TWI680653B - Multi-cell coordination system and channel calibration method thereof - Google Patents
Multi-cell coordination system and channel calibration method thereof Download PDFInfo
- Publication number
- TWI680653B TWI680653B TW107142821A TW107142821A TWI680653B TW I680653 B TWI680653 B TW I680653B TW 107142821 A TW107142821 A TW 107142821A TW 107142821 A TW107142821 A TW 107142821A TW I680653 B TWI680653 B TW I680653B
- Authority
- TW
- Taiwan
- Prior art keywords
- base station
- uplink
- channel information
- reference signal
- downlink
- Prior art date
Links
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
本發明提供一種多基地台協調系統及其通道校正方法。此系統包括參考裝置、基地台及伺服器。參考裝置經由指向波束接收來自基地台並經波束編碼的下行參考訊號。基地台經由此指向波束接收來自參考裝置經波束編碼的上行參考訊號。伺服器接收上行通道資訊及下行通道資訊。此上行通道資訊係基於上行參考訊號所產生,且此下行通道資訊係基於下行參考訊號所產生。伺服器並依據上行通道資訊及下行通道資訊得出通道校正係數。而此通道校正係數用以估測下行通道。藉此,可解決現有協調系統的問題,並能應用於多波束基地台。The invention provides a multi-base station coordination system and a channel correction method thereof. This system includes a reference device, a base station, and a server. The reference device receives a beam-coded downlink reference signal from a base station via a pointing beam. The base station receives the beam-coded uplink reference signal from the reference device via the pointing beam. The server receives uplink channel information and downlink channel information. The uplink channel information is generated based on the uplink reference signal, and the downlink channel information is generated based on the downlink reference signal. The server obtains the channel correction coefficient according to the uplink channel information and the downlink channel information. This channel correction coefficient is used to estimate the downstream channel. This can solve the problems of the existing coordination system and can be applied to multi-beam base stations.
Description
本發明是有關於一種多基地台協調技術,且特別是有關於一種多基地台協調系統及其通道校正方法。 The invention relates to a multi-base station coordination technology, and in particular to a multi-base station coordination system and a channel correction method thereof.
相較於傳統第四代(fourth generation,4G)長期演進(Long Term Evolution,LTE)系統,未來第五代(fifth generation,5G)新無線電(New Radio,NR)系統上將應用更多天線數來提高傳輸效率。在理論及實際應用上,多天線系統已被證明可利用預編碼(Precoding)及/或波束成形(Beamforming)等技術,同時讓多位使用者設備(User Equipment,UE)存取無線資源,從而增加頻譜使用效率。此外,近年來已有研究指出,若基地台搭載的天線數大於四倍的用戶數,則頻譜使用效率將可隨用戶數增加而呈線性成長。 Compared with the traditional Fourth Generation (4G) Long Term Evolution (LTE) system, more antenna numbers will be applied to the fifth generation (5G) New Radio (NR) system in the future To improve transmission efficiency. In theory and practical applications, multi-antenna systems have been proven to use technologies such as Precoding and / or Beamforming, while allowing multiple User Equipment (UE) to access wireless resources, thereby Increase spectrum use efficiency. In addition, recent studies have pointed out that if the number of antennas carried by the base station is more than four times the number of users, the spectrum utilization efficiency will grow linearly with the number of users.
然而,因為物理上的限制,一般的基地台很難搭載巨量(massive)天線。因此,有相關研究提出,透過協調多個基地台,以 共同對使用者設備進行資料傳輸,將可達到等效於巨量天線的效能。這樣的架構稱為多基地台協調(Multi-Cell Coordination,MCC)系統。在MCC系統中,所有基地台都受控於一台協調伺服器(Coordination Server),且此協調伺服器可依用戶情況選擇最佳的傳輸模式。由於MCC系統中各基地台的時脈源(Clock Source)皆獨立,因此基地台之間可能會存在載波頻率偏移(Carrier Frequency Offset,CFO),且其是與巨量天線系統相比最大的差異點。此外,其他不完美因素(例如,因CFO產生的取樣時脈偏移(Sampling Clock Offset,SCO)、傳輸延遲造成的時間偏移(Timing Offset)、CFO所造成下行和上行通道具有相反的線性相位、射頻響應的時變效應等)亦會造成通道估測不準確,且經過預編碼之後,更可能會產生基地台間干擾(Inter-Cell Interference,ICI)及用戶間干擾(Inter-User Interference,IUI),進而降低系統容量。由此可知,現有MCC系統仍有待改進。 However, due to physical limitations, it is difficult for a general base station to mount a massive antenna. Therefore, related studies have proposed that, by coordinating multiple base stations, Data transmission to user equipments together can achieve performance equivalent to a huge number of antennas. Such an architecture is called a Multi-Cell Coordination (MCC) system. In the MCC system, all base stations are controlled by a Coordination Server, and this Coordination Server can select the best transmission mode according to the user's situation. Because the clock source of each base station in the MCC system is independent, there may be Carrier Frequency Offset (CFO) between the base stations, and it is the largest compared with the massive antenna system Point of difference. In addition, other imperfect factors (for example, sampling clock offset (SCO) caused by CFO, timing offset due to transmission delay, and downstream linear phases of the CFO caused by the opposite linear phase , Time-varying effects of RF response, etc.) will also cause inaccurate channel estimation, and after precoding, Inter-Cell Interference (ICI) and Inter-User Interference (Inter-User Interference, IUI), thereby reducing system capacity. It can be known that the existing MCC system still needs to be improved.
