TWI683931B - Anode for electrolytic copper plating and electrolytic copper plating device using the same - Google Patents
Anode for electrolytic copper plating and electrolytic copper plating device using the same Download PDFInfo
- Publication number
- TWI683931B TWI683931B TW107119157A TW107119157A TWI683931B TW I683931 B TWI683931 B TW I683931B TW 107119157 A TW107119157 A TW 107119157A TW 107119157 A TW107119157 A TW 107119157A TW I683931 B TWI683931 B TW I683931B
- Authority
- TW
- Taiwan
- Prior art keywords
- anode
- copper plating
- electrolytic copper
- electrolytic
- plating solution
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/12—Process control or regulation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/001—Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/12—Semiconductors
- C25D7/123—Semiconductors first coated with a seed layer or a conductive layer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/40—Forming printed elements for providing electric connections to or between printed circuits
- H05K3/42—Plated through-holes or plated via connections
- H05K3/423—Plated through-holes or plated via connections characterised by electroplating method
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Automation & Control Theory (AREA)
- Electroplating Methods And Accessories (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
Abstract
本發明之目的在提供一種電解鍍銅用陽極及使用其之電解鍍銅裝置,其可在不將裝置構造複雜化的情況下,提高鍍層促進性、通孔填充性等鍍層特性。為達成此目的,本發明採用一種電解鍍銅用陽極,其配設於有電解鍍銅液貯留的電解處理槽,該電解鍍銅液為含有二硫化物的酸性電解鍍銅液,該陽極在電子連接狀態下包括溶解性銅陽極與不溶性陽極。An object of the present invention is to provide an anode for electrolytic copper plating and an electrolytic copper plating apparatus using the same, which can improve plating characteristics such as plating promotion and through hole filling without complicating the structure of the apparatus. To achieve this object, the present invention uses an anode for electrolytic copper plating, which is arranged in an electrolytic treatment tank with an electrolytic copper plating solution stored therein. The electrolytic copper plating solution is an acidic electrolytic copper plating solution containing disulfide. The electronically connected state includes a soluble copper anode and an insoluble anode.
Description
本發明是關於一種電解鍍銅用陽極及使用其之電解鍍銅裝置。The invention relates to an anode for electrolytic copper plating and an electrolytic copper plating device using the same.
過去,當在對印刷配線基板形成導體時,會進行電解鍍銅處理。在進行電解鍍銅處理的情況下,陽極方面,有採用由銅元件所構成之溶解性銅陽極的方法和採用由鉑、鈦、氧化銥等所構成的不溶性陽極的方法。又,在電解鍍銅液中,若要提高鍍層促進性、通孔填充性等鍍層特性,會添加光亮劑、整平劑等添加劑。In the past, when forming a conductor on a printed wiring board, electrolytic copper plating was performed. In the case of electrolytic copper plating, the anode includes a method using a soluble copper anode composed of a copper element and a method using an insoluble anode composed of platinum, titanium, iridium oxide, or the like. In addition, in the electrolytic copper plating solution, additives such as brighteners and leveling agents are added to improve plating characteristics such as plating promotion and through-hole filling.
在此,目前在進行電解鍍銅處理時,使用溶解性銅陽極成了主流。其理由為,溶解性銅陽極相較於不溶性陽極,優點包括了可將設備簡化、也不花費維修費用、陽極本身也比較便宜、可低成本化等。Here, when electrolytic copper plating is performed, the use of soluble copper anodes has become the mainstream. The reason is that soluble copper anodes have advantages over insoluble anodes in that they can simplify equipment, do not cost maintenance, and the anode itself is cheaper and can be reduced in cost.
不過,若使用溶解性銅陽極,伴隨著銅電極化學溶解於鍍銅液中的反應,一般周知,在電解鍍銅液中做為光亮劑來添加的雙(3-磺丙基)二硫化物(以下僅稱為「SPS」)會還原成3-巰基丙烷-1-磺酸(以下僅稱為「MPS」)。若此MPS在電解鍍銅液中存在一定量以上,會有無法得到所要之鍍層特性的問題。However, if a soluble copper anode is used, as the copper electrode chemically dissolves in the copper plating solution, it is generally known that bis(3-sulfopropyl) disulfide added as a brightener in the electrolytic copper plating solution (Hereinafter referred to as "SPS") will be reduced to 3-mercaptopropane-1-sulfonic acid (hereinafter referred to as "MPS"). If this MPS exists in a certain amount or more in the electrolytic copper plating solution, there is a problem that the desired plating characteristics cannot be obtained.
針對上述問題,如日本專利申請案(特開2004-143478)中所記載,曾嘗試藉由對鍍銅液吹入空氣來提高鍍銅液中的溶存氧氣濃度。具體而言,在日本專利申請案(特開2004-143478)中,揭示一種「酸性銅用鍍層裝置,其特徵為:在具有併設溢出槽之鍍層本槽、設置於該鍍層槽下部之鍍層液噴流吐出部、銅陽極及被鍍層品專用桿的酸性銅用鍍層裝置中,於溢出槽中設置空氣攪拌和氧氣攪拌裝置」。In response to the above problems, as described in Japanese Patent Application (Japanese Patent Laid-Open No. 2004-143478), attempts have been made to increase the dissolved oxygen concentration in the copper plating solution by blowing air into the copper plating solution. Specifically, in the Japanese Patent Application (Japanese Patent Laid-Open No. 2004-143478), a "plating device for acid copper" is disclosed, which is characterized in that: a plating layer tank with overflow tanks in parallel, and a plating solution provided under the plating tank In the acid copper plating device for the jet discharge section, copper anode and special rod for the product to be coated, an air stirring and oxygen stirring device is installed in the overflow tank."
