[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI681629B - Buffer circuit - Google Patents

Buffer circuit Download PDF

Info

Publication number
TWI681629B
TWI681629B TW107129843A TW107129843A TWI681629B TW I681629 B TWI681629 B TW I681629B TW 107129843 A TW107129843 A TW 107129843A TW 107129843 A TW107129843 A TW 107129843A TW I681629 B TWI681629 B TW I681629B
Authority
TW
Taiwan
Prior art keywords
voltage signal
differential pair
terminal
coupled
type
Prior art date
Application number
TW107129843A
Other languages
Chinese (zh)
Other versions
TW202010260A (en
Inventor
劉立偉
卓均勇
何檀均
陳彥淵
洪紹桓
黃柏文
Original Assignee
奕力科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奕力科技股份有限公司 filed Critical 奕力科技股份有限公司
Priority to TW107129843A priority Critical patent/TWI681629B/en
Priority to CN201811228325.XA priority patent/CN110867166B/en
Application granted granted Critical
Publication of TWI681629B publication Critical patent/TWI681629B/en
Publication of TW202010260A publication Critical patent/TW202010260A/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017545Coupling arrangements; Impedance matching circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018557Coupling arrangements; Impedance matching circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Amplifiers (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

A buffer circuit including a switching circuit and an operational amplifier (OPA) circuit is provided. The switching circuit is coupled between an input terminal of the buffer circuit and a node and receives an input voltage signal from the input terminal. A non-inverting input terminal of the OPA circuit is coupled to the node. An output terminal of the OPA circuit is coupled to an inverting input terminal of the OPA circuit and outputs an output voltage signal. After a first time interval when the input voltage signal begins transition, the switching circuit is switched from an on state to an off state, such that the OPA circuit operates in an over driving mode to increase a transition amplitude of the output voltage signal.

Description

緩衝電路Buffer circuit

本發明是有關於一種緩衝電路,且特別是有關於一種具備過驅動功能的緩衝電路。 The present invention relates to a buffer circuit, and particularly to a buffer circuit with an overdrive function.

緩衝電路是一種具有廣泛應用的基本電路。舉例來說,在液晶顯示器的驅動電路中,輸出緩衝電路可依據前級數位至類比轉換器所輸出之類比訊號,對負載(即資料線上的寄生電容以及液晶電容)進行充放電,以驅動液晶顯示器上相對應的畫素單元。然而,隨著液晶顯示器尺寸及解析度的提高,液晶顯示器的驅動電路每單位時間所需輸出的資料量也越來越多,且資料線上的寄生電容隨面板尺寸及解析度而增加,故輸出緩衝電路的驅動能力需相對應提高以確保液晶電容能充電到理想的電壓準位。因此,如何提升緩衝電路的驅動能力乃是本技術領域技術人員所面臨的重要課題之一。 The buffer circuit is a basic circuit with wide application. For example, in the driving circuit of the liquid crystal display, the output buffer circuit can charge and discharge the load (that is, the parasitic capacitance of the data line and the liquid crystal capacitance) according to the analog signal output by the digital-to-analog converter of the previous stage to drive the liquid crystal The corresponding pixel unit on the display. However, as the size and resolution of LCDs increase, the amount of data that the drive circuit of the LCD needs to output per unit time is increasing, and the parasitic capacitance on the data line increases with the size and resolution of the panel, so the output The driving capacity of the buffer circuit needs to be increased accordingly to ensure that the liquid crystal capacitor can be charged to the ideal voltage level. Therefore, how to improve the driving capability of the buffer circuit is one of the important issues facing those skilled in the art.

有鑑於此,本發明提供一種具備過驅動功能的緩衝電 路,可在其輸入電壓信號轉態時,增加其輸出電壓信號的轉態幅度,以提高緩衝電路的驅動能力。 In view of this, the present invention provides a buffer circuit with an overdrive function Circuit, when the input voltage signal transitions, it can increase the transition amplitude of its output voltage signal to improve the driving capacity of the buffer circuit.

本發明的緩衝電路包括開關電路以及運算放大電路。開關電路耦接在緩衝電路的輸入端與一節點之間,用以自輸入端接收輸入電壓信號。運算放大電路的非反相輸入端耦接上述節點。運算放大電路的輸出端耦接運算放大電路的反相輸入端並輸出一輸出電壓信號。在輸入電壓信號開始轉態的第一時段之後,開關電路自導通狀態被切換為關斷狀態,致使運算放大電路操作在過驅動模式以增加輸出電壓信號的轉態幅度。 The buffer circuit of the present invention includes a switching circuit and an operational amplifier circuit. The switch circuit is coupled between the input end of the buffer circuit and a node for receiving the input voltage signal from the input end. The non-inverting input terminal of the operational amplifier circuit is coupled to the aforementioned node. The output terminal of the operational amplifier circuit is coupled to the inverting input terminal of the operational amplifier circuit and outputs an output voltage signal. After the first period of time when the input voltage signal starts to transition, the switch circuit is switched from the on state to the off state, causing the operational amplifier circuit to operate in the overdrive mode to increase the transition amplitude of the output voltage signal.

在本發明的一實施例中,在上述的過驅動模式下,運算放大電路透過外接電容,舉升或下拉上述節點的電壓,從而增加輸出電壓信號的轉態幅度。 In an embodiment of the present invention, in the above-mentioned over-driving mode, the operational amplifier circuit uses an external capacitor to raise or lower the voltage of the node, thereby increasing the transient amplitude of the output voltage signal.

在本發明的一實施例中,輸出電壓信號的轉態幅度與輸入電壓信號的電壓振幅之間的差值與輸入電壓信號的電壓振幅正相關。 In an embodiment of the invention, the difference between the transition amplitude of the output voltage signal and the voltage amplitude of the input voltage signal is positively correlated with the voltage amplitude of the input voltage signal.

在本發明的一實施例中,在開關電路自導通狀態被切換為關斷狀態的第二時段之後,開關電路自關斷狀態被切換為導通狀態,致使運算放大電路操作在正常驅動模式以讓輸出電壓信號追隨輸入電壓信號。 In an embodiment of the present invention, after the second period when the switch circuit is switched from the on-state to the off state, the switch circuit is switched from the off-state to the on state, causing the operational amplifier circuit to operate in the normal driving mode to allow The output voltage signal follows the input voltage signal.

在本發明的一實施例中,在正常驅動模式下,上述節點的節點電壓信號追隨輸入電壓信號。 In an embodiment of the invention, in the normal driving mode, the node voltage signal of the node follows the input voltage signal.

在本發明的一實施例中,運算放大電路包括輸入級、增 益級以及輸出級。輸入級用以接收節點電壓信號與輸出電壓信號,並且判定節點電壓信號與輸出電壓信號之間的電壓差以產生第一差動對信號及第二差動對信號。增益級耦接輸入級以接收第一差動對信號及第二差動對信號,並據以產生對應於上述電壓差的電流。輸出級耦接增益級並產生輸出電壓信號。 In an embodiment of the invention, the operational amplifier circuit includes an input stage, an amplifier Benefit level and output level. The input stage is used to receive the node voltage signal and the output voltage signal, and determine the voltage difference between the node voltage signal and the output voltage signal to generate the first differential pair signal and the second differential pair signal. The gain stage is coupled to the input stage to receive the first differential pair signal and the second differential pair signal, and accordingly generate a current corresponding to the above voltage difference. The output stage is coupled to the gain stage and generates an output voltage signal.

