[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI659671B - Driver circuit for driving light emitting device - Google Patents

Driver circuit for driving light emitting device Download PDF

Info

Publication number
TWI659671B
TWI659671B TW107123631A TW107123631A TWI659671B TW I659671 B TWI659671 B TW I659671B TW 107123631 A TW107123631 A TW 107123631A TW 107123631 A TW107123631 A TW 107123631A TW I659671 B TWI659671 B TW I659671B
Authority
TW
Taiwan
Prior art keywords
emitting element
light
driving circuit
element driving
feedback signal
Prior art date
Application number
TW107123631A
Other languages
Chinese (zh)
Other versions
TW201936009A (en
Inventor
楊奐箴
黃宗偉
鄭惠文
林水木
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to US16/198,860 priority Critical patent/US10356878B1/en
Application granted granted Critical
Publication of TWI659671B publication Critical patent/TWI659671B/en
Publication of TW201936009A publication Critical patent/TW201936009A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C27/00Electric analogue stores, e.g. for storing instantaneous values
    • G11C27/02Sample-and-hold arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Abstract

一種發光元件驅動電路,包含: 電源轉換電路、誤差放大電路、取樣維持電路、負載電流產生電路及前饋電容。於非致能階段時,回饋訊號經由取樣維持電路而與第二參考電壓彼此電連接且與負載節點彼此斷接,藉此,於非致能階段轉致能階段的轉折時點時,前饋電容取樣一取樣電壓。於致能階段時,回饋訊號經由取樣維持電路而與第二參考電壓彼此斷接且與負載節點彼此耦接,藉由前饋電容維持取樣電壓,使得於轉折時點之後的預設電流上升時間內,回饋訊號與第一參考電壓具有足夠大之差值,使得負載電流在預設電流上升時間內上升以達到第一電流位準。A light-emitting element driving circuit includes a power conversion circuit, an error amplifying circuit, a sampling and holding circuit, a load current generating circuit, and a feedforward capacitor. In the non-enabled phase, the feedback signal is electrically connected to the second reference voltage and disconnected from the load node through the sample-and-hold circuit. Thus, at the turning point of the non-enabled phase to the enable phase, the feedforward capacitor Sampling a sampling voltage. During the enabling phase, the feedback signal is disconnected from the second reference voltage and coupled to the load node through the sampling and holding circuit. The sampling voltage is maintained by the feedforward capacitor, so that the preset current rise time after the turning point is maintained. The feedback signal and the first reference voltage have a sufficiently large difference, so that the load current rises within a preset current rise time to reach the first current level.

Description

發光元件驅動電路Light-emitting element driving circuit

本發明有關於一種發光元件驅動電路,特別是指一種藉由取樣維持電路提升發光元件驅動電路的負載暫態反應(load-transient response),藉此使得負載電流可在預設電流上升時間內快速上升,以達到目標的電流位準的發光元件驅動電路。The invention relates to a light-emitting element driving circuit, in particular to a load-transient response of a light-emitting element driving circuit which is improved by a sampling and maintaining circuit, so that the load current can be rapidly increased within a preset current rise time. A light-emitting element drive circuit that rises to reach a target current level.

請參考第1圖與第2圖。第1圖示出先前技術的發光元件驅動電路的示意圖。第2圖示出先前技術的發光元件驅動電路的操作訊號的波形示意圖。Please refer to Figure 1 and Figure 2. FIG. 1 is a schematic diagram showing a light-emitting element driving circuit of the prior art. FIG. 2 is a waveform diagram of an operation signal of a light-emitting element driving circuit of the prior art.

在先前技術之發光元件驅動電路100中,當發光元件驅動電路100處於非致能階段時 (意即,致能訊號EN為低位準時),負載電流iLOAD的位準為零,而此時,先前技術之回饋訊號FB處於一個很高的電壓位準 (例如但不限於可為1.6V),且對應的誤差放大訊號COMP例如為零。在先前技術中,由於此參考電壓VREF被設定為一個很低的電壓位準 (例如但不限於可為0.2V)。因此,如第2圖所示,當先前技術之發光元件驅動電路100於非致能階段轉為致能階段(意即,致能訊號EN由低位準轉為高位準時)的一轉折時點Ts時,回饋訊號FB必須從原本很高的電壓位準 (例如但不限於可為1.6V)降低至一個很低的電壓位準 (例如但不限於可為0.2V),因此,在轉折時點Ts之後的一段時間T1內,誤差放大電路13仍未轉換狀態,亦即,其對應的誤差放大訊號COMP仍然保持為零,因此,電源轉換電路12仍然無法轉換電源VIN以提供負載電流iLOAD,如圖所示,在時間T1內,負載電流iLOAD將無法快速的上升至一目標的電流位準Ip。這是先前技術的一大缺點。在時間T1內,負載電流iLOAD僅能從電容C2汲取電流,然而,這樣的電流位準仍是很低 (如第2圖所示的時間T1內的負載電流Iload的波形圖)。In the light-emitting element driving circuit 100 of the prior art, when the light-emitting element driving circuit 100 is in a non-enable stage (that is, when the enable signal EN is at a low level), the level of the load current iLOAD is zero. At this time, previously, The feedback signal FB of the technology is at a very high voltage level (such as, but not limited to, 1.6V), and the corresponding error amplification signal COMP is, for example, zero. In the prior art, since the reference voltage VREF is set to a very low voltage level (such as but not limited to 0.2V). Therefore, as shown in FIG. 2, at a turning point Ts when the light-emitting element driving circuit 100 of the prior art transitions from the non-enabled phase to the enabled phase (meaning, when the enable signal EN changes from a low level to a high level). The feedback signal FB must be reduced from a very high voltage level (such as but not limited to 1.6V) to a very low voltage level (such as but not limited to 0.2V). Therefore, after the turning point Ts For a certain period of time T1, the error amplifier circuit 13 has not been switched, that is, its corresponding error amplifier signal COMP remains at zero. Therefore, the power conversion circuit 12 still cannot convert the power source VIN to provide the load current iLOAD, as shown in the figure. It is shown that, within time T1, the load current iLOAD cannot quickly rise to a target current level Ip. This is a major disadvantage of the prior art. During time T1, the load current iLOAD can only draw current from capacitor C2, however, such current level is still very low (as shown in the waveform diagram of load current Iload during time T1 shown in FIG. 2).