不過,在日本專利申請案(特開2004-143478)所揭示的鍍層裝置中,需要另外設置溢出槽,鍍層裝置的構造變得複雜,所以,有設備成本變高的問題。However, in the plating apparatus disclosed in Japanese Patent Application (Japanese Patent Laid-Open No. 2004-143478), it is necessary to separately provide an overflow groove, and the structure of the plating apparatus becomes complicated, so there is a problem that the equipment cost becomes high.
基於以上原因,本發明的目的在提供一種電解鍍銅用陽極及使用其之電解鍍銅裝置,其可在不將裝置構造複雜化的情況下,提高鍍層促進性、通孔填充性等鍍層特性。Based on the above reasons, an object of the present invention is to provide an anode for electrolytic copper plating and an electrolytic copper plating apparatus using the same, which can improve plating characteristics such as plating promotion and through hole filling without complicating the structure of the apparatus .
本案發明人在經過精心研究之後,藉由採用以下的方法來達成上述目的。After careful research, the inventor of the present case has achieved the above object by adopting the following method.
本發明之電解鍍銅用陽極:為配設於有電解鍍銅液貯留之電解處理槽內的陽極,其特徵為:該電解鍍銅液為含有二硫化物的酸性電解鍍銅液,該陽極以電子連接狀態包括溶解性銅陽極與不溶性陽極。The anode for electrolytic copper plating of the present invention is an anode disposed in an electrolytic treatment tank with an electrolytic copper plating solution stored therein, characterized in that the electrolytic copper plating solution is an acidic electrolytic copper plating solution containing disulfide, and the anode The electronically connected state includes a soluble copper anode and an insoluble anode.
本發明之電解鍍銅裝置:本發明之電解鍍銅裝置的特徵為,包括上述電解鍍銅用陽極。 [發明效果]Electrolytic copper plating apparatus of the present invention: The electrolytic copper plating apparatus of the present invention is characterized by including the above-mentioned anode for electrolytic copper plating. [Effect of the invention]
根據本發明之電解鍍銅用陽極及電解鍍銅裝置,可在不將裝置構造複雜化的情況下,提高鍍層促進性、通孔填充性等鍍層特性。According to the anode for electrolytic copper plating and the electrolytic copper plating apparatus of the present invention, it is possible to improve plating characteristics such as plating promotion and through hole filling without complicating the structure of the apparatus.
以下將一邊使用圖面,一邊說明本發明之電解鍍銅用陽極及使用其之電解鍍銅裝置。圖1為例示在電解鍍銅裝置上使用本發明之溶解性銅陽極時的概略剖面圖。The anode for electrolytic copper plating of the present invention and the electrolytic copper plating apparatus using the same will be described below using the drawings. FIG. 1 is a schematic cross-sectional view illustrating when the soluble copper anode of the present invention is used in an electrolytic copper plating apparatus.
本發明之電解鍍銅裝置10包括本發明之電解鍍銅用陽極1。該電解鍍銅用陽極1為設置於有電解鍍銅液21貯留的電解處理槽20內。又,其特徵為:該電解鍍銅液21為含有二硫化物(例如SPS)的酸性電解鍍銅液,該陽極1在電子連接的狀態下包括溶解性銅陽極2與不溶性陽極3。以下將說明這些構造。The electrolytic
本發明之電解鍍銅裝置10為一種裝置,其於被鍍層元件W浸泡於有電解鍍銅液21貯留之電解處理槽20內的狀態下,在該被鍍層元件(陰極)W與陽極1之間供電,並對該被鍍層元件W的被處理面進行電解處理。在此,本發明之被鍍層元件W可作為以環氧樹脂等絕緣材料積層電路配線而成的印刷配線基板或晶圓。又,這些印刷配線基板或晶圓可採用具有貫穿孔及/或通孔的印刷電路基板或晶圓。此貫穿孔及/或通孔一般為10µm~1000µm如此微小直徑的孔,通過此孔,進行訊號層間的電子連接。根據本發明之電解鍍銅裝置10,可進行對這些貫穿孔及/或通孔之內部填充銅的電解處理。此外,在本發明之電解鍍銅裝置10中若要提高均一電著性等特性,也可採用一種構造,一方面使氣泡在該電解鍍銅液21中擴散,一方面從與循環配管5連接的噴嘴6噴出高壓氣體等以攪拌電解鍍銅液21。The electrolytic
