the infrared light filter used in the image sensor must have a sufficiently thin thickness, otherwise The infrared filter cannot be installed in the image sensor. However, the processing of the blue glass infrared light absorbing sheet is difficult, and the thickness of the blue glass infrared light absorbing sheet is difficult to meet the requirements of the image sensor. In addition, the main material of the blue glass infrared light absorption sheet is glass, so the blue glass infrared light absorption sheet also has the disadvantage of being fragile like ordinary glass. Even if the blue glass infrared light absorbing sheet has a sufficiently thin thickness to be installed in the image sensor, the blue glass infrared light absorbing sheet may be easily broken due to accidental impact or falling of the mobile device.

紅外光吸收樹脂薄膜具有厚度薄,加工容易與易於大量生產的優點,且紅外光吸收樹脂薄膜的主要材料為高分子材料,所以紅外光吸收樹脂薄膜具有韌性。即使行動裝置不慎遭到撞擊或摔落,行動裝置內的紅外光吸收樹脂薄膜也不會碎裂。然而,紅外光吸收樹脂薄膜的光學表現卻遠不如藍玻璃紅外光吸收片。紅外光吸收樹脂薄膜無法有效吸收700奈米至1100奈米的紅外光,導致紅外光吸收樹脂薄膜會允許部分紅外光穿透,造成影像感測器的影像擷取被紅外光干擾。加上,紅外光吸收樹脂薄膜的主要材料為高分子材料,所以紅外光吸收樹脂薄膜並不具有耐高溫的優點。因此,紅外光吸收樹脂薄膜容易在高溫環境中發生變形或變質。The infrared light absorbing resin film has the advantages of thin thickness, easy processing and easy mass production, and the main material of the infrared light absorbing resin film is a polymer material, so the infrared light absorbing resin film has toughness. Even if the mobile device is accidentally hit or dropped, the infrared light absorbing resin film in the mobile device will not be broken. However, the optical performance of the infrared light absorbing resin film is far inferior to the blue glass infrared light absorbing sheet. The infrared light absorbing resin film cannot effectively absorb infrared light from 700 nanometers to 1100 nanometers. As a result, the infrared light absorbing resin film allows part of the infrared light to penetrate, causing the image capture of the image sensor to be interfered by infrared light. In addition, the main material of the infrared light absorbing resin film is a polymer material, so the infrared light absorbing resin film does not have the advantage of high temperature resistance. Therefore, the infrared light absorbing resin film is easily deformed or deteriorated in a high-temperature environment.

本發明提供一種紅外光濾光片,其不僅能有效濾除波長700奈米至1100奈米範圍內的紅外光,而且還具有足夠薄的厚度,從而適合裝設於現有行動裝置所使用的影像感測器內。The invention provides an infrared light filter, which can not only effectively filter infrared light in the wavelength range of 700 nanometers to 1100 nanometers, but also has a sufficiently thin thickness so as to be suitable for installation in images used in existing mobile devices Inside the sensor.

本發明所提供的紅外光濾光片包括光吸收膜以及第一光學膜(first optical film)。光吸收膜包括結合材料(binder)以及多個紅外光吸收粒子。這些紅外光吸收粒子分布於結合材料內,且皆為無機材料,其中這些紅外光吸收粒子的平均凝聚粒徑(mean agglomerate particle size)小於80奈米。第一光學膜形成於光吸收膜的一側(side),其中紅外光濾光片的厚度介於10微米至500微米之間,而紅外光濾光片的紅外光截通波長(infrared cut-on wavelength)介於600奈米至650奈米之間。紅外光濾光片在波長700奈米至1100奈米範圍內的平均穿透率小於1%,而在波長430奈米至580奈米範圍內的平均穿透率大於75%。The infrared light filter provided by the present invention includes a light absorption film and a first optical film. The light-absorbing film includes a binder and a plurality of infrared light-absorbing particles. These infrared light absorbing particles are distributed in the bonding material, and are all inorganic materials, wherein the average agglomerate particle size of these infrared light absorbing particles is less than 80 nanometers. The first optical film is formed on the side of the light absorbing film, wherein the thickness of the infrared filter is between 10 microns and 500 microns, and the infrared cut-off wavelength of the infrared filter is (infrared cut- on wavelength) between 600 nm and 650 nm. The average transmittance of the infrared filter in the wavelength range of 700 nm to 1100 nm is less than 1%, and the average transmittance in the wavelength range of 430 nm to 580 nm is greater than 75%.

在本發明的一實施例中,這些紅外光吸收粒子為非晶相顆粒(amorphous particle)。In an embodiment of the invention, the infrared light absorbing particles are amorphous particles.

在本發明的一實施例中,這些紅外光吸收粒子與結合材料之間的重量百分比介於1%至80%。In an embodiment of the invention, the weight percentage between the infrared light absorbing particles and the bonding material is between 1% and 80%.

在本發明的一實施例中,這些紅外光吸收粒子為藍玻璃顆粒。In an embodiment of the invention, the infrared light absorbing particles are blue glass particles.

在本發明的一實施例中,光吸收膜還包括紅外光吸收染料,而紅外光吸收染料分布於結合材料內。In an embodiment of the invention, the light absorbing film further includes an infrared light absorbing dye, and the infrared light absorbing dye is distributed in the bonding material.

在本發明的一實施例中,光吸收膜還包括紫外光吸收染料,而紫外光吸收染料分布於結合材料內。In an embodiment of the present invention, the light absorbing film further includes an ultraviolet light absorbing dye, and the ultraviolet light absorbing dye is distributed in the bonding material.

在本發明的一實施例中,光吸收膜還包括紅外光吸收染料與紫外光吸收染料,而紅外光吸收染料與紫外光吸收染料皆分布於結合材料內。In an embodiment of the invention, the light absorbing film further includes infrared light absorbing dye and ultraviolet light absorbing dye, and both the infrared light absorbing dye and the ultraviolet light absorbing dye are distributed in the bonding material.

在本發明的一實施例中,結合材料包括有機材料。In an embodiment of the invention, the bonding material includes an organic material.

在本發明的一實施例中,結合材料包括無機材料。In an embodiment of the invention, the bonding material includes an inorganic material.

在本發明的一實施例中,紅外光濾光片還包括形成於光吸收膜一側的第二光學膜。In an embodiment of the invention, the infrared light filter further includes a second optical film formed on one side of the light absorption film.

在本發明的一實施例中,光吸收膜位於第一光學膜與第二光學膜之間。In an embodiment of the invention, the light absorption film is located between the first optical film and the second optical film.

在本發明的一實施例中,這些紅外光吸收粒子的熔點小於850℃。In an embodiment of the invention, the melting point of these infrared light absorbing particles is less than 850°C.

在本發明的一實施例中,結合材料包括聚醯亞胺(Polyimide,PI)或聚碳酸酯(Polycarbonate,PC)。In an embodiment of the invention, the bonding material includes polyimide (Polyimide, PI) or polycarbonate (Polycarbonate, PC).