此外,先前技術中,負載電流iLOAD相關於回饋訊號FB之位準,因此,先前技術的另一大缺點是:當回饋訊號FB下降到比參考電壓VREF(例如但不限於可為0.2V)的位準還低時,由於過度上衝(overshoot)效應,回饋訊號FB可能會低至例如但不限於0.1V,由於負載電流iLOAD相關於回饋訊號FB之位準,因此,過低的回饋訊號FB位準,亦會造成負載電流iLOAD無法快速到達其目標的電流位準Ip,其中目標的電流位準Ip例如為對應於回饋訊號FB為0.2V時之負載電流位準。In addition, in the prior art, the load current iLOAD is related to the level of the feedback signal FB. Therefore, another major disadvantage of the prior art is that when the feedback signal FB drops below the reference voltage VREF (for example but not limited to 0.2V) When the level is still low, the feedback signal FB may be as low as, for example, but not limited to, 0.1V due to the overshoot effect. Since the load current iLOAD is related to the level of the feedback signal FB, the feedback signal FB is too low. The level will also cause the load current iLOAD to not reach its target current level Ip quickly, where the target current level Ip is, for example, the load current level corresponding to the feedback signal FB of 0.2V.

本發明即是針對上述課題而提出一種發光元件驅動電路,藉由取樣維持電路提升發光元件驅動電路的負載暫態反應(load-transient response),藉此使得負載電流在預設電流上升時間內可快速上升以達到目標的電流位準的發光元件驅動電路。The present invention is directed to the above-mentioned problem and proposes a light-emitting element driving circuit. The load-transient response of the light-emitting element driving circuit is improved by the sampling and maintaining circuit, so that the load current can be adjusted within a preset current rise time. Light-emitting element driving circuit rising rapidly to reach a target current level.

就其中一觀點言,本發明提供了一種發光元件驅動電路,用以提供一負載電流至一發光元件,以驅動該發光元件,該發光元件驅動電路包含:一電源轉換電路,用以根據一誤差放大訊號,轉換一輸入電壓而產生一輸出電壓於一輸出端並且提供該負載電流至該發光元件,該發光元件耦接於該輸出端與一負載節點之間;一誤差放大電路,根據一第一參考電壓與一回饋訊號的一差值,產生該誤差放大訊號;一取樣維持電路,耦接於該回饋訊號與該負載節點之間;一負載電流產生電路,與該取樣維持電路及該發光元件共同耦接於該負載節點,該負載電流產生電路用以於一致能階段決定該負載電流之一第一電流位準,且用以於一非致能階段,決定該負載電流之一第二電流位準 ;以及一前饋電容 (feed-forward capacitor),耦接於該輸出端與該回饋訊號之間;其中,當該發光元件驅動電路處於該非致能階段時,該回饋訊號經由該取樣維持電路而與一第二參考電壓彼此電連接,且,該回饋訊號經由該取樣維持電路而與該負載節點彼此斷接,藉此,於該非致能階段轉為該致能階段的一轉折時點時,該前饋電容取樣一取樣電壓;其中,當該發光元件驅動電路處於該致能階段時,該回饋訊號經由該取樣維持電路而與該第二參考電壓彼此斷接,且,該回饋訊號經由該取樣維持電路而與該負載節點彼此耦接,其中 ,藉由該前饋電容維持該取樣電壓,使得於該轉折時點之後的一預設電流上升時間內內,該回饋訊號與該第一參考電壓具有一足夠大之差值,而使得該負載電流在該預設電流上升時間內上升以達到該第一電流位準。In one aspect, the present invention provides a light-emitting element driving circuit for providing a load current to a light-emitting element to drive the light-emitting element. The light-emitting element driving circuit includes a power conversion circuit for detecting an error according to an error. Amplifying a signal, converting an input voltage to generate an output voltage at an output terminal and providing the load current to the light emitting element, the light emitting element is coupled between the output terminal and a load node; an error amplifying circuit, according to a first A difference between a reference voltage and a feedback signal generates the error amplification signal; a sampling and maintaining circuit is coupled between the feedback signal and the load node; a load current generating circuit, with the sampling and maintaining circuit and the light emitting The components are commonly coupled to the load node. The load current generating circuit is used to determine a first current level of the load current during the uniform energy phase, and is used to determine a second of the load current during a non-enabled phase. Current level; and a feed-forward capacitor, coupled between the output and the feedback signal; where, when When the light-emitting element driving circuit is in the non-enabled stage, the feedback signal is electrically connected to a second reference voltage with each other through the sampling and maintaining circuit, and the feedback signal is disconnected from the load node through the sampling and maintaining circuit. Therefore, when the non-enabling phase is turned into a turning point of the enabling phase, the feedforward capacitor samples a sampling voltage; wherein when the light-emitting element driving circuit is in the enabling phase, the feedback signal is maintained through the sampling. The circuit and the second reference voltage are disconnected from each other, and the feedback signal is coupled to the load node with each other through the sampling and maintaining circuit, wherein the sampling voltage is maintained by the feedforward capacitor so that after the turning point Within a preset current rise time, the feedback signal and the first reference voltage have a sufficiently large difference, so that the load current rises within the preset current rise time to reach the first current level.