有鑑於此,本發明提供一種多基地台協調系統及其通道校正方法,可解決現有MCC系統的問題,並能適用於多波束技術。 In view of this, the present invention provides a multi-base station coordination system and a channel correction method thereof, which can solve the problems of the existing MCC system and can be applied to the multi-beam technology.
本發明實施例的多基地台協調系統,其至少包括但不僅限於參考裝置、基地台及伺服器。基地台包括至少一根天線,且這些天線提供指向波束。基地台對欲經由此指向波束傳送的下行參考訊號進行第一預編碼,而此第一預編碼是基於波束編碼。參考裝 置經由指向波束接收來自基地台的下行參考訊號。參考裝置對欲經由指向波束傳送的上行參考訊號進行第二預編碼,而此第二預編碼是基於波束編碼。基地台經由此指向波束接收來自參考裝置的上行參考訊號。伺服器接收來自基地台的上行通道資訊、及來自參考裝置的下行通道資訊。此上行通道資訊係基於上行參考訊號及第二預編碼所產生,且此下行通道資訊係基於下行參考訊號及第一預編碼所產生。伺服器並依據上行通道資訊及下行通道資訊得出通道校正係數。而此通道校正係數用以估測下行通道。 The multi-base station coordination system according to the embodiment of the present invention includes at least but not limited to a reference device, a base station, and a server. The base station includes at least one antenna, and these antennas provide a directional beam. The base station performs first precoding on the downlink reference signal to be transmitted via the pointing beam, and the first precoding is based on the beam coding. Reference equipment The receiver receives a downlink reference signal from the base station via a directional beam. The reference device performs a second precoding on the uplink reference signal to be transmitted via the directional beam, and the second precoding is based on the beam coding. The base station receives the uplink reference signal from the reference device via the pointing beam. The server receives the uplink channel information from the base station and the downlink channel information from the reference device. The uplink channel information is generated based on the uplink reference signal and the second precoding, and the downlink channel information is generated based on the downlink reference signal and the first precoding. The server obtains the channel correction coefficient according to the uplink channel information and the downlink channel information. This channel correction coefficient is used to estimate the downstream channel.
另一方面,本發明實施例的通道校正方法,其至少包括但不僅限於下列步驟。透過基地台對欲經由此指向波束傳送的下行參考訊號進行第一預編碼,而此第一預編碼是基於波束編碼。透過參考裝置經由此指向波束接收來自基地台的下行參考訊號。透過參考裝置對欲經由指向波束傳送的上行參考訊號進行第二預編碼,而此第二預編碼是基於波束編碼。透過基地台提供指向波束以接收來自參考裝置的上行參考訊號。透過伺服器接收來自基地台的上行通道資訊、及來自參考裝置的下行通道資訊。而此上行通道資訊係基於上行參考訊號及第二預編碼所產生,且此下行通道資訊係基於下行參考訊號及第一預編碼所產生。透過伺服器依據上行通道資訊及下行通道資訊得出通道校正係數,而此通道校正係數用以估測下行通道。 On the other hand, the channel correction method according to the embodiment of the present invention includes at least but not limited to the following steps. The base station performs first precoding on the downlink reference signal to be transmitted through the pointing beam, and the first precoding is based on the beam coding. The reference device receives the downlink reference signal from the base station through the directional beam through the reference device. The reference device is used to perform a second precoding on the uplink reference signal to be transmitted through the directional beam, and the second precoding is based on the beam coding. A directional beam is provided through a base station to receive an uplink reference signal from a reference device. Receive the uplink channel information from the base station and the downlink channel information from the reference device through the server. The uplink channel information is generated based on the uplink reference signal and the second precoding, and the downlink channel information is generated based on the downlink reference signal and the first precoding. The channel correction coefficient is obtained by the server according to the uplink channel information and the downlink channel information, and this channel correction coefficient is used to estimate the downlink channel.