在本發明的一實施例中,輸入級包括N型差動對以及P型差動對。N型差動對的第一差動輸入端接收節點電壓信號。N型差動對的第二差動輸入端接收輸出電壓信號。N型差動對的第一差動輸出端輸出第一差動對信號的其中一信號。N型差動對的第二差動輸出端輸出第一差動對信號的其中另一信號。P型差動對的第一差動輸入端接收節點電壓信號。P型差動對的第二差動輸入端接收輸出電壓信號。P型差動對的第一差動輸出端輸出第二差動對信號的其中一信號。P型差動對的第二差動輸出端輸出第二差動對信號的其中另一信號。 In an embodiment of the invention, the input stage includes an N-type differential pair and a P-type differential pair. The first differential input of the N-type differential pair receives the node voltage signal. The second differential input of the N-type differential pair receives the output voltage signal. The first differential output terminal of the N-type differential pair outputs one of the first differential pair signals. The second differential output terminal of the N-type differential pair outputs the other signal of the first differential pair signal. The first differential input of the P-type differential pair receives the node voltage signal. The second differential input of the P-type differential pair receives the output voltage signal. The first differential output terminal of the P-type differential pair outputs one of the signals of the second differential pair signal. The second differential output terminal of the P-type differential pair outputs the other signal of the second differential pair signal.

在本發明的一實施例中,N型差動對包括第一N型電晶體、第二N型電晶體以及第一電流源。第一N型電晶體的第一端耦接第一共接端。第一N型電晶體的第二端耦接N型差動對的第一差動輸出端。第一N型電晶體的控制端耦接N型差動對的第一差動輸入端以接收節點電壓信號。第二N型電晶體的第一端耦接第一共接端。第二N型電晶體的第二端耦接N型差動對的第二差動輸出端。第二N型電晶體的控制端耦接N型差動對的第二差動輸入端以接收輸出電壓信號。第一電流源耦接在第一共接端與接 地電壓端之間。P型差動對包括第一P型電晶體、第二P型電晶體以及第二電流源。第一P型電晶體的第一端耦接第二共接端。第一P型電晶體的第二端耦接P型差動對的第一差動輸出端。第一P型電晶體的控制端耦接P型差動對的第一差動輸入端以接收節點電壓信號。第二P型電晶體的第一端耦接第二共接端。第二P型電晶體的第二端耦接P型差動對的第二差動輸出端。第二P型電晶體的控制端耦接P型差動對的第二差動輸入端以接收輸出電壓信號。第二電流源耦接在電源電壓端與第二共接端之間。 In an embodiment of the invention, the N-type differential pair includes a first N-type transistor, a second N-type transistor, and a first current source. The first terminal of the first N-type transistor is coupled to the first common terminal. The second end of the first N-type transistor is coupled to the first differential output end of the N-type differential pair. The control terminal of the first N-type transistor is coupled to the first differential input terminal of the N-type differential pair to receive the node voltage signal. The first terminal of the second N-type transistor is coupled to the first common terminal. The second end of the second N-type transistor is coupled to the second differential output end of the N-type differential pair. The control end of the second N-type transistor is coupled to the second differential input end of the N-type differential pair to receive the output voltage signal. The first current source is coupled to the first common terminal Between ground voltage terminals. The P-type differential pair includes a first P-type transistor, a second P-type transistor, and a second current source. The first terminal of the first P-type transistor is coupled to the second common terminal. The second end of the first P-type transistor is coupled to the first differential output end of the P-type differential pair. The control terminal of the first P-type transistor is coupled to the first differential input terminal of the P-type differential pair to receive the node voltage signal. The first terminal of the second P-type transistor is coupled to the second common terminal. The second end of the second P-type transistor is coupled to the second differential output end of the P-type differential pair. The control terminal of the second P-type transistor is coupled to the second differential input terminal of the P-type differential pair to receive the output voltage signal. The second current source is coupled between the power voltage terminal and the second common terminal.

在本發明的一實施例中,第一共接端與N型差動對的第一差動輸入端之間具有外接電容。在過驅動模式下且輸出電壓信號進行下降轉態時,運算放大電路透過外接電容下拉節點電壓信號,從而增加輸出電壓信號的轉態幅度。 In an embodiment of the invention, there is an external capacitor between the first common terminal and the first differential input terminal of the N-type differential pair. In the over-driving mode and the output voltage signal undergoes a falling transition, the operational amplifier circuit pulls down the node voltage signal through an external capacitor, thereby increasing the transition amplitude of the output voltage signal.

在本發明的一實施例中,第二共接端與P型差動對的第一差動輸入端之間具有外接電容。在過驅動模式下且輸出電壓信號進行上升轉態時,運算放大電路透過外接電容舉升節點電壓信號,從而增加輸出電壓信號的轉態幅度。 In an embodiment of the invention, there is an external capacitor between the second common terminal and the first differential input terminal of the P-type differential pair. When the output voltage signal rises and transitions in the overdrive mode, the operational amplifier circuit raises the node voltage signal through an external capacitor, thereby increasing the transition width of the output voltage signal.

基於上述,在本發明實施例所提出的緩衝電路中,可以在N型差動對的第一共接端與第一差動輸入端之間另外外接電容,或是在P型差動對的第二共接端與第一差動輸入端之間另外外接電容,可在開關電路為關斷狀態時,藉由外接電容來增加輸出電壓信號的轉態幅度。如此一來,可有效提高輸出電壓信號的驅動能力以達到過驅動的效果。 Based on the above, in the buffer circuit provided by the embodiment of the present invention, an external capacitor may be additionally connected between the first common connection end of the N-type differential pair and the first differential input end, or the P-type differential pair An external capacitor is additionally connected between the second common terminal and the first differential input terminal. When the switch circuit is in the off state, the external capacitor can be used to increase the transition amplitude of the output voltage signal. In this way, the driving ability of the output voltage signal can be effectively improved to achieve the effect of overdriving.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more obvious and understandable, the embodiments are specifically described below in conjunction with the accompanying drawings for detailed description as follows.