在本發明的一實施例中,紅外光濾光片的紫外光截通波長介於410奈米至420奈米之間。In an embodiment of the invention, the ultraviolet cut-off wavelength of the infrared filter is between 410 nm and 420 nm.

在本發明的一實施例中,光吸收膜的熱收縮率小於或等於0.15%。In an embodiment of the present invention, the thermal shrinkage of the light-absorbing film is less than or equal to 0.15%.

在本發明的一實施例中,光吸收膜的熱軟化溫度大於或等於160℃。In an embodiment of the present invention, the thermal softening temperature of the light-absorbing film is greater than or equal to 160°C.

在本發明的一實施例中,光吸收膜的抗彎折強度(bending strength)介於90兆帕(MPa)至110兆帕之間。In an embodiment of the present invention, the bending strength of the light-absorbing film is between 90 MPa and 110 MPa.

在本發明的一實施例中,光吸收膜在波長350奈米至395奈米範圍內的平均穿透率小於或等於0.15%,而光吸收膜在波長430奈米至450奈米範圍內的平均穿透率大於78%。In an embodiment of the present invention, the average transmittance of the light absorption film in the wavelength range of 350 nm to 395 nm is less than or equal to 0.15%, and the light absorption film in the wavelength range of 430 nm to 450 nm The average penetration rate is greater than 78%.

在本發明的一實施例中,光吸收膜在波長700奈米至725奈米範圍內的平均穿透率小於1.8%。In an embodiment of the invention, the average transmittance of the light-absorbing film in the wavelength range of 700 nm to 725 nm is less than 1.8%.

基於上述,利用這些無機的紅外光吸收粒子,本發明至少一實施例所提供的紅外光濾光片不僅能有效濾除波長700奈米至1100奈米範圍內的紅外光,而且還具有介於10微米至500微米之間的厚度。因此,上述紅外光濾光片不僅具有足夠薄的厚度而能夠裝設於現有行動裝置的影像感測器內,而且還能有效濾除紅外光,避免紅外光干擾影像感測器的影像擷取,提升影像品質。Based on the above, using these inorganic infrared light absorbing particles, the infrared light filter provided in at least one embodiment of the present invention can not only effectively filter infrared light in the wavelength range of 700 nm to 1100 nm, but also has Thickness between 10 microns and 500 microns. Therefore, the infrared light filter not only has a sufficiently thin thickness to be installed in the image sensor of the existing mobile device, but also can effectively filter out infrared light to avoid infrared light from interfering with the image capture of the image sensor To improve image quality.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下。To make the above and other objects, features, and advantages of the present invention more comprehensible, embodiments are described below in conjunction with the accompanying drawings, which are described in detail below.

圖1A是本發明一實施例的紅外光濾光片的剖面示意圖。請參閱圖1A,紅外光濾光片100包括光吸收膜110以及第一光學膜121,其中第一光學膜121形成於光吸收膜110的一側,即光吸收膜110與第一光學膜121彼此堆疊。第一光學膜121可以是抗反射層或干涉式濾光膜。當第一光學膜121為抗反射層時,第一光學膜121能降低紅外光濾光片100的反射率,其中第一光學膜121可以是多層膜或次波長結構(sub-wavelength structure)。當第一光學膜121為干涉式濾光膜時,第一光學膜121能提升濾除不可見光(例如紅外光或紫外光)的能力。FIG. 1A is a schematic cross-sectional view of an infrared light filter according to an embodiment of the invention. Referring to FIG. 1A, the infrared light filter 100 includes a light absorption film 110 and a first optical film 121, wherein the first optical film 121 is formed on one side of the light absorption film 110, that is, the light absorption film 110 and the first optical film 121 Stacked on top of each other. The first optical film 121 may be an anti-reflection layer or an interference filter film. When the first optical film 121 is an anti-reflection layer, the first optical film 121 can reduce the reflectance of the infrared light filter 100, where the first optical film 121 may be a multilayer film or a sub-wavelength structure. When the first optical film 121 is an interference filter film, the first optical film 121 can enhance the ability to filter out invisible light (such as infrared light or ultraviolet light).

光吸收膜110包括結合材料111以及多個紅外光吸收粒子112,其中這些紅外光吸收粒子112分布於結合材料111內,且皆為無機,即這些紅外光吸收粒子112都是無機材料。也就是說,這些紅外光吸收粒子112是由無機材料所構成,並且可以是藍玻璃顆粒,其中這些紅外光吸收粒子112的熔點可小於850℃。這些紅外光吸收粒子112為非晶相顆粒,其中這裡所述的非晶相顆粒不僅涵蓋非晶態(amorphous state),而且也涵蓋奈米晶體(nanocrystal)。換句話說,紅外光吸收粒子112也可以是奈米晶體。此外,紅外光吸收粒子112與結合材料111之間的重量百分比可介於1%至80%。The light absorbing film 110 includes a binding material 111 and a plurality of infrared light absorbing particles 112, wherein the infrared light absorbing particles 112 are distributed in the binding material 111 and are all inorganic, that is, the infrared light absorbing particles 112 are all inorganic materials. That is, these infrared light absorbing particles 112 are composed of an inorganic material, and may be blue glass particles, where the melting point of these infrared light absorbing particles 112 may be less than 850°C. These infrared light absorbing particles 112 are amorphous phase particles, wherein the amorphous phase particles described herein cover not only the amorphous state, but also nanocrystals. In other words, the infrared light absorbing particles 112 may also be nanocrystals. In addition, the weight percentage between the infrared light absorbing particles 112 and the bonding material 111 may be between 1% and 80%.

這些紅外光吸收粒子112可由多顆奈米粒子所構成,其中這些奈米粒子例如是藍玻璃奈米粒子,即上述藍玻璃顆粒可由奈米粒子所形成。藍玻璃奈米粒子可以是由藍玻璃板經破碎與研磨之後而產生,其中此藍玻璃板本身已具有濾除紅外光的功能。這些紅外光吸收粒子112的平均凝聚粒徑小於80奈米,因此這些紅外光吸收粒子112基本上皆為奈米粒子。結合材料111包括有機材料與無機材料至少一者。也就是說,結合材料111可以是有機材料或無機材料,或是有機材料與無機材料的兩者結合。上述有機材料可包括聚醯亞胺(PI)或聚碳酸酯(PC),即結合材料111可包括聚醯亞胺或聚碳酸酯。The infrared light absorbing particles 112 may be composed of a plurality of nano particles, where the nano particles are, for example, blue glass nano particles, that is, the blue glass particles may be formed of nano particles. The blue glass nanoparticles can be generated after the blue glass plate is crushed and ground, and the blue glass plate itself has the function of filtering infrared light. The average agglomerated particle diameter of these infrared light absorbing particles 112 is less than 80 nanometers, so these infrared light absorbing particles 112 are basically nano particles. The bonding material 111 includes at least one of an organic material and an inorganic material. That is, the bonding material 111 may be an organic material or an inorganic material, or a combination of both organic and inorganic materials. The above organic material may include polyimide (PI) or polycarbonate (PC), that is, the bonding material 111 may include polyimide or polycarbonate.