基於上述,本發明實施例的多基地台協調系統及其通道校正方法,因應未來5G NR系統中多波束的技術,針對不同波束 對應的通道提供對應通道校正係數。此外,透過參考裝置解決基地台之間同步、射頻響應的時變效應、頻率選擇性衰減通道、及下行通道狀態資訊取得的問題,進而達到巨量天線系統的效能。 Based on the above, the multi-base station coordination system and the channel correction method in the embodiments of the present invention are adapted to different beam technologies in the future 5G NR system, aiming at different beams. Corresponding channels provide corresponding channel correction coefficients. In addition, the reference device solves the problems of synchronization between base stations, time-varying effects of RF response, frequency selective attenuation channels, and downlink channel status information acquisition, thereby achieving the performance of a huge number of antenna systems.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.
1‧‧‧多基地台協調系統 1‧‧‧Multi-base station coordination system
BS1~BSj‧‧‧基地台 BS1 ~ BSj‧‧‧Base Station
RA1~RAr‧‧‧參考裝置 RA1 ~ RAr‧‧‧Reference device
CS‧‧‧伺服器 CS‧‧‧Server
UE1~UEm、UEu‧‧‧使用者設備 UE1 ~ UEm, UEu‧‧‧user equipment
b1~bh‧‧‧指向波束 b1 ~ bh‧‧‧ pointing beam
UL_RS_R1、UL_RS_R2、UL_RS_R3、UL_RS_U1‧‧‧上行參考訊號 UL_RS_R1, UL_RS_R2, UL_RS_R3, UL_RS_U1‧‧‧ uplink reference signal
DL_RS_R1、DL_RS_R2、DL_RS_R3、DL_RS_U1‧‧‧下行參考訊號 DL_RS_R1, DL_RS_R2, DL_RS_R3, DL_RS_U1‧‧‧ downlink reference signal
S210~S260、S410~S430、S510~S520、S610~S630‧‧‧步驟 S210 ~ S260, S410 ~ S430, S510 ~ S520, S610 ~ S630‧‧‧Steps
P BS,(b,n),p 、P UE,(r,k),p ‧‧‧預編碼 P BS, ( b, n ) , p , P UE, ( r, k ) , p ‧‧‧ precoding
α b,n 、β r,k 、α r,k 、β b,n ‧‧‧射頻響應 α b, n , β r, k , α r, k , β b, n ‧‧‧ RF response
g (b,n)→(r,k)、g (r,k)→(b,n)‧‧‧空中通道 g ( b, n ) → ( r, k ) , g ( r, k ) → ( b, n ) ‧‧‧airway
θ b,n 、、θ r,k 、‧‧‧初始相位 θ b, n , , Θ r, k , ‧‧‧ initial phase
ε b 、η r ‧‧‧載波頻率 ε b , η r ‧‧‧ carrier frequency
t、T0‧‧‧時間 t, T 0 ‧‧‧ time
圖1是依據本發明一實施例之多基地台協調系統的示意圖。 FIG. 1 is a schematic diagram of a multi-base station coordination system according to an embodiment of the present invention.
圖2是依據本發明一實施例之通道校正方法的流程圖。 FIG. 2 is a flowchart of a channel correction method according to an embodiment of the present invention.
圖3是依據本發明一實施例之基地台與參考裝置之間的傳輸模型。 3 is a transmission model between a base station and a reference device according to an embodiment of the present invention.
圖4是依據本發明一實施例之載波頻率偏移估測的流程圖。 FIG. 4 is a flowchart of carrier frequency offset estimation according to an embodiment of the present invention.
圖5是依據本發明一實施例之係數正規化的流程圖。 FIG. 5 is a flowchart of coefficient normalization according to an embodiment of the present invention.
圖6是依據本發明一實施例之估測等效下行通道的流程圖。 FIG. 6 is a flowchart of estimating an equivalent downlink channel according to an embodiment of the present invention.
圖1是依據本發明一實施例之多基地台協調系統1的示意圖。請參照圖1,此多基地台協調系統1至少包括但不僅限於一個或更多個基地台BS1~BSj、一個或更多個參考裝置RA1~RAr、伺服器CS、及一個或更多個使用者設備UE1~UEn。j、r、n係正整數。 FIG. 1 is a schematic diagram of a multi-base station coordination system 1 according to an embodiment of the present invention. Please refer to FIG. 1. This multi-base station coordination system 1 includes at least but not limited to one or more base stations BS1 ~ BSj, one or more reference devices RA1 ~ RAr, a server CS, and one or more uses User equipment UE1 ~ UEn. j, r, n are positive integers.