100‧‧‧緩衝電路 100‧‧‧buffer circuit

120‧‧‧開關電路 120‧‧‧Switch circuit

140‧‧‧運算放大電路 140‧‧‧Operation amplifier circuit

142‧‧‧輸入級 142‧‧‧ input level

144‧‧‧增益級 144‧‧‧Gain stage

146‧‧‧輸出級 146‧‧‧ output stage

250、260‧‧‧電壓波形 250, 260‧‧‧ voltage waveform

A1、A1’‧‧‧電壓振幅 A1, A1’‧‧‧ voltage amplitude

A2、A2’‧‧‧轉態幅度 A2, A2’‧‧‧Transition amplitude

ANC、APC‧‧‧共接點 ANC, APC‧‧‧ common contact

C1、C2‧‧‧電容 C1, C2‧‧‧Capacitance

CL‧‧‧電容 CL‧‧‧Capacitor

DP_N‧‧‧N型差動對 DP_N‧‧‧N type differential pair

DP_P‧‧‧P型差動對 DP_P‧‧‧P differential pair

DPS1‧‧‧第一差動對信號 DPS1‧‧‧First differential pair signal

DPS2‧‧‧第二差動對信號 DPS2‧‧‧Second differential pair signal

GND‧‧‧接地電壓端 GND‧‧‧Ground voltage terminal

HOD‧‧‧開關信號 HOD‧‧‧switch signal

I1、I2‧‧‧電流源 I1, I2‧‧‧ current source

IN‧‧‧輸入端 IN‧‧‧input

IT1、IP1‧‧‧第一差動輸入端 IT1, IP1‧‧‧First differential input

IT2、IP2‧‧‧第二差動輸入端 IT2, IP2‧‧‧second differential input

MN1、MN2‧‧‧N型電晶體 MN1, MN2 ‧‧‧N-type transistor

MP1、MP2‧‧‧P型電晶體 MP1, MP2‧‧‧P type transistor

ND‧‧‧節點 ND‧‧‧Node

OP1、OT1‧‧‧第一差動輸出端 OP1, OT1‧‧‧First differential output

OP2、OT2‧‧‧第二差動輸出端 OP2, OT2 ‧‧‧ second differential output

PWR‧‧‧電源電壓端 PWR‧‧‧Power voltage terminal

RL‧‧‧電阻 RL‧‧‧Resistance

T0~T5‧‧‧時間點 T0~T5‧‧‧time

TP1~TP5‧‧‧時段 TP1~TP5‧‧‧‧

VIN‧‧‧輸入電壓信號 VIN‧‧‧Input voltage signal

VL‧‧‧負載電壓 VL‧‧‧ Load voltage

VND‧‧‧節點電壓信號 VND‧‧‧ Node voltage signal

VO‧‧‧輸出電壓信號 VO‧‧‧Output voltage signal

ΔV、ΔV’‧‧‧差值 ΔV, ΔV’‧‧‧ difference

下面的所附圖式是本發明之說明書的一部分,繪示了本發明的示例實施例,所附圖式與說明書的描述一起說明本發明的原理。 The drawings below are part of the description of the present invention, and illustrate exemplary embodiments of the present invention. The drawings together with the description of the description illustrate the principle of the present invention.

圖1是依照本發明一實施例所繪示的緩衝電路的電路方塊示意圖。 FIG. 1 is a schematic circuit block diagram of a buffer circuit according to an embodiment of the invention.

圖2是依照本發明一實施例所繪示的緩衝電路的信號時序示意圖。 FIG. 2 is a signal timing diagram of a buffer circuit according to an embodiment of the invention.

圖3是依照本發明一實施例所繪示的運算放大電路的方塊示意圖。 3 is a block diagram of an operational amplifier circuit according to an embodiment of the invention.

圖4是依照本發明一實施例所繪示的輸入級的電路架構示意圖。 4 is a schematic diagram of a circuit structure of an input stage according to an embodiment of the invention.

圖5是依照本發明一實施例所繪示的緩衝電路的信號時序示意圖。 FIG. 5 is a signal timing diagram of a buffer circuit according to an embodiment of the invention.

圖6是依照本發明另一實施例所繪示的緩衝電路的信號時序示意圖。 6 is a signal timing diagram of a buffer circuit according to another embodiment of the invention.

現將詳細參考本發明之示範性實施例,在附圖中說明所 述示範性實施例之實例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件代表相同或類似部分。 Reference will now be made in detail to exemplary embodiments of the present invention, illustrated in the accompanying drawings. Examples of the exemplary embodiment are described. In addition, wherever possible, elements/components using the same reference numerals in the drawings and embodiments represent the same or similar parts.

圖1是依照本發明一實施例所繪示的緩衝電路的電路方塊示意圖。請參照圖1,緩衝電路100包括開關電路120以及運算放大電路140,但本發明不限於此。開關電路120耦接在緩衝電路100的輸入端IN與節點ND之間,用以自輸入端IN接收輸入電壓信號VIN。開關電路120可受控於開關信號HOD而被導通或被關斷。於本實施例中,開關電路120可反應於邏輯高位準的開關信號HOD而被關斷,且可反應於邏輯低位準的開關信號HOD而被導通,但本發明不限於此。本領域具通常知識者皆知,開關電路120的導通與否與開關信號HOD的邏輯高低位準的關係是可以由設計者依實際需求來進行定義的。 FIG. 1 is a schematic circuit block diagram of a buffer circuit according to an embodiment of the invention. Referring to FIG. 1, the buffer circuit 100 includes a switch circuit 120 and an operational amplifier circuit 140, but the present invention is not limited thereto. The switch circuit 120 is coupled between the input terminal IN and the node ND of the buffer circuit 100 for receiving the input voltage signal VIN from the input terminal IN. The switching circuit 120 can be turned on or turned off under the control of the switching signal HOD. In this embodiment, the switch circuit 120 can be turned off in response to the switching signal HOD of the logic high level, and can be turned on in response to the switching signal HOD of the logic low level, but the invention is not limited thereto. Those of ordinary skill in the art know that the relationship between whether the switch circuit 120 is turned on and the logic level of the switch signal HOD can be defined by the designer according to actual needs.

運算放大電路140的非反相輸入端耦接節點ND。運算放大電路140的輸出端耦接運算放大電路140的反相輸入端。運算放大電路140的輸出端提供輸出電壓信號VO。輸出電壓信號VO可用來驅動外部的負載(例如液晶顯示器,但不限於此)。在圖1的實施例中,外部的負載以等效的電阻RL及電容CL來表示。 The non-inverting input terminal of the operational amplifier circuit 140 is coupled to the node ND. The output terminal of the operational amplifier circuit 140 is coupled to the inverting input terminal of the operational amplifier circuit 140. The output terminal of the operational amplifier circuit 140 provides the output voltage signal VO. The output voltage signal VO can be used to drive an external load (such as a liquid crystal display, but not limited to this). In the embodiment of FIG. 1, the external load is represented by the equivalent resistance RL and capacitance CL.

在本發明的一實施例中,開關電路120可例如是傳輸閘(transmission gate),但本發明並不以此限。本發明並不限制開關電路120的實施方式。 In an embodiment of the invention, the switch circuit 120 may be, for example, a transmission gate, but the invention is not limited thereto. The invention does not limit the implementation of the switch circuit 120.

以下搭配圖2說明緩衝電路100的運作。圖2是依照本發明一實施例所繪示的緩衝電路的信號時序示意圖。請合併參照 圖1及圖2,在輸入電壓信號VIN開始轉態的第一時段TP1(第四時段TP4)之後,開關電路120將自導通狀態被切換為關斷狀態,致使運算放大電路140操作在過驅動模式以增加輸出電壓信號VO的轉態幅度A2(A2’)。 The operation of the buffer circuit 100 will be described below with reference to FIG. 2. FIG. 2 is a signal timing diagram of a buffer circuit according to an embodiment of the invention. Please refer to 1 and 2, after the first period TP1 (the fourth period TP4) of the input voltage signal VIN starts to transition, the switch circuit 120 is switched from the on-state to the off-state, causing the operational amplifier circuit 140 to operate in overdrive Mode to increase the transition amplitude A2(A2') of the output voltage signal VO.

詳細來說,輸入電壓信號VIN於時間點T0開始上升轉態。在經過第一時段TP1之後,於時間點T1,開關信號HOD由邏輯低位準切換至邏輯高位準,因此開關電路120被關斷,致使節點ND為浮接狀態。接著,運算放大電路140可透過外接電容來舉升節點ND的電壓(即節點電壓信號VND的電壓),從而增加輸出電壓信號VO的轉態幅度A2,其中輸出電壓信號VO的轉態幅度A2大於輸入電壓信號VIN的電壓振幅A1。 In detail, the input voltage signal VIN starts to rise and transition at the time point T0. After the first period TP1, at the time point T1, the switching signal HOD is switched from the logic low level to the logic high level, so the switch circuit 120 is turned off, so that the node ND is in a floating state. Then, the operational amplifier circuit 140 can raise the voltage of the node ND (that is, the voltage of the node voltage signal VND) through an external capacitor, thereby increasing the transient amplitude A2 of the output voltage signal VO, where the transient amplitude A2 of the output voltage signal VO is greater than The voltage amplitude A1 of the input voltage signal VIN.