紅外光濾光片100的紅外光截通波長介於600奈米至650奈米之間,而紅外光濾光片100的紫外光截通波長介於410奈米至420奈米之間,其中本說明書在此所述的截通波長(不論是紅外光截通波長與紫外光截通波長)乃是指濾光片在其穿透率為50%時所對應的波長。舉例來說,當某一紅外光的波長為濾光片(例如紅外光濾光片100)的紅外光截通波長時,濾光片對應此紅外光的穿透率基本上是50%。同理,當某一紫外光的波長為濾光片(例如紅外光濾光片100)的紫外光截通波長時,濾光片對應此紫外光的穿透率基本上是50%。The infrared cut-off wavelength of the infrared filter 100 is between 600 nm and 650 nm, and the infrared cut-off wavelength of the infrared filter 100 is between 410 nm and 420 nm, where The cut-off wavelength (regardless of infrared cut-off wavelength and ultraviolet cut-off wavelength) mentioned in this specification refers to the wavelength corresponding to the filter when its transmittance is 50%. For example, when the wavelength of a certain infrared light is the cut-off wavelength of the infrared light of the filter (such as the infrared filter 100), the transmittance of the filter corresponding to this infrared light is basically 50%. Similarly, when the wavelength of a certain ultraviolet light is the cut-off wavelength of the ultraviolet light of the filter (for example, the infrared light filter 100), the transmittance of the filter corresponding to this ultraviolet light is basically 50%.

紅外光濾光片100的厚度T1介於10微米至500微米之間,其中光吸收膜110的厚度T2可以大於或等於5微米,但小於500微米,例如100微米。因此,紅外光濾光片100具有足夠薄的厚度T1,以使紅外光濾光片100能夠裝入於現有行動裝置所使用的影像感測器內。其次,光吸收膜110的抗彎折強度介於90兆帕至110兆帕之間,所以紅外光濾光片100具有足夠的結構強度而不易彎折或碎裂。顯然,紅外光濾光片100沒有現有的藍玻璃紅外光吸收片易碎的缺點。The thickness T1 of the infrared light filter 100 is between 10 μm and 500 μm, wherein the thickness T2 of the light absorption film 110 may be greater than or equal to 5 μm, but less than 500 μm, for example, 100 μm. Therefore, the infrared light filter 100 has a sufficiently thin thickness T1 so that the infrared light filter 100 can be built into the image sensor used in the existing mobile device. Secondly, the bending strength of the light absorption film 110 is between 90 MPa and 110 MPa, so the infrared light filter 100 has sufficient structural strength and is not easily bent or broken. Obviously, the infrared light filter 100 does not have the disadvantage that the existing blue glass infrared light absorber is fragile.

在光學表現方面,紅外光濾光片100在波長700奈米至1100奈米範圍內的平均穿透率小於1%,且紅外光濾光片100在波長430奈米至580奈米範圍內的平均穿透率大於75%。因此,紅外光濾光片100不僅能有效濾除紅外光(例如波長在700奈米至1100奈米之間),而且還能讓大部分的可見光(例如波長在430奈米至580奈米之間)穿透。如此,應用於行動裝置的紅外光濾光片100能有效防止紅外光干擾影像感測器的影像擷取,並讓影像感測器能接收大部分的可見光,從而維持或提升影像感測器的影像品質。In terms of optical performance, the average transmittance of the infrared filter 100 in the wavelength range of 700 nm to 1100 nm is less than 1%, and the infrared filter 100 in the wavelength range of 430 nm to 580 nm The average penetration rate is greater than 75%. Therefore, the infrared light filter 100 not only can effectively filter out infrared light (for example, the wavelength is between 700 nm and 1100 nm), but also can make most of the visible light (for example, the wavelength between 430 nm and 580 nm) Time) penetration. In this way, the infrared filter 100 applied to the mobile device can effectively prevent infrared light from interfering with the image capture of the image sensor, and allows the image sensor to receive most of the visible light, thereby maintaining or enhancing the image sensor’s Image quality.

由此可知,相較於現有的藍玻璃紅外光吸收片,紅外光濾光片100不僅可裝入於現有行動裝置所使用的影像感測器內,而且還具有足夠的結構強度。如此,在行動裝置不慎遭到撞擊或摔落之後,裝設於行動裝置內的紅外光濾光片100不易發生碎裂的情形。其次,紅外光濾光片100在波長700奈米至1100奈米範圍內的平均穿透率小於1%,而這接近於現有藍玻璃紅外光吸收片的平均穿透率(在700奈米至1100奈米的波長範圍內)。與現有的紅外光吸收樹脂薄膜相比,顯然紅外光濾光片100能更有效地濾除紅外光,即紅外光濾光片100具有比現有紅外光吸收樹脂薄膜更好的光學表現。It can be seen that, compared with the existing blue glass infrared light absorption sheet, the infrared light filter 100 can not only be installed in the image sensor used in the existing mobile device, but also has sufficient structural strength. In this way, after the mobile device is accidentally impacted or dropped, the infrared light filter 100 installed in the mobile device is less likely to break. Secondly, the average transmittance of the infrared filter 100 in the wavelength range of 700 nm to 1100 nm is less than 1%, and this is close to the average transmittance of the existing blue glass infrared light absorber (at 700 nm to 1100 nm wavelength range). Compared with the existing infrared light absorbing resin film, it is obvious that the infrared light filter 100 can filter out infrared light more effectively, that is, the infrared light filter 100 has better optical performance than the existing infrared light absorbing resin film.

在圖1A所示的實施例中,光吸收膜110還可包括紅外光吸收染料113與紫外光吸收染料114,而紅外光吸收染料113與紫外光吸收染料114皆分布於結合材料111內。紅外光吸收染料113可幫助提升紅外光濾光片100濾除紅外光的能力。紫外光吸收染料114能吸收紫外光,以使光吸收膜110在波長350奈米至395奈米範圍內的平均穿透率能小於或等於0.15%。如此,紅外光濾光片100不僅能濾除紅外光,且也能濾除紫外光 ,以使紅外光濾光片100能同時有效防止紅外光與紫外光干擾影像感測器的影像擷取。In the embodiment shown in FIG. 1A, the light absorbing film 110 may further include infrared light absorbing dye 113 and ultraviolet light absorbing dye 114, and both the infrared light absorbing dye 113 and the ultraviolet light absorbing dye 114 are distributed in the bonding material 111. The infrared light absorbing dye 113 can help improve the infrared light filter 100's ability to filter out infrared light. The ultraviolet light absorbing dye 114 can absorb ultraviolet light, so that the average transmittance of the light absorbing film 110 in the wavelength range of 350 nm to 395 nm can be less than or equal to 0.15%. In this way, the infrared light filter 100 can filter out not only infrared light but also ultraviolet light, so that the infrared light filter 100 can effectively prevent infrared light and ultraviolet light from interfering with image capture of the image sensor.

