TWI680650B - Transmitters, receivers and methods of transmitting and receiving - Google Patents
Transmitters, receivers and methods of transmitting and receiving Download PDFInfo
- Publication number
- TWI680650B TWI680650B TW103101805A TW103101805A TWI680650B TW I680650 B TWI680650 B TW I680650B TW 103101805 A TW103101805 A TW 103101805A TW 103101805 A TW103101805 A TW 103101805A TW I680650 B TWI680650 B TW I680650B
- Authority
- TW
- Taiwan
- Prior art keywords
- subcarrier signals
- subcarrier
- continuous pilot
- pilots
- pilot pattern
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0057—Block codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0071—Use of interleaving
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一種接收機,從正交頻分多工(OFDM)符號復原資料,該些OFDM符號包括複數個子載波信號。該些子載波信號的一些攜帶資料符號及該些子載波信號的一些攜帶導頻符號,該些導頻符號包含散佈導頻符號及連續導頻符號。依據連續導頻符號圖案,該些連續導頻符號係被分佈橫跨該些子載波信號,及依據散佈導頻信號圖案,散佈導頻符號係被分佈橫跨該些子載波信號。接收機包含解調器,組態以檢測表示該些OFDM符號的信號,以及產生該些OFDM符號之時域中取樣的數位版本。傅立葉轉換處理器係組態以從承載子載波的該導頻符號及承載子載波的該資料符號可以被復原之處,接收該些OFDM符號之該時域數位版本及形成該些OFDM符號之頻域版本。檢測器係組態以從承載該些OFDM符號之子載波的資料,復原該些資料符號,及依據該散佈符號圖案及該連續導頻符號圖案,從承載該些OFDM符號之子載波的該導頻,復原該些導頻 符號。該散佈導頻符號圖案係複數個散佈導頻符號圖案的其中之一者,及該連續導頻圖案係獨立於該散佈導頻符號圖案。該檢測器包含組態以儲存主要連續導頻圖案的記憶體,以及組態以檢測在該複數個子載波信號中的子載波信號數及基於該子載波信號數從主要導頻圖案導出該連續導頻圖案的處理器。 A receiver recovers data from orthogonal frequency division multiplexing (OFDM) symbols, the OFDM symbols including a plurality of subcarrier signals. Some of the subcarrier signals carry data symbols and some of the subcarrier signals carry pilot symbols. The pilot symbols include scattered pilot symbols and continuous pilot symbols. According to the continuous pilot symbol pattern, the continuous pilot symbols are distributed across the subcarrier signals, and according to the scattered pilot signal pattern, the scattered pilot symbols are distributed across the subcarrier signals. The receiver includes a demodulator configured to detect signals representing the OFDM symbols, and to generate a digital version of the time domain samples of the OFDM symbols. The Fourier transform processor is configured to receive the time-domain digital version of the OFDM symbols and the frequency of the OFDM symbols from where the pilot symbol carrying the subcarrier and the data symbol carrying the subcarrier can be restored. Domain version. The detector is configured to recover the data symbols from the data of the subcarriers carrying the OFDM symbols, and from the pilot of the subcarriers carrying the OFDM symbols according to the scattered symbol pattern and the continuous pilot symbol pattern, Restore the pilots symbol. The scattered pilot symbol pattern is one of a plurality of scattered pilot symbol patterns, and the continuous pilot pattern is independent of the scattered pilot symbol pattern. The detector includes a memory configured to store a main continuous pilot pattern, and a detector configured to detect the number of subcarrier signals in the plurality of subcarrier signals and derive the continuous pilot from the main pilot pattern based on the number of subcarrier signals. Frequency pattern processor.
Description
本發明之揭露係關於發射機、接收機以及在OFDM通信系統中傳送和接收的方法。 The disclosure of the present invention relates to a transmitter, a receiver, and a method for transmitting and receiving in an OFDM communication system.
有許多無線電通信系統的例子,其中資料係使用正交頻分多工(OFDM)通信。已被配置以操作與數位視訊廣播(DVB)標準相符的系統,例如利用OFDM。OFDM可以普遍被形容為提供K窄帶子載波(其中K是整數),其係平行調變的,每個子載波通信一調變資料符號,像是正交振幅調變(QAM)符號或正交移相鍵控(QPSK)符號。該些子載波之調變係在頻域中形成,及變換至時域中用於傳輸。因為該些資料符號係在該些子載波上平行地被通信,相同的調變符號可於延伸的期間在每個子載波上被通信,其可比無線電通道之同調時間還長。該些子載波係被同期地平行調變,使得該調變的載波組合形成OFDM符號。該OFDM符號因此包含複數個子載波,該複數個子載波各個已經以不同的調變符號被同期地調變。 There are many examples of radio communication systems in which the data is communicated using orthogonal frequency division multiplexing (OFDM). It has been configured to operate a system that conforms to the Digital Video Broadcasting (DVB) standard, such as using OFDM. OFDM can be generally described as providing K narrowband subcarriers (where K is an integer), which are modulated in parallel. Each subcarrier communicates with a modulation data symbol, such as a quadrature amplitude modulation (QAM) symbol or a quadrature shift. Phase Keying (QPSK) symbol. The modulation of these subcarriers is formed in the frequency domain and transformed to the time domain for transmission. Because the data symbols are communicated in parallel on the subcarriers, the same modulation symbol can be communicated on each subcarrier for an extended period, which can be longer than the coherence time of the radio channel. The subcarriers are modulated in parallel at the same time, so that the modulated carrier combination forms an OFDM symbol. The OFDM symbol thus includes a plurality of subcarriers, each of which has been modulated simultaneously with a different modulation symbol.
為了方便在接收機上的檢測及資料復原,該OFDM符號可包括導頻子載波,其通信該接收器已知的資料符號。 該些導頻子載波提供階段及時間參考,其可透過已通過的該OFDM符號,被用以估計該通道之脈衝回應,及執行像是通道估計與校正、頻偏估計等的工作。這些估計方便在接收機上的檢測及資料復原。在一些例子中,該些OFDM符號包括兩個連續導頻(Continuous Pilot(CP))載波,其維持在該OFDM符號和散佈導頻(Scattered Pilots(SP))中的同一相對頻率位置。該些SP改變它們在連續符號之間的該OFDM符號中的相對位置,提供便於減少冗餘的更準確地估計該通道之脈衝回應。然而,該些導頻之位置係需要為接收機所知,使得該接收機可以從分佈於整個所有該些OFDM子載波上的正確位置提取該些導頻符號。 To facilitate detection and data recovery on the receiver, the OFDM symbol may include a pilot subcarrier that communicates data symbols known to the receiver. The pilot subcarriers provide a phase and time reference, which can be used to estimate the impulse response of the channel through the passed OFDM symbols, and perform tasks such as channel estimation and correction, frequency offset estimation, and the like. These estimates facilitate detection and data recovery at the receiver. In some examples, the OFDM symbols include two Continuous Pilot (CP) carriers, which are maintained at the same relative frequency position in the OFDM symbols and Scattered Pilots (SP). The SPs change their relative position in the OFDM symbol between consecutive symbols, providing a more accurate estimate of the impulse response of the channel that facilitates reducing redundancy. However, the positions of the pilots need to be known to the receiver so that the receiver can extract the pilot symbols from the correct positions distributed on all of the OFDM subcarriers.
利用OFDM符號以資料通信的通信系統之發展,可以代表一重大和複雜的工作。特別是,特別與頻率規劃和網路部署相關的通信參數之優化可呈現顯著的需要相當大的努力,以識別適用於利用OFDM的通信系統的該些通信參數之技術問題。可以理解的是已執行大量的工作以優化DVB標準之參數,且尤其是DVB T2。 The development of communication systems using OFDM symbols for data communication can represent a significant and complex task. In particular, the optimization of communication parameters, particularly related to frequency planning and network deployment, can present a significant effort requiring considerable effort to identify technical issues with these communication parameters applicable to communication systems utilizing OFDM. It is understandable that a lot of work has been performed to optimize the parameters of the DVB standard, and especially DVB T2.
一種接收機,從正交頻分多工(OFDM)符號復原資料,該些OFDM符號包括複數個子載波信號。該些子載波信號的一些攜帶資料符號及該些子載波信號的一些攜帶導 頻符號,該導頻符號包含散佈導頻符號及連續導頻符號。 該連續導頻符號係被分佈於整個所有該些子載波信號上以符合連續導頻符號圖案的子載波信號和散佈導頻符號係被分佈於整個所有該些子載波信號上以符合散佈導頻信號圖案。該接收機包含解調器,組態以檢測表示該些OFDM符號的信號,以及產生該OFDM符號之該時域中取樣的數位版本。傅立葉轉換處理器,組態以從承載子載波的該導引符號及承載子載波的該資料符號可以被復原之處,接收該些OFDM符號之該時域數位版本及形成該些OFDM符號之頻域版本。檢測器係組態以依據該散佈符號圖案及該連續導頻符號圖案,從承載該些OFDM符號之子載波信號的資料,復原該些資料符號,及從承載該些OFDM符號之子載波信號的該導頻,復原該導頻符號。該散佈導引符號圖案係複數個散佈導引符號圖案的其中之一者,及該連續導引圖案係獨立於該散佈導引符號圖案。該檢測器包含組態以儲存主要連續導引圖案的記憶體,以及組態以檢測在該複數個子載波信號中的子載波信號數及基於該子載波信號數從主要導引圖案導出該連續導引圖案的處理器。 A receiver recovers data from orthogonal frequency division multiplexing (OFDM) symbols, the OFDM symbols including a plurality of subcarrier signals. Some of the subcarrier signals carry data symbols and some of the subcarrier signals carry guidance The pilot symbols include scattered pilot symbols and continuous pilot symbols. The continuous pilot symbols are distributed on all of the subcarrier signals to conform to the continuous pilot symbol pattern and the scattered pilot symbols are distributed on all of the subcarrier signals to conform to the scattered pilot. Signal pattern. The receiver includes a demodulator configured to detect signals representing the OFDM symbols, and to generate digital versions of the OFDM symbols in the time domain samples. Fourier transform processor configured to receive the time-domain digital version of the OFDM symbols and the frequency at which the OFDM symbols are formed from where the pilot symbol carrying the subcarrier and the data symbol carrying the subcarrier can be restored Domain version. The detector is configured to restore the data symbols from the data of the subcarrier signals carrying the OFDM symbols based on the scattered symbol pattern and the continuous pilot symbol pattern, and from the pilot of the subcarrier signals carrying the OFDM symbols. And restore the pilot symbols. The scattered guide symbol pattern is one of a plurality of scattered guide symbol patterns, and the continuous guide pattern is independent of the scattered guide symbol pattern. The detector includes a memory configured to store a main continuous pilot pattern, and a detector configured to detect the number of subcarrier signals in the plurality of subcarrier signals and derive the continuous guide from the main pilot pattern based on the number of subcarrier signals. Lead pattern processor.