在經過第二時段TP2之後,於時間點T2,開關信號HOD由邏輯高位準切換至邏輯低位準,因此開關電路120自關斷狀態被切換為導通狀態,致使節點ND的節點電壓信號VND追隨輸入電壓信號VIN,因此,運算放大電路140操作在正常驅動模式以讓輸出電壓信號VO也追隨輸入電壓信號VIN。 After the second period TP2, at the time point T2, the switching signal HOD is switched from the logic high level to the logic low level, so the switch circuit 120 is switched from the off state to the on state, causing the node voltage signal VND of the node ND to follow the input The voltage signal VIN, therefore, the operational amplifier circuit 140 operates in the normal driving mode so that the output voltage signal VO also follows the input voltage signal VIN.

另外,在第三時段TP3之後,輸入電壓信號VIN於時間點T3開始下降轉態。在經過第四時段TP4之後,於時間點T4,開關信號HOD由邏輯低位準轉態至邏輯高位準,因此開關電路120被關斷,致使節點ND為浮接狀態。接著,運算放大電路140可透過外接電容來下拉節點ND的電壓(即節點電壓信號VND的電壓),從而增加輸出電壓信號VO的轉態幅度A2’,其中輸出電壓 信號VO的轉態幅度A2’大於輸入電壓信號VIN的電壓振幅A1。 In addition, after the third period TP3, the input voltage signal VIN starts to fall and transition at the time point T3. After the fourth period TP4, at the time point T4, the switching signal HOD transitions from the logic low level to the logic high level, so the switch circuit 120 is turned off, causing the node ND to be in a floating state. Then, the operational amplifier circuit 140 can pull down the voltage of the node ND (that is, the voltage of the node voltage signal VND) through an external capacitor, thereby increasing the transition amplitude A2' of the output voltage signal VO, where the output voltage The transition amplitude A2' of the signal VO is greater than the voltage amplitude A1 of the input voltage signal VIN.

在經過第五時段TP5之後,於時間點T5,開關信號HOD由邏輯高位準切換至邏輯低位準,因此開關電路120自關斷狀態被切換為導通狀態,致使節點ND的節點電壓信號VND追隨輸入電壓信號VIN,因此,運算放大電路140操作在正常驅動模式以讓輸出電壓信號VO也追隨輸入電壓信號VIN。 After the fifth period TP5, at the time point T5, the switching signal HOD is switched from the logic high level to the logic low level, so the switch circuit 120 is switched from the off state to the on state, causing the node voltage signal VND of the node ND to follow the input The voltage signal VIN, therefore, the operational amplifier circuit 140 operates in the normal driving mode so that the output voltage signal VO also follows the input voltage signal VIN.

由於運算放大電路140可在開關電路120為關斷狀態時(即第二時段TP2、第五時段TP5)增加輸出電壓信號VO的轉態幅度A2、A2’,故可有效提高輸出電壓信號VO的驅動能力以達到過驅動的效果,從而加快負載電壓VL的切換速度。如圖2所示,電壓波形250為採用本發明實施例的緩衝電路100所驅動後的負載電壓VL的電壓波形,而電壓波形260則為採用一般不具備過驅動功能的緩衝電路所驅動後的負載電壓VL的電壓波形。由圖2可明顯看出,電壓波形250的轉態速度明顯快於電壓波形260的轉態速度。 Since the operational amplifier circuit 140 can increase the transition amplitudes A2 and A2' of the output voltage signal VO when the switch circuit 120 is in the off state (ie, the second period TP2 and the fifth period TP5), the output voltage signal VO can be effectively increased. Drive ability to achieve the effect of overdriving, thereby accelerating the switching speed of the load voltage VL. As shown in FIG. 2, the voltage waveform 250 is the voltage waveform of the load voltage VL driven by the buffer circuit 100 of the embodiment of the present invention, and the voltage waveform 260 is driven by a buffer circuit that generally does not have an overdrive function The voltage waveform of the load voltage VL. It can be clearly seen from FIG. 2 that the transition speed of the voltage waveform 250 is significantly faster than the transition speed of the voltage waveform 260.

圖3是依照本發明一實施例所繪示的運算放大電路的方塊示意圖。請參照圖3。運算放大電路140包括輸入級142、增益級144以及輸出級146,但本發明不限於此。輸入級142用以接收節點電壓信號VND與輸出電壓信號VO,並且判定節點電壓信號VND與輸出電壓信號VO之間的電壓差,以產生第一差動對信號DPS1及第二差動對信號DPS2。增益級144耦接輸入級142以接收第一差動對信號DPS1及第二差動對信號DPS2,並據以產生對 應於此電壓差的電流。輸出級146耦接增益級144並產生輸出電壓信號VO。 3 is a block diagram of an operational amplifier circuit according to an embodiment of the invention. Please refer to Figure 3. The operational amplifier circuit 140 includes an input stage 142, a gain stage 144, and an output stage 146, but the invention is not limited thereto. The input stage 142 is used to receive the node voltage signal VND and the output voltage signal VO, and determine the voltage difference between the node voltage signal VND and the output voltage signal VO to generate the first differential pair signal DPS1 and the second differential pair signal DPS2 . The gain stage 144 is coupled to the input stage 142 to receive the first differential pair signal DPS1 and the second differential pair signal DPS2, and generate a pair accordingly The current corresponding to this voltage difference. The output stage 146 is coupled to the gain stage 144 and generates an output voltage signal VO.

在本發明的一實施例中,增益級144及輸出級146可分別採用已知的增益級電路及輸出級電路來實現。 In an embodiment of the invention, the gain stage 144 and the output stage 146 can be implemented using known gain stage circuits and output stage circuits, respectively.

圖4是依照本發明一實施例所繪示的輸入級的電路架構示意圖。請合併參照圖3及圖4。輸入級142可包括N型差動對DP_N以及P型差動對DP_P。N型差動對DP_N的第一差動輸入端IT1接收節點電壓信號VND。N型差動對DP_N的第二差動輸入端IT2接收輸出電壓信號VO。N型差動對DP_N的第一差動輸出端OT1輸出第一差動對信號DPS1的其中一信號。N型差動對DP_N的第二差動輸出端OT2輸出第一差動對信號DPS1的其中另一信號。 4 is a schematic diagram of a circuit structure of an input stage according to an embodiment of the invention. Please refer to Figure 3 and Figure 4 together. The input stage 142 may include an N-type differential pair DP_N and a P-type differential pair DP_P. The first differential input terminal IT1 of the N-type differential pair DP_N receives the node voltage signal VND. The second differential input terminal IT2 of the N-type differential pair DP_N receives the output voltage signal VO. The first differential output terminal OT1 of the N-type differential pair DP_N outputs one of the first differential pair signal DPS1. The second differential output terminal OT2 of the N-type differential pair DP_N outputs the other one of the first differential pair signal DPS1.

P型差動對DP_P的第一差動輸入端IP1接收節點電壓信號VND。P型差動對DP_P的第二差動輸入端IP2接收輸出電壓信號VO。P型差動對DP_P的第一差動輸出端OP1輸出第二差動對信號DPS2的其中一信號。P型差動對DP_P的第二差動輸出端OP2輸出第二差動對信號DPS2的其中另一信號。 The first differential input terminal IP1 of the P-type differential pair DP_P receives the node voltage signal VND. The second differential input terminal IP2 of the P-type differential pair DP_P receives the output voltage signal VO. The first differential output terminal OP1 of the P-type differential pair DP_P outputs one of the second differential pair signal DPS2. The second differential output terminal OP2 of the P-type differential pair DP_P outputs another one of the second differential pair signal DPS2.