特別一提的是,在圖1A所示的實施例中,光吸收膜110包括紅外光吸收染料113與紫外光吸收染料114,但在其他實施例中,端看紅外光濾光片100的用途或需求,光吸收膜110可以包括紅外光吸收染料113與紫外光吸收染料114其中一者,甚至都不包括紅外光吸收染料113與紫外光吸收染料114。因此,圖1A所示的紅外光吸收染料113與紫外光吸收染料114僅用來做為實施例說明,並不限定光吸收膜110一定要包括紅外光吸收染料113與紫外光吸收染料114。In particular, in the embodiment shown in FIG. 1A, the light absorbing film 110 includes an infrared light absorbing dye 113 and an ultraviolet light absorbing dye 114, but in other embodiments, the purpose of the infrared light filter 100 is seen Or as required, the light absorbing film 110 may include one of the infrared light absorbing dye 113 and the ultraviolet light absorbing dye 114, or even not include the infrared light absorbing dye 113 and the ultraviolet light absorbing dye 114. Therefore, the infrared light absorbing dye 113 and the ultraviolet light absorbing dye 114 shown in FIG. 1A are only used as an example, and do not limit the light absorbing film 110 to include the infrared light absorbing dye 113 and the ultraviolet light absorbing dye 114.

紅外光濾光片100的光吸收膜110可依據紅外光吸收粒子112與結合材料111之間的不同重量百分比而具有不同的光學表現、抗彎折強度以及熱學特性,如以下表(一)所示的光吸收膜110樣品1至樣品6。特別說明的是,樣品1至樣品6只是紅外光濾光片100的其中多種例子,並不限定紅外光吸收粒子112與結合材料111之間的重量百分比一定要如表(一)所揭示。     表(一)   樣品1 樣品2 樣品3 樣品4 樣品5 樣品6 紅外光吸收粒子112與結合材料111之間的重量百分比(W%) 5w% 10w% 15w% 20w% 25w% 30w% 波長700~725奈米的 平均穿透率(%) 1.78 1.15 0.74 0.48 0.31 0.20 波長725~1200奈米的 平均穿透率(%) 51.88 32.26 20.40 13.11 8.54 5.64 紅外光截通波長(nm) 633 627 621 615 610 605 波長350~395奈米的 平均穿透率(%) 0.15 0.14 0.14 0.13 0.13 0.12 紫外光截通波長(nm) 417 417 417 417 417 417 波長430~450奈米的 平均穿透率(%) 82.16 81.66 81.17 80.68 80.19 79.71 熱軟化溫度 (℃) 160 170 175 173 171 166 160℃下的熱收縮(%) 0.15 <0.1 <0.1 <0.1 <0.1 <0.1 抗彎折強度(MPa) 101 105 110 108 100 90 The light absorption film 110 of the infrared light filter 100 can have different optical performance, bending strength and thermal characteristics according to different weight percentages between the infrared light absorption particles 112 and the bonding material 111, as shown in the following table (1) Samples 1 to 6 of the light absorption film 110 shown. In particular, samples 1 to 6 are just a few examples of the infrared filter 100, and do not limit the weight percentage between the infrared light absorbing particles 112 and the binding material 111 as shown in Table (1). Table I) Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Weight percentage between infrared light absorbing particles 112 and bonding material 111 (W%) 5w% 10w% 15w% 20w% 25w% 30w% The average transmittance of wavelength 700~725nm (%) 1.78 1.15 0.74 0.48 0.31 0.20 The average transmittance of wavelength 725~1200nm (%) 51.88 32.26 20.40 13.11 8.54 5.64 Infrared cut-off wavelength (nm) 633 627 621 615 610 605 The average penetration rate of wavelength 350~395nm (%) 0.15 0.14 0.14 0.13 0.13 0.12 Ultraviolet cut-off wavelength (nm) 417 417 417 417 417 417 The average transmittance of wavelength 430~450nm (%) 82.16 81.66 81.17 80.68 80.19 79.71 Thermal softening temperature (℃) 160 170 175 173 171 166 Heat shrinkage at 160℃ (%) 0.15 <0.1 <0.1 <0.1 <0.1 <0.1 Flexural strength (MPa) 101 105 110 108 100 90

請參閱圖1B以及表(一),其中圖1B是表(一)中樣品1至6的穿透光譜示意圖,而圖1B中的曲線S1、S2、S3、S4、S5與S6依序代表樣品1、2、3、4、5與6的穿透光譜。從圖1B與表(一)可得知,光吸收膜110在波長350奈米至395奈米範圍內的平均穿透率能小於0.15%,所以紅外光濾光片100能有效濾除紫外光。光吸收膜110在波長700奈米至725奈米範圍內的平均穿透率小於1.8%,因此光吸收膜110能有效濾除波長在700奈米至725奈米範圍內的紅外光。紅外光濾光片100在波長430奈米至580奈米範圍內的平均穿透率大於75%,其中光吸收膜110在波長430奈米至450奈米範圍內的平均穿透率大於78%,因此光吸收膜110可允許大部分的可見光通過,以維持或提升影像感測器的影像品質。此外,就抗彎折強度以及熱學特性而言,表(一)揭露光吸收膜110的熱收縮率可小於或等於0.15%,而光吸收膜110的熱軟化溫度可大於或等於160℃。與現有的紅外光吸收樹脂薄膜相比,光吸收膜110具有較好的耐熱性。Please refer to FIG. 1B and table (1), where FIG. 1B is a schematic diagram of the transmission spectra of samples 1 to 6 in table (1), and the curves S1, S2, S3, S4, S5, and S6 in FIG. 1B represent the samples in order. 1, 2, 3, 4, 5 and 6 transmission spectra. As can be seen from FIG. 1B and Table (1), the average transmittance of the light absorption film 110 in the wavelength range of 350 nm to 395 nm can be less than 0.15%, so the infrared filter 100 can effectively filter out ultraviolet light . The average transmittance of the light absorption film 110 in the wavelength range of 700 nm to 725 nm is less than 1.8%, so the light absorption film 110 can effectively filter out infrared light in the wavelength range of 700 nm to 725 nm. The average transmittance of the infrared filter 100 in the wavelength range of 430 nm to 580 nm is greater than 75%, and the average transmittance of the light absorption film 110 in the range of wavelength 430 nm to 450 nm is greater than 78% Therefore, the light absorbing film 110 can allow most of the visible light to pass through to maintain or improve the image quality of the image sensor. In addition, in terms of bending strength and thermal characteristics, Table (1) reveals that the thermal shrinkage rate of the light absorbing film 110 can be less than or equal to 0.15%, and the thermal softening temperature of the light absorbing film 110 can be greater than or equal to 160°C. Compared with the existing infrared light absorbing resin film, the light absorbing film 110 has better heat resistance.