獨立於散佈導頻圖案的連續導頻圖案之規定,意味著當有複數個散佈導引圖案時,更少的連續導頻圖案必須儲存在記憶體中。此外,從依賴於子載波數的主要導頻圖案導出連續導頻圖案的能力可允許當該子載波數從符號到符號間變化時,更少的連續導頻圖案被儲存在記憶體中。 The provision of a continuous pilot pattern independent of the scattered pilot pattern means that when there are a plurality of scattered pilot patterns, fewer continuous pilot patterns must be stored in the memory. In addition, the ability to derive a continuous pilot pattern from the main pilot pattern dependent on the number of subcarriers may allow fewer continuous pilot patterns to be stored in memory when the number of subcarriers varies from symbol to symbol.
在一些例子中,在該複數個子載波信號中的該些子載 波信號數係一組子載波信號數的其中之一者,且該主要導頻符號圖案係用於OFDM符號的該連續導頻符號的該導頻符號圖案,該些OFDM符號包括來自該組子載波信號數的子載波信號之最高數。 In some examples, the sub-carriers in the plurality of sub-carrier signals The number of wave signals is one of the number of subcarrier signals in a group, and the main pilot symbol pattern is the pilot symbol pattern of the continuous pilot symbols for OFDM symbols, and the OFDM symbols include the signals from the group of subcarriers. The highest number of subcarrier signals for the number of carrier signals.
主要導頻圖案之規定,其是用於最高階子載波模式,其意味著用於具有較少的子載波的模式的該導頻子載波可以被導出而無須儲存分開的導頻圖案。這因此可允許單一導頻圖案被儲存以涵蓋所有可能的子載波數,因此在任何一連續導頻圖案係需要為每個模式而被儲存之處,節省記憶體。 The provision of a primary pilot pattern is for the highest order subcarrier pattern, which means that the pilot subcarrier for a pattern with fewer subcarriers can be derived without the need to store separate pilot patterns. This therefore allows a single pilot pattern to be stored to cover all possible subcarrier numbers, thus saving memory where any continuous pilot pattern needs to be stored for each pattern.
在一些例子中,該組子載波數包括大約8k、16k和32k子載波,該主要導頻圖案將被提供給該些32k子載波,及用於該些8k和16k子載波的該連續導頻圖案,將從該32k子載波連續導頻圖案被導出。 In some examples, the set of subcarriers includes approximately 8k, 16k, and 32k subcarriers, the main pilot pattern will be provided to the 32k subcarriers, and the continuous pilots for the 8k and 16k subcarriers The pattern is derived from the 32k subcarrier continuous pilot pattern.
各種進一步的態樣以及本技術的特徵係被定義在所附的申請範圍中,並包括用於傳送OFDM符號的發送機、用於傳送OFDM符號的方法和用於接收OFDM符號的方法。 Various further aspects and features of the present technology are defined in the scope of the attached application and include a transmitter for transmitting OFDM symbols, a method for transmitting OFDM symbols, and a method for receiving OFDM symbols.
1‧‧‧源編碼及多工 1‧‧‧source coding and multiplexing
2‧‧‧視頻編碼器 2‧‧‧ Video Encoder
4‧‧‧音頻編碼器 4‧‧‧ audio encoder
6‧‧‧資料編碼器 6‧‧‧ Data Encoder
10‧‧‧程式多工器 10‧‧‧Program Multiplexer
12‧‧‧連接通道 12‧‧‧ Connect channel
20‧‧‧OFDM發射機 20‧‧‧OFDM transmitter
22‧‧‧多工器適應和能量分散區塊 22‧‧‧ Multiplexer adaptation and energy dispersion block
24‧‧‧轉發錯誤校正編碼器 24‧‧‧ Forward Error Correction Encoder
26‧‧‧位元交錯器 26‧‧‧bit interleaver
28‧‧‧群集映射器 28‧‧‧ Cluster Mapper
30‧‧‧時間-交錯器 30‧‧‧Time-Interleaver
31‧‧‧其他通道 31‧‧‧ Other channels
32‧‧‧訊框建立器 32‧‧‧Frame Builder
33‧‧‧符號交錯器 33‧‧‧Symbol interleaver
36‧‧‧導頻及嵌入的信號形成 36‧‧‧ Pilot and embedded signal formation
37‧‧‧OFDM符號建立器區塊 37‧‧‧OFDM symbol builder block
38‧‧‧OFDM調變器 38‧‧‧OFDM Modulator
40‧‧‧防護插入處理器 40‧‧‧Protection Insertion Processor
42‧‧‧數位轉類比轉換器 42‧‧‧ Digital to Analog Converter
44‧‧‧RF前端 44‧‧‧RF Front End
46‧‧‧天線 46‧‧‧ Antenna
64‧‧‧OFDM符號 64‧‧‧OFDM symbols
66‧‧‧OFDM符號 66‧‧‧OFDM symbols
68‧‧‧訊框關閉符號(FCS) 68‧‧‧Frame Closed Symbol (FCS)
100‧‧‧天線 100‧‧‧ Antenna
102‧‧‧調諧器 102‧‧‧ Tuner
104‧‧‧類比轉數位轉換器 104‧‧‧ Analog to Digital Converter
106‧‧‧防護間隔移除處理器 106‧‧‧ Guard Interval Removal Processor
108‧‧‧快速傅立葉轉換器(FFT)處理器 108‧‧‧ Fast Fourier Transformer (FFT) Processor
110‧‧‧通道估計器和校正器 110‧‧‧ channel estimator and corrector
111‧‧‧嵌入的信號解碼單元 111‧‧‧ Embedded signal decoding unit
112‧‧‧解映器 112‧‧‧Decoder
114‧‧‧符號解交錯器 114‧‧‧Symbol Deinterleaver
116‧‧‧位元解交錯器 116‧‧‧bit deinterleaver
118‧‧‧錯誤校正解碼 118‧‧‧Error correction decoding
120‧‧‧連續導頻符號 120‧‧‧continuous pilot symbols
122‧‧‧散佈導頻 122‧‧‧Scattered pilot
124‧‧‧盲點 124‧‧‧ blind spot
126‧‧‧頻帶 126‧‧‧ Band
本發明的實施例將在下面藉由示例所描述,僅參照隨附圖式,其中相似的部件以相應的參照數字被提供:圖1提供了一示例OFDM發射機的示意圖;圖2提供了一示例OFDM超訊框; 圖3提供了一示例OFDM接收機的示意圖;圖4提供了一示例OFDM訊框之一部分的示意圖;圖5提供了說明在DVB T2系統中連續導頻位置的分佈,其與散佈導頻位置不一致的圖示;圖6提供了根據本發明的一示例的8k模式的連續導頻符號子載波位置的圖表;圖7提供了根據本發明的一示例的8k模式的連續導頻符號子載波位置的說明;圖8提供了根據本發明的一示例的8k模式的連續導頻符號子載波位置的間隔的直方圖;圖9提供了適用於根據本發明的一示例的連續導頻符號子載波位置的高頻振動的直方圖;圖10提供了根據本發明的一示例的16k模式的連續導頻符號子載波位置的圖表;圖11提供了根據本發明的一示例的16k模式的連續導頻符號子載波位置的說明;圖12提供了根據本發明的一示例的16k模式的連續導頻符號子載波位置的間隔的直方圖;圖13提供了根據本發明的一示例的32k模式的連續導頻符號子載波位置的圖表;圖14提供了根據本發明的一示例的32k模式的連續導頻符號子載波位置的說明;圖15提供了根據本發明的一示例的32k模式的連續導頻符號子載波位置的間隔的直方圖; 圖16提供了根據本發明的一示例的發送機之操作的流程圖;及圖17提供了根據本發明的一示例的接收機之操作的流程圖。 Embodiments of the present invention will be described below by way of example, with reference only to the accompanying drawings, wherein similar components are provided with corresponding reference numerals: FIG. 1 provides a schematic diagram of an example OFDM transmitter; FIG. 2 provides a Example OFDM superframe; Figure 3 provides a schematic diagram of an example OFDM receiver; Figure 4 provides a schematic diagram of a portion of an example OFDM frame; and Figure 5 provides a description of the distribution of continuous pilot positions in a DVB T2 system, which is inconsistent with the scattered pilot positions FIG. 6 provides a chart of sub-carrier positions of continuous pilot symbols in 8k mode according to an example of the present invention; FIG. 7 provides sub-carrier positions of continuous pilot symbols in 8k mode according to an example of the present invention Explanation; FIG. 8 provides a histogram of the intervals of continuous pilot symbol subcarrier positions in an 8k mode according to an example of the present invention; FIG. 9 provides a Histogram of high-frequency vibration; FIG. 10 provides a chart of subcarrier positions of continuous pilot symbols in 16k mode according to an example of the present invention; FIG. 11 provides continuous pilot symbol subcarriers in 16k mode according to an example of the present invention Description of the carrier position; FIG. 12 provides a histogram of the intervals of the subcarrier positions of consecutive pilot symbols in the 16k mode according to an example of the present invention; FIG. 13 provides an illustration according to the present invention A chart of sub-carrier positions of continuous pilot symbols in 32k mode; FIG. 14 provides a description of sub-carrier positions of continuous pilot symbols in 32k mode according to an example of the present invention; and FIG. 15 provides 32k mode according to an example of the present invention. A histogram of the intervals of sub-carrier positions of consecutive pilot symbols of the pattern; FIG. 16 provides a flowchart of the operation of a transmitter according to an example of the present invention; and FIG. 17 provides a flowchart of the operation of a receiver according to an example of the present invention.
圖1提供了可用於例如根據所提出的ATSC 3標準或DVB-T、DVB-H、DVB-T2或DVB-C2標準的傳輸視頻圖像和音頻信號的OFDM發送機一示例方塊圖。在圖1中,程式源碼產生由OFDM發送機所傳送的資料。視頻編碼器2及音頻編碼器4和資料編碼器6產生的視頻、音頻和其他將被發送的資料,其被饋送到程式多工器10。該程式多工器10之輸出形成具有通信視頻、音訊和其他資料所需要的多工串流。該多工器10提供在連接通道12上的串流。可能有很多這種多工串流其係被饋送至不同的分支A、B等。為簡單起見,只有分支A將被描述。 Figure 1 provides an example block diagram of an OFDM transmitter that can be used to transmit video images and audio signals, for example according to the proposed ATSC 3 standard or the DVB-T, DVB-H, DVB-T2 or DVB-C2 standard. In Figure 1, the program source generates the data transmitted by the OFDM transmitter. Video encoder 2 and audio encoder 4 and data encoder 6 generate video, audio, and other materials to be transmitted, which are fed to program multiplexer 10. The output of the program multiplexer 10 forms a multiplexed stream required for communication video, audio and other data. The multiplexer 10 provides a stream on the connection channel 12. There may be many such multiplexed streams which are fed to different branches A, B, etc. For simplicity, only branch A will be described.