詳細來說,N型差動對DP_N包括N型電晶體MN1、MN2以及電流源I1。N型電晶體MN1的第一端耦接共接端ANC。N型電晶體MN1的第二端耦接N型差動對DP_N的第一差動輸出端OT1。N型電晶體MN1的控制端耦接N型差動對DP_N的第一差動輸入端IT1以接收節點電壓信號VND。N型電晶體MN2的第一 端耦接共接端ANC。N型電晶體MN2的第二端耦接N型差動對DP_N的第二差動輸出端OT2。N型電晶體MN2的控制端耦接N型差動對DP_N的第二差動輸入端IT2以接收輸出電壓信號VO。電流源I1耦接在共接端ANC與接地電壓端GND之間。 In detail, the N-type differential pair DP_N includes N-type transistors MN1, MN2 and a current source I1. The first terminal of the N-type transistor MN1 is coupled to the common terminal ANC. The second terminal of the N-type transistor MN1 is coupled to the first differential output terminal OT1 of the N-type differential pair DP_N. The control terminal of the N-type transistor MN1 is coupled to the first differential input terminal IT1 of the N-type differential pair DP_N to receive the node voltage signal VND. N-type transistor MN2 first The terminal is coupled to the common terminal ANC. The second terminal of the N-type transistor MN2 is coupled to the second differential output terminal OT2 of the N-type differential pair DP_N. The control terminal of the N-type transistor MN2 is coupled to the second differential input terminal IT2 of the N-type differential pair DP_N to receive the output voltage signal VO. The current source I1 is coupled between the common terminal ANC and the ground voltage terminal GND.

P型差動對DP_P包括P型電晶體MP1、MP2以及電流源I2。P型電晶體MP1的第一端耦接共接端APC。P型電晶體MP1的第二端耦接P型差動對DP_P的第一差動輸出端OP1。P型電晶體MP1的控制端耦接P型差動對DP_P的第一差動輸入端IP1以接收節點電壓信號VND。P型電晶體MP2的第一端耦接共接端APC。P型電晶體MP2的第二端耦接P型差動對DP_P的第二差動輸出端OP2。P型電晶體MP2的控制端耦接P型差動對DP_P的第二差動輸入端IP2以接收輸出電壓信號VO。電流源I2耦接在電源電壓端PWR與共接端APC之間。 The P-type differential pair DP_P includes P-type transistors MP1, MP2 and a current source I2. The first end of the P-type transistor MP1 is coupled to the common terminal APC. The second terminal of the P-type transistor MP1 is coupled to the first differential output terminal OP1 of the P-type differential pair DP_P. The control terminal of the P-type transistor MP1 is coupled to the first differential input terminal IP1 of the P-type differential pair DP_P to receive the node voltage signal VND. The first end of the P-type transistor MP2 is coupled to the common terminal APC. The second terminal of the P-type transistor MP2 is coupled to the second differential output terminal OP2 of the P-type differential pair DP_P. The control terminal of the P-type transistor MP2 is coupled to the second differential input terminal IP2 of the P-type differential pair DP_P to receive the output voltage signal VO. The current source I2 is coupled between the power supply voltage terminal PWR and the common terminal APC.

在本發明的一實施例中,N型電晶體MN1、MN2可例如是N型金氧半場效電晶體,且P型電晶體MP1、MP2可例如是P型金氧半場效電晶體,但本發明並不以此為限。 In an embodiment of the present invention, the N-type transistors MN1 and MN2 may be, for example, N-type metal oxide half field effect transistors, and the P-type transistors MP1, MP2 may be, for example, P-type metal oxide half field effect transistors, but this The invention is not limited to this.

在本發明的一實施例中,共接端ANC與N型差動對DP_N的第一差動輸入端IT1之間具有電容C1,且共接端APC與P型差動對DP_P的第一差動輸入端IP1之間具有電容C2,其中電容C1是外接電容,且電容C2是外接電容,但本發明不限於此。 In an embodiment of the invention, the common terminal ANC and the first differential input terminal IT1 of the N-type differential pair DP_N have a capacitor C1, and the first terminal APC and the P-type differential pair DP_P have a first difference There is a capacitor C2 between the dynamic input terminal IP1, wherein the capacitor C1 is an external capacitor, and the capacitor C2 is an external capacitor, but the invention is not limited thereto.

圖5是依照本發明一實施例所繪示的緩衝電路的信號時序示意圖。請合併參照圖1、圖4及圖5。輸入電壓信號VIN於時 間點T0開始上升轉態。由於開關信號HOD為邏輯低位準,故開關電路120為導通狀態,致使節點電壓信號VND追隨輸入電壓信號VIN。在第一時段TP1中,節點電壓信號VND追隨輸入電壓信號VIN由低電位逐漸轉換至高電位。然而,基於運算放大電路140內部的電路延遲以及外部的負載(例如電阻RL及電容CL)的影響,輸出電壓信號VO的上升轉態的速度較節點電壓信號VND的上升轉態的速度慢。由於運算放大電路140內部的N型差動對DP_N及P型差動對DP_P受節點電壓信號VND與輸出電壓信號VO控制,因此,在圖4所示的N型差動對DP_N中,電流大部分會自N型電晶體MN1流至電流源I1,致使共接點ANC的電壓追隨節點電壓信號VND。而在P型差動對DP_P中,電流源I2的電流大部分會流入P型電晶體MP2,致使共接點APC的電壓追隨輸出電壓信號VO。 FIG. 5 is a signal timing diagram of a buffer circuit according to an embodiment of the invention. Please refer to Figure 1, Figure 4 and Figure 5 together. Input voltage signal VIN at The point T0 begins to rise and transition. Since the switching signal HOD is at a logic low level, the switching circuit 120 is in an on state, so that the node voltage signal VND follows the input voltage signal VIN. In the first period TP1, the node voltage signal VND gradually changes from a low potential to a high potential following the input voltage signal VIN. However, due to the internal circuit delay of the operational amplifier circuit 140 and the influence of external loads (such as the resistor RL and the capacitor CL), the speed of the rising transition of the output voltage signal VO is slower than the speed of the rising transition of the node voltage signal VND. Since the N-type differential pair DP_N and the P-type differential pair DP_P in the operational amplifier circuit 140 are controlled by the node voltage signal VND and the output voltage signal VO, therefore, in the N-type differential pair DP_N shown in FIG. 4, the current is large Some will flow from the N-type transistor MN1 to the current source I1, so that the voltage of the common contact ANC follows the node voltage signal VND. In the P-type differential pair DP_P, most of the current of the current source I2 flows into the P-type transistor MP2, so that the voltage of the common contact APC follows the output voltage signal VO.

於時間點T1,節點電壓信號VND的電壓趨近於輸入電壓信號VIN的電壓,故而開關信號HOD由邏輯低位準切換至邏輯高位準以將開關電路120關斷,致使節點ND為浮接狀態。此時,輸出電壓信號VO仍處於上升轉態的過程中,因此輸出電壓信號VO仍持續上升,且共接點APC的電壓亦追隨輸出電壓信號VO而持續上升。基於節點ND為浮接狀態,節點電壓信號VND將藉由外接電容C2而被共接點APC的電壓所舉升(boost)。如圖5所示,在第二時段TP2的過驅動模式下,節點電壓信號VND的電壓值被舉升至超過輸入電壓信號VIN的電壓值,導致輸出電壓信號 VO亦上升,從而增加了輸出電壓信號VO的轉態幅度而達到過驅動的效果。 At time T1, the voltage of the node voltage signal VND approaches the voltage of the input voltage signal VIN, so the switching signal HOD is switched from the logic low level to the logic high level to turn off the switching circuit 120, so that the node ND is in a floating state. At this time, the output voltage signal VO is still in the process of rising transition, so the output voltage signal VO continues to rise, and the voltage of the common contact APC also continues to rise following the output voltage signal VO. Since the node ND is in the floating state, the node voltage signal VND will be boosted by the voltage of the common contact APC through the external capacitor C2. As shown in FIG. 5, in the overdrive mode of the second period TP2, the voltage value of the node voltage signal VND is raised to exceed the voltage value of the input voltage signal VIN, resulting in an output voltage signal VO also rises, thereby increasing the transient amplitude of the output voltage signal VO to achieve the effect of overdriving.