又,本發明之電解鍍銅液21採用含有二氧化硫的酸性電解鍍銅液。通常,酸性電解鍍銅液21由五水合硫酸銅、硫酸、氯離子及添加劑所構成。例如,酸性電解鍍銅液21的組成可在五水合硫酸銅30g/L~250g/L、硫酸30g/L~250g/L、氯離子30mg/L~75mg/L的範圍內使用。又,酸性電解鍍銅液21的溫度通常可在15℃~60℃的範圍內使用,20℃~35℃則更好。伴隨五水合硫酸銅濃度的增加或硫酸濃度的增加,五水合硫酸銅的結晶有時會在銅陽極上析出,所以,兩者的濃度管理需要予以注意。在此,該酸性電解鍍銅液21中的硫酸濃度宜為30g~400g/L。在硫酸濃度不滿30g/L的情況下,酸性電解鍍銅液21的導電性下降,與該酸性電解鍍銅液21通電變得困難。另一方面,當硫酸濃度超過400g/L時,硫酸銅容易在酸性電解鍍銅液中沉澱,對鍍層特性有不良影響。The electrolytic copper plating solution 21 of the present invention uses an acidic electrolytic copper plating solution containing sulfur dioxide. Generally, the acidic electrolytic copper plating solution 21 is composed of copper sulfate pentahydrate, sulfuric acid, chloride ions, and additives. For example, the composition of the acidic electrolytic copper plating solution 21 can be used within the range of copper sulfate pentahydrate 30 g/L to 250 g/L, sulfuric acid 30 g/L to 250 g/L, and chloride ion 30 mg/L to 75 mg/L. In addition, the temperature of the acidic electrolytic copper plating solution 21 can generally be used within a range of 15°C to 60°C, and more preferably 20°C to 35°C. With the increase in the concentration of copper sulfate pentahydrate or the increase in the concentration of sulfuric acid, the crystals of copper sulfate pentahydrate may sometimes precipitate on the copper anode, so the concentration management of both needs to be paid attention to. Here, the sulfuric acid concentration in the acidic electrolytic copper plating solution 21 is preferably 30 g to 400 g/L. When the sulfuric acid concentration is less than 30 g/L, the conductivity of the acidic electrolytic copper plating solution 21 decreases, and it becomes difficult to energize the acidic electrolytic copper plating solution 21. On the other hand, when the sulfuric acid concentration exceeds 400 g/L, copper sulfate is likely to precipitate in the acidic electrolytic copper plating solution, which has an adverse effect on the coating characteristics.
在本發明之電解鍍銅裝置10上,如上所述,配置於電解處理槽20內的溶解性銅陽極2與不溶性陽極3藉由電子連接作為陽極1來作用。在進行電解處理的情況下,若使用含有SPS的電解鍍銅液21,此SPS會變化為MPS,由於此MPS的產生,會導致在通孔浴中的電鍍均厚能力下降或鍍層外觀不良、在通孔填充浴中的填充率下降或鍍層外觀不良等問題產生。在此,即使在電解停止而僅放置電解鍍銅液21的情況下,也可確認在陽極1附近有SPS被還原而產生MPS。此MPS的產生也是產生由MPS-Cu+
複合物所構成之陽極汙泥的原因。此陽極汙泥會導致通孔的填充性、均勻電鍍性等鍍層特性下降。不過,本發明之電解鍍銅用陽極1藉由以電子連接狀態在電解處理槽20內包括溶解性陽極2與不溶性陽極3,該不溶性陽極3可對電解鍍銅液21供給氧氣。從此不溶性陽極3產生的氧氣可將MPS氧化成SPS,抑制電解鍍銅液21中的MPS濃度上升,排除MPS的不良影響。於是,根據本發明之電解鍍銅裝置10,即使電解鍍銅液21含有SPS作為光亮劑,也可得到所要的鍍層特性。
In the electrolytic
構成本發明之電解鍍銅用陽極1的溶解性銅陽極2用來將電解時於電解鍍銅液21中所消耗的銅離子濃度維持在既定濃度。此溶解性銅陽極2在其形狀方面不受限定,藉由採用表面積盡可能大的形狀,可在電解時產生更多銅離子,提高鍍層效率。
The
又,本發明之溶解性銅陽極2宜由含磷之銅元件構成。藉由使該溶解性銅陽極2由含磷之銅元件構成,可在電解時於含磷之銅元件之表面形成一種稱為Cu2P黑膜的化合物皮膜,抑制一價的銅離子產生並有效地抑制陽極汙泥產生,防止鍍層特性下降。除了可進一步抑制該含磷之銅元件的陽極汙泥產生之外,磷的含有量宜在0.02%~0.06%之間。將含磷之銅元件使用在溶解性銅陽極2上,有利於使電解中的銅溶解順利進行。
Furthermore, the
關於構成本發明之電解鍍銅用陽極1的不溶性陽極3,只要是不會在電解鍍銅液21中溶出金屬的材質,可使用任意材質所構成的陽極。例如,可採用氧化銥、鍍鉑鈦、鉑、石墨、亞鐵鹽、二氧化鉛及塗層有鉑族元素氧化物的鈦、不鏽鋼、鉛合金等材質的陽極,但本發明不受此限定。又,不溶性陽極3亦可藉由在基材上被覆被覆物來構成。在此情況下,可被覆基材的全面,但在作為不溶性陽極3來作用的範圍內,亦可僅被覆基材的一部分。此時,被覆的厚度不受特別限定,從耐久性及成本的觀點來看,宜為0.1µm~10µm。As for the
又,本發明之不溶性陽極3在其形狀方面不受限定。不溶性陽極3採用於電解時可不妨礙溶解性陽極2之溶解且效率良好地產生氧氣的形狀及尺寸,藉此,可使存在於電解鍍銅液21中的MPS迅速氧化且還原為SPS,抑制MPS在該電解鍍銅液21中積存,防止鍍層特性下降。In addition, the shape of the