如圖1所示,OFDM發射機20接收在多工器適應和能量分散區塊22的串流。該多工器適應及能量分散區塊22隨機化該資料及饋送合適的資料至執行錯誤校正編碼該串流的轉發錯誤校正編碼器24。位元交錯器26被提供以交錯該編碼的資料位元,其用於在DVB-T2系統中的示例係該LDCP/BCH編碼器輸出。來自該位元交錯器26的輸出被饋送至一位元進入群集映射器28,其映射位元組至將被用於運送該已編碼的資料位元的一調變架構之群集 點上。從該位元進入群集映射器28的該輸出係群集點標籤,其表示實際和想像的元件。該群集點標籤表示從兩個或多個依附在使用的調變架構的位元上所形成的資料符號。這些可以稱為資料細胞。這些資料細胞被通過時間-交錯器30,其作用係用以交錯從多重LDPC碼字產生的資料細胞。 As shown in FIG. 1, the OFDM transmitter 20 receives a stream in a multiplexer adaptation and energy dispersion block 22. The multiplexer adaptation and energy dispersion block 22 randomizes the data and feeds the appropriate data to a forwarding error correction encoder 24 that performs error correction encoding the stream. A bit interleaver 26 is provided to interleave the encoded data bits, an example of which is used in a DVB-T2 system is the LDCP / BCH encoder output. The output from the bit interleaver 26 is fed to a bit into the cluster mapper 28, which maps the bytes to a modulation architecture cluster that will be used to carry the encoded data bits Point. The output from this bit into the cluster mapper 28 is a cluster point label, which represents the actual and imaginary element. The cluster point label represents a data symbol formed from two or more bits attached to the modulation architecture used. These can be called data cells. These data cells are passed through a time-interleaver 30, whose function is to interleave data cells generated from multiple LDPC codewords.
資料細胞係由訊框建立器32接收,通過其他通道31的資料細胞係由在圖1中的分支B等所製造。訊框建立器32接著形成形成許多資料細胞進入序列以運送OFDM符號,其中OFDM符號包含資料細胞數,資料細胞各個被映射到複數個子載波中之其中一者上。該子載波數將取決於系統之操作之模式,其可包括一或多個的8k、16k或32k,其每個都提供不同的子載波數及因此加速傅立葉轉換(FFT)的尺寸。 The data cell line is received by the frame builder 32, and the data cell line through other channels 31 is manufactured by the branch B and the like in FIG. Frame builder 32 then forms a number of data cells into the sequence to carry OFDM symbols, where the OFDM symbols contain the number of data cells, each of which is mapped to one of a plurality of subcarriers. The number of subcarriers will depend on the mode of operation of the system, which may include one or more 8k, 16k, or 32k, each of which provides a different number of subcarriers and thus speeds up the Fourier Transform (FFT) size.
被攜帶進每個OFDM符號的資料細胞之順序係接著被傳遞至該符號交錯器33。該OFDM符號係接著藉由OFDM符號建立器區塊37產生,根據導頻符號圖案,該OFDM符號建立器區塊37引進由導頻及嵌入的信號形成器36所產生的及饋入的導頻及同步信號。OFDM調變器38接著形成在時域中的該OFDM符號,該時域係饋入至用於在符號之間產生防護間隔的防護插入處理器40,及接著至數位轉類比轉換器42,及最後至在RF前端44內的RF放大器,用於從天線46由COFDM發射機作最終廣播。 The sequence of data cells carried into each OFDM symbol is then passed to the symbol interleaver 33. The OFDM symbol is then generated by the OFDM symbol builder block 37. According to the pilot symbol pattern, the OFDM symbol builder block 37 introduces the pilot generated and fed by the pilot and embedded signal former 36. And synchronization signals. The OFDM modulator 38 then forms the OFDM symbol in the time domain, which is fed to a guard insertion processor 40 for generating a guard interval between the symbols, and then to a digital-to-analog converter 42, and Finally, the RF amplifier in the RF front-end 44 is used for final broadcasting from the antenna 46 by the COFDM transmitter.
對於圖1之系統,每OFDM符號之子載波數可以取決於導頻數與其他保留的載波數而變化。「超級訊框」之示例說明如圖2所示。 For the system of FIG. 1, the number of sub-carriers per OFDM symbol may vary depending on the number of pilots and other reserved carriers. An example description of the "super frame" is shown in Figure 2.
例如,在DVB-T2中,不同於在DVB-T中,用於攜帶資料的該些子載波數不是固定的。廣播裝置可以選擇1k、2k、4k、8k、16k、32k的操作模式的其中之一者,其各個提供用於每OFDM符號之資料的子載波之範圍,對於這些模式各個的最大分別係1024、2048、4096、8192、16384、32768。在DVB-T2中一實體層訊框係由許多OFDM符號所組成。通常,如圖2中所示該訊框以前文或P1符號開始,其提供與DVB-T2部署之組態相關的發信資訊,包括該模式之指示。該P1符號後接著一或多個P2 OFDM符號64,其係之後接著攜帶OFDM符號66的酬載數。該實體層訊框之端點係藉由訊框關閉符號(FCS)68所標記。對於每個操作模式,子載波數對每種類型之符號可為不同的。此外,根據頻寬延展是否被選擇、頻帶保留是否被致能以及根據導頻子載波圖案是否被選擇,子載波數可針對各者變化。 For example, in DVB-T2, unlike in DVB-T, the number of these subcarriers used to carry data is not fixed. The broadcast device can select one of the 1k, 2k, 4k, 8k, 16k, and 32k operation modes, each of which provides a range of subcarriers for the data of each OFDM symbol. The maximum for each of these modes is 1024, 2048, 4096, 8192, 16384, 32768. In DVB-T2, a physical layer frame is composed of many OFDM symbols. Generally, the frame starts with the preceding text or P1 symbol as shown in FIG. 2, which provides signaling information related to the configuration of the DVB-T2 deployment, including an indication of the mode. The P1 symbol is followed by one or more P2 OFDM symbols 64, which is then followed by the payload number of the OFDM symbol 66. The endpoints of the physical layer frame are marked by a frame close symbol (FCS) 68. For each mode of operation, the number of subcarriers may be different for each type of symbol. In addition, the number of subcarriers can be changed for each according to whether bandwidth extension is selected, whether band reservation is enabled, or whether pilot subcarrier patterns are selected.
圖3提供OFDM接收機之示例說明,該OFDM接收機可被用於從圖1中所示的發射機接收被傳送的信號。如 圖3所示,OFDM信號係由天線100所接收及由調諧器102所檢測,及由類比轉數位轉換器104轉換成數位形式。防護間隔移除處理器106從接收的OFDM符號移除該防護間隔,在該酬載資料和導頻資料從使用快速傅立葉轉換器(FFT)處理器108與通道估計器和校正器110組合的該OFDM符號復原之前,嵌入的信號解碼單元111及導頻符號模式。解調的資料係從解映器112恢復,並被饋送到符號解交錯器114,其操作以影響接收的資料符號的反向映射來重新產生具有解交錯資料的輸出資料串流。同樣地,該位元解交錯器116反轉由該位元交錯器26所執行的該位元交錯。圖3所示的該OFDM接收機之其餘部分被提供給效應錯誤校正解碼118,以校正錯誤且恢復源資料之估計。 FIG. 3 provides an example illustration of an OFDM receiver that can be used to receive a transmitted signal from the transmitter shown in FIG. 1. Such as As shown in FIG. 3, the OFDM signal is received by the antenna 100 and detected by the tuner 102, and converted into a digital form by the analog-to-digital converter 104. The guard interval removal processor 106 removes the guard interval from the received OFDM symbols, at which the payload data and pilot data are obtained from the combination of a fast Fourier converter (FFT) processor 108 and a channel estimator and corrector 110. Before the OFDM symbol is restored, the embedded signal decoding unit 111 and the pilot symbol pattern. The demodulated data is recovered from the de-mapper 112 and fed to a symbol de-interleaver 114, which operates to reversely map the received data symbols to regenerate the output data stream with de-interleaved data. Similarly, the bit deinterleaver 116 reverses the bit interleaving performed by the bit interleaver 26. The rest of the OFDM receiver shown in FIG. 3 is provided to an effect error correction decoding 118 to correct errors and recover estimates of the source data.
本發明技術的實施例提供一利用OFDM以傳送資料,且重複使用許多系統設計及已用於DVB-T2標準的組態參數的通信系統。然而,通信系統係適用於6MHz之通道內傳送OFDM符號,而不是被用於DVB T2標準的8MHz,及利用8k、16k和32k模式。因此,本發明揭示提出用於OFDM系統為6MHz的參數之適用,但合理化在可能被開發用於DVB T2標準,以簡化結構及通信系統之實施的參數。 An embodiment of the technology of the present invention provides a communication system that uses OFDM to transmit data and reuses many system designs and configuration parameters that have been used in the DVB-T2 standard. However, the communication system is suitable for transmitting OFDM symbols in a 6 MHz channel, instead of being used in the 8 MHz of the DVB T2 standard, and using 8k, 16k, and 32k modes. Therefore, the present invention discloses the application of the parameters for the OFDM system at 6 MHz, but rationalizes the parameters that may be developed for the DVB T2 standard to simplify the structure and implementation of the communication system.
除了發信資料及酬載資料之外,OFDM訊框及它們包 括的細胞也可包含已經被插入在發射機中的導頻符號。例如已被該導頻及嵌入的信號形成器36產生的及被符號建立器37插入的這些導頻符號。導頻符號係以已知的振幅和相位被傳送,及依據他們傳送的子載波可被稱為導頻子載波。導頻符號可能需要被用於接收機的不同目的之範圍,例如通道估計、同步、粗頻偏估計和精細頻偏估計。 由於導頻符號的振幅和相位之先前知識,該通道脈衝回應可基於接收的導頻符號被估計,該估計的通道接著被使用於像是均衡的用途。 In addition to transmission information and payload information, OFDM frames and their packets The enclosed cells may also contain pilot symbols that have been inserted into the transmitter. For example, these pilot symbols have been generated by the pilot and embedded signal former 36 and inserted by the symbol builder 37. Pilot symbols are transmitted at known amplitudes and phases, and the subcarriers transmitted according to them may be referred to as pilot subcarriers. Pilot symbols may need to be used for different purposes of the receiver, such as channel estimation, synchronization, coarse frequency offset estimation, and fine frequency offset estimation. Due to prior knowledge of the amplitude and phase of the pilot symbols, the channel impulse response can be estimated based on the received pilot symbols, and the estimated channel is then used for purposes such as equalization.
為了使接收機接收該導頻符號,及從其他的發信符號及資料符號區別該導頻信號,根據子載波導頻符號圖案,該導頻符號可被分佈於整個所有該些子載波及OFDM訊框之符號。因此,如果該接收機具有導頻符號圖案之知識,且與OFDM訊框同步,它將能夠從在該些OFDM符號及訊框中的適當位置或子載波提取所接收的導頻符號。 In order for the receiver to receive the pilot symbol and distinguish the pilot signal from other transmission symbols and data symbols, according to the subcarrier pilot symbol pattern, the pilot symbol can be distributed throughout all of the subcarriers and OFDM. Frame symbol. Therefore, if the receiver has knowledge of the pilot symbol pattern and is synchronized with the OFDM frame, it will be able to extract the received pilot symbols from the appropriate positions or subcarriers in the OFDM symbols and frame.