值得一提的是,輸出電壓信號VO的轉態幅度A2與輸入電壓信號VIN的電壓振幅A1的差值ΔV,與輸入電壓信號VIN的電壓振幅A1正相關。也就是說,若輸入電壓信號VIN的電壓振幅A1越大,則差值ΔV亦越大,反之亦然。 It is worth mentioning that the difference ΔV between the transition amplitude A2 of the output voltage signal VO and the voltage amplitude A1 of the input voltage signal VIN is positively related to the voltage amplitude A1 of the input voltage signal VIN. That is to say, if the voltage amplitude A1 of the input voltage signal VIN is larger, the difference ΔV is also larger, and vice versa.

在經過第二時段TP2之後,於時間點T2,開關信號HOD由邏輯高位準切換至邏輯低位準,因此開關電路120被導通,致使節點電壓信號VND以及輸出電壓信號VO追隨輸入電壓信號VIN。 After the second period TP2, at the time point T2, the switching signal HOD is switched from the logic high level to the logic low level, so the switch circuit 120 is turned on, causing the node voltage signal VND and the output voltage signal VO to follow the input voltage signal VIN.

圖6是依照本發明另一實施例所繪示的緩衝電路的信號時序示意圖。請合併參照圖1、圖4及圖6。輸入電壓信號VIN於時間點T3開始下降轉態。由於開關信號HOD為邏輯低位準,故開關電路120為導通狀態,致使節點電壓信號VND追隨輸入電壓信號VIN。在第四時段TP4中,節點電壓信號VND追隨輸入電壓信號VIN由高電位逐漸轉換至低電位。然而,基於運算放大電路140內部的電路延遲以及外部的負載(例如電阻RL及電容CL)的影響,輸出電壓信號VO的下降轉態的速度較節點電壓信號VND的下降轉態的速度慢。由於運算放大電路140內部的N型差動對DP_N及P型差動對DP_P受節點電壓信號VND與輸出電壓信號VO控制,因此,在圖4所示的N型差動對DP_N中,電流大部分會自N型電晶體MN2流至電流源I1,致使共接點ANC的電壓追 隨輸出電壓信號VO。而在P型差動對DP_P中,電流源I2的電流大部分會流入P型電晶體MP1,致使共接點APC的電壓追隨節點電壓信號VND。 6 is a signal timing diagram of a buffer circuit according to another embodiment of the invention. Please refer to Figure 1, Figure 4 and Figure 6 together. The input voltage signal VIN begins to fall and transition at time T3. Since the switching signal HOD is at a logic low level, the switching circuit 120 is in an on state, so that the node voltage signal VND follows the input voltage signal VIN. In the fourth period TP4, the node voltage signal VND gradually transitions from the high potential to the low potential following the input voltage signal VIN. However, due to the internal circuit delay of the operational amplifier circuit 140 and the influence of external loads (such as the resistor RL and the capacitor CL), the speed of the falling transition of the output voltage signal VO is slower than the speed of the falling transition of the node voltage signal VND. Since the N-type differential pair DP_N and the P-type differential pair DP_P in the operational amplifier circuit 140 are controlled by the node voltage signal VND and the output voltage signal VO, therefore, in the N-type differential pair DP_N shown in FIG. 4, the current is large Some will flow from the N-type transistor MN2 to the current source I1, causing the voltage of the common contact ANC to chase With the output voltage signal VO. In the P-type differential pair DP_P, most of the current of the current source I2 flows into the P-type transistor MP1, so that the voltage of the common contact APC follows the node voltage signal VND.

於時間點T4,節點電壓信號VND的電壓趨近於輸入電壓信號VIN的電壓,故而開關信號HOD由邏輯低位準切換至邏輯高位準以將開關電路120關斷,致使節點ND為浮接狀態。此時,輸出電壓信號VO仍處於下降轉態的過程中,因此輸出電壓信號VO仍持續下降,且共接點ANC的電壓亦追隨輸出電壓信號VO而持續下降。基於節點ND為浮接狀態,節點電壓信號VND將藉由外接電容C1而被共接點ANC的電壓所下拉。如圖6所示,在第五時段TP5的過驅動模式下,節點電壓信號VND的電壓值被下拉至低於輸入電壓信號VIN的電壓值,導致輸出電壓信號VO亦下降,從而增加了輸出電壓信號VO的轉態幅度而達到過驅動的效果。 At time T4, the voltage of the node voltage signal VND approaches the voltage of the input voltage signal VIN, so the switching signal HOD is switched from the logic low level to the logic high level to turn off the switching circuit 120, so that the node ND is in a floating state. At this time, the output voltage signal VO is still in the process of falling transition, so the output voltage signal VO still continues to fall, and the voltage of the common contact ANC also continues to fall following the output voltage signal VO. Since the node ND is in the floating state, the node voltage signal VND will be pulled down by the voltage of the common contact ANC through the external capacitor C1. As shown in FIG. 6, in the overdriving mode of the fifth period TP5, the voltage value of the node voltage signal VND is pulled down to be lower than the voltage value of the input voltage signal VIN, resulting in the output voltage signal VO also dropping, thereby increasing the output voltage The transient amplitude of the signal VO achieves the effect of overdriving.

同樣地,輸出電壓信號VO的轉態幅度A2’與輸入電壓信號VIN的電壓振幅A1’的差值ΔV’,與輸入電壓信號VIN的電壓振幅A1’正相關。詳細來說,若輸入電壓信號VIN的電壓振幅A1’越大,則差值ΔV’亦越大,反之亦然。 Similarly, the difference ΔV' of the transition amplitude A2' of the output voltage signal VO and the voltage amplitude A1' of the input voltage signal VIN is positively related to the voltage amplitude A1' of the input voltage signal VIN. In detail, the larger the voltage amplitude A1' of the input voltage signal VIN, the larger the difference ΔV', and vice versa.

在經過第五時段TP5之後,於時間點T5,開關信號HOD由邏輯高位準切換至邏輯低位準,因此開關電路120被導通,致使節點電壓信號VND以及輸出電壓信號VO追隨輸入電壓信號VIN。 After the fifth period TP5, at the time point T5, the switching signal HOD is switched from the logic high level to the logic low level, so the switch circuit 120 is turned on, causing the node voltage signal VND and the output voltage signal VO to follow the input voltage signal VIN.

綜上所述,在本發明實施例所提出的緩衝電路中,可在N型差動對的共接端與N型差動對的第一差動輸入端之間外接電容,以及可在P型差動對的共接端與P型差動對的第一差動輸入端之間外接電容,以在開關電路為關斷狀態時,藉由外接電容來增加輸出電壓信號的轉態幅度。如此一來,可有效提高輸出電壓信號的驅動能力以達到過驅動的效果。 In summary, in the buffer circuit provided in the embodiment of the present invention, an external capacitor can be connected between the common connection end of the N-type differential pair and the first differential input end of the N-type differential pair, and An external capacitor is connected between the common connection end of the type differential pair and the first differential input end of the P type differential pair, so that when the switch circuit is in the off state, the external capacitor is used to increase the transient amplitude of the output voltage signal. In this way, the driving ability of the output voltage signal can be effectively improved to achieve the effect of overdriving.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to the scope defined in the appended patent application.