基地台BS1~BSj可能有多種實施態樣,例如是(但不限於)家用演進型節點B(Home Evolved Node B,HeNB)、eNB、進階基地台(Advanced Base Station,ABS)、基地收發器系統(Base Transceiver System;BTS)、中繼器(relay)、轉發器(repeater)、及/或基於衛星的通信基地台。於本實施例中,各基地台BS1~BSj具有一根或更多根天線,且這些天線可提供多個指向波束b1~bh,這些指向波束b1~bh並指向特定方向。例如,基地台BSb(b是介於1到j的正整數)透過波束掃掠(beam sweeping)技術依序使用不同指向波束b1~bh發射無線訊號。h、j係正整數。 The base stations BS1 ~ BSj may have various implementation modes, such as (but not limited to) Home Evolved Node B (HeNB), eNB, Advanced Base Station (ABS), base transceiver System (Base Transceiver System; BTS), repeater (relay), repeater (repeater), and / or satellite-based communication base station. In this embodiment, each of the base stations BS1 to BSj has one or more antennas, and these antennas can provide multiple directional beams b1 to bh, which are directed to a specific direction. For example, the base station BSb (b is a positive integer between 1 and j) uses beam sweeping technology to sequentially use different directional beams b1 to bh to transmit wireless signals. h and j are positive integers.
參考裝置RA1~RAr可能有多種實施態樣,例如是(但不限於)行動裝置、個人電腦或是閒置中的基地台。所謂閒置中的基地台是指由伺服器CS判斷當前沒有提供服務或是負載低於特定門檻值的基地台。伺服器CS亦可能對基地台BS1~BSj排程,而輪流將基地台BS1~BSj中的任一閒置者作為參考裝置RA1~RAr。於本實施例中,各參考裝置RA1~RAr具有一根或更多根天線。r係正整數。 The reference devices RA1 ~ RAr may have various implementations, such as (but not limited to) a mobile device, a personal computer, or an idle base station. The so-called idle base station refers to a base station judged by the server CS that the current service is not provided or the load is below a certain threshold. The server CS may also schedule the base stations BS1 ~ BSj, and in turn use any idlers in the base stations BS1 ~ BSj as reference devices RA1 ~ RAr. In this embodiment, each of the reference devices RA1 to RAr has one or more antennas. r is a positive integer.
伺服器CS可以是各類型伺服器、電腦主機、工作站等運算裝置。於本實施例中,伺服器CS有線或無線地連接基地台BS1~BSj、及參考裝置RA1~RAr。 The server CS can be various types of computing devices such as servers, computer hosts, and workstations. In this embodiment, the server CS is wired or wirelessly connected to the base stations BS1 to BSj and the reference devices RA1 to RAr.
使用者設備UE1~UEm可能有多種實施態樣,例如可包含(但不限於)移動站、先進移動站(Advanced Mobile Station;AMS)、電話裝置、客戶駐地設備(Customer Premise Equipment、CPE)、無 線感測器等。使用者設備UE1~UEm可受基地台BS1~BSj中任一者服務。m係正整數。 The user equipment UE1 ~ UEm may have multiple implementations, such as including (but not limited to) a mobile station, an advanced mobile station (AMS), a telephone device, a customer premise equipment (CPE), and no Line sensors and more. The user equipment UE1 ~ UEm can be served by any one of the base stations BS1 ~ BSj. m is a positive integer.
需說明的是,本實施例中的基地台BS1~BSj、及參考裝置RA1~RAr可利用全球定位系統(Global Positioning System,GPS)訊號進行時間同步。基地台BS1~BSj、參考裝置RA1~RAr、及使用者設備UE1~UEm具有獨立時脈源。即,各裝置具有各自的載波頻率。例如,基地台BSb的載波頻率為ε b ,而參考裝置RAr的載波頻率為η r 。此外,基地台BS1~BSj、參考裝置RA1~RAr、及使用者設備UE1~UEm可以支援第四代(4G)、第五代(5G)或更後世代行動通訊技術,本發明不加以限制。 It should be noted that the base stations BS1 to BSj and the reference devices RA1 to RAr in this embodiment may use a Global Positioning System (GPS) signal for time synchronization. The base stations BS1 to BSj, the reference devices RA1 to RAr, and the user equipment UE1 to UEm have independent clock sources. That is, each device has its own carrier frequency. For example, the carrier frequency of the base station BSb is ε b and the carrier frequency of the reference device RAr is η r . In addition, the base stations BS1 to BSj, the reference devices RA1 to RAr, and the user equipment UE1 to UEm can support fourth-generation (4G), fifth-generation (5G), or later generation mobile communication technologies, which are not limited in the present invention.