相應於OFDM子載波的導頻之分佈可分為兩類:連續導頻和散佈導頻。連續導頻係從導頻符號所形成的,該些導頻符號之位置相對於該些子載波從符號到符號不改變,具有每次它們被傳送於相同的子載波上的結果。散佈導頻符號大致描述了導頻符號的位置從符號到符號的改變,可能根據某些重複的圖案。 The distribution of pilots corresponding to OFDM subcarriers can be divided into two types: continuous pilots and scattered pilots. The continuous pilots are formed from pilot symbols, and the positions of the pilot symbols do not change from symbol to symbol with respect to the subcarriers, with the result that they are transmitted on the same subcarrier each time. Scattered pilot symbols roughly describe the change of pilot symbol position from symbol to symbol, possibly according to some repetitive patterns.
圖4說明了一系列的OFDM符號,其中圓圈表示OFDM細胞和灰色的圓圈表示導頻符號。圖4中水平方向表示頻率或子載波數量,及垂直方向表示時間或符號數。 連續導頻符號120係每次位於相同子載波(CP)上,而散佈導頻122係位於從符號到符號不同的子載體上。可以藉由變數Dx和Dy表示散佈導頻之重複。Dx表示從一OFDM符號到另一OFDM符號的該頻域中於散佈導頻之間的分隔,使得在第一OFDM符號上的該些散佈導頻符號係藉由子載波數被置換,該些子載波數相等於在下一個OFDM符號中的子載波上的頻域中的Dx。Dy表示一參數,該參數指示於該相同的子載波再次被使用以攜帶於下次的導頻符號之前的OFDM符號數。例如,在圖4中散佈導頻符號的位置可由Dy=8和Dx=10所表示。散佈導頻係提供導頻符號的有效方式,因為用於在介於散佈導頻符號之間中的子載波和符號的通道估計,可從已知的導頻符號或通道估計藉由在時間和頻率兩者中的內插而被估計。因此,導頻符號可不需要以出現於所有的子載波上,以獲得用於OFDM訊框內的每個子載波和細胞的通道估計。 Figure 4 illustrates a series of OFDM symbols, where circles represent OFDM cells and gray circles represent pilot symbols. In FIG. 4, the horizontal direction represents the frequency or the number of subcarriers, and the vertical direction represents the time or the number of symbols. The continuous pilot symbols 120 are located on the same subcarrier (CP) each time, while the scattered pilots 122 are located on subcarriers that differ from symbol to symbol. The repetition of the scattered pilots can be represented by the variables Dx and Dy. Dx represents the separation between scattered pilots in the frequency domain from one OFDM symbol to another OFDM symbol, so that the scattered pilot symbols on the first OFDM symbol are replaced by the number of subcarriers, and the subcarriers The number of carriers is equal to Dx in the frequency domain on the subcarriers in the next OFDM symbol. Dy represents a parameter indicating the number of OFDM symbols that the same subcarrier is used again to carry before the next pilot symbol. For example, the locations where the pilot symbols are scattered in FIG. 4 may be represented by Dy = 8 and Dx = 10. Scattered pilots provide an effective way to pilot symbols because the channel estimates for subcarriers and symbols between scattered pilot symbols can be obtained from known pilot symbols or channel estimates by time and It is estimated by interpolation in both frequencies. Therefore, pilot symbols may not need to appear on all subcarriers to obtain channel estimates for each subcarrier and cell within the OFDM frame.
導頻符號佔用子載波和可另外攜帶資料的細胞,因此導頻符號不利地影響系統之容量,它可能對最小化導頻符號數目係有利的。因此,精心設計的導頻圖案,其致能通道估計等等,以跨越該整個OFDM訊框來獲得,同時期望使用少數導頻符號。 Pilot symbols occupy subcarriers and cells that can carry data. Therefore, the pilot symbols adversely affect the capacity of the system. It may be beneficial to minimize the number of pilot symbols. Therefore, a well-designed pilot pattern, its enabling channel estimation, etc. are obtained across the entire OFDM frame, while it is desirable to use a few pilot symbols.
選擇用於OFDM信號的散佈導頻圖案可取決於許多因素,像是相對於時間和頻率的通道變化之速率。例如,導頻之密度必須滿足在時間和頻率兩者中的採樣定理,如果獲得準確的通道估計,例如最大通道脈衝回應長度決定在 頻率方向中的導頻符號重複,且該通道之最大多普勒頻率決定在時域中的導頻符號重複。在一些示例OFDM系統中防護間隔係由通道脈衝回應之長度所決定的,且因此在頻率方向中的導頻符號重複也可取決於該防護間隔期間。 The choice of a scattered pilot pattern for an OFDM signal may depend on many factors, such as the rate of channel change with respect to time and frequency. For example, the density of pilots must satisfy the sampling theorem in both time and frequency. If accurate channel estimates are obtained, for example, the maximum channel impulse response length is determined at The pilot symbols in the frequency direction are repeated, and the maximum Doppler frequency of the channel determines that the pilot symbols are repeated in the time domain. The guard interval in some example OFDM systems is determined by the length of the channel impulse response, and therefore pilot symbol repetition in the frequency direction may also depend on the guard interval period.
如果連續導頻符號和散佈導頻符號之位置不重疊或重合,而使得有每訊框之導頻符號之大約恆定數量,且沒有重大的「盲點」,則可能是有益的。在OFDM訊框中有大量不包括導頻符號的相鄰細胞,這個區域可被稱為盲點。通常希望避免這種情況,因為它們可能導致精確通道估計的降低及內插,以及可能無法檢測和補償有色噪聲,像是類比電視或其他窄帶干擾。圖5提供了連續導頻位置之圖,該圖不與在DVB-T2系統中的散佈導頻位置一致,並說明了上述的問題,其中盲點124所示的區域有缺乏的導頻符號。也在圖5中示出的係頻帶126之邊緣,其中通過對這些區域上的導頻符號進行的測量可能受到增加噪聲和衰減,及因此如果可能應盡量避免。 It may be beneficial if the positions of consecutive pilot symbols and scattered pilot symbols do not overlap or overlap, so that there is an approximately constant number of pilot symbols per frame and there are no significant "blind spots". There are a large number of adjacent cells in the OFDM frame that do not include pilot symbols. This area can be called a blind spot. It is often desirable to avoid this, as they may lead to reduced and interpolated accurate channel estimates, and may not be able to detect and compensate for colored noise, such as analog TV or other narrow-band interference. FIG. 5 provides a map of continuous pilot positions, which is not consistent with the scattered pilot positions in the DVB-T2 system, and illustrates the above-mentioned problem, in which the area shown by the blind spot 124 has missing pilot symbols. Also at the edges of the band 126 shown in FIG. 5, where measurements made by pilot symbols on these areas may be subject to increased noise and attenuation, and therefore should be avoided if possible.
連續導頻符號和散佈導頻符號重合的延伸之測量可稱為利用率,並且可以使用下面的公式來計算
由於散佈導頻模式之可能的變化,為了最大化利用率,最小化盲點,及避免導頻符號被置於靠近外部子載波,可能需要用於散佈導頻一或多個的不同連續導頻圖案。例如,在DVB-T2中在某些模式中,有八個散佈導頻圖案和八個相應連續導頻圖案。在一些OFDM系統中每模式可能有多於一個圖案,及跨越不同模式的不同圖案,使得總共可能有大量的導頻圖案。 Due to possible changes in the spreading pilot pattern, in order to maximize utilization, minimize blind spots, and prevent pilot symbols from being placed close to external subcarriers, different continuous pilot patterns for spreading one or more pilots may be required . For example, in DVB-T2, in some modes, there are eight scattered pilot patterns and eight corresponding continuous pilot patterns. In some OFDM systems, there may be more than one pattern per mode, and different patterns across different modes, so that there may be a large number of pilot patterns in total.
導頻信號嵌入器36,其在發射機嵌入導頻符號,及導頻信號提取器111,其在接收機提取導頻符號,要求導頻圖案之知識。因此,可能所有的可被使用在系統中的導頻圖案,將必須被儲存在發射機和接收機兩者的ROM中,因此需要一顯著的記憶體量如果每模式有多個模式及多個導頻圖案。此記憶體需求係特別相關於在廣播系統中的接收機,因為相較於發射機較有可能有大量的接收機,且接收機之成本很可能比發射機的低。因此,減少記憶體 的需求可能為有利的,尤其是,在接收機側的系統。 The pilot signal embedder 36, which embeds pilot symbols in a transmitter, and the pilot signal extractor 111, which extracts pilot symbols in a receiver, require knowledge of pilot patterns. Therefore, it is possible that all the pilot patterns that can be used in the system will have to be stored in the ROM of both the transmitter and the receiver, so a significant amount of memory is required. If there are multiple modes and multiple Pilot pattern. This memory requirement is particularly relevant for receivers in broadcast systems, as there are more likely to be a large number of receivers than transmitters, and the cost of the receiver is likely to be lower than the transmitter. So reduce memory The requirements may be advantageous, especially for receiver-side systems.
除了記憶體要求,利用了在系統中大量的不同的散佈和連續導頻模式也使系統更為複雜,因為發射機必須選擇哪個導頻模式係最適合用於當前的通道條件和信號屬性,且接收機需要識別將被使用的導頻模式。接收機可經由指定導頻圖案及操作模式的發信資訊做到這一點,或接收機可經由該信號之特性檢測該模式和導頻圖案。然而,這兩種方式變得更加複雜,且當一系統中有更多導頻圖案時有更大的間接費用。因此,希望的是,減少被用於在一系統中同時最大化利用率的導頻圖案數,避免盲點和最小化鄰近外部子載波的導頻數。 In addition to the memory requirements, the use of a large number of different spreading and continuous pilot patterns in the system also complicates the system because the transmitter must choose which pilot mode is most suitable for the current channel conditions and signal attributes, and the receiving The machine needs to identify the pilot pattern to be used. The receiver can do this via signaling information specifying the pilot pattern and operation mode, or the receiver can detect the pattern and pilot pattern via the characteristics of the signal. However, these two methods become more complicated and have greater overhead when there are more pilot patterns in a system. Therefore, it is desirable to reduce the number of pilot patterns used to simultaneously maximize utilization in a system, avoid blind spots, and minimize the number of pilots of neighboring external subcarriers.
根據本發明技術之示例,具有6MHz頻寬和8k、16k、32k模式的OFDM系統對於每個模式具有單連續導頻子載波圖案,其係適合與每種模式內複數個不同的散佈導頻符號圖案一起使用。在一例子中,有一連續導頻圖案其係適合使用與下表2中所給的一或多個散佈導頻圖案一起使用。 According to an example of the technology of the present invention, an OFDM system with a 6 MHz bandwidth and 8k, 16k, 32k modes has a single continuous pilot subcarrier pattern for each mode, which is suitable for a plurality of different scattered pilot symbols in each mode Use with patterns. In one example, a continuous pilot pattern is suitable for use with one or more scattered pilot patterns given in Table 2 below.