100‧‧‧緩衝電路 100‧‧‧buffer circuit

120‧‧‧開關電路 120‧‧‧Switch circuit

140‧‧‧運算放大電路 140‧‧‧Operation amplifier circuit

CL‧‧‧電容 CL‧‧‧Capacitor

HOD‧‧‧開關信號 HOD‧‧‧switch signal

IN‧‧‧輸入端 IN‧‧‧input

ND‧‧‧節點 ND‧‧‧Node

RL‧‧‧電阻 RL‧‧‧Resistance

VIN‧‧‧輸入電壓信號 VIN‧‧‧Input voltage signal

VL‧‧‧負載電壓 VL‧‧‧ Load voltage

VND‧‧‧節點電壓信號 VND‧‧‧ Node voltage signal

VO‧‧‧輸出電壓信號 VO‧‧‧Output voltage signal

Claims (9)

一種緩衝電路,包括:一開關電路,耦接在該緩衝電路的一輸入端與一節點之間,用以自該輸入端接收一輸入電壓信號;以及一運算放大電路,該運算放大電路的非反相輸入端耦接該節點,且該運算放大電路的輸出端耦接該運算放大電路的反相輸入端並輸出一輸出電壓信號,其中在該輸入電壓信號開始轉態的一第一時段之後,該開關電路自一導通狀態被切換為一關斷狀態,致使該運算放大電路操作在一過驅動模式以透過一外接電容增加該輸出電壓信號的一轉態幅度,其中在該開關電路自該導通狀態被切換為該關斷狀態的一第二時段之後,該開關電路自該關斷狀態被切換為該導通狀態,致使該運算放大電路操作在一正常驅動模式以讓該輸出電壓信號追隨該輸入電壓信號。 A buffer circuit includes: a switching circuit coupled between an input terminal and a node of the buffer circuit for receiving an input voltage signal from the input terminal; and an operational amplifier circuit The inverting input terminal is coupled to the node, and the output terminal of the operational amplifier circuit is coupled to the inverting input terminal of the operational amplifier circuit and outputs an output voltage signal, wherein after a first period when the input voltage signal begins to transition , The switch circuit is switched from an on state to an off state, causing the operational amplifier circuit to operate in an overdrive mode to increase a transitional amplitude of the output voltage signal through an external capacitor. After a second period when the on-state is switched to the off-state, the switch circuit is switched from the off-state to the on-state, causing the operational amplifier circuit to operate in a normal driving mode to allow the output voltage signal to follow the Input voltage signal. 如申請專利範圍第1項所述的緩衝電路,其中在該過驅動模式下,該運算放大電路透過該外接電容舉升或下拉該節點的一電壓,從而增加該輸出電壓信號的該轉態幅度。 The buffer circuit as described in item 1 of the patent application scope, wherein in the overdrive mode, the operational amplifier circuit raises or pulls down a voltage of the node through the external capacitor, thereby increasing the transient amplitude of the output voltage signal . 如申請專利範圍第1項所述的緩衝電路,其中該輸出電壓信號的該轉態幅度與該輸入電壓信號的一電壓振幅之間的一差值與該輸入電壓信號的該電壓振幅正相關。 The buffer circuit as recited in item 1 of the patent application range, wherein a difference between the transient amplitude of the output voltage signal and a voltage amplitude of the input voltage signal is positively correlated with the voltage amplitude of the input voltage signal. 如申請專利範圍第1項所述的緩衝電路,其中在該正常驅動模式下,該節點的一節點電壓信號追隨該輸入電壓信號。 The buffer circuit as described in item 1 of the patent application scope, wherein in the normal driving mode, a node voltage signal of the node follows the input voltage signal. 如申請專利範圍第1項所述的緩衝電路,其中該運算放大電路包括:一輸入級,用以接收該節點的一節點電壓信號與該輸出電壓信號,並且判定該節點電壓信號與該輸出電壓信號之間的一電壓差以產生一第一差動對信號及一第二差動對信號;一增益級,耦接該輸入級以接收該第一差動對信號及該第二差動對信號,並據以產生對應於該電壓差的一電流;以及一輸出級,耦接該增益級並產生該輸出電壓信號。 The buffer circuit as described in item 1 of the patent application scope, wherein the operational amplifier circuit includes: an input stage for receiving a node voltage signal and the output voltage signal of the node, and determining the node voltage signal and the output voltage A voltage difference between the signals to generate a first differential pair signal and a second differential pair signal; a gain stage coupled to the input stage to receive the first differential pair signal and the second differential pair A signal to generate a current corresponding to the voltage difference; and an output stage coupled to the gain stage and generating the output voltage signal. 如申請專利範圍第5項所述的緩衝電路,其中該輸入級包括:一N型差動對,該N型差動對的一第一差動輸入端接收該節點電壓信號,該N型差動對的一第二差動輸入端接收該輸出電壓信號,該N型差動對的一第一差動輸出端輸出該第一差動對信號的其中一信號,且該N型差動對的一第二差動輸出端輸出該第一差動對信號的其中另一信號;以及一P型差動對,該P型差動對的一第一差動輸入端接收該節點電壓信號,該P型差動對的一第二差動輸入端接收該輸出電壓信號,該P型差動對的一第一差動輸出端輸出該第二差動對信號的其中一信號,且該P型差動對的一第二差動輸出端輸出該第二差動對信號的其中另一信號。 The buffer circuit as described in item 5 of the patent application scope, wherein the input stage includes: an N-type differential pair, a first differential input terminal of the N-type differential pair receives the node voltage signal, and the N-type differential A second differential input of the dynamic pair receives the output voltage signal, a first differential output of the N-type differential pair outputs one of the first differential pair signals, and the N-type differential pair A second differential output of the second output of the first differential pair signal; and a P-type differential pair, a first differential input of the P-type differential pair receives the node voltage signal, A second differential input terminal of the P-type differential pair receives the output voltage signal, a first differential output terminal of the P-type differential pair outputs one of the second differential pair signals, and the P A second differential output terminal of the type differential pair outputs another signal of the second differential pair signal. 如申請專利範圍第6項所述的緩衝電路,其中:該N型差動對包括:一第一N型電晶體,該第一N型電晶體的一第一端耦接一第一共接端,該第一N型電晶體的一第二端耦接該N型差動對的該第一差動輸出端,且該第一N型電晶體的控制端耦接該N型差動對的該第一差動輸入端以接收該節點電壓信號;一第二N型電晶體,該第二N型電晶體的一第一端耦接該第一共接端,該第二N型電晶體的一第二端耦接該N型差動對的該第二差動輸出端,且該第二N型電晶體的控制端耦接該N型差動對的該第二差動輸入端以接收該輸出電壓信號;以及一第一電流源,耦接在該第一共接端與一接地電壓端之間,該P型差動對包括:一第一P型電晶體,該第一P型電晶體的一第一端耦接一第二共接端,該第一P型電晶體的一第二端耦接該P型差動對的該第一差動輸出端,且該第一P型電晶體的控制端耦接該P型差動對的該第一差動輸入端以接收該節點電壓信號;一第二P型電晶體,該第二P型電晶體的一第一端耦接該第二共接端,該第二P型電晶體的一第二端耦接該P型差動對的該第二差動輸出端,且該第二P型電晶體的控制端耦接該P型差動對的該第二差動輸入端以接收該輸出電壓信號;以及一第二電流源,耦接在一電源電壓端與該第二共接端之 間。 The buffer circuit as described in item 6 of the patent application scope, wherein the N-type differential pair includes: a first N-type transistor, and a first end of the first N-type transistor is coupled to a first common connection End, a second end of the first N-type transistor is coupled to the first differential output end of the N-type differential pair, and a control end of the first N-type transistor is coupled to the N-type differential pair The first differential input terminal to receive the node voltage signal; a second N-type transistor, a first end of the second N-type transistor is coupled to the first common terminal, the second N-type A second end of the crystal is coupled to the second differential output end of the N-type differential pair, and a control end of the second N-type transistor is coupled to the second differential input end of the N-type differential pair To receive the output voltage signal; and a first current source, coupled between the first common terminal and a ground voltage terminal, the P-type differential pair includes: a first P-type transistor, the first A first terminal of the P-type transistor is coupled to a second common terminal, a second terminal of the first P-type transistor is coupled to the first differential output terminal of the P-type differential pair, and the first A control terminal of a P-type transistor is coupled to the first differential input terminal of the P-type differential pair to receive the node voltage signal; a second P-type transistor, a first of the second P-type transistor The terminal is coupled to the second common terminal, a second terminal of the second P-type transistor is coupled to the second differential output terminal of the P-type differential pair, and the control terminal of the second P-type transistor The second differential input terminal of the P-type differential pair is coupled to receive the output voltage signal; and a second current source coupled between a power voltage terminal and the second common terminal between. 如申請專利範圍第7項所述的緩衝電路,其中該外接電容耦接在該第一共接端與該N型差動對的該第一差動輸入端,其中在該過驅動模式下且該輸出電壓信號進行下降轉態時,該運算放大電路透過該外接電容下拉該節點電壓信號,從而增加該輸出電壓信號的該轉態幅度。 The buffer circuit as recited in item 7 of the patent application range, wherein the external capacitor is coupled between the first common terminal and the first differential input terminal of the N-type differential pair, wherein in the overdrive mode and When the output voltage signal undergoes a falling transition, the operational amplifier circuit pulls down the node voltage signal through the external capacitor, thereby increasing the transition amplitude of the output voltage signal. 如申請專利範圍第7項所述的緩衝電路,其中該外接電容耦接在該第二共接端與該P型差動對的該第一差動輸入端之間,其中在該過驅動模式下且該輸出電壓信號進行上升轉態時,該運算放大電路透過該外接電容舉升該節點電壓信號,從而增加該輸出電壓信號的該轉態幅度。 The buffer circuit as recited in item 7 of the patent application range, wherein the external capacitor is coupled between the second common terminal and the first differential input terminal of the P-type differential pair, wherein in the overdrive mode When the output voltage signal rises and transitions, the operational amplifier circuit lifts the node voltage signal through the external capacitor, thereby increasing the transition amplitude of the output voltage signal.
TW107129843A 2018-08-27 2018-08-27 Buffer circuit TWI681629B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107129843A TWI681629B (en) 2018-08-27 2018-08-27 Buffer circuit
CN201811228325.XA CN110867166B (en) 2018-08-27 2018-10-22 Buffer circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107129843A TWI681629B (en) 2018-08-27 2018-08-27 Buffer circuit