為了方便理解本發明實施例的操作流程,以下將舉諸多實施例詳細說明本發明實施例中多基地台協調系統1之運作流程。下文中,將搭配多基地台協調系統1中各裝置說明本發明實施例所述之方法。本發明實施例方法的各個流程可依照實施情形而隨之調整,且並不僅限於此。此外,為了方便說明,下文中將自基地台BS1~BSj、參考裝置RA1~RAr、及使用者設備UE1~UEm中挑選一者或更多者作為範例說明,其餘相同類型裝置的運作可參考相對應的說明,且將不再贅述。 In order to facilitate the understanding of the operation flow of the embodiments of the present invention, the following describes in detail the operation flow of the multi-base station coordination system 1 in the embodiments of the present invention with many embodiments. In the following, the method according to the embodiment of the present invention will be described with each device in the multi-base station coordination system 1. Each process of the method in the embodiment of the present invention can be adjusted according to the implementation situation, and is not limited to this. In addition, for the convenience of description, one or more of base stations BS1 ~ BSj, reference devices RA1 ~ RAr, and user equipment UE1 ~ UEm will be selected as examples, and the operation of other devices of the same type can be referred to. The corresponding description will not be repeated.
圖2是依據本發明一實施例之通道校正方法的流程圖。請參照圖1及圖2,基地台BSb對欲經由指向波束bp(p是介於1到h的正整數)傳送的下行參考訊號DL_RS_R2進行第一預編碼(步驟S210)。具體而言,基地台BSb可透過數個不同指向載波 b1~bh發送不同或相同下行訊號。為了識別及/或提升傳輸效率,基地台BSb會將所有或部分指向載波b1~bh的下行訊號基於波束編碼來進行第一預編碼。此波束編碼可以是基於波束碼本(codebook)(例如,預編碼索引(Precoding Matrix Indicators,PMI))、或其他預編碼矩陣。即,各指向載波b1~bh的下行訊號會透過預編碼矩陣中的碼字、係數、或權重預編碼後發出。需說明的是,本實施例以指向波束bp作為範例說明,其餘指向波束的說明將不再贅述。 FIG. 2 is a flowchart of a channel correction method according to an embodiment of the present invention. Referring to FIG. 1 and FIG. 2, the base station BSb performs first precoding on the downlink reference signal DL_RS_R2 to be transmitted via the pointing beam bp (p is a positive integer between 1 and h) (step S210). Specifically, the base station BSb can pass through several different pointing carriers b1 ~ bh send different or same downlink signals. In order to identify and / or improve transmission efficiency, the base station BSb performs first precoding based on beam coding on all or part of the downlink signals directed to the carriers b1 to bh. This beam coding may be based on a beam codebook (for example, Precoding Matrix Indicators (PMI)), or other precoding matrix. That is, the downlink signals directed to the carriers b1 to bh are pre-coded through code words, coefficients, or weights in the pre-coding matrix. It should be noted that, in this embodiment, the directional beam bp is used as an example description, and the rest of the description of the directional beam will not be repeated.
參考裝置RAr經由指向波束bp接收來自基地台BSb的下行參考訊號DL_RS_R2(步驟S220)。具體而言,基地台BSb在時間t(以時分雙工(Time Division Duplexing,TDD)系統為例)傳送下行參考訊號DL_RS_R2後,參考裝置RAr可能被指派或自行決定經由指向波束bp接收訊號。 The reference device RAr receives the downlink reference signal DL_RS_R2 from the base station BSb via the pointing beam bp (step S220). Specifically, after the base station BSb transmits the downlink reference signal DL_RS_R2 at time t (using a Time Division Duplexing (TDD) system as an example), the reference device RAr may be assigned or decide to receive the signal via the pointing beam bp.