在OFDM系統之8k模式中(正常或延伸的),其利用上表2中給定散佈導頻序列,連續導頻之分佈可藉由圖6中的表給定。如圖6中所給的相同位置,就在延伸的頻寬模式中的子載波位置而言是由41、173、357、505、645、805、941、1098、1225、1397、1514、1669、1822、1961、2119、2245、2423、2587、2709、2861、3026、3189、3318、3510、3683、3861、4045、4163、4297、4457、4598、4769、4942、5113、5289、5413、5585、5755、5873、6045、6207、6379、6525、6675、6862所給定的。用於在正常8k模式中的操作,導頻圖案可以藉由丟棄最後的子載波位置而被導出。相對於圖6中給定的子載波,連續導頻符號之位置與在上述表2中給定的散佈導頻之位置不一致,且因此,連續導頻圖案獲得100%的利用率。圖7圖示了圖6之用於延伸的8k模式的連續導頻之位置,及顯示有跨越延伸8k模式之子載波的實質上均勻分佈的連續導頻,其不具有任何實質性的盲點。圖8提供相對於子載波間隔的連續導頻符號之直方圖。直方圖再一次顯示有實質上一致分佈於整個所有子載波上的連續導頻符號,因此加強盲點之缺乏。雖然分佈於整個所有子載波上的導頻符號之分佈實質上是均勻的,它們的位置已藉由高頻振動(Dither)之引入而在一定程度上被隨機化。圖9顯示了高頻振動,其已被施加於圖6中的連續導頻符號之置放。 In the 8k mode (normal or extended) of the OFDM system, which uses the given pilot sequence given in Table 2 above, the distribution of continuous pilots can be given by the table in FIG. 6. As shown in Figure 6, the same position, as far as the subcarrier position in the extended bandwidth mode is determined by 41, 173, 357, 505, 645, 805, 941, 1098, 1225, 1397, 1514, 1669, 1822, 1961, 2119, 2245, 2423, 2587, 2709, 2861, 3026, 3189, 3318, 3510, 3683, 3861, 4045, 4163, 4297, 4457, 4598, 4769, 4942, 5113, 5289, 5413, 5585, 5755,5873,6045,6207,6379,6525,6675,6862. For operation in normal 8k mode, the pilot pattern can be derived by discarding the last subcarrier position. Relative to the subcarriers given in FIG. 6, the positions of the continuous pilot symbols are not consistent with the positions of the scattered pilots given in Table 2 above, and therefore, the continuous pilot pattern obtains 100% utilization. FIG. 7 illustrates the positions of the continuous pilots for the extended 8k mode of FIG. 6 and the continuous pilots showing a substantially uniform distribution across the subcarriers of the extended 8k mode, which does not have any substantial blind spots. Figure 8 provides a histogram of consecutive pilot symbols relative to the subcarrier spacing. The histogram again shows that there are consecutive pilot symbols that are distributed substantially uniformly across all subcarriers, thus strengthening the lack of blind spots. Although the distribution of the pilot symbols distributed on all the subcarriers is substantially uniform, their positions have been randomized to some extent by the introduction of high frequency vibration (Dither). FIG. 9 shows high-frequency vibrations that have been applied to the placement of the continuous pilot symbols in FIG. 6.
在OFDM系統之16k模式中(正常或延伸的)其利用上 表2中給定散佈導頻序列,連續導頻之分佈可藉由圖10中的表給定。如圖10中所給的相同位置,就在延伸的頻寬模式中的子載波位置而言是由82、243、346、517、714、861、1010、1157、1290、1429、1610、1753、1881、2061、2197、2301、2450、2647、2794、2899、3027、3159、3338、3497、3645、3793、3923、4059、4239、4409、4490、4647、4847、5013、5175、5277、5419、5577、5723、5895、6051、6222、6378、6497、6637、6818、7021、7201、7366、7525、7721、7895、8090、8199、8325、8449、8593、8743、8915、9055、9197、9367、9539、9723、9885、10058、10226、10391、10578、10703、10825、10959、11169、11326、11510、11629、11747、11941、12089、12243、12414、12598、12758、12881、13050、13195、13349、13517、13725、13821所給定的。用於在正常16k模式中的操作,導頻圖案可以藉由丟棄最後兩個的子載波位置而被導出。相對於圖10中給定的子載波,連續導頻符號之位置與在上述表2中給定的散佈導頻之位置不一致,且因此,連續導頻圖案獲得100%的利用率。圖11圖示了圖10之用於延伸的16k模式的連續導頻之位置,及顯示有跨越延伸16k模式之子載波的實質上均勻分佈的連續導頻,其不具有任何實質性的盲點。圖12提供相對於子載波間隔的連續導頻符號之直方圖。直方圖再一次顯示有實質上一致分佈於整個所有子載波上的連續導頻符號,因此加強盲點 之缺乏。對於8k模式,雖然於整個所有子載波上的導頻符號之分佈實質上是均勻的,它們的位置已藉由高頻振動之引入而在一定程度上被隨機化。作為施加到8k連續導頻符號的置放的同一高頻振動也被施加到16k連續導頻符號的置放,因此,圖9說明了在圖10中的已被施加的連續導頻符號的高頻振動。 Utilization in 16k mode (normal or extended) of OFDM systems Given the scattered pilot sequences in Table 2, the distribution of consecutive pilots can be given by the table in Figure 10. The same position as given in Figure 10, as far as the position of the subcarriers in the extended bandwidth mode is composed of 82, 243, 346, 517, 714, 861, 1010, 1157, 1290, 1429, 1610, 1753, 1881, 2061, 2197, 2301, 2450, 2647, 2794, 2899, 3027, 3159, 3338, 3497, 3645, 3793, 3923, 4059, 4239, 4409, 4490, 4647, 4847, 5013, 5175, 5277, 5419, 5577, 5723, 5895, 6051, 6222, 6378, 6497, 6637, 6818, 7021, 7201, 7366, 7525, 7721, 7895, 8090, 8199, 8325, 8449, 8953, 8743, 8915, 9055, 9197, 9367, 9539, 9723, 9885, 10058, 10226, 10391, 10578, 10703, 10825, 10959, 11169, 11326, 11510, 11629, 11747, 11941, 12089, 12243, 12414, 12598, 12758, 12881, 13050, 13195, 13349, 13517, 13725, 13823. For operation in normal 16k mode, the pilot pattern can be derived by discarding the last two subcarrier positions. Relative to the subcarriers given in FIG. 10, the positions of the continuous pilot symbols are not consistent with the positions of the scattered pilots given in Table 2 above, and therefore, the continuous pilot pattern obtains 100% utilization. FIG. 11 illustrates the positions of the continuous pilots for the extended 16k mode of FIG. 10 and the continuous pilots showing a substantially uniform distribution across the subcarriers of the extended 16k mode, which does not have any substantial blind spots. FIG. 12 provides a histogram of consecutive pilot symbols with respect to subcarrier spacing. The histogram again shows continuous pilot symbols that are distributed substantially uniformly across all subcarriers, thus strengthening blind spots Lack of. For the 8k mode, although the distribution of pilot symbols on all subcarriers is substantially uniform, their positions have been randomized to some extent by the introduction of high-frequency vibration. The same high-frequency vibration as the placement applied to the 8k continuous pilot symbols is also applied to the placement of the 16k continuous pilot symbols. Therefore, FIG. 9 illustrates the height of the continuous pilot symbols that have been applied in FIG. 10. Frequency vibration.
在OFDM系統之32k模式中,其利用上述表2中給定的散佈導頻序列,連續導頻的分佈可由例如圖13中的表給出。如圖13中所給的相同位置,就在延伸的頻寬模式中的子載波位置而言是由163、290、486、605、691、858、1033、1187、1427、1582、1721、1881、2019、2217、2314、2425、2579、2709、2857、3009、3219、3399、3506、3621、3762、3997、4122、4257、4393、4539、4601、4786、4899、5095、5293、5378、5587、5693、5797、5937、6054、6139、6317、6501、6675、6807、6994、7163、7289、7467、7586、7689、7845、8011、8117、8337、8477、8665、8817、8893、8979、9177、9293、9539、9693、9885、10026、10151、10349、10471、10553、10646、10837、10977、11153、11325、11445、11605、11789、11939、12102、12253、12443、12557、12755、12866、12993、13150、13273、13445、13635、13846、14041、14225、14402、14571、14731、14917、15050、15209、15442、15622、15790、15953、 16179、16239、16397、16533、16650、16750、16897、17045、17186、17351、17485、17637、17829、17939、18109、18246、18393、18566、18733、18901、19077、19253、19445、19589、19769、19989、20115、20275、20451、20675、20781、20989、21155、21279、21405、21537、21650、21789、21917、22133、22338、22489、22651、22823、23019、23205、23258、23361、23493、23685、23881、24007、24178、24317、24486、24689、24827、25061、25195、25331、25515、25649、25761、25894、26099、26246、26390、26569、26698、26910、27033、27241、27449、27511、27642、27801所給定的。用於在正常32k模式中操作的導頻模式可藉由丟棄的最後四個子載波位置而導出。相對於圖14中給定的子載波,連續導頻符號之位置與在上述表2中給定的散佈導頻之位置不一致,且因此,連續導頻圖案獲得100%的利用率。圖14圖示了圖13之用於延伸的32k模式的連續導頻之位置,及顯示有跨越延伸8k模式之子載波的實質上均勻分佈的連續導頻,其不具有任何實質性的盲點。圖15提供相對於子載波間隔的連續導頻符號之直方圖。直方圖再一次顯示有實質上一致分佈於整個所有子載波上的連續導頻符號,因此加強盲點之缺乏。對於8k及16k模式,雖然於整個所有子載波上的子載波的導頻符號之分佈實質上是均勻的,它 們的位置已藉由高頻振動之引入而在一定程度上被隨機化。作為施加到8k及16k連續導頻符號的置放的同一高頻振動也被施加到32k連續導頻符號的置放,因此,圖9說明了在圖13中的已被施加的連續導頻符號的高頻振動。 In the 32k mode of the OFDM system, which uses the scattered pilot sequence given in Table 2 above, the distribution of continuous pilots can be given by, for example, the table in FIG. 13. The same position as given in FIG. 13 is represented by 163, 290, 486, 605, 691, 858, 1033, 1187, 1427, 1582, 1721, 1881, in terms of subcarrier positions in the extended bandwidth mode. 2019, 2217, 2314, 2425, 2579, 2709, 2857, 3009, 3219, 3399, 3506, 3621, 3762, 3997, 4122, 4257, 4393, 4539, 4601, 4786, 4899, 5095, 5293, 5378, 5587, 5693, 5797, 5937, 6054, 6139, 6317, 6501, 6675, 6807, 6994, 7163, 7289, 7467, 7586, 7689, 7845, 8011, 8117, 8337, 8477, 8665, 8817, 8893, 8979, 9177, 9293, 9539, 9693, 9885, 10026, 10151, 10349, 10471, 10553, 10646, 10837, 10977, 11153, 11325, 11445, 11605, 11789, 11939, 12102, 12253, 12443, 12557, 12755, 12866, 12993, 13150, 13273, 13445, 13635, 13846, 14041, 14225, 14402, 14571, 14731, 14917, 15050, 15209, 15442, 15622, 15790, 15953, 16179, 16239, 16397, 16533, 16650, 16750, 16897, 17045, 17186, 17351, 17485, 17637, 17829, 17939, 18109, 18246, 18393, 18566, 18733, 18901, 19077, 19253, 19445, 19589, 19769, 19989, 20115, 20275, 20451, 20675, 20781, 20989, 21155, 21279, 21405, 21537, 21650, 21789, 21917, 22133, 22338, 22489, 22651, 22823, 23019, 23205, 23258, 23361, 23493, 23685, 23881, 24007, 24178, 24317, 24486, 24689, 24827, 25061, 25195, 25331, 25515, 25649, 25761, 25894, 26099, 26246, 26390, 26569, 26698, 26910, 27033, 27241, 27449, 27511, 27642, 27801 given. The pilot pattern used to operate in the normal 32k mode can be derived by discarding the last four subcarrier positions. With respect to the subcarriers given in FIG. 14, the positions of the continuous pilot symbols are not consistent with the positions of the scattered pilots given in Table 2 above, and therefore, the continuous pilot pattern obtains 100% utilization. FIG. 14 illustrates the positions of the continuous pilots for the extended 32k mode of FIG. 13 and the continuous pilots showing a substantially uniform distribution across the subcarriers of the extended 8k mode, which does not have any substantial blind spots. Figure 15 provides a histogram of consecutive pilot symbols relative to the subcarrier spacing. The histogram again shows that there are consecutive pilot symbols that are distributed substantially uniformly across all subcarriers, thus strengthening the lack of blind spots. For 8k and 16k modes, although the distribution of the pilot symbols of the subcarriers on all subcarriers is substantially uniform, it Their positions have been randomized to some extent by the introduction of high-frequency vibrations. The same high-frequency vibration as the placement of 8k and 16k continuous pilot symbols is also applied to the placement of 32k continuous pilot symbols. Therefore, FIG. 9 illustrates the continuous pilot symbols that have been applied in FIG. 13. High-frequency vibration.