在一種較佳的實施型態中,該第二參考電壓的位準小於該第一參考電壓的位準。In a preferred embodiment, the level of the second reference voltage is smaller than the level of the first reference voltage.

在一種較佳的實施型態中,該第二參考電壓的位準等於該第一參考電壓的位準。In a preferred embodiment, the level of the second reference voltage is equal to the level of the first reference voltage.

在一種較佳的實施型態中,於該致能階段,該負載電流產生電路根據該負載節點之電壓而決定該第一電流位準。In a preferred embodiment, during the enabling phase, the load current generating circuit determines the first current level according to the voltage of the load node.

在一種較佳的實施型態中,該第一電流位準相關於該第一參考電壓。In a preferred embodiment, the first current level is related to the first reference voltage.

在一種較佳的實施型態中,該負載電流產生電路包括一壓控電流源,用以根據該負載節點之電壓而調節該負載電流。In a preferred embodiment, the load current generating circuit includes a voltage-controlled current source for adjusting the load current according to the voltage of the load node.

在一種較佳的實施型態中,該取樣維持電路包括:一電阻;一第一開關,與該電阻彼此串聯耦接於該負載節點與該回饋訊號之間;以及一第二開關,耦接於該回饋訊號與該第二參考電壓之間;其中當該發光元件驅動電路處於該非致能階段時,該第一開關控制為不導通,且該第二開關控制為導通,藉此,該回饋訊號經由該取樣維持電路而與該第二參考電壓彼此電連接,且該回饋訊號與該負載節點彼此斷接,且當該發光元件驅動電路處於該致能階段時,該第一開關控制為導通,且該第二開關控制為不導通,藉此,該回饋訊號與該第二參考電壓彼此斷接,且該回饋訊號與該負載節點彼此耦接。In a preferred embodiment, the sample-and-hold circuit includes: a resistor; a first switch coupled with the resistor in series between the load node and the feedback signal; and a second switch coupled Between the feedback signal and the second reference voltage; wherein when the light-emitting element driving circuit is in the non-enabled stage, the first switch is controlled to be non-conducting, and the second switch is controlled to be conducting, whereby the feedback The signal is electrically connected to the second reference voltage with each other through the sampling and maintaining circuit, and the feedback signal is disconnected from the load node, and the first switch is controlled to be turned on when the light-emitting element driving circuit is in the enabling stage. And the second switch is controlled to be non-conducting, whereby the feedback signal and the second reference voltage are disconnected from each other, and the feedback signal and the load node are coupled to each other.

在一種較佳的實施型態中,該前饋電容於該發光元件驅動電路處於該致能階段時,提供前饋(feed-forward)功能,藉此該發光元件驅動電路操作於一穩定狀態,且該發光元件驅動電路的頻寬高於一預設之頻率。In a preferred embodiment, the feed-forward capacitor provides a feed-forward function when the light-emitting element driving circuit is in the enabling stage, whereby the light-emitting element driving circuit operates in a stable state. And the bandwidth of the light-emitting element driving circuit is higher than a preset frequency.

在一種較佳的實施型態中,該預設電流上升時間相關於該電阻的電阻值與該前饋電容的電容值的乘積。In a preferred embodiment, the preset current rise time is related to the product of the resistance value of the resistor and the capacitance value of the feedforward capacitor.

在一種較佳的實施型態中,該預設電流上升時間小於1微秒 (micro second,μs)。In a preferred embodiment, the preset current rise time is less than 1 microsecond (μs).

在一種較佳的實施型態中,該電源轉換電路包括一線性穩壓器或一切換式電源供應器。In a preferred embodiment, the power conversion circuit includes a linear regulator or a switching power supply.

在一種較佳的實施型態中,該第二電流位準為0。In a preferred embodiment, the second current level is zero.