以上主要敘述紅外光濾光片100的結構、材料以及特性。接下來,將說明紅外光濾光片100的製造方法。詳細而言,首先,製造光吸收膜110。待光吸收膜110製造完成之後,再形成第一光學膜121於光吸收膜110上,其中第一光學膜121可以採用物理氣相沉積(Physical Vapor Deposition,PVD)來形成,例如蒸鍍(evaporation deposition)或濺鍍(sputtering)。The above mainly describes the structure, materials, and characteristics of the infrared light filter 100. Next, a method of manufacturing the infrared light filter 100 will be explained. In detail, first, the light absorption film 110 is manufactured. After the light absorption film 110 is manufactured, the first optical film 121 is formed on the light absorption film 110, wherein the first optical film 121 can be formed by physical vapor deposition (PVD), such as evaporation (evaporation) deposition) or sputtering.

光吸收膜110的製造方法可採用以下步驟。首先,製作藍玻璃。具體而言,此藍玻璃可選用偏磷酸鹽類材料、金屬氧化物與金屬氟化物來製作,其中偏磷酸鹽類材料、金屬氧化物以及金屬氟化物在混合均匀之後,置入坩堝中。之後,在大氣環境或是還原氣氛爐中,加熱置入於坩堝內的這些材料,其中還原氣氛爐可提供氧氣氛圍的環境,以使這些材料能在氧氣氛圍的環境下加熱。此外,上述還原氣氛爐的温度可控制在700℃與1000℃之間。The manufacturing method of the light absorbing film 110 can adopt the following steps. First, make blue glass. Specifically, the blue glass can be made of metaphosphate materials, metal oxides and metal fluorides. After the metaphosphate materials, metal oxides and metal fluorides are uniformly mixed, they are placed in a crucible. After that, the materials placed in the crucible are heated in an atmospheric environment or a reducing atmosphere furnace, where the reducing atmosphere furnace can provide an oxygen atmosphere environment, so that these materials can be heated in an oxygen atmosphere environment. In addition, the temperature of the above-mentioned reducing atmosphere furnace can be controlled between 700°C and 1000°C.

關於藍玻璃所選用的材料,偏磷酸鹽類材料例如包括偏磷酸鋁、偏磷酸鎂、偏磷酸鋰、偏磷酸鋅及偏磷酸鈣,碳酸鹽類,如碳酸鈣、碳酸鋇及碳酸鍶其中至少一種材料,即偏磷酸鹽類材料可以是這些材料的任意組成。金屬氧化物例如包括氧化銅、氧化鋁、氧化鋅及氧化鎂其中至少一種材料,即金屬氧化物可以是這些材料的任意組成。金屬氟化物例如包括氟化鋁、氟化鎂、氟化鈣、氟化鍶、氟化鋇及氟化鋅其中至少一種材料,即金屬氟化物可以是這些材料的任意組成。Regarding the materials selected for the blue glass, metaphosphate materials include, for example, aluminum metaphosphate, magnesium metaphosphate, lithium metaphosphate, zinc metaphosphate and calcium metaphosphate, and carbonates such as calcium carbonate, barium carbonate and strontium carbonate are at least A material, that is, a metaphosphate material may be any composition of these materials. The metal oxide includes, for example, at least one of copper oxide, aluminum oxide, zinc oxide, and magnesium oxide, that is, the metal oxide may be any composition of these materials. The metal fluoride includes, for example, at least one of aluminum fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride, and zinc fluoride, that is, the metal fluoride may be any composition of these materials.

上述藍玻璃的成分組成例如包含莫爾百分率(mol %)35~55%的磷離子、莫爾百分率0~18%的鋁離子、莫爾百分率5~40%的鹼金屬離子、莫爾百分率5~30%的鹼土族離子及二價金屬離子、莫爾百分率5~25%的銅離子,其中銅離子與磷離子兩者的莫爾百分率比例可介於0.1至0.5之間,而氟離子與氧離子兩者的莫爾百分率比例可介於0.01至0.48之間。The composition of the above blue glass includes, for example, phosphorus ions with a molar percentage (mol%) of 35 to 55%, aluminum ions with a molar percentage of 0 to 18%, alkali metal ions with a molar percentage of 5 to 40%, and a molar percentage of 5 ~30% alkaline earth ions and divalent metal ions, 5~25% copper ions with a molar ratio of 5 to 25%, wherein the molar ratio of copper ions and phosphorus ions can be between 0.1 and 0.5, and the fluoride ion is The ratio of mole percentages of both oxygen ions can be between 0.01 and 0.48.

將上述材料混合與熔融之後,冷卻這些材料,以得到藍玻璃。之後,粉碎藍玻璃,得到藍玻璃奈米粒子,其中各個藍玻璃奈米粒子的粒徑可介於20奈米至200奈米之間,較佳為100奈米。粉碎藍玻璃的手段可使用濕式或乾式粉碎法,或是這兩種粉碎法,並可採用球磨機與撞擊粉碎裝置(nanomizer)來進行。在粉碎藍玻璃的過程中,可以使用例如水、醇、酮、醚、酯與醛至少一種液態材料來作為分散介質,其中分散介質的質量百分比可介於50%至60%之間。之後,可以利用離心機,將分散介質與這些藍玻璃奈米粒子分離。然後,可以進行清洗、乾燥以及乾式粉碎。After mixing and melting the above materials, these materials are cooled to obtain blue glass. Afterwards, the blue glass is crushed to obtain blue glass nanoparticles, wherein the particle size of each blue glass nanoparticle can be between 20 nanometers and 200 nanometers, preferably 100 nanometers. The method of crushing the blue glass can be wet or dry crushing method, or both crushing methods, and can be carried out using a ball mill and impact crushing device (nanomizer). In the process of pulverizing the blue glass, at least one liquid material such as water, alcohol, ketone, ether, ester and aldehyde can be used as the dispersion medium, wherein the mass percentage of the dispersion medium can be between 50% and 60%. After that, a centrifuge can be used to separate the dispersion medium from these blue glass nanoparticles. Then, washing, drying and dry crushing can be performed.

此外,還可使用表面活性劑來分散藍玻璃奈米粒子,以削弱藍玻璃奈米粒子的凝聚,讓紅外光吸收粒子112的平均凝聚粒徑能控制在小於80奈米,以達到良好的红外光吸收效果。表面活性劑可為陰離子性表面活性劑(例如特殊聚羧酸型高分子表面活性劑與烷基磷酸酯至少一種)、非離子性表面活性劑(例如聚氧乙烯烷基醚、聚氧乙烯烷基酚醚、聚氧乙烯羧酸酯與脫水山梨糖醇高級羧酸酯至少一種)、陽離子性表面活性劑(例如聚氧化烯烷基胺羧酸酯、烷基胺與烷基按鹽至少一種)或兩性表面活性劑(例如聞級烷基甜菜喊)。In addition, surfactants can also be used to disperse blue glass nanoparticles to weaken the agglomeration of blue glass nanoparticles, so that the average agglomerated particle size of infrared light absorbing particles 112 can be controlled to less than 80 nanometers to achieve good infrared Light absorption effect. The surfactant may be an anionic surfactant (such as at least one of a special polycarboxylic acid type polymer surfactant and an alkyl phosphate), and a nonionic surfactant (such as polyoxyethylene alkyl ether, polyoxyethylene alkane) Phenol ether, polyoxyethylene carboxylate and at least one sorbitan higher carboxylate), cationic surfactants (such as polyoxyalkylene alkylamine carboxylate, alkylamine and alkyl at least one salt ) Or amphoteric surfactants (such as high-grade alkyl beets).