如前面提到的,在上述建議的連續導頻圖案也可達成實質上100%的利用率,然而,它們也達成了在系統中約0.65%的容量損失,像是如前所述建議的ATSC 3系統。 As mentioned earlier, the continuous pilot patterns suggested above can also achieve a substantially 100% utilization rate, however, they also achieve about 0.65% capacity loss in the system, like the ATSC suggested previously 3 systems.
上面所指的連續導頻圖案可提供優於現有的連續導頻圖案的優點,因為只有單連續導頻圖案係需要與表2中所指定的五個散佈導頻一起操作。此外,這些導頻圖案也減少與連續導頻圖案相比的盲點數,像是DVB-T2中指定的那些的。因為與五個相比(如果習知的連續導頻圖案被使用),只有一個連續導頻圖案需要被儲存在發射機和接收機兩者中,記憶體的需求已經降低了約80%。然而,用於多個連續導頻圖案的記憶體可能仍然被需要,當有多於一個的操作模式,例如8k、16k、32k及正常模式和延伸模式係可用的。因此,在一系統中,像是建議的ATSC 3系統,其中有三種模式,可能是三個連續導頻圖案仍需要被儲存。 The continuous pilot pattern referred to above may provide advantages over existing continuous pilot patterns because only a single continuous pilot pattern is required to operate with the five scattered pilots specified in Table 2. In addition, these pilot patterns also reduce the number of blind spots compared to continuous pilot patterns, such as those specified in DVB-T2. Because compared to five (if the conventional continuous pilot pattern is used), only one continuous pilot pattern needs to be stored in both the transmitter and the receiver, the memory requirement has been reduced by about 80%. However, memory for multiple consecutive pilot patterns may still be required when more than one mode of operation, such as 8k, 16k, 32k, and normal and extended modes are available. Therefore, in a system such as the proposed ATSC 3 system, there are three modes, and it may be that three consecutive pilot patterns still need to be stored.
根據本技術的另一個例子,在圖6、圖10和圖13中說明的連續導頻圖案係相關的,使得8k和16k模式之連續導頻圖案係從32k模式連續導頻符號圖案所導出的。因此,這允許發送機和接收機只儲存一用於最高階模式的單 主要連續導頻圖案的,然後當需要它們時,推導出用於低階模式的連續導頻圖案。 According to another example of the present technology, the continuous pilot patterns illustrated in FIG. 6, FIG. 10, and FIG. 13 are related so that the continuous pilot patterns of 8k and 16k modes are derived from the continuous pilot symbol patterns of 32k mode . Therefore, this allows the transmitter and receiver to store only one Primarily continuous pilot patterns, and then when they are needed, a continuous pilot pattern for lower order modes is derived.
例如,在發射機的導頻和嵌入式信號形成器36可包含處理器,其係可操作以檢測或接收資料,其傳達OFDM系統之操作模式,及然後基於子載波數從主要導頻圖案導出合適的連續導頻圖案,其中該主要導頻圖案係儲存在導頻和嵌入式信號形成器36的記憶體中。如上文所討論的連續導頻圖案之案例中,該主要連續導頻圖案將係32k導頻圖案及16k連續導頻圖案,以及根據接下來的以下方程式,8k連續導頻圖案將藉由處理器從32k導頻圖案導出,其中主要導頻係藉由接下來的子載波位置所給定,用於延伸頻寬模式:163、290、486、605、691、858、1033、1187、1427、1582、1721、1881、2019、2217、2314、2425、2579、2709、2857、3009、3219、3399、3506、3621、3762、3997、4122、4257、4393、4539、4601、4786、4899、5095、5293、5378、5587、5693、5797、5937、6054、6139、6317、6501、6675、6807、6994、7163、7289、7467、7586、7689、7845、8011、8117、8337、8477、8665、8817、8893、8979、9177、9293、9539、9693、9885、10026、10151、10349、10471、10553、10646、10837、10977、11153、11325、11445、11605、11789、11939、12102、12253、12443、12557、12755、12866、12993、13150、13273、13445、13635、13846、14041、14225、14402、14571、14731、 14917、15050、15209、15442、15622、15790、15953、16179、16239、16397、16533、16650、16750、16897、17045、17186、17351、17485、17637、17829,17939、18109、18246、18393、18566、18733、18901、19077、19253、19445、19589、19769、19989,20115、20275、20451、20675、20781、20989、21155、21279、21405、21537、21650、21789、21917、22133、22338、22489、22651、22823、23019、23205、23258、23361、23493、23685、23881、24007、24178、24317、24486、24689、24827、25061、25195、25331、25515、25649、25761、25894、26099、26246、26390、26569、26698、26910、27033、27241、27449、27511、27642、27801。 For example, the pilot and embedded signal generator 36 at the transmitter may include a processor that is operable to detect or receive data, which communicates the mode of operation of the OFDM system, and then derives from the main pilot pattern based on the number of subcarriers A suitable continuous pilot pattern, wherein the main pilot pattern is stored in the memory of the pilot and embedded signal former 36. In the case of the continuous pilot pattern discussed above, the main continuous pilot pattern will be a 32k pilot pattern and a 16k continuous pilot pattern, and according to the following equation, the 8k continuous pilot pattern will be processed by the processor Derived from the 32k pilot pattern, where the main pilot is given by the next subcarrier position and is used to extend the bandwidth mode: 163, 290, 486, 605, 691, 858, 1033, 1187, 1427, 1582 , 1721, 1881, 2019, 2217, 2314, 2425, 2579, 2709, 2857, 3009, 3219, 3399, 3506, 3621, 3621, 3762, 3997, 4122, 4257, 4393, 4539, 4601, 4786, 4899, 5095, 5293 , 5378,5587,5693,5797,5937,6054,6139,6317,6501,6675,6807,6994,7163,7289,7467,7586,7689,7845,8011,8117,8337,8477,8665,8817,8893 , 8979, 9177, 9293, 9539, 9693, 9885, 10026, 10151, 10349, 10471, 10553, 10646, 10837, 10977, 11153, 11325, 11445, 11605, 11789, 11939, 12102, 12253, 12443, 12557, 12755 , 12866, 12993, 13150, 13273, 13445, 13635, 13846, 14041 14225,14402,14571,14731, 14917, 15050, 15209, 15442, 15622, 15790, 15953, 16179, 16239, 16397, 16533, 16650, 16750, 16897, 17045, 17186, 17351, 17485, 17637, 17829, 17939, 18109, 18246, 18393, 18566, 18733, 18901, 19077, 19253, 19445, 19589, 19769, 19989, 20115, 20275, 20451, 20675, 20781, 20989, 21155, 21279, 21405, 21537, 21650, 21789, 21917, 22133, 22338, 22489, 22651, 22823, 23019, 23205, 23258, 23361, 23493, 23685, 23881, 24007, 24178, 24317, 24486, 24689, 24827, 25061, 25195, 25331, 25515, 25649, 25761, 25894, 26099, 26246, 26390, 26569, 26698, 26910, 27033, 27241, 27449, 27511, 27642, 27801.
為了從圖13和上述給出的32k的導頻位置導出16k連續導頻位置,每隔32k連續導頻位置被取時,該位置除以2,並將結果向上取整。就一電腦可實現方程而言,這由下式給出CP_16K_pos=round(CP_33K_pos(1:2:last_32k_cp_pos)/2)。 In order to derive a 16k continuous pilot position from the 32k pilot position given above in FIG. 13 and every 32k continuous pilot position is taken, the position is divided by 2 and the result is rounded up. As far as a computer implementable equation is concerned, this is given by CP_16K_pos = round (CP_33K_pos (1: 2: last_32k_cp_pos) / 2).
為了從圖13和上述給出的32k的導頻位置導出8k連續導頻位置,32k連續導頻位置之每4個被取時,該被取的位置除以4,並將結果向上取整。就一電腦可實現方程而言,這由下式給出 In order to derive 8k continuous pilot positions from the 32k pilot positions given above in FIG. 13 and every 4 times of the 32k continuous pilot positions, the fetched position is divided by 4 and the result is rounded up. For a computer implementable equation, this is given by
CP_8K_pos=round(CP_32K_pos(1:4:last_32k_cp_pos)/4)。 CP_8K_pos = round (CP_32K_pos (1: 4: last_32k_cp_pos) / 4).
使用以上方程式是可能的,8k、16k和32k連續導頻圖案可從單一主要集合被導出,因此OFDM系統是有效地能夠以跨越所有模式和所有散佈導頻圖案的單連續導頻圖案來操作。因此,就記憶體需求方面,這可簡化OFDM系統之操作,但還是需要程序處理,因為它不再需要於不相關的獨立連續導頻圖案之間轉換。 Using the above equation is possible, 8k, 16k, and 32k continuous pilot patterns can be derived from a single main set, so the OFDM system is effectively able to operate with a single continuous pilot pattern that spans all modes and all scattered pilot patterns. Therefore, in terms of memory requirements, this can simplify the operation of the OFDM system, but still requires program processing, because it no longer needs to switch between unrelated independent continuous pilot patterns.
雖然在前面的段落中的連續導頻圖案的推導在發射機中發生,類似的程序也可在接收機中被執行。例如,嵌入的信號解碼單元111還包含一處理器,其基本上類似於參考導頻和嵌入式信號形成器36所描述的處理器。該處理器將係可操作以檢測或接收傳達OFDM系統之操作模式的資料,即,每OFDM符號的子載波數,接著從先前所描述的主要導頻圖案導出合適的連續導頻圖案。 Although the derivation of the continuous pilot pattern in the previous paragraph occurs in the transmitter, similar procedures can be performed in the receiver. For example, the embedded signal decoding unit 111 further includes a processor, which is basically similar to the processor described with reference to the pilot and the embedded signal former 36. The processor will be operable to detect or receive data conveying the mode of operation of the OFDM system, that is, the number of subcarriers per OFDM symbol, and then derive a suitable continuous pilot pattern from the main pilot pattern described previously.