在一種較佳的實施型態中,該足夠大之差值小於一預設之電壓差值上限,使得該負載電流在該預設電流上升時間內上升以達到該第一電流位準。In a preferred embodiment, the sufficiently large difference is smaller than a preset upper limit of the voltage difference, so that the load current rises within the preset current rise time to reach the first current level.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。Detailed descriptions will be provided below through specific embodiments to make it easier to understand the purpose, technical content, features and effects of the present invention.

本發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。The drawings in the present invention are schematic, and are mainly intended to represent the coupling relationship between various circuits and the relationship between signal waveforms. As for the circuits, signal waveforms and frequencies, they are not drawn to scale.

請參考第3圖與第4圖。第3圖示出本發明的發光元件驅動電路的一實施例的方塊示意圖。第4圖示出本發明之負載電流產生電路的一實施例。Please refer to Figures 3 and 4. FIG. 3 is a block diagram illustrating an embodiment of a light-emitting element driving circuit according to the present invention. FIG. 4 shows an embodiment of a load current generating circuit according to the present invention.

如第3圖所示,本發明的發光元件驅動電路200,用以提供一負載電流iLOAD至一發光元件LD,以驅動發光元件LD使其發光,其中發光元件LD可為例如但不限於雷射發光二極體,此類高能量的發光元件需要極高的驅動電流,一般多以脈波式電流驅動以避免例如過熱等問題,因此發光元件驅動電路200需要在很短的預設電流上升時間內(例如但不限於1微秒),控制負載電流iLOAD快速上升以達到目標的電流位準(例如但不限於6A)。As shown in FIG. 3, the light-emitting element driving circuit 200 of the present invention is used to provide a load current iLOAD to a light-emitting element LD to drive the light-emitting element LD to emit light. The light-emitting element LD may be, for example, but not limited to, a laser. Light-emitting diodes. Such high-energy light-emitting elements require extremely high drive currents. Generally, pulse-type currents are used to avoid problems such as overheating. Therefore, the light-emitting element driving circuit 200 needs to have a short preset current rise time. Within (for example, but not limited to 1 microsecond), the load current iLOAD is controlled to rise rapidly to reach the target current level (for example but not limited to 6A).

如圖所示,在一實施例中,本發明的發光元件驅動電路200可包含: 一電源轉換電路12、一誤差放大電路13、一取樣維持電路15、一負載電流產生電路14以及一前饋電容 (feed-forward capacitor)C1。As shown in the figure, in one embodiment, the light-emitting element driving circuit 200 of the present invention may include: a power conversion circuit 12, an error amplifier circuit 13, a sample-and-hold circuit 15, a load current generating circuit 14, and a feedforward Capacitance (feed-forward capacitor) C1.

在一實施例中,電源轉換電路12用以根據一誤差放大訊號COMP,轉換輸入電壓VIN而產生一輸出電壓VOUT於輸出端OUT,並且提供負載電流iLOAD至發光元件LD。如第3圖所示,發光元件LD耦接於輸出電壓VOUT與一負載節點NLD之間。在一實施例中,發光元件LD的電流流入端耦接於輸出電壓VOUT,而其電流流出端耦接於負載節點NLD。In one embodiment, the power conversion circuit 12 is used to convert the input voltage VIN to generate an output voltage VOUT at the output terminal OUT according to an error amplifying signal COMP, and provides a load current iLOAD to the light-emitting element LD. As shown in FIG. 3, the light-emitting element LD is coupled between the output voltage VOUT and a load node NLD. In one embodiment, the current inflow terminal of the light emitting element LD is coupled to the output voltage VOUT, and the current outflow terminal thereof is coupled to the load node NLD.

在一實施例中,如第9A圖所示,電源轉換電路例如但不限於可為一線性穩壓器,用以根據誤差放大訊號COMP,以例如線性電源轉換方式,轉換輸入電壓VIN而產生輸出電壓VOUT於輸出端OUT並且提供負載電流iLOAD至發光元件LD。在另一實施例中,如第9B圖所示,電源轉換電路例如但不限於可為一切換式電源供應器,用以根據誤差放大訊號COMP,以例如切換式電源轉換方式,轉換輸入電壓VIN而產生輸出電壓VOUT於輸出端OUT並且提供負載電流iLOAD至發光元件LD。In an embodiment, as shown in FIG. 9A, the power conversion circuit may be, for example, but not limited to, a linear regulator, which is used to amplify the signal COMP according to the error, and convert the input voltage VIN to generate an output in a linear power conversion manner, for example. The voltage VOUT is at the output terminal OUT and provides a load current iLOAD to the light-emitting element LD. In another embodiment, as shown in FIG. 9B, the power conversion circuit may be, for example, but not limited to, a switching power supply for amplifying the signal COMP according to the error, and for example, switching the input voltage VIN by the switching power conversion method An output voltage VOUT is generated at the output terminal OUT and a load current iLOAD is provided to the light-emitting element LD.