本發明之電解鍍銅用陽極1從抑制MPS產生的觀點來看,溶解性銅陽極2與不溶性陽極3浸漬於電解鍍銅液21的表面的面積比率宜為10:1~1:10。若溶解性銅陽極2與不溶性陽極3浸漬於電解鍍銅液21的表面的面積比率不滿10:1,來自不溶性陽極(例如氧化銥元件)3表面的氧氣產生得極少,所以,無法充分抑制電解鍍銅液21中的MPS濃度上升,於是無法得到所要的鍍層特性。又,若該面積比率超過1:10,來自不溶性陽極(例如氧化銥元件)3表面的氧氣的產生顯著增加,所以,對電解鍍銅液21中所含有的添加劑進行氧化分解,增加了添加劑消耗量。再者,在此情況下,從溶解性銅陽極2供給的銅不足,為了使電解鍍銅液21中的銅濃度維持在既定濃度,需要從其他來源補給銅。在此,溶解性銅陽極2與不溶性陽極3浸漬於電解鍍銅液21的表面的面積比率為5:1~1:5,更加容易得到上述效果。In the
又,在本發明之電解鍍銅裝置10中,可適用之陰極電流密度宜在通常印刷配線基板的電解鍍銅處理所採用的含磷之銅元件被使用的範圍內。具體而言,該陰極電流密度為0.1A/dm2
~10A/dm2
,最好為0.5A/dm2
~6A/dm2
,1A/dm2
~5A/dm2
則更好。陽極電流密度通常可採用0.1A/dm2
~3A/dm2
,1A/dm2
~3A/dm2
則更好。電解鍍銅液21中的銅濃度在陽極電流密度過低時有上升的傾向,在陽極電流密度過高時有下降的傾向,所以,需要隨著所使用的陰極電流密度調整陽極面積。
In addition, in the electrolytic
在此,將更具體地說明本發明之電解鍍銅用陽極1被使用於正在電解及停止電解時所得到的效果。通常,在電解時及停止電解時,溶解性銅陽極2如下述化學式1的式(1)產生溶解。又,在電解時,陰極產生下述化學式1的式(2)所示的反應,析出銅。另外,在電解鍍銅液21含有二硫化物的情況下,藉由溶解性銅陽極2溶解時所釋出的電子,如下述化學式1的式(3)所示,SPS被還原並有MPS產生。所產生的MPS如下述化學式1的式(4)所示,一部分被氧化且轉換為SPS,但與一價的銅離子結合的Cu(I)MPS如下述化學式1的式(5)所示,變成MPS。
Here, the effect obtained when the
Cu→Cu2++2e-…(1) Cu2++2e-→Cu…(2) SPS+2H++2e-→2MPS…(3) 4MPS+2Cu2+→2Cu(I)MPS+SPS+4H+…(4) 2Cu(I)MPS+H++e-→2Cu+2MPS…(5) 2H2O→4H++O2+4e-…(6)〔化學式1〕
Cu → Cu 2+ + 2e - ... (1)
在上述化學式1的式(1)、式(3)~式(5)中,表示出會導致鍍層特性下降的MPS的產生的過程,但本發明之電解鍍銅用陽極1在與溶解性銅陽極2作電子連接的狀態下包括不溶性陽極3,藉此,可抑制電解鍍銅液21中的MPS濃度上升。換言之,在電解時,不溶性陽極3如上述化學式1的式(6)所示,進行電解鍍銅液21中的水的電子分解,此時所產生的氧氣使MPS被氧化且轉換為SPS,藉此,可減少已產生的MPS。
The formula (1), formula (3) to formula (5) of the
本發明之電解鍍銅裝置10藉由包括上述構造,可抑制電解鍍銅液21中的MPS的濃度上升。於是,根據本發明之電解鍍銅用陽極1及使用其之電解鍍銅裝置10,即使直接使用長時間放置的電解鍍銅液21開始進行電解,也難以產生鍍層外觀不良的情況,可實現不需維護的理想。
The electrolytic
以上說明了本發明之溶解性銅陽極及使用其之電解鍍銅液的保存方法,以下將表示本發明的實施例並更詳細地說明本發明。此外,本發明不受這些實施例的任何限定。 The soluble copper anode of the present invention and the storage method of the electrolytic copper plating solution using the same have been described above. The following will show examples of the present invention and explain the present invention in more detail. In addition, the present invention is not limited by these examples.
〔實施例1〕在實施例1中,進行一試驗,用來確認以電子連接狀態併用溶解性銅陽極與不溶性陽極作為電解鍍銅用陽極時的效果。 [Example 1] In Example 1, an experiment was conducted to confirm the effect when using a soluble copper anode and an insoluble anode as an anode for electrolytic copper plating in an electronically connected state.
在此實施例1中,首先,藉由Melplate MLB-6001製程(Meltex Inc.製造)對板厚1.0mm、通孔直徑100μm、深80μm的被鍍元件(印刷基板)進行除膠渣處理。接著,藉由Melplate CU-390製程(Meltex Inc.製造)進行無電解鍍銅。然後,藉由Melplate PC-316製程(Meltex Inc.製造)對此印刷基板進行酸性脫脂、水洗、硫酸處理後,根據以下所示的條件進行電解鍍銅。 In this Example 1, first, the Melplate MLB-6001 process (manufactured by Meltex Inc.) was used to remove the slag from the plated element (printed substrate) with a plate thickness of 1.0 mm, a through-hole diameter of 100 μm, and a depth of 80 μm. Next, electroless copper plating was performed by the Melplate CU-390 process (manufactured by Meltex Inc.). Then, this printed board was subjected to acid degreasing, water washing, and sulfuric acid treatment by the Melplate PC-316 process (manufactured by Meltex Inc.), and then electrolytic copper plating was performed under the conditions shown below.