之後,將這些藍玻璃奈米粒子與結合材料111加入於溶劑中,並讓藍玻璃奈米粒子溶解於溶劑中,以形成均勻混合的溶液,其中溶劑例如是甲苯或二甲基乙醯胺(Dimethylacetamide, DMAC,別名 N,N-二甲基乙醯胺)。在藍玻璃奈米粒子與結合材料111加入於溶劑的過程中,可以加入紅外光吸收染料113與紫外光吸收染料114至少一者於溶劑中,以在後續中能形成包括紅外光吸收染料113與紫外光吸收染料114至少一者的光吸收膜110。After that, the blue glass nanoparticles and the binding material 111 are added to the solvent, and the blue glass nanoparticles are dissolved in the solvent to form a uniformly mixed solution, wherein the solvent is toluene or dimethylacetamide ( Dimethylacetamide, DMAC, alias N,N-dimethylacetamide). In the process of adding the blue glass nanoparticles and the binding material 111 to the solvent, at least one of the infrared light absorbing dye 113 and the ultraviolet light absorbing dye 114 may be added to the solvent to form the infrared light absorbing dye 113 and The light absorbing film 110 of at least one of the ultraviolet light absorbing dyes 114.

之後,將溶液鑄膜(casting)於平滑的基板上,其中此基板例如是玻璃板。然後,乾燥基板上的溶液,以形成光吸收膜110,其中溶液可採用陰乾或加熱烘乾的手段來乾燥。接著,將光吸收膜110與基板分離,以完成光吸收膜110的製造,其中分離光吸收膜110與基板的過程可在水中進行。此外,在藍玻璃奈米粒子與結合材料111加入於溶劑的過程中,也可加入紅外光吸收染料113與紫外光吸收染料114至少一者於溶劑中,以形成包括紅外光吸收染料與紫外光吸收染料至少一者的光吸收膜110。After that, the solution is cast on a smooth substrate, where the substrate is, for example, a glass plate. Then, the solution on the substrate is dried to form the light absorbing film 110, wherein the solution can be dried by means of over-drying or heating and drying. Next, the light absorbing film 110 is separated from the substrate to complete the manufacture of the light absorbing film 110, wherein the process of separating the light absorbing film 110 from the substrate can be performed in water. In addition, during the process of adding the blue glass nanoparticles and the binding material 111 to the solvent, at least one of the infrared light absorbing dye 113 and the ultraviolet light absorbing dye 114 may also be added to the solvent to form the infrared light absorbing dye and the ultraviolet light A light-absorbing film 110 that absorbs at least one of the dyes.

圖2與圖3是本發明其他實施例的紅外光濾光片的剖面示意圖,其中圖2與圖3所示的紅外光濾光片200與300皆相似於前述實施例中的紅外光濾光片100。惟紅外光濾光片200與300兩者不同於紅外光濾光片100之處在於:紅外光濾光片200與300皆包括前述實施例所未揭露的第二光學膜122。2 and 3 are schematic cross-sectional views of infrared light filters in other embodiments of the present invention, wherein the infrared light filters 200 and 300 shown in FIGS. 2 and 3 are similar to the infrared light filters in the foregoing embodiments片100. However, the infrared filters 200 and 300 are different from the infrared filter 100 in that the infrared filters 200 and 300 both include the second optical film 122 not disclosed in the foregoing embodiments.

第二光學膜122可以是抗反射層或干涉式濾光膜,且也可以是多層膜。不過,第二光學膜122的功能卻不同於第一光學膜121的功能。也就是說,當第二光學膜122為抗反射層時,第一光學膜121為干涉式濾光膜,其中第二光學膜122也可以是次波長結構。反之,當第二光學膜122為干涉式濾光膜時,第一光學膜121為抗反射層。The second optical film 122 may be an anti-reflection layer or an interference filter film, and may also be a multilayer film. However, the function of the second optical film 122 is different from the function of the first optical film 121. That is, when the second optical film 122 is an anti-reflection layer, the first optical film 121 is an interference filter film, wherein the second optical film 122 may also be a sub-wavelength structure. On the contrary, when the second optical film 122 is an interference filter film, the first optical film 121 is an anti-reflection layer.

第二光學膜122可以形成在光吸收膜110的其中一側。以圖2為例,第一光學膜121與第二光學膜122皆形成在光吸收膜110的同一側,其中第一光學膜121可位於第二光學膜122與光吸收膜110之間。不過,圖2中的第一光學膜121與第二光學膜122兩者可以對調。換句話說,在其他未繪示的實施例中,第二光學膜122可以位於第一光學膜121與光吸收膜110之間。此外,光吸收膜110也可以位於第一光學膜121與第二光學膜122之間,即第一光學膜121與第二光學膜122可分別形成於光吸收膜110的相對兩側,如圖3所示。The second optical film 122 may be formed on one side of the light absorption film 110. Taking FIG. 2 as an example, both the first optical film 121 and the second optical film 122 are formed on the same side of the light absorbing film 110, wherein the first optical film 121 may be located between the second optical film 122 and the light absorbing film 110. However, both the first optical film 121 and the second optical film 122 in FIG. 2 can be reversed. In other words, in other embodiments not shown, the second optical film 122 may be located between the first optical film 121 and the light absorption film 110. In addition, the light absorbing film 110 may also be located between the first optical film 121 and the second optical film 122, that is, the first optical film 121 and the second optical film 122 may be formed on opposite sides of the light absorbing film 110, as shown in FIG. 3 shown.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不脫離本發明精神和範圍內,當可作些許更動與潤飾,因此本發明保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs can make some modifications and retouching without departing from the spirit and scope of the present invention. The scope of protection of invention shall be subject to the scope defined in the appended patent application.