請繼續參考第3圖,誤差放大電路13根據一第一參考電壓VREF_b與一回饋訊號FB的一差值,產生誤差放大訊號COMP。在一實施例中,誤差放大訊號COMP = a * (第一參考電壓VREF_b - 回饋訊號FB)。其中,a表示誤差放大電路13的放大率。需說明的是,誤差放大電路13中如圖中所示之正負端係用以說明而非限制,類似地,誤差放大訊號COMP的正負方向亦同,在本發明的教示下,本領域技術人員當可變化其組態而以不同的正負訊號方向實施之。Please continue to refer to FIG. 3. The error amplifier circuit 13 generates an error amplifier signal COMP according to a difference between a first reference voltage VREF_b and a feedback signal FB. In one embodiment, the error amplification signal COMP = a * (the first reference voltage VREF_b-the feedback signal FB). Here, a represents the amplification factor of the error amplifier circuit 13. It should be noted that the positive and negative terminals of the error amplifier circuit 13 as shown in the figure are used for illustration rather than limitation. Similarly, the positive and negative directions of the error amplifier signal COMP are the same. Under the teachings of the present invention, those skilled in the art When its configuration can be changed and implemented in different positive and negative signal directions.

取樣維持電路15耦接於回饋訊號FB與負載節點NLD之間 (關於本發明如何藉由取樣維持電路15提升發光元件驅動電路200及300的負載暫態反應(load-transient response),藉此使得負載電流iLOAD在預設電流上升時間內快速上升以達到目標的電流位準的特徵及細節,容後詳述)。The sample-and-hold circuit 15 is coupled between the feedback signal FB and the load node NLD (about how the present invention uses the sample-and-hold circuit 15 to improve the load-transient response of the light-emitting element drive circuits 200 and 300, thereby enabling The characteristics and details of the load current iLOAD rise rapidly within a preset current rise time to reach the target current level, which will be described later).

前饋電容 C1耦接於輸出端OUT與回饋訊號FB之間。前饋電容 C1具有一跨壓VC1,如第3圖所示。The feedforward capacitor C1 is coupled between the output terminal OUT and the feedback signal FB. The feedforward capacitor C1 has a voltage across VC1, as shown in Figure 3.

負載電流產生電路14與取樣維持電路15及該發光元件LD共同耦接於負載節點NLD。負載電流產生電路14用以於一致能階段(參閱第3圖之致能訊號EN及參閱第6圖之致能訊號EN的波形圖)決定負載電流iLOAD之一第一電流位準,且用以於一非致能階段(參閱第3圖之致能訊號EN及參閱第6圖之致能訊號EN的波形圖),決定負載電流iLOAD之一第二電流位準。在一實施例中,第一電流位準Ip例如但不限於如前述之6A,第二電流位準例如但不限於可如第6圖所示的電流位準0。The load current generating circuit 14 is coupled to the sample and hold circuit 15 and the light emitting element LD to a load node NLD. The load current generating circuit 14 is used to determine a first current level of the load current iLOAD at a uniform energy stage (refer to the enabling signal EN in FIG. 3 and the waveform diagram of the enabling signal EN in FIG. 6), and is used for In a non-enable phase (refer to the enable signal EN in FIG. 3 and the waveform diagram of the enable signal EN in FIG. 6), a second current level of the load current iLOAD is determined. In an embodiment, the first current level Ip is, for example, but not limited to, the aforementioned 6A, and the second current level, such as, but not limited to, the current level 0, as shown in FIG. 6.

在一實施例中,負載電流產生電路14根據負載節點NLD之電壓而決定第一電流位準Ip。在一實施例中,第一電流位準Ip相關於第一參考電壓VREF_b。舉例而言,如第3與4圖所示,當VREF_b設定為0.2V,且於致能階段的穩態時,回饋訊號FB之位準(亦即負載節點NLD之電壓位準) 亦大致上等於0.2V,在一實施例中,回饋訊號FB之位準為0.2V時,第一電流位準Ip可對應為6A。In one embodiment, the load current generating circuit 14 determines the first current level Ip according to the voltage of the load node NLD. In one embodiment, the first current level Ip is related to the first reference voltage VREF_b. For example, as shown in Figures 3 and 4, when VREF_b is set to 0.2V and in the steady state at the enable stage, the level of the feedback signal FB (that is, the voltage level of the load node NLD) is also roughly It is equal to 0.2V. In an embodiment, when the level of the feedback signal FB is 0.2V, the first current level Ip may correspond to 6A.

請參考第4圖。在一實施例中,負載電流產生電路14例如但不限於可包括一壓控電流源141。如第4圖所示,壓控電流源141受控於致能訊號EN並根據負載節點NLD之電壓而調節負載電流iLOAD。在一實施例中,負載電流iLOAD例如但不限於正比於負載節點NLD之電壓位準(亦即於致能階段時回饋訊號FB之位準)。Please refer to Figure 4. In an embodiment, the load current generating circuit 14 may include, for example, but not limited to, a voltage-controlled current source 141. As shown in FIG. 4, the voltage-controlled current source 141 is controlled by the enable signal EN and adjusts the load current iLOAD according to the voltage of the load node NLD. In an embodiment, the load current iLOAD is, for example, but not limited to, the voltage level of the load node NLD (that is, the level of the feedback signal FB during the enabling phase).