在實施例1中所使用的酸性電解鍍銅液使用了3L的通孔填充浴,其是在含有五水合硫酸銅200g/L、濃硫酸100g/L、氯離子50mg/L的鍍層液中添加Lucent Copper SVF-A(Meltex Inc.製造,二硫化物系)0.4mL/L、Lucent Copper SVF-B(Meltex Inc.製造,二硫化物系)20mL/L、Lucent Copper SVF-L(Meltex Inc.製造,二硫化物系)15mL/L之後調整而成。又,該酸性電解鍍銅液的溫度設為25℃。 The acidic electrolytic copper plating solution used in Example 1 used a 3L through-hole filling bath, which was added to a plating solution containing copper sulfate pentahydrate 200g/L, concentrated sulfuric acid 100g/L, and chloride ion 50mg/L. Lucent Copper SVF-A (manufactured by Meltex Inc., disulfide series) 0.4mL/L, Lucent Copper SVF-B (manufactured by Meltex Inc., disulfide series) 20mL/L, Lucent Copper SVF-L (Meltex Inc. Manufactured, disulfide system) After 15mL/L adjusted. In addition, the temperature of this acidic electrolytic copper plating solution is set to 25°C.
然後,在電解處理槽內,於浸漬於被收納之通孔填充浴的狀態下設置電解鍍銅用陽極。電解鍍銅用陽極以電子連接的狀態在電解處理槽內離間配置溶解性銅陽極(50mm×120nn的含磷銅板)與不溶性陽極(50mm×120mm的氧化銥被覆板)。又,在實施例1中,於電解處理槽內,一邊使用泵浦使鍍層液循環,一邊進行電解處理。Then, an anode for electrolytic copper plating was installed in the electrolytic treatment tank in a state of being immersed in the filled through-hole filling bath. The anode for electrolytic copper plating is electronically connected with a soluble copper anode (a phosphor-containing copper plate of 50mm×120nn) and an insoluble anode (a 50mm×120mm iridium oxide coating plate) in an electrolytic treatment bath. In addition, in Example 1, the electrolytic treatment was performed in the electrolytic treatment tank while circulating the plating solution using a pump.
在實施例1中,溶解性銅陽極與不溶性陽極浸漬於電解鍍銅液的表面的面積比率設為1:1。又,作為陰極,將施有50mm×130mm之無電解鍍銅的印刷基板浸漬於電解鍍銅液中。然後,在電解鍍銅液的通電量為0AH/L(新浴)、10AH/L、50AH/L、100AH/L的各個條件下,以電流密度2A/dm2 進行45分鐘的電解處理。之後,以橫切面法觀察各個條件下的通孔內的鍍層填充狀況。在圖2中,表示實施例1中的通孔內的鍍層填充狀況的剖面照片。In Example 1, the area ratio of the surface of the soluble copper anode and the insoluble anode immersed in the electrolytic copper plating solution was set to 1:1. In addition, as a cathode, a printed substrate applied with electroless copper plating of 50 mm×130 mm was immersed in an electrolytic copper plating solution. Then, the electrolytic copper plating solution has a current density of 2A/dm 2 for 45 minutes under the current conditions of 0AH/L (new bath), 10AH/L, 50AH/L, and 100AH/L. After that, the filling state of the plating layer in the through hole under each condition was observed by the cross-sectional method. FIG. 2 is a cross-sectional photograph showing the filling state of the plating layer in the through hole in Example 1. FIG.
[實施例2]在實施例2中,與實施例1相同,進行一試驗,用來確認以電子連接狀態併用溶解性銅陽極與不溶性陽極作為電解鍍銅用陽極時的效果。[Example 2] In Example 2, as in Example 1, a test was performed to confirm the effect when the soluble copper anode and the insoluble anode were used as the anode for electrolytic copper plating in an electronically connected state.
在此實施例2中,使用與實施例1相同的被鍍元件。又,在實施例2中,除了將Lucent Copper SVF-A(0.4mL/L)變更為MPS(1mg/L)以外,採用與實施例1相同的電解前處理條件及電解處理條件。所以,關於在實施例2中所採用的那些處理條件,在此省略說明。In this Example 2, the same plated element as in Example 1 was used. In addition, in Example 2, except that the Lucent Copper SVF-A (0.4 mL/L) was changed to MPS (1 mg/L), the same electrolysis pretreatment conditions and electrolysis treatment conditions as in Example 1 were used. Therefore, the processing conditions adopted in the second embodiment will be omitted here.