由於上述的推導過程之計算的簡單性,在ROM記憶體需求中的減少,即,記憶體需要儲存8k和16k連續導頻圖案,可以只有一小的、增加的計算複雜度來實現。在一些例子中根據目前的技術,在發射機和接收機的推導可藉由在導頻相關的元素內的現有計算元素來執行,且因此在這些情況下不需要額外的元件。 Due to the simplicity of the calculation of the above derivation process, the reduction in ROM memory requirements, that is, the memory needs to store 8k and 16k continuous pilot patterns, can be achieved with only a small, increased computational complexity. In some examples, derivation at the transmitter and receiver may be performed by existing computational elements within the pilot-related elements according to current technology, and therefore no additional components are required in these cases.
根據本發明技術的其他示例中,用於8k、16k和32k模式的連續導頻符號可被用在OFDM系統中,像是ATSC 3.0系統,例如,為了利用連續導頻符號圖案的內在優 勢。舉例來說,有關於導頻位置之常態分佈及在靠近外部子載波的導頻位置中的減少之優勢,可藉由連續導頻子載波圖案來達成,其具有以下指數:用於8k模式的41、173、357、505、645、805、941、1098、1225、1397、1514、1669、1822、1961、2119、2245、2423、2587、2709、2861、3026、3189、3318、3510、3683、3861、4045、4163、4297、4457、4598、4769、4942、5113、5289、5413、5585、5755、5873、6045、6207、6379、6525、6675、(6862);用於16k模式的82、243、346、517、714、861、1010、1157、1290、1429、1610、1753、1881、2061、2197、2301、2450、2647、2794、2899、3027、3159、3338、3497、3645、3793、3923、4059、4239、4409、4490、4647、4847、5013、5175、5277、5419、5577、5723、5895、6051、6222、6378、6497、6637、6818、7021、7201、7366、7525、7721、7895、8090、8199、8325、8449、8593、8743、8915、9055、9197、9367、9539、9723、9885、10058、10226,10391、10578、10703、10825、10959、11169、11326、11510、11629、11747、11941、12089、12243、12414、12598、12758、12881、13050、13195、13349、13517、(13725、13821);以及用於32k模式的163、290、486、605、691、858、1033、1187、1427、1582、1721、1881、2019、2217、2314、2425、2579、2709、2857、3009、3219、3399、 3506、3621、3762、3997、4122、4257、4393、4539、4601、4786、4899、5095、5293、5378、5587、5693、5797、5937、6054、6139、6317、6501、6675、6807、6994、7163、7289、7467、7586、7689、7845、8011、8117、8337、8477、8665、8817、8893、8979、9177、9293、9539、9693、9885、10026、10151、10349、10471、10553、10646、10837、10977、11153、11325、11445、11605、11789、11939、12102、12253、12443、12557、12755、12866、12993、13150、13273、13445、13635、13846、14041、14225、14402、14571、14731、14917、15050、15209、15442、15622、15790、15953、16179、16239、16397、16533、16650、16750、16897、17045、17186、17351、17485、17637、17829、17939、18109、18246、18393、18566、18733、18901、19077、19253、19445、19589、19769、19989、20115、20275、20451、20675、20781、20989、21155、21279、21405、21537、21650、21789、21917、22133、22338、22489、22651、22823、23019、23205、23258、23361、23493、23685、23881、24007、24178、24317、24486、24689、24827、25061、25195、25331、25515、25649、25761、25894、26099、26246、26390、26569、26698、26910、27033、27241、(27449、27511、27642、27801),其中在托架中的值與頻 寬模式有關。 In other examples of the technology according to the present invention, continuous pilot symbols for 8k, 16k, and 32k modes can be used in OFDM systems, such as ATSC 3.0 systems, for example, to take advantage of the inherent advantages of continuous pilot symbol patterns Potential. For example, there are advantages of the normal distribution of pilot positions and the reduction in pilot positions close to external subcarriers, which can be achieved by a continuous pilot subcarrier pattern, which has the following index: for 8k mode 41, 173, 357, 505, 645, 805, 941, 1098, 1225, 1397, 1514, 1669, 1822, 1961, 2119, 2245, 2423, 2587, 2709, 2861, 3026, 3189, 3318, 3510, 3683, 3861, 4045, 4163, 4297, 4457, 4598, 4769, 4942, 5113, 5289, 5413, 5585, 5755, 5873, 6045, 6207, 6379, 6525, 6675, (6862); 82, 243 for 16k mode , 346, 517, 714, 861, 1010, 1157, 1290, 1429, 1610, 1753, 1881, 2061, 2197, 2301, 2450, 2647, 2794, 2899, 3027, 3159, 3338, 3497, 3645, 3793, 3923 , 4059, 4239, 4409, 4490, 4647, 4847, 5013, 5175, 5277, 5419, 5577, 5723, 5895, 6051, 6222, 6378, 6497, 6637, 6818, 7021, 7201, 7366, 7525, 7721, 7895 , 8090, 8199, 8325, 8449, 8953, 8743, 8915, 9055, 9197, 9367, 9539, 9723, 9885, 10058, 10226, 103 91, 10578, 10703, 10825, 10959, 11169, 11326, 11510, 11629, 11747, 11941, 12089, 12243, 12414, 12598, 12758, 12881, 13050, 13195, 13349, 13517, (13725, 13823); and 163, 290, 486, 605, 691, 858, 1033, 1187, 1427, 1582, 1721, 1881, 2019, 2217, 2314, 2425, 2579, 2709, 2857, 3009, 3219, 3399, 32k mode 3506, 3621, 3762, 3997, 4122, 4257, 4393, 4539, 4601, 4786, 4899, 5095, 5293, 5378, 5587, 5693, 5797, 5937, 6054, 6139, 6317, 6501, 6675, 6007, 6994, 7163, 7289, 7467, 7586, 7689, 7845, 8011, 8117, 8337, 8477, 8665, 8817, 8893, 8979, 9177, 9293, 9539, 9693, 9885, 10026, 10151, 10349, 10471, 10553, 10646, 10837, 10977, 11153, 11325, 11445, 11605, 11789, 11939, 12102, 12253, 12443, 12557, 12755, 12866, 12993, 13150, 13273, 13445, 13635, 13846, 14041, 14225, 14402, 14571, 14731, 14731, 14917, 15050, 15209, 15442, 15622, 15790, 15953, 16179, 16239, 16397, 16533, 16650, 16750, 16897, 17045, 17186, 17351, 17485, 17637, 17829, 17939, 18109, 18246, 18393, 18566, 18733, 18901, 19077, 19253, 19445, 19589, 19769, 19989, 20115, 20275, 20451, 20675, 20781, 20989, 21155, 21279, 21405, 21537, 21650, 21789, 21917, 22133, 22338, 22489, 22651, 22823, 23019, 23205, 23258, 23361, 2349 3, 23685, 23881, 24007, 24178, 24317, 24486, 24689, 24827, 25061, 25195, 25331, 25515, 25649, 25761, 25894, 26099, 26246, 26390, 26569, 26698, 26910, 27033, 27241, (27449 , 27511, 27642, 27801), where the value and frequency in the bracket Wide mode related.
根據本發明技術的發射機之操作的示例流程圖係如圖16中所示,接收機之操作用以從圖17中所提供的接收的OFDM符號來檢測和復原資料。圖15所示的程序步驟係如下所示: An example flowchart of the operation of a transmitter according to the technology of the present invention is shown in FIG. 16, and the operation of the receiver is to detect and recover data from the received OFDM symbols provided in FIG. The program steps shown in Figure 15 are as follows:
S1:作為第一步,使用OFDM符號傳送資料,一資料格式器接收用於傳送的資料,及對每個用於傳送的OFDM符號,形成資料至資料符號集合中。因此資料符號被形成至該些集合中,各個具有對應可藉由OFDM符號攜帶的資料數量的資料符號數。 S1: As a first step, data is transmitted using OFDM symbols. A data formatter receives data for transmission, and forms data into a data symbol set for each OFDM symbol used for transmission. Therefore, data symbols are formed into the sets, each of which has a number of data symbols corresponding to the amount of data that can be carried by the OFDM symbol.
S2:OFDM符號建立器接著從資料格式器接收各個資料符號之集合,及根據預定的散佈及連續導頻圖案來結合資料符號與導頻符號。根據本發明技術,導頻圖案係由用於散佈導頻的表2及用於連續導頻的圖6、圖10和圖13所給出的,其中圖6及圖10中的子載波位置可從圖13中的位置導出。預定的圖案設置攜帶導頻符號之OFDM符號之子載波。OFDM符號之剩餘子載波攜帶資料符號。OFDM符號因此各個包括複數個子載波符號、一些攜帶資料符號的子載波符號及一些攜帶導頻符號的子載波符號。 S2: The OFDM symbol builder then receives a set of individual data symbols from the data formatter, and combines the data symbols and pilot symbols according to a predetermined spread and continuous pilot pattern. According to the technology of the present invention, the pilot pattern is given by Table 2 for dispersing pilots and Figures 6, 10 and 13 for continuous pilots, where the subcarrier positions in Figures 6 and 10 can be Derived from the position in FIG. 13. A predetermined pattern sets a subcarrier of an OFDM symbol carrying a pilot symbol. The remaining subcarriers of the OFDM symbol carry data symbols. The OFDM symbols therefore each include a plurality of subcarrier symbols, some subcarrier symbols carrying data symbols, and some subcarrier symbols carrying pilot symbols.
S4:根據資料符號及導頻符號之值,調變器映射資料符號及導頻符號到調變符號上。以調變符號,各個子載波係接著被調變以形成在頻域中的OFDM符號。 S4: The modulator maps the data symbol and the pilot symbol to the modulation symbol according to the values of the data symbol and the pilot symbol. With modulation symbols, each subcarrier system is then modulated to form an OFDM symbol in the frequency domain.
S6:逆傅立葉轉換器接著將在頻域中的OFDM符號轉換至為6MHz或約6MHz的通信系統之頻寬內的時域中。 S6: The inverse Fourier converter then converts the OFDM symbols in the frequency domain into the time domain within the bandwidth of the communication system of 6 MHz or about 6 MHz.
S8:防護間隔插入器,藉由複製OFDM符號之一部分,將防護間隔加入至每個時域OFDM符號中,其包含資料符號或導頻符號的有用的部分,且按順序將在時域中被複製的部分附加至OFDM符號。被複製的部分具有對應於防護間隔的長度,其係預定的防護間隔期間。 S8: The guard interval inserter adds a guard interval to each time-domain OFDM symbol by copying a part of the OFDM symbol. It contains a useful part of the data symbol or pilot symbol and will be sequentially used in the time domain. The copied part is appended to the OFDM symbol. The copied portion has a length corresponding to the guard interval, which is a predetermined guard interval period.