請參考第5A圖、第5B圖及第6圖。第5A圖示出本發明的發光元件驅動電路處於非致能階段時的一具體實施例。第5B圖示出本發明的發光元件驅動電路處於致能階段時的一具體實施例。第6圖示出,對應於第5A-5B圖,本發明的發光元件驅動電路的操作訊號的波形示意圖。Please refer to Figure 5A, Figure 5B and Figure 6. FIG. 5A illustrates a specific embodiment when the light-emitting element driving circuit of the present invention is in a non-enabled stage. FIG. 5B illustrates a specific embodiment when the light-emitting element driving circuit of the present invention is in an enabling stage. FIG. 6 shows a waveform diagram of an operation signal of the light-emitting element driving circuit of the present invention corresponding to FIGS. 5A-5B.

如第5A及5B圖所示,在一實施例中,取樣維持電路15例如但不限於可包括:電阻R1、第一開關S1及第二開關S2。第一開關S1與電阻R1彼此串聯耦接於負載節點NLD與回饋訊號FB之間。第二開關S2耦接於回饋訊號FB與第二參考電壓VREF_a之間。需說明的是,第一開關S1與電阻R1彼此串聯的順序並無限制,在一實施例中,第一開關S1與電阻R1彼此串聯的順序可如第5A及5B圖所示。As shown in FIGS. 5A and 5B, in an embodiment, the sample-and-hold circuit 15 may include, for example, but not limited to, a resistor R1, a first switch S1, and a second switch S2. The first switch S1 and the resistor R1 are coupled in series with each other between the load node NLD and the feedback signal FB. The second switch S2 is coupled between the feedback signal FB and the second reference voltage VREF_a. It should be noted that the sequence of the first switch S1 and the resistor R1 in series with each other is not limited. In an embodiment, the sequence of the first switch S1 and the resistor R1 in series with each other may be as shown in FIGS. 5A and 5B.

以下說明本發明如何藉由取樣維持電路15提升發光元件驅動電路200的負載暫態反應(load-transient response),藉此使得負載電流iLOAD在預設電流上升時間內快速上升以達到目標的電流位準的特徵及細節。The following describes how the present invention improves the load-transient response of the light-emitting element driving circuit 200 through the sampling and maintaining circuit 15 so that the load current iLOAD rises rapidly within a preset current rise time to reach the target current level. Accurate features and details.

如第5A圖所示,在一實施例中,當發光元件驅動電路200處於非致能階段時,第一開關S1受控於致能訊號EN且被致能訊號EN控制為不導通,且第二開關S2受控於例如但不限於一反相致能訊號ENb且被反相致能訊號ENb控制為導通,藉此,回饋訊號FB經由取樣維持電路15而與第二參考電壓VREF_a 彼此電連接,且回饋訊號FB經由取樣維持電路而與負載節點NLD彼此斷接。藉此,發光元件驅動電路200於非致能階段轉為致能階段的一轉折時點Ts (參閱第6圖之致能訊號EN的波形圖)時,前饋電容C1取樣一取樣電壓Vsmpl (參閱第6圖之輸出電壓VOUT與回饋訊號FB的波形圖)。值得注意的是,這裡所述的取樣電壓「Vsmpl」係指前饋電容 C1的跨壓VC1於非致能階段的情況下的電壓位準。As shown in FIG. 5A, in an embodiment, when the light-emitting element driving circuit 200 is in a non-enabled state, the first switch S1 is controlled by the enabling signal EN and controlled to be non-conductive by the enabling signal EN, and the first The two switches S2 are controlled by, for example, but not limited to, an inversion enabling signal ENb and controlled to be turned on by the inversion enabling signal ENb, whereby the feedback signal FB is electrically connected to the second reference voltage VREF_a through the sampling and maintaining circuit 15. , And the feedback signal FB is disconnected from the load node NLD through the sample and hold circuit. As a result, when the light-emitting element driving circuit 200 transitions from the non-enabled stage to the enabled stage Ts (see the waveform diagram of the enabling signal EN in FIG. 6), the feedforward capacitor C1 samples a sampling voltage Vsmpl (see Waveform diagram of output voltage VOUT and feedback signal FB in Fig. 6). It is worth noting that the sampling voltage “Vsmpl” mentioned here refers to the voltage level of the cross-voltage VC1 of the feedforward capacitor C1 in the non-enabled stage.

如第5B圖所示,在一實施例中,當發光元件驅動電路200處於致能階段時,第一開關S1受控於致能訊號EN且被致能訊號EN控制為導通,且第二開關S2受控於一反相致能訊號ENb且被反相致能訊號ENb控制為不導通,藉此,回饋訊號FB經由取樣維持電路15而與第二參考電壓VREF_a 彼此斷接,且,回饋訊號FB經由取樣維持電路15而與負載節點NLD彼此耦接。As shown in FIG. 5B, in an embodiment, when the light-emitting element driving circuit 200 is in an enabling stage, the first switch S1 is controlled by the enabling signal EN and controlled to be turned on by the enabling signal EN, and the second switch S2 is controlled by an inversion enabling signal ENb and is controlled to be non-conducting by the inversion enabling signal ENb, whereby the feedback signal FB is disconnected from the second reference voltage VREF_a through the sample and hold circuit 15 and the feedback signal FB is coupled to the load node NLD via the sample and hold circuit 15.