請參照圖3是依據本發明一實施例之基地台BSb與參考裝置RAr之間的傳輸模型(link model)。假設基地台BSb的第n根天線提供指向波束bp,而參考裝置RAr的第k根天線經由指向波束bp接收訊號。此下行參考訊號DL_RS_R2(由基地台BSb至參考裝置RAr,即經由下行鏈路(downlink))係基地台BSb及參考裝置RAr雙方已知的訓練訊號。參考裝置RAr可基於下行參考訊號DL_RS_R2來估測對此指向波束bp的下行通道資訊。此下行通道的數學表示式如下:
值得注意的是,前述載波頻率偏移可事先估測或是預 設的。以下將說明如何估測載波頻率偏移。圖4是依據本發明一實施例之載波頻率偏移估測的流程圖。請參照圖1及圖4,以下將以基地台BSb,BSj、及參考裝置RAr作為範例說明。參考裝置RAr分別對基地台BSb,BSj發送上行參考訊號UL_RS_R2,UL_RS_R3(步驟S410)。基地台BSb,BSj分別基於上行參考訊號UL_RS_R2,UL_RS_R3得出兩組對應的上行通道資訊(步驟S420)。而伺服器CS基於這些上行通道資訊得出兩基地台BSb,BSj的(相對)載波頻率偏移(步驟S430)。換句而言,本發明實施例是透過兩基地台BSb,BSj在載波頻率偏移上的差異來作為相對載波頻率偏 移。藉此,基地台BSb即可基於針對自身的載波頻率偏移得出如表示式(1)所示的下行通道資訊。需說明的是,所有基地台BS1~BSj都可基於圖4之實施例得出其對應相對載波頻率偏移,以下將不再贅述。此外,參考裝置RAr尚需要再經過時間D後發送上行參考訊號UL_RS_R2,UL_RS_R3,而伺服器CS會藉由兩時間點之間的通道變化量來得出載波頻率偏移。 It is worth noting that the aforementioned carrier frequency offset Can be estimated in advance or preset. The following explains how to estimate the carrier frequency offset . FIG. 4 is a flowchart of carrier frequency offset estimation according to an embodiment of the present invention. Please refer to FIG. 1 and FIG. 4, the following will take the base stations BSb, BSj, and the reference device RAr as examples. The reference device RAr sends uplink reference signals UL_RS_R2, UL_RS_R3 to the base stations BSb and BSj, respectively (step S410). The base stations BSb and BSj respectively obtain two sets of corresponding uplink channel information based on the uplink reference signals UL_RS_R2 and UL_RS_R3 (step S420). The server CS obtains the (relative) carrier frequency offsets of the two base stations BSb and BSj based on the uplink channel information (step S430). In other words, in the embodiment of the present invention, the difference in carrier frequency offset between the two base stations BSb and BSj is taken as the relative carrier frequency offset. With this, the base station BSb can obtain the downlink channel information as shown in Expression (1) based on the carrier frequency offset for itself. It should be noted that all the base stations BS1 to BSj can obtain their corresponding relative carrier frequency offsets based on the embodiment of FIG. 4, which will not be described in detail below. In addition, the reference device RAr still needs to send the uplink reference signals UL_RS_R2, UL_RS_R3 after the time D has passed, and the server CS will obtain the carrier frequency offset by the channel change amount between the two time points.
請回到圖2,參考裝置RAr對欲經由指向波束bp傳送的上行參考訊號UL_RS_R2基於波束編碼進行第二預編碼(步驟S230)。於本實施例中,第二預編碼可參酌第一預編碼的說明,並可採用相同或不同的預編碼矩陣。接著,參考裝置RAr在時間t+T 0傳送上行參考訊號UL_RS_R2,使基地台BSb提供指向波束bp以接收來自參考裝置RAr的上行參考訊號UL_RS_R2(步驟S240)。此上行參考訊號UL_RS_R2(由參考裝置RAr至基地台BSb,即經由上行鏈路(uplink))係基地台BSb及參考裝置RAr雙方已知的訓練訊號。而基地台BSb可基於此上行參考訊號UL_RS_R2來估測對此指向波束bp的上行通道資訊。此上行通道的數學表示式如下:
請回到圖2,伺服器CS接著可接收來自基地台BSb的上行通道資訊(例如,數學表示式(2))、及來自參考裝置RAr的下行通道資訊(例如,數學表示式(1))(步驟S250),伺服器CS並依據此上行通道資訊及此下行通道資訊得出通道校正係數(步驟S260)。 Please return to FIG. 2. The server CS can then receive the uplink channel information from the base station BSb (for example, mathematical expression (2)) and the downlink channel information from the reference device RAr (for example, mathematical expression (1)) (Step S250), the server CS obtains a channel correction coefficient based on the uplink channel information and the downlink channel information (step S260).