S10:無線電頻率傳送單元接著調變具有時域OFDM符號的無線電頻率載波,及經由發射機之天線傳送OFDM符號。 S10: The radio frequency transmitting unit then modulates a radio frequency carrier having a time domain OFDM symbol, and transmits the OFDM symbol via the antenna of the transmitter.
接收機之操作用以從藉由如圖17所示的傳送方法所傳送的OFDM符號來檢測及復原資料,其摘要如下: The operation of the receiver is to detect and recover data from the OFDM symbols transmitted by the transmission method as shown in FIG. 17, and the summary is as follows:
S12:解調器接收來自天線及無線電頻率降轉換器的信號,及檢測表示OFDM符號的信號。解調器產生OFDM符號之時域中取樣的數位版本。根據本發明技術係基本上為6MHz,係大約6MHz的頻域中的OFDM符號之頻寬。 S12: The demodulator receives a signal from an antenna and a radio frequency down converter, and detects a signal representing an OFDM symbol. The demodulator generates a digital version of the sampled time domain of the OFDM symbol. The technology according to the present invention is basically 6 MHz, which is the bandwidth of OFDM symbols in the frequency domain of about 6 MHz.
S14:防護間隔相關器關聯相應於OFDM符號之防護間隔的樣本之集合以檢測OFDM符號之有用的部分之計時。相應於保護間隔的接收信號樣本之一區段係被複製和儲存的,及接著相對於相同的接收信號樣本相關,以檢測識別其中重複的保護間隔係存在於OFDM符號之有用部分的相關峰值。 S14: The guard interval correlator correlates a set of samples corresponding to the guard interval of the OFDM symbol to detect timing of a useful part of the OFDM symbol. A section of a received signal sample corresponding to the guard interval is copied and stored, and then correlated with respect to the same received signal sample to detect a correlation peak in which a repeated guard interval exists in a useful part of the OFDM symbol.
S16:傅立葉轉換處理器,接著對由防護間隔相關器 所檢測的時間而識別的OFDM符號之有用部分,轉換接收的信號之時域樣本之區段至使用傅立葉變換的頻域中。從在頻域中的OFDM符號,導頻符號可以從承載子載波的導頻符號被復原,及資料符號可以從承載子載波的資料被復原。根據本發明技術,導頻子載波位置係由用於散佈導頻的表2及用於連續導頻的圖6、圖10及圖13中所給出,其中在圖6和圖10中的子載波的位置可以從圖13中給出的位置所導出。 S16: Fourier transform processor, followed by guard interval correlator A useful part of the OFDM symbol identified at the detected time is to convert a segment of the time domain samples of the received signal into the frequency domain using a Fourier transform. From OFDM symbols in the frequency domain, pilot symbols can be recovered from pilot symbols carrying subcarriers, and data symbols can be recovered from data carrying subcarriers. According to the technology of the present invention, the pilot subcarrier positions are given in Table 2 for spreading pilots and Figures 6, 10 and 13 for continuous pilots, where the subcarriers in Figures 6 and 10 The position of the carrier can be derived from the position given in FIG.
S18:通道估計與校正單元估計通道之脈衝回應,穿過OFDM符號已經從復原的導頻符號通過之處,以及校正已接收的資料,其承載使用估計的通道脈衝回應的子載波。通常這是根據在頻域中接收信號的均衡技術,其係藉由通道脈衝回應之頻域表示所分割。 S18: The channel estimation and correction unit estimates the channel impulse response, passes through the place where the OFDM symbol has passed from the recovered pilot symbol, and corrects the received data, which carries the subcarriers using the estimated channel impulse response. Usually this is based on the equalization technique of the received signal in the frequency domain, which is divided by the frequency domain representation of the channel impulse response.
S20:解映器藉由執行反向映射至在發射機上執行的,從承載OFDM符號之子載波的資料,復原資料符號。 S20: The resolver recovers the data symbols from the data of the subcarriers carrying the OFDM symbols by performing reverse mapping to the data transmitted on the transmitter.
可以理解的是,分別在圖1和圖3中所示的發射機和接收機只被提供作為說明,而非意圖受限的。例如,可以理解的是本發明技術可以應用於不同的發射機和接收機的架構。 It is understood that the transmitters and receivers shown in Figures 1 and 3 respectively are provided as illustrations only and are not intended to be limiting. For example, it can be understood that the technology of the present invention can be applied to different transmitter and receiver architectures.
如上所述,本發明的實施例可應用於與ATSC標準,例如ATSC 3.0,它們藉由引用併入本文。例如本發明之實施例可被用於根據手持行動終端操作的發射機或接收機中。可提供的服務可能包括語音、訊息、網路瀏覽、收音機、仍然及/或移動視訊影像、電視服務、互動式服務、 視訊或附近-視訊上的需求和選項。服務可能與另一組合操作。 As mentioned above, embodiments of the present invention are applicable to ATSC standards, such as ATSC 3.0, which are incorporated herein by reference. For example, embodiments of the present invention can be used in a transmitter or receiver that operates in accordance with a handheld mobile terminal. Available services may include voice, messaging, web browsing, radio, still and / or mobile video, television services, interactive services, Video or nearby-needs and options on video. The service may operate with another combination.
Claims (21)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1304531.5 | 2013-03-13 | ||
GB1304531.5A GB2511797B (en) | 2013-03-13 | 2013-03-13 | Transmitters, receivers and methods of transmitting and receiving |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201436479A TW201436479A (en) | 2014-09-16 |
TWI680650B true TWI680650B (en) | 2019-12-21 |
Family
ID=48189852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103101805A TWI680650B (en) | 2013-03-13 | 2014-01-17 | Transmitters, receivers and methods of transmitting and receiving |
Country Status (7)
Country | Link |
---|---|
KR (1) | KR101790604B1 (en) |
CN (1) | CN105075207B (en) |
CA (1) | CA2904775C (en) |
GB (1) | GB2511797B (en) |
MX (1) | MX349792B (en) |
TW (1) | TWI680650B (en) |
WO (1) | WO2014140520A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108111453B (en) * | 2016-11-24 | 2020-08-18 | 北京遥感设备研究所 | Binary differential phase shift keying signal open-loop carrier extraction method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW443059B (en) * | 1997-07-01 | 2001-06-23 | Advanced Digital Television Br | Orthogonal frequency division multiplex transmission method and transmitting apparatus and receiving apparatus therefor |
US7388922B2 (en) * | 2004-03-26 | 2008-06-17 | Sony United Kingdom Limited | Receiver |
US20090154547A1 (en) * | 2007-12-17 | 2009-06-18 | Newport Media, Inc. | Scattered pilot correlation in dvb-h systems |
US20090168909A1 (en) * | 2007-12-11 | 2009-07-02 | Sony Corporation | Transmitting apparatus and method, and receiving apparatus and method |
US20090257520A1 (en) * | 2008-04-10 | 2009-10-15 | Mediatek Inc. | Pilot pattern design for small size resource block in OFDMA systems |
US20100124292A1 (en) * | 2008-11-20 | 2010-05-20 | Advanced Micro Devices, Inc. | Method and System for Receiver Synchronization |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10210656A1 (en) * | 2002-03-11 | 2003-05-08 | Siemens Ag | Multi-carrier transmission system for wireless and/or connected communications transmits scattered pilots distributed over sub-carrier frequency spectrum, time of relevant periodic sequence |
KR100842069B1 (en) * | 2002-09-30 | 2008-06-30 | 삼성전자주식회사 | COFDM transmission system add pilot signal in frequence domain and a method proessing OFDM signal thereof |
GB2469069A (en) * | 2009-03-31 | 2010-10-06 | Sony Corp | A receiver for OFDM which idenitifies and cancels impulse noise by comparison with the long term noise. |
US8467346B2 (en) * | 2009-06-19 | 2013-06-18 | Futurewei Technologies, Inc. | Method and apparatus for generating time-frequency patterns for reference signal in an OFDM wireless communication system |
-
2013
- 2013-03-13 GB GB1304531.5A patent/GB2511797B/en active Active
-
2014
- 2014-01-17 TW TW103101805A patent/TWI680650B/en active
- 2014-02-14 CA CA2904775A patent/CA2904775C/en active Active
- 2014-02-14 CN CN201480014485.8A patent/CN105075207B/en active Active
- 2014-02-14 MX MX2015009365A patent/MX349792B/en active IP Right Grant
- 2014-02-14 WO PCT/GB2014/050441 patent/WO2014140520A1/en active Application Filing
- 2014-02-14 KR KR1020157022644A patent/KR101790604B1/en active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW443059B (en) * | 1997-07-01 | 2001-06-23 | Advanced Digital Television Br | Orthogonal frequency division multiplex transmission method and transmitting apparatus and receiving apparatus therefor |
US7388922B2 (en) * | 2004-03-26 | 2008-06-17 | Sony United Kingdom Limited | Receiver |
US20090168909A1 (en) * | 2007-12-11 | 2009-07-02 | Sony Corporation | Transmitting apparatus and method, and receiving apparatus and method |
US20090154547A1 (en) * | 2007-12-17 | 2009-06-18 | Newport Media, Inc. | Scattered pilot correlation in dvb-h systems |
US20090257520A1 (en) * | 2008-04-10 | 2009-10-15 | Mediatek Inc. | Pilot pattern design for small size resource block in OFDMA systems |
US20100124292A1 (en) * | 2008-11-20 | 2010-05-20 | Advanced Micro Devices, Inc. | Method and System for Receiver Synchronization |
Also Published As
Publication number | Publication date |
---|---|
CA2904775C (en) | 2018-05-01 |
CA2904775A1 (en) | 2014-09-18 |
TW201436479A (en) | 2014-09-16 |
WO2014140520A1 (en) | 2014-09-18 |
GB2511797A (en) | 2014-09-17 |
CN105075207B (en) | 2018-12-14 |
KR20150109449A (en) | 2015-10-01 |
GB201304531D0 (en) | 2013-04-24 |
KR101790604B1 (en) | 2017-10-27 |
MX2015009365A (en) | 2015-09-23 |
MX349792B (en) | 2017-08-11 |
GB2511797B (en) | 2020-12-23 |
CN105075207A (en) | 2015-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10637708B2 (en) | Transmitters, receivers and methods of transmitting and receiving | |
US9503297B2 (en) | 6MHZ bandwidth OFDM transmitter with the same guard interval as 8MHZ DVB-T2 | |
US10911194B2 (en) | Transmitter and receiver and methods of transmitting and receiving | |
EP2242226B1 (en) | Receiver and method of receiving | |
US8462895B2 (en) | Receiver and method | |
TWI427980B (en) | Methods and apparatus for estimating the channel impulse response | |
CN101909033A (en) | Receiver and method | |
JP2019506810A (en) | Transmitting apparatus, receiving apparatus, and method | |
JP2019522929A (en) | Receiving apparatus and receiving method | |
JP2024023636A (en) | Transmitting device and transmitting method | |
TWI680650B (en) | Transmitters, receivers and methods of transmitting and receiving | |
CN106031063B (en) | Sending device, receiving device and its control method | |
KR20150097375A (en) | Transmitting apparatus and receiving apparatus and controlling method thereof | |
KR101333822B1 (en) | Method and apparatus for canelling interference |