100、200、300‧‧‧紅外光濾光片100, 200, 300 ‧‧‧ infrared filter

110‧‧‧光吸收膜110‧‧‧Light absorbing film

111‧‧‧結合材料111‧‧‧Combined materials

112‧‧‧紅外光吸收粒子112‧‧‧Infrared light absorbing particles

113‧‧‧紅外光吸收染料113‧‧‧Infrared absorption dye

114‧‧‧紫外光吸收染料114‧‧‧Ultraviolet absorption dye

121‧‧‧第一光學膜121‧‧‧First optical film

122‧‧‧第二光學膜122‧‧‧Second optical film

S1、S2、S3、S4、S5、S6‧‧‧曲線S1, S2, S3, S4, S5, S6‧‧‧‧curve

T1、T2‧‧‧厚度T1, T2‧‧‧thickness

圖1A是本發明一實施例的紅外光濾光片的剖面示意圖。 圖1B是表(一)中的光吸收膜樣品1至6的穿透光譜示意圖。 圖2是本發明另一實施例的紅外光濾光片的剖面示意圖。 圖3是本發明另一實施例的紅外光濾光片的剖面示意圖。FIG. 1A is a schematic cross-sectional view of an infrared light filter according to an embodiment of the invention. FIG. 1B is a schematic diagram of the transmission spectra of the light-absorbing film samples 1 to 6 in Table (1). 2 is a schematic cross-sectional view of an infrared light filter according to another embodiment of the present invention. 3 is a schematic cross-sectional view of an infrared light filter according to another embodiment of the present invention.

100‧‧‧紅外光濾光片 100‧‧‧Infrared filter

110‧‧‧光吸收膜 110‧‧‧Light absorbing film

111‧‧‧結合材料 111‧‧‧Combined materials

112‧‧‧紅外光吸收粒子 112‧‧‧Infrared light absorbing particles

113‧‧‧紅外光吸收染料 113‧‧‧Infrared absorption dye

114‧‧‧紫外光吸收染料 114‧‧‧Ultraviolet absorption dye

121‧‧‧第一光學膜 121‧‧‧First optical film

T1、T2‧‧‧厚度 T1, T2‧‧‧thickness

Claims (19)

一種紅外光濾光片,包括:一光吸收膜,包括:一結合材料;以及多個紅外光吸收粒子,分布於該結合材料內,且該些紅外光吸收粒子皆為無機材料,其中該些紅外光吸收粒子的平均凝聚粒徑小於80奈米;以及一第一光學膜,形成於該光吸收膜的一側;其中該紅外光濾光片的厚度介於10微米至500微米之間,而該紅外光濾光片的一紅外光截通波長介於600奈米至650奈米之間;該光吸收膜在波長700奈米至725奈米範圍內的平均穿透率小於1.8%,該紅外光濾光片在波長700奈米至1100奈米範圍內的平均穿透率小於1%,而在波長430奈米至580奈米範圍內的平均穿透率大於75%。 An infrared light filter includes: a light absorbing film, including: a binding material; and a plurality of infrared light absorbing particles distributed in the binding material, and the infrared light absorbing particles are all inorganic materials, of which The average agglomerated particle diameter of the infrared light absorbing particles is less than 80 nanometers; and a first optical film is formed on one side of the light absorbing film; wherein the thickness of the infrared light filter is between 10 microns and 500 microns, The infrared cut-off wavelength of the infrared filter is between 600 nm and 650 nm; the average transmittance of the light absorption film in the wavelength range of 700 nm to 725 nm is less than 1.8%, The infrared light filter has an average transmittance of less than 1% in the wavelength range of 700 nm to 1100 nm, and an average transmittance of more than 75% in the wavelength range of 430 nm to 580 nm. 如請求項第1項所述的紅外光濾光片,其中該些紅外光吸收粒子為非晶相顆粒。 The infrared light filter according to claim 1, wherein the infrared light absorbing particles are amorphous particles. 如請求項第1項所述的紅外光濾光片,其中該些紅外光吸收粒子與該結合材料之間的重量百分比介於1%至80%。 The infrared light filter according to claim 1, wherein the weight percentage between the infrared light absorbing particles and the bonding material is between 1% and 80%. 如請求項第1項所述的紅外光濾光片,其中該些紅外光吸收粒子為藍玻璃顆粒。 The infrared light filter according to claim 1, wherein the infrared light absorbing particles are blue glass particles. 如請求項第2至3項任一項所述的紅外光濾光片,其中該些紅外光吸收粒子為藍玻璃顆粒。 The infrared light filter according to any one of claims 2 to 3, wherein the infrared light absorbing particles are blue glass particles. 如請求項第5項所述的紅外光濾光片,其中該光吸收膜 還包括一紅外光吸收染料,而該紅外光吸收染料分布於該結合材料內。 The infrared light filter according to claim 5, wherein the light absorption film An infrared light absorbing dye is also included, and the infrared light absorbing dye is distributed in the bonding material. 如請求項第5項所述的紅外光濾光片,其中該光吸收膜還包括一紫外光吸收染料,而該紫外光吸收染料分布於該結合材料內。 The infrared light filter according to claim 5, wherein the light absorbing film further includes an ultraviolet light absorbing dye, and the ultraviolet light absorbing dye is distributed in the bonding material. 如請求項第5項所述的紅外光濾光片,其中該光吸收膜還包括一紅外光吸收染料與一紫外光吸收染料,而該紅外光吸收染料與該紫外光吸收染料皆分布於該結合材料內。 The infrared light filter according to claim 5, wherein the light absorption film further includes an infrared light absorption dye and an ultraviolet light absorption dye, and the infrared light absorption dye and the ultraviolet light absorption dye are distributed on the Combined materials. 如請求項第5項所述的紅外光濾光片,其中該結合材料包括有機材料。 The infrared light filter according to claim 5, wherein the bonding material includes an organic material. 如請求項第5項所述的紅外光濾光片,其中該結合材料包括無機材料。 The infrared light filter according to claim 5, wherein the bonding material includes an inorganic material. 如請求項第1至4項任一項所述的紅外光濾光片,還包括一形成於該光吸收膜一側的第二光學膜。 The infrared light filter according to any one of claims 1 to 4, further comprising a second optical film formed on one side of the light absorption film. 如請求項第11項所述的紅外光濾光片,其中該光吸收膜位於該第一光學膜與該第二光學膜之間。 The infrared light filter according to claim 11, wherein the light absorption film is located between the first optical film and the second optical film. 如請求項第1至4項任一項所述的紅外光濾光片,其中該些紅外光吸收粒子的熔點小於850℃。 The infrared light filter according to any one of claims 1 to 4, wherein the melting points of the infrared light absorbing particles are less than 850°C. 如請求項第1至4項任一項所述的紅外光濾光片,其中該結合材料包括聚醯亞胺或聚碳酸酯。 The infrared light filter according to any one of claims 1 to 4, wherein the bonding material includes polyimide or polycarbonate. 如請求項第1至4項任一項所述的紅外光濾光片,其中該紅外光濾光片的一紫外光截通波長介於410奈米至420奈米之間。 The infrared light filter according to any one of claims 1 to 4, wherein an ultraviolet light cut-off wavelength of the infrared light filter is between 410 nm and 420 nm. 如請求項第1至4項任一項所述的紅外光濾光片,其中該光吸收膜的熱收縮率小於或等於0.15%。 The infrared light filter according to any one of claims 1 to 4, wherein the heat absorption rate of the light absorption film is less than or equal to 0.15%. 如請求項第1至4項任一項所述的紅外光濾光片,其中該光吸收膜的熱軟化溫度大於或等於160℃。 The infrared light filter according to any one of claims 1 to 4, wherein the thermal softening temperature of the light absorption film is greater than or equal to 160°C. 如請求項第1至4項任一項所述的紅外光濾光片,其中該光吸收膜的抗彎折強度介於90兆帕至110兆帕之間。 The infrared light filter according to any one of claims 1 to 4, wherein the bending strength of the light absorption film is between 90 MPa and 110 MPa. 如請求項第1至4項任一項所述的紅外光濾光片,其中該光吸收膜在波長350奈米至395奈米範圍內的平均穿透率小於0.15%;該光吸收膜在波長430奈米至450奈米範圍內的平均穿透率大於78%。 The infrared light filter according to any one of claims 1 to 4, wherein the average transmittance of the light absorption film in the wavelength range from 350 nm to 395 nm is less than 0.15%; the light absorption film is at The average transmittance in the wavelength range of 430 nm to 450 nm is greater than 78%.
TW107129768A 2018-08-27 2018-08-27 Infrared diffuser TWI685681B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107129768A TWI685681B (en) 2018-08-27 2018-08-27 Infrared diffuser
CN201811019762.0A CN110865430A (en) 2018-08-27 2018-09-03 Infrared light filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107129768A TWI685681B (en) 2018-08-27 2018-08-27 Infrared diffuser