具體而言,伺服器CS將對應到不同時間點的上行通道資訊及下行通道資訊的比例作為校正係數:
圖5是依據本發明一實施例之係數正規化的流程圖。請參照圖1及圖5,伺服器CS可依據基地台BS1與參考裝置RAr之間並經由另一指向波束b1的上行通道資訊及下行通道資訊(假設皆透過第一根天線)得出第二通道校正係數(步驟S510)。第二通道校正係數的產生方式可參考前述圖2的相關說明,即,參考裝置
RAr基於來自基地台BS1的下行參考訊號RL_RS_R1估測針對指向波束b1的下行通道資訊,基地台BS1基於來自參考裝置RAr的上行參考訊號UL_RS_R1估測針對指向波束b1的上行通道資訊,伺服器CS再基於針對指向波束b1的上/下行通道資訊來得出第二通道校正係數c (1,1)→(r,1)(t+T 0)。伺服器CS接著依據此第二通道校正係數對步驟S260所得的通道校正係數正規化(步驟S520):
需說明的是,本處以基地台BS1、第一根天線及指向波束b1為例,然於其他實施例中,伺服器CS亦可選擇其他基地台、其他根天線及/或其他指向波束中的任一組合來作為正規化基準。需再次強調的是,前述僅針對基地台BSb的第n根天線與指向波束bp、以及參考裝置RAr的第k根天線作為說明,針對其他基地台、其他根天線、其他指向波束及其他參考裝置組合的通道校正係數可參照前述說明,於此不再贅述。 It should be noted that the base station BS1, the first antenna, and the directional beam b1 are taken as an example. However, in other embodiments, the server CS may also select other base stations, other antennas, and / or other directional beams. Any combination is used as the normalization benchmark. It should be emphasized again that the foregoing only refers to the n-th antenna and the directional beam bp of the base station BSb and the k-th antenna of the reference device RAr as illustrations, and to other base stations, other antennas, other directional beams and other reference devices For the combined channel correction coefficients, please refer to the foregoing description, and will not be repeated here.
值得注意的是,前述通道校正係數可用於估測基地台BSb與使用者設備UE1~UEm之間的下行通道,以下將接續說明。圖6是依據本發明一實施例之估測等效下行通道的流程圖。請參照圖1及圖6,在時間t+T 1時,使用者設備UEu(u是介於1到m的正整數)經由指向波束bp1傳送上行參考訊號UL_RS_U1給基地台BSb(步驟S610)。基地台BSb即可依據上行參考訊號UL_RS_U1及(經正規化)通道校正係數c' (b,n)→(r,k)(t+T 0)估測經由指向波束bp的(等效)下行通道(步驟S620):
此外,針對指向波束bp的下行通道矩陣可表示為:
基地台BSb接著可依據估測的下行通道對發送至使用者設備UEu的訊號進行第三預編碼(步驟S630)。而此第三預編碼例如是基於強制歸零(Zero forcing)、最小均方誤差(Minimum Mean-Square Error,MMSE)或其他等化演算法。而在時間t+T 2時,基地台BSb即可以前述第三預編碼產生的下行訊號來服務使用者設備UEu。需說明的是,此處以基地台BSb與使用者設備UEu之間的傳輸行為作為範例說明,其他基地台及使用者設備的組合可參照前述說明,且不加以贅述。 The base station BSb may then perform third precoding on the signal sent to the user equipment UEu according to the estimated downlink channel (step S630). The third precoding is based on, for example, Zero forcing, Minimum Mean-Square Error (MMSE), or other equalization algorithms. At time t + T 2 , the base station BSb can serve the user equipment UEu with the downlink signal generated by the third precoding. It should be noted that the transmission behavior between the base station BSb and the user equipment UEu is taken as an example here. For other combinations of the base station and the user equipment, reference may be made to the foregoing description, and details are not described herein.