藉此,當發光元件驅動電路200處於致能階段時,藉由前饋電容C1維持取樣電壓Vsmpl(亦即第6圖中Vhold約等於Vsmpl),使得於轉折時點Ts之後的預設電流上升時間Tr內(參閱第6圖之回饋訊號FB的波形圖),回饋訊號FB與第一參考電壓VREF_b具有一足夠大之差值,而使得負載電流iLOAD在預設電流上升時間Tr內上升以達到第一電流位準Ip。Therefore, when the light-emitting element driving circuit 200 is in the enable stage, the sampling voltage Vsmpl is maintained by the feedforward capacitor C1 (that is, Vhold in FIG. 6 is approximately equal to Vsmpl), so that the preset current rise time after the turning point Ts Within Tr (refer to the waveform diagram of the feedback signal FB in FIG. 6), the feedback signal FB and the first reference voltage VREF_b have a sufficiently large difference, so that the load current iLOAD rises within the preset current rise time Tr to reach the first A current level Ip.

在一實施例中,前饋電容C1於發光元件驅動電路200處於致能階段時,提供前饋(feed-forward)功能,用以作為驅動電路200之回路補償與頻寬調整,使得發光元件驅動電路200可操作於一穩定狀態,且發光元件驅動電路200的頻寬可高於一預設之頻率。值得注意的是,本實施例中,本發明的前饋電容C1同時具有前述之前饋功能以及取樣與維持之功能,同時兼顧回路穩定度、頻寬以及電流上升速度,同時並未提高成本。In one embodiment, the feedforward capacitor C1 provides a feed-forward function when the light-emitting element driving circuit 200 is in the enable stage, and is used as loop compensation and bandwidth adjustment of the driving circuit 200 to drive the light-emitting element. The circuit 200 can be operated in a stable state, and the frequency bandwidth of the light-emitting element driving circuit 200 can be higher than a preset frequency. It is worth noting that in this embodiment, the feedforward capacitor C1 of the present invention has both the aforementioned feedforward function and the function of sampling and maintaining, while taking into account the loop stability, frequency bandwidth, and current rising speed without increasing cost.

在一實施例中,電阻R1的電阻值與前饋電容C1的電容值的乘積決定發光元件驅動電路200的負載暫態反應(load-transient response)的一時間常數,其中,預設電流上升時間Tr相關於時間常數。換言之,預設電流上升時間Tr相關於電阻R1的電阻值與前饋電容C1的電容值的乘積。In an embodiment, the product of the resistance value of the resistor R1 and the capacitance value of the feedforward capacitor C1 determines a time constant of a load-transient response of the light-emitting element driving circuit 200, wherein the preset current rise time is Tr is related to the time constant. In other words, the preset current rise time Tr is related to the product of the resistance value of the resistor R1 and the capacitance value of the feedforward capacitor C1.

在一實施例中,預設電流上升時間Tr例如但不限於可小於1微秒 (micro second,μs)。值得注意的是,在本發明中,由於預設電流上升時間Tr的值很小,因此,在相同的致能訊號操作下,相較於前案,本發明的負載電流iLOAD於致能階段時,其脈波寬度Tw比前案的負載電流的脈波寬度顯著提高(如第6圖與第8圖所示),換言之,本發明之發光元件驅動電路可有效提高發光元件LD的亮度或其他參數表現。In one embodiment, the preset current rise time Tr may be, for example, but not limited to, less than 1 microsecond (μs). It is worth noting that, in the present invention, since the value of the preset current rise time Tr is small, under the same enable signal operation, compared with the previous case, the load current iLOAD of the present invention is at the enable stage The pulse width Tw is significantly higher than the pulse width of the load current in the previous case (as shown in Figures 6 and 8). In other words, the light-emitting element driving circuit of the present invention can effectively improve the brightness of the light-emitting element LD or other Parameter performance.

此外,在本實施例之發光元件驅動電路200中,當發光元件驅動電路200處於致能階段時 (意即,致能訊號EN為高位準時),由於本實施例包括有取樣維持電路15,以如上所述的控制細節,使得回饋訊號FB經由取樣維持電路15而與第二參考電壓VREF_a 彼此斷接。如此一來,在預設電流上升時間Tr內,回饋訊號FB的位準將從一個稍微低於第二參考電壓VREF_a的電壓位準,借由回授控制的趨勢,逐漸上升至第一參考電壓VREF_b。意即,在一實施例中,當發光元件驅動電路200處於致能階段之穩態時,回饋訊號FB的位準大致上等於第一參考電壓VREF_b。In addition, in the light-emitting element driving circuit 200 of this embodiment, when the light-emitting element driving circuit 200 is in the enable stage (that is, when the enable signal EN is at a high level), since the present embodiment includes a sample-and-hold circuit 15, The control details described above cause the feedback signal FB to be disconnected from the second reference voltage VREF_a via the sample and hold circuit 15. In this way, within the preset current rise time Tr, the level of the feedback signal FB will gradually rise to a first reference voltage VREF_b from a voltage level slightly lower than the second reference voltage VREF_a through the trend of feedback control. . That is to say, in one embodiment, when the light-emitting element driving circuit 200 is in a steady state in the enabling stage, the level of the feedback signal FB is substantially equal to the first reference voltage VREF_b.