Publications (2)

Publication Number Publication Date
TWI681629B true TWI681629B (en) 2020-01-01
TW202010260A TW202010260A (en) 2020-03-01

Family

ID=69651754

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107129843A TWI681629B (en) 2018-08-27 2018-08-27 Buffer circuit

Country Status (2)

Country Link
CN (1) CN110867166B (en)
TW (1) TWI681629B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI783245B (en) * 2019-08-18 2022-11-11 聯詠科技股份有限公司 Capacitance decreasing scheme for operational amplifier

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113131920B (en) * 2021-04-09 2023-05-09 成都芯源系统有限公司 Fast low bias voltage bi-directional buffer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078941B2 (en) * 2003-02-12 2006-07-18 Nec Corporation Driving circuit for display device
US7518415B2 (en) * 2006-08-15 2009-04-14 Novatek Microelectronics Corp. Voltage buffer and source driver thereof
TWI321403B (en) * 2006-08-30 2010-03-01 Novatek Microelectronics Corp Overdrive digital-to-analog converter, source driver and method thereof
US8531242B2 (en) * 2010-08-30 2013-09-10 Magnachip Semiconductor, Ltd. Operational amplifier with overdriving circuit and method for same
US20170140725A1 (en) * 2015-11-18 2017-05-18 Synaptics Japan Gk Overdrive amplifier and semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2654142B2 (en) * 1988-11-28 1997-09-17 株式会社東芝 Sample hold circuit
JP4614704B2 (en) * 2003-07-23 2011-01-19 ルネサスエレクトロニクス株式会社 Differential amplifier, data driver and display device
CN101588160B (en) * 2008-05-20 2013-01-02 联咏科技股份有限公司 Operational amplifier capable of improving slew rate and related method thereof
CN110429804A (en) * 2014-10-24 2019-11-08 意法半导体研发(深圳)有限公司 Reverse phase buck-boost type inverter drive circuit and method
TWI573115B (en) * 2016-03-11 2017-03-01 奕力科技股份有限公司 Buffer circuit having an enhanced slew-rate and source driving circuit including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078941B2 (en) * 2003-02-12 2006-07-18 Nec Corporation Driving circuit for display device
US7518415B2 (en) * 2006-08-15 2009-04-14 Novatek Microelectronics Corp. Voltage buffer and source driver thereof
TWI321403B (en) * 2006-08-30 2010-03-01 Novatek Microelectronics Corp Overdrive digital-to-analog converter, source driver and method thereof
US8531242B2 (en) * 2010-08-30 2013-09-10 Magnachip Semiconductor, Ltd. Operational amplifier with overdriving circuit and method for same
US20170140725A1 (en) * 2015-11-18 2017-05-18 Synaptics Japan Gk Overdrive amplifier and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI783245B (en) * 2019-08-18 2022-11-11 聯詠科技股份有限公司 Capacitance decreasing scheme for operational amplifier
US11581861B2 (en) 2019-08-18 2023-02-14 Novatek Microelectronics Corp. Capacitance decreasing scheme for operational amplifier

Also Published As

Publication number Publication date
CN110867166A (en) 2020-03-06
TW202010260A (en) 2020-03-01
CN110867166B (en) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2019210830A1 (en) Shift register and drive method therefor, gate drive circuit, and display device
US10916214B2 (en) Electrical level processing circuit, gate driving circuit and display device
JP3537569B2 (en) Differential amplifier
CN107180617B (en) Buffer circuit and source electrode driving circuit with same
KR20010029617A (en) Output circuit
US8466908B2 (en) Display device having a bias control unit for dynamically biasing a buffer and method thereof
US8604844B2 (en) Output circuit
JP2012027127A (en) Source driver for liquid crystal display devices and liquid crystal display device using the same
US20080024397A1 (en) Output driver and diplay device
TWI385616B (en) Driving apparatus and driving method thereof
US9093964B2 (en) Differential amplifier and control method for the same
US20070216475A1 (en) Dynamically accelerated operational amplifier and method thereof
US20130082676A1 (en) Fast-settling precision voltage follower circuit and method
TWI681629B (en) Buffer circuit
US7501874B2 (en) Level shift circuit
TWI430565B (en) Adaptive amplification circuit
JPH04236516A (en) Output buffer circuit
JP2004317910A (en) Signal transmitting circuit of liquid crystal display device
US20190280655A1 (en) Amplifier circuit and butter amplifier
TWI486943B (en) Voltage level shifter
TW201630345A (en) Level shifter circuit applied to display apparatus
JP4357698B2 (en) Reset circuit and power supply device
US20200204171A1 (en) Self-biased gate controlled switching circuit
TWI479803B (en) Output stage circuit
KR20220125036A (en) An amplifier of improving the slew rate and minimizing the short current of output stage