在實施例2中,針對電解鍍銅用陽極,溶解性銅陽極與不溶性陽極浸漬於電解鍍銅液中的面積比率分別有「10:1」、「5:1」、「1:1」、「1:1(不溶性陽極採用鍍鉑鈦)」、「1:5」、「1:10」。然後,在電解鍍銅液的通電量為0AH/L、0.5AH/L、1AH/L、4AH/L、10AH/L的各個條件下,與實施例1相同,作為陰極,將施有50mm×130mm之無電解鍍銅的印刷基板浸漬於電解鍍銅液中,以電流密度2A/dm2 進行45分鐘的電解處理。之後,以橫切面法觀察各個條件下的通孔內的鍍層填充狀況。在圖3中,表示實施例2中的通孔內的鍍層填充狀況的剖面照片。In Example 2, regarding the anode for electrolytic copper plating, the area ratios of the soluble copper anode and the insoluble anode immersed in the electrolytic copper plating solution are "10:1", "5:1", "1:1", "1:1 (insoluble anode adopts platinum-plated titanium)", "1:5", "1:10". Then, under the conditions that the amount of electricity of the electrolytic copper plating solution is 0AH/L, 0.5AH/L, 1AH/L, 4AH/L, 10AH/L, as in Example 1, as a cathode, 50 mm× A 130 mm electroless copper-plated printed circuit board was immersed in an electrolytic copper plating solution, and electrolysis was performed at a current density of 2 A/dm 2 for 45 minutes. After that, the filling state of the plating layer in the through hole under each condition was observed by the cross-sectional method. In FIG. 3, a cross-sectional photograph showing the filling state of the plating layer in the through hole in Example 2. FIG.
[比較例1]在比較例1中,進行一試驗,用來確認僅使用溶解性銅陽極作為電解鍍銅用陽極時的效果。[Comparative Example 1] In Comparative Example 1, a test was performed to confirm the effect when only a soluble copper anode was used as an anode for electrolytic copper plating.
在比較例1中,除了僅使用溶解性銅陽極作為電解鍍銅用陽極以外,採用與實施例1相同的電解前處理條件及電解處理條件。所以,關於在比較例1中所採用的那些條件,在此省略說明。In Comparative Example 1, except that only a soluble copper anode was used as the anode for electrolytic copper plating, the same pre-electrolysis treatment conditions and electrolytic treatment conditions as in Example 1 were used. Therefore, the conditions adopted in Comparative Example 1 are omitted here.
又,在比較例1中,進行與實施例1相同的試驗。在圖2中,為了可與實施例1對比,表示比較例1中的通孔內的鍍層填充狀況的剖面照片。In Comparative Example 1, the same test as in Example 1 was performed. In FIG. 2, in order to be able to be compared with Example 1, a cross-sectional photograph showing the filling state of the plating layer in the through hole in Comparative Example 1 is shown.
[比較例2]在比較例2中,與比較例1相同,進行一試驗,用來確認僅使用溶解性銅陽極作為電解鍍銅用陽極時的效果。[Comparative Example 2] In Comparative Example 2, as in Comparative Example 1, a test was conducted to confirm the effect when only a soluble copper anode was used as an anode for electrolytic copper plating.
在比較例2中,除了僅使用溶解性銅陽極作為電解鍍銅用陽極這一點以及將Lucent Copper SVF-A(0.4mL/L)變更為MPS(1mg/L)這一點以外,採用與實施例1相同的電解前處理條件及電解處理條件。所以,關於在比較例2中所採用的那些處理條件,在此省略說明。In Comparative Example 2, in addition to the point of using only a soluble copper anode as the anode for electrolytic copper plating, and the point of changing Lucent Copper SVF-A (0.4 mL/L) to MPS (1 mg/L), the same examples were used. 1 The same pre-electrolysis treatment conditions and electrolysis treatment conditions. Therefore, the processing conditions adopted in Comparative Example 2 will be omitted here.
又,在比較例2中,進行與實施例2相同的試驗。在圖3中,為了可與實施例2對比,表示比較例2中的通孔內的鍍層填充狀況的剖面照片。In Comparative Example 2, the same test as in Example 2 was performed. In FIG. 3, in order to be able to compare with Example 2, a cross-sectional photograph showing the filling state of the plating layer in the through hole in Comparative Example 2.
根據圖2所示的結果可知,作為配設於貯留有電解鍍銅液之電解處理槽內的陽極,若使用以電子連接狀態包括溶解性銅陽極與不溶性陽極的陽極,與僅使用溶解性銅陽極的情況不同,通電量即使到達100AH/L那麼大,通孔的填充狀況幾乎沒有差別,可得到穩定且優良的填充性。According to the results shown in FIG. 2, as the anode disposed in the electrolytic treatment tank storing the electrolytic copper plating solution, if an anode including a soluble copper anode and an insoluble anode in an electronic connection state is used, only an soluble copper is used. The situation of the anode is different, and even if the amount of electricity passed is as large as 100AH/L, there is almost no difference in the filling condition of the through hole, and stable and excellent filling properties can be obtained.