Publications (2)

Publication Number Publication Date
TWI685681B true TWI685681B (en) 2020-02-21
TW202009528A TW202009528A (en) 2020-03-01

Family

ID=69651571

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107129768A TWI685681B (en) 2018-08-27 2018-08-27 Infrared diffuser

Country Status (2)

Country Link
CN (1) CN110865430A (en)
TW (1) TWI685681B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111427112A (en) * 2020-03-31 2020-07-17 苏州市联超光电科技有限公司 Infrared light filter and preparation process thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201439295A (en) * 2013-04-11 2014-10-16 Fujifilm Corp Near infrared absorptive composition, near infrared cut filter using the same, method for manufacturing the same, and camera module and method for manufacturing the same
WO2016171219A1 (en) * 2015-04-23 2016-10-27 旭硝子株式会社 Optical filter and imaging device
WO2017018419A1 (en) * 2015-07-28 2017-02-02 Jsr株式会社 Optical filter and environment light sensor provided with optical filter
TW201800550A (en) * 2016-04-21 2018-01-01 日本板硝子股份有限公司 Infrared-absorbing composition, infrared-cut filter, optical system for imaging
WO2018021496A1 (en) * 2016-07-28 2018-02-01 京セラ株式会社 Optical filter and package for optical element
TWM572996U (en) * 2018-08-27 2019-01-11 白金科技股份有限公司 Infrared diffuser

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932409B1 (en) * 2002-02-25 2009-12-17 미쓰비시 마테리알 가부시키가이샤 Compositions, coatings, polymer films and optical filters containing metal nanorods
KR102056613B1 (en) * 2012-08-23 2019-12-17 에이지씨 가부시키가이샤 Near-infrared cut filter and solid-state imaging device
CN107686238A (en) * 2014-01-16 2018-02-13 成都光明光电股份有限公司 Glass composition
CN106883541B (en) * 2015-12-16 2021-04-02 张家港康得新石墨烯应用科技有限公司 Blue film composition, uncured adhesive, blue base film, preparation method and application thereof
JP6848477B2 (en) * 2017-01-25 2021-03-24 Jsr株式会社 Optical filters and their uses

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201439295A (en) * 2013-04-11 2014-10-16 Fujifilm Corp Near infrared absorptive composition, near infrared cut filter using the same, method for manufacturing the same, and camera module and method for manufacturing the same
TWI640610B (en) * 2013-04-11 2018-11-11 日商富士軟片股份有限公司 Near infrared absorptive composition, near infrared cut filter using the same, method for manufacturing the same, and camera module and method for manufacturing the same
WO2016171219A1 (en) * 2015-04-23 2016-10-27 旭硝子株式会社 Optical filter and imaging device
WO2017018419A1 (en) * 2015-07-28 2017-02-02 Jsr株式会社 Optical filter and environment light sensor provided with optical filter
TW201800550A (en) * 2016-04-21 2018-01-01 日本板硝子股份有限公司 Infrared-absorbing composition, infrared-cut filter, optical system for imaging
TWI636128B (en) * 2016-04-21 2018-09-21 日本板硝子股份有限公司 Infrared absorbing composition, infrared cut filter, and photographic optical system
WO2018021496A1 (en) * 2016-07-28 2018-02-01 京セラ株式会社 Optical filter and package for optical element
TWM572996U (en) * 2018-08-27 2019-01-11 白金科技股份有限公司 Infrared diffuser

Also Published As

Publication number Publication date
CN110865430A (en) 2020-03-06
TW202009528A (en) 2020-03-01

Similar Documents

Publication Publication Date Title
CN106662686B (en) Optical filter, ambient light sensor, and electronic device
US9304236B2 (en) Optical member, near infrared cut filter, solid-state imaging element, lens for imaging device, and imaging/display device using the same
US9570490B2 (en) Infrared transmission filter and imaging device
TWI598641B (en) Infrared light cut filter and photographing device
JP2008051985A (en) Near infrared ray absorbing filter
JP2019525878A5 (en)
CN109641442A (en) The glass assembly and preparation method thereof of component distribution with customization
TWI685681B (en) Infrared diffuser
TWM572996U (en) Infrared diffuser
KR101410962B1 (en) Glass, device and light filter for absorbing near infra-red ray
KR20180137021A (en) A low temperature tellurite glass mixture for vacuum compression at a temperature of 450 DEG C or less
JP6646179B2 (en) Optical filter
US12071542B2 (en) Light-absorbing composition and optical filter
US20220112121A1 (en) Near-infrared cut filter glass and optical filter
JP2024096865A (en) Optical filter
JP6395489B2 (en) Glass composition and method for producing the same, glass member and imaging device
TWI522331B (en) Near infrared light absorption glass, components and filters
KR102405325B1 (en) Laser induced transfer film
JP2013105846A (en) Optical component having antifogging film and semiconductor device
CN104007596A (en) Silver-gold binary simple-substance metal nanoparticle dispersion aluminium oxide non-linear optical thin film and preparation method
TW202126666A (en) Organometallic complex dispersion, near-infrared absorption film and near-infrared cut-off filter prepared using the same
JP2013246266A (en) Optical filter
TWI643830B (en) Near infrared cut-off filter and manufacturing method thereof
TW202421597A (en) Optical glass, optical element, glass preform for press molding, and optical device
JP6645732B2 (en) Near-infrared absorbing alumina material, near-infrared absorbing alumina porcelain, and method of manufacturing near-infrared absorbing alumina porcelain