綜上所述,本發明實施例的多基地台協調系統及其通道校正方法,利用參考裝置解決基地台間同步、射頻響應的時變效 應、頻率選擇性衰減通道、及下行通道狀態資訊取得的問題。此外,本發明實施例更進一步考量多波束傳輸的應用,從而能適用於5G或更後世代的通訊系統。 In summary, the multi-base station coordination system and channel correction method of the embodiments of the present invention use a reference device to resolve time-varying effects of synchronization and radio frequency response between base stations. Problems such as response, frequency selective attenuation channel, and downlink channel status information. In addition, the embodiments of the present invention further consider the application of multi-beam transmission, so that it can be applied to communication systems of 5G or later generations.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107142821A TWI680653B (en) | 2018-11-29 | 2018-11-29 | Multi-cell coordination system and channel calibration method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107142821A TWI680653B (en) | 2018-11-29 | 2018-11-29 | Multi-cell coordination system and channel calibration method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI680653B true TWI680653B (en) | 2019-12-21 |
TW202021290A TW202021290A (en) | 2020-06-01 |
Family
ID=69582458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107142821A TWI680653B (en) | 2018-11-29 | 2018-11-29 | Multi-cell coordination system and channel calibration method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI680653B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8848673B2 (en) * | 2011-12-19 | 2014-09-30 | Ofinno Technologies, Llc | Beam information exchange between base stations |
US20160094318A1 (en) * | 2001-04-26 | 2016-03-31 | Genghiscomm Holdings, LLC | Single-Carrier OFDMA |
TWI565343B (en) * | 2014-08-11 | 2017-01-01 | 英特爾智財公司 | System detection in a high frequency band radio access technology architecture |
WO2017139050A1 (en) * | 2016-02-10 | 2017-08-17 | Qualcomm Incorporated | Beam selection for uplink and downlink based mobility |
WO2017171305A1 (en) * | 2016-03-29 | 2017-10-05 | 엘지전자 주식회사 | Method for reporting channel state and apparatus therefor in wireless communication system |
TW201815089A (en) * | 2016-09-30 | 2018-04-16 | 電信科學技術研究院 | Large-scale antenna beam transmission method, base station and terminal |
-
2018
- 2018-11-29 TW TW107142821A patent/TWI680653B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160094318A1 (en) * | 2001-04-26 | 2016-03-31 | Genghiscomm Holdings, LLC | Single-Carrier OFDMA |
US8848673B2 (en) * | 2011-12-19 | 2014-09-30 | Ofinno Technologies, Llc | Beam information exchange between base stations |
TWI565343B (en) * | 2014-08-11 | 2017-01-01 | 英特爾智財公司 | System detection in a high frequency band radio access technology architecture |
WO2017139050A1 (en) * | 2016-02-10 | 2017-08-17 | Qualcomm Incorporated | Beam selection for uplink and downlink based mobility |
WO2017171305A1 (en) * | 2016-03-29 | 2017-10-05 | 엘지전자 주식회사 | Method for reporting channel state and apparatus therefor in wireless communication system |
TW201815089A (en) * | 2016-09-30 | 2018-04-16 | 電信科學技術研究院 | Large-scale antenna beam transmission method, base station and terminal |
Also Published As
Publication number | Publication date |
---|---|
TW202021290A (en) | 2020-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200252111A1 (en) | System and Method for Communications System Training | |
US10299280B2 (en) | Systems and methods for interference alignment in Wi-Fi | |
CN114208051A (en) | Reciprocal geometric precoding | |
CN102917454B (en) | Phase synchronization of base stations via mobile feedback in multipoint broadcasting | |
US10686498B2 (en) | Systems and methods for massive MIMO adaptation | |
US10476621B2 (en) | Methods and arrangements for mitigating inter-cluster interference | |
TWI639314B (en) | Multi-antenna system and percoding method thereof | |
CN110741568A (en) | Method and apparatus for antenna calibration in a wireless communication system | |
WO2014101170A1 (en) | Channel reciprocity compensating method and device in fdd system | |
US11290171B2 (en) | Method and apparatus for signal detection in a MIMO communication system | |
CN112823478B (en) | Multi-user pairing and SINR calculation based on relative beam power for codebook-based DL MU-MIMO | |
US20220303909A1 (en) | Apparatus and Methods for Sidelink Power Control Wireless Communications Systems | |
CN105745893A (en) | Large-scale fading coefficient estimation in wireless massive MIMO systems | |
CN108174439B (en) | Multi-base station system and channel correction method thereof | |
US11057782B2 (en) | Multi-cell coordination system and channel calibration method thereof | |
WO2016119255A1 (en) | Method and apparatus for acquiring downlink channel information and network side device | |
TWI680653B (en) | Multi-cell coordination system and channel calibration method thereof | |
TWI641281B (en) | Multi-cell system and channel calibration method thereof | |
CN112673580B (en) | Determination of downlink channel state information in massive MIMO systems | |
US10631311B2 (en) | Transmitter, wireless communication system, and method for processing in transmitter | |
CN110011707B (en) | Multi-base station coordination system and channel correction method thereof | |
CN112640322B (en) | User selection for MU-MIMO communication | |
WO2024216513A1 (en) | Joint transmission based on grouping of network devices | |
US11303341B1 (en) | Communication system and method for asynchronous joint transmissions using a cluster-based distributed cyclic delay diversity scheme | |
KR101768362B1 (en) | A method for estimation of channel state information in massive antenna-based wireless communication systems |