根據圖3所示的結果可知,作為配設於貯留有電解鍍銅液之電解處理槽內的陽極,若使用以電子連接狀態包括溶解性銅陽極與不溶性陽極的陽極,相較於僅使用溶解性銅陽極的情況,即使電解鍍銅液中含有1mg/L的MPS,也可在較短的時間內恢復填充性。又,此時,將實施例2中的溶解性銅陽極與不溶性陽極浸漬於電解鍍銅液中的面積比率為「10:1」與在此以外的面積比率作對比時可知,溶解性銅陽極所占的比率越大,就有難以恢復填充性的傾向。另一方面,溶解性銅陽極所占的比率越小,電解鍍銅液中的溶解性銅陽極所供給的銅越不足,為了維持電解鍍銅液中的銅濃度,可想而知需要從其他來源補給銅。從以上的觀點可以理解,溶解性銅陽極與不溶性陽極浸漬於電解鍍銅液中的面積比率為5:1~1:5會更好。According to the results shown in FIG. 3, it can be seen that, as the anode disposed in the electrolytic treatment tank in which the electrolytic copper plating solution is stored, if an anode including a soluble copper anode and an insoluble anode in an electronic connection state is used, compared with the use of only the dissolved In the case of copper anodes, even if the electrolytic copper plating solution contains 1 mg/L of MPS, the filling property can be restored in a shorter time. In addition, at this time, when the area ratio of the soluble copper anode and the insoluble anode in Example 2 immersed in the electrolytic copper plating solution was "10:1" and the other area ratios were compared, it can be seen that the soluble copper anode The larger the ratio, the more difficult it is to restore the filling property. On the other hand, the smaller the ratio of the soluble copper anode, the less copper is supplied by the soluble copper anode in the electrolytic copper plating solution. To maintain the copper concentration in the electrolytic copper plating solution, it is conceivable that other Source supplies copper. From the above viewpoint, it can be understood that the area ratio of the soluble copper anode and the insoluble anode immersed in the electrolytic copper plating solution is preferably 5:1 to 1:5.
根據以上可知,藉由使用本發明之電解鍍銅用陽極及使用其之電解鍍銅裝置,可在不使裝置構造複雜化的情況下,提高鍍層促進性、通孔填充性等鍍層特性。由此可理解,當使用本發明之電解鍍銅用陽極進行電解處理時,可有效排除伴隨電解鍍銅液中的MPS的濃度上升所帶來的不良影響。As can be seen from the above, by using the anode for electrolytic copper plating of the present invention and the electrolytic copper plating apparatus using the same, it is possible to improve plating characteristics such as plating promotion and through hole filling without complicating the device structure. It can be understood from this that when the anode for electrolytic copper plating of the present invention is used for electrolytic treatment, the adverse effects caused by the increase in the concentration of MPS in the electrolytic copper plating solution can be effectively eliminated.
[產業上之可利性]根據本發明之電解鍍銅用陽極及使用其之電解鍍銅裝置,可在使用含有二硫化物之酸性電解鍍銅液的情況下,有效抑制MPS的濃度上升,穩定得到所要的鍍層特性。又,藉由使用本發明之電解鍍銅用陽極,可簡化電解鍍銅裝置的構造,降低設備成本。於是,本發明之電解鍍銅用陽極及使用其之電解鍍銅裝置特別適合應用於對具有貫穿孔及/或通孔之印刷配線基板、晶圓等施以電解鍍層處理時。[Industrial Applicability] According to the anode for electrolytic copper plating of the present invention and the electrolytic copper plating apparatus using the same, when the acidic electrolytic copper plating solution containing disulfide is used, the increase in the concentration of MPS can be effectively suppressed, Stable to obtain the desired coating characteristics. In addition, by using the anode for electrolytic copper plating of the present invention, the structure of the electrolytic copper plating apparatus can be simplified, and the equipment cost can be reduced. Therefore, the anode for electrolytic copper plating of the present invention and the electrolytic copper plating apparatus using the same are particularly suitable for applying electrolytic plating treatment to printed wiring boards, wafers, etc. having through holes and/or through holes.
1‧‧‧電解鍍銅用陽極2‧‧‧溶解性銅陽極3‧‧‧不溶性陽極5‧‧‧循環配管6‧‧‧噴嘴10‧‧‧電解鍍銅裝置20‧‧‧電解處理槽21‧‧‧電解鍍銅液1‧‧‧Electrolytic
[圖1]為例示在電解鍍銅裝置上使用本發明之溶解性銅陽極時的概略剖面圖。 [圖2]為表示實施例1及比較例1中之通孔之填充狀態的剖面照片。 [圖3]為表示實施例2及比較例2中之通孔之填充狀態的剖面照片。[FIG. 1] is a schematic cross-sectional view illustrating when the soluble copper anode of the present invention is used in an electrolytic copper plating apparatus. [FIG. 2] A cross-sectional photograph showing the filled state of the through holes in Example 1 and Comparative Example 1. [FIG. 3] A cross-sectional photograph showing the filled state of the through holes in Example 2 and Comparative Example 2.
1‧‧‧電解鍍銅用陽極 1‧‧‧Anode for electrolytic copper plating
2‧‧‧溶解性銅陽極 2‧‧‧Soluble copper anode
3‧‧‧不溶性陽極 3‧‧‧Insoluble anode
5‧‧‧循環配管 5‧‧‧Circulation piping
6‧‧‧噴嘴 6‧‧‧ nozzle
10‧‧‧電解鍍銅裝置 10‧‧‧Electrolytic copper plating device
20‧‧‧電解處理槽 20‧‧‧Electrolysis treatment tank
21‧‧‧電解鍍銅液 21‧‧‧Electrolytic copper plating solution
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-147707 | 2017-07-31 | ||
JP2017147707A JP6653799B2 (en) | 2017-07-31 | 2017-07-31 | Anode for electrolytic copper plating and electrolytic copper plating apparatus using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201910565A TW201910565A (en) | 2019-03-16 |
TWI683931B true TWI683931B (en) | 2020-02-01 |
Family
ID=65232696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107119157A TWI683931B (en) | 2017-07-31 | 2018-06-04 | Anode for electrolytic copper plating and electrolytic copper plating device using the same |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6653799B2 (en) |
KR (1) | KR102381835B1 (en) |
CN (1) | CN110997989A (en) |
TW (1) | TWI683931B (en) |
WO (1) | WO2019026578A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018133532A1 (en) * | 2018-12-21 | 2020-06-25 | Maschinenfabrik Kaspar Walter Gmbh & Co Kg | Electrolyte and process for the production of chrome layers |
KR102445229B1 (en) * | 2019-09-30 | 2022-09-21 | 한국재료연구원 | Measuring cell for concentration of additive breakdown product in plating solution |
CN111575746A (en) * | 2020-06-10 | 2020-08-25 | 诸暨企周企业管理有限公司 | Copper foil electrolysis production facility of anti-oxidant effect |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101363127A (en) * | 2007-08-09 | 2009-02-11 | 上村工业株式会社 | Electrolytic copper plating process |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3455705B2 (en) * | 1999-11-08 | 2003-10-14 | 大阪府 | Electro-copper plating apparatus and copper plating method using said apparatus |
JP4033616B2 (en) * | 2000-09-04 | 2008-01-16 | 鶴見曹達株式会社 | Manufacturing method of copper plating material |
KR100877923B1 (en) * | 2001-06-07 | 2009-01-12 | 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨 | Electrolytic copper plating method |
JP3803968B2 (en) | 2002-10-22 | 2006-08-02 | 荏原ユージライト株式会社 | Acid copper plating method and acid copper plating apparatus |
JP2005187869A (en) * | 2003-12-25 | 2005-07-14 | Hitachi Aic Inc | Plating method and plating apparatus |
JP5650899B2 (en) * | 2009-09-08 | 2015-01-07 | 上村工業株式会社 | Electroplating equipment |
EP2518187A1 (en) * | 2011-04-26 | 2012-10-31 | Atotech Deutschland GmbH | Aqueous acidic bath for electrolytic deposition of copper |
JP6423320B2 (en) * | 2015-06-25 | 2018-11-14 | 田中貴金属工業株式会社 | Plating apparatus and plating method |
JP2017210644A (en) * | 2016-05-24 | 2017-11-30 | メルテックス株式会社 | Soluble copper anode, electrolytic copper plating apparatus, electrolytic copper plating method, and storage method of acidic electrolytic copper plating liquid |
-
2017
- 2017-07-31 JP JP2017147707A patent/JP6653799B2/en active Active
-
2018
- 2018-06-04 TW TW107119157A patent/TWI683931B/en active
- 2018-07-11 KR KR1020207002324A patent/KR102381835B1/en active IP Right Grant
- 2018-07-11 CN CN201880047492.6A patent/CN110997989A/en active Pending
- 2018-07-11 WO PCT/JP2018/026178 patent/WO2019026578A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101363127A (en) * | 2007-08-09 | 2009-02-11 | 上村工业株式会社 | Electrolytic copper plating process |
Also Published As
Publication number | Publication date |
---|---|
KR102381835B1 (en) | 2022-04-01 |
TW201910565A (en) | 2019-03-16 |
KR20200032101A (en) | 2020-03-25 |
JP2019026894A (en) | 2019-02-21 |
WO2019026578A1 (en) | 2019-02-07 |
JP6653799B2 (en) | 2020-02-26 |
CN110997989A (en) | 2020-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103572336B (en) | A kind of PCB blind hole copper electroplating solution and preparation method thereof and electro-plating method | |
JP5293276B2 (en) | Continuous electrolytic copper plating method | |
US6783654B2 (en) | Electrolytic plating method and device for a wiring board | |
JP4932370B2 (en) | Electrolytic plating method, printed wiring board and semiconductor wafer | |
KR20020093584A (en) | Electrolytic copper plating method | |
TWI683931B (en) | Anode for electrolytic copper plating and electrolytic copper plating device using the same | |
WO2017204246A1 (en) | Soluble copper anode, electrolytic copper plating device, electrolytic copper plating method, and method for preserving acidic electrolytic copper plating liquid | |
CN106435664A (en) | Electro-coppering solution of soluble anode for hole filling | |
US3769179A (en) | Copper plating process for printed circuits | |
CN113881983A (en) | Through hole pulse electroplating liquid and through hole pulse electroplating coating method | |
JP2009228124A (en) | Method of filling through-hole | |
JP2007169700A (en) | Copper electroplating method using insoluble anode | |
JP2006316328A (en) | Method for manufacturing two-layer flexible copper-clad laminate | |
CN107385487B (en) | Tetra- oxa- -3,9- of 2,4,8,10-, two phospha spiro-compound is in the application of HDI plate copper plating rapidly pretreatment solution and its pre-treating technology | |
JP3903120B2 (en) | Copper sulfate plating method | |
JPH01297884A (en) | Copper plating of printed board | |
US20240271307A1 (en) | Complex waveform for electrolytic plating | |
WO2002086196A1 (en) | Copper acid baths, system and method for electroplating high aspect ratio substrates | |
KR100586842B1 (en) | Composition for acidic copper plating additive producing no slime | |
US20240224432A1 (en) | Single Step Electrolytic Method of Filling Through-Holes in Printed Circuit Boards and Other Substrates | |
Ganesan et al. | Innovative advances in copper electroplating for IC Substrate manufacturing | |
JP3071586B2 (en) | Copper sulfate plating method | |
CN115341249A (en) | Direct-current copper electroplating composite additive for IC carrier plate | |
JP2005008973A (en) | Surface roughening method for copper foil | |
JPH01184281A (en) | Chemical etching method with iodine |