需說明的是,在第6圖的實施例中,第二參考電壓VREF_a的位準小於第一參考電壓VREF_b的位準,然而根據本發明的精神並不限於此,第二參考電壓VREF_a的位準亦可等於,或稍大於第一參考電壓VREF_b的位準,仍可具有本發明之功效,其中第二參考電壓VREF_a的位準等於第一參考電壓VREF_b的位準的實施例容後詳述。It should be noted that, in the embodiment of FIG. 6, the level of the second reference voltage VREF_a is smaller than the level of the first reference voltage VREF_b. However, the spirit of the present invention is not limited to this. The level of the second reference voltage VREF_a may be equal to, or slightly greater than, the level of the first reference voltage VREF_b. The embodiment of the second reference voltage VREF_a is equal to the level of the first reference voltage VREF_b. .

在本實施例中,當發光元件驅動電路200處於致能階段時 (意即,致能訊號EN為高位準時),由於負載電流iLOAD相關於回饋訊號FB (於致能階段之穩態時,其位準大致上等於第一參考電壓VREF_b),且由於回饋訊號FB的位準從第二參考電壓VREF_a上升至第一參考電壓VREF_b所需的時間很短,因此,相較於先前技術,本實施例的負載電流產生電路14於致能階段時,可根據負載節點NLD之電壓(亦即回饋訊號FB的位準)快速決定負載電流iLOAD之第一電流位準Ip,藉此,負載電流iLOAD在預設電流上升時間內Tr能夠快速上升以達到目標的電流位準Ip。就一觀點而言,可適當選擇第二參考電壓VREF_a與第一參考電壓VREF_b之關係(即大小與差值),使當該發光元件驅動電路轉為該致能階段後,藉由該前饋電容維持該取樣電壓,於該轉折時點之後的一預設電流上升時間內,前述之該回饋訊號與該第一參考電壓之間該足夠大之差值小於一預設之電壓差值上限,使得負載電流產生電路在一預設電流上升時間內決定該第一電流位準。In this embodiment, when the light-emitting element driving circuit 200 is in the enabling stage (that is, when the enabling signal EN is at a high level), since the load current iLOAD is related to the feedback signal FB (when the steady state in the enabling stage, it is The level is substantially equal to the first reference voltage VREF_b), and because the time required for the level of the feedback signal FB to rise from the second reference voltage VREF_a to the first reference voltage VREF_b is very short, compared with the prior art, this implementation For example, the load current generating circuit 14 can quickly determine the first current level Ip of the load current iLOAD according to the voltage of the load node NLD (that is, the level of the feedback signal FB). The preset current rise time Tr can rise rapidly to reach the target current level Ip. From a viewpoint, the relationship between the second reference voltage VREF_a and the first reference voltage VREF_b (that is, the magnitude and difference) can be appropriately selected, so that when the light-emitting element driving circuit is switched to the enabling stage, the feedforward The capacitor maintains the sampling voltage, and within a preset current rise time after the turning point, the sufficiently large difference between the aforementioned feedback signal and the first reference voltage is smaller than a preset upper limit of the voltage difference, so that The load current generating circuit determines the first current level within a preset current rise time.

請參考第7A圖、第7B圖及第8圖。第7A圖示出本發明的發光元件驅動電路處於非致能階段時的另一具體實施例。第7B圖示出本發明的發光元件驅動電路處於致能階段時的另一具體實施例。第8圖示出,對應於第7A-7B圖,本發明的發光元件驅動電路的操作訊號的波形示意圖。Please refer to Figure 7A, Figure 7B and Figure 8. FIG. 7A illustrates another specific embodiment when the light-emitting element driving circuit of the present invention is in a non-enabled stage. FIG. 7B illustrates another specific embodiment when the light-emitting element driving circuit of the present invention is in an enabling stage. FIG. 8 shows waveform diagrams of operation signals of the light-emitting element driving circuit of the present invention corresponding to FIGS. 7A-7B.

第7A-7B圖所示的發光元件驅動電路300大致類似於第5A-5B圖所示的發光元件驅動電路200,其差異在於: 在第7A-7B圖所示的發光元件驅動電路300的實施例中,第二參考電壓VREF_a的位準等於第一參考電壓VREF_b的位準。在第7A-7B圖所示的發光元件驅動電路300的實施例中,例如但不限於可將第二參考電壓VREF_a直接耦接於第一參考電壓VREF_b。The light-emitting element driving circuit 300 shown in Figs. 7A-7B is substantially similar to the light-emitting element driving circuit 200 shown in Figs. 5A-5B. The difference lies in the implementation of the light-emitting element driving circuit 300 shown in Figs. 7A-7B. In an example, the level of the second reference voltage VREF_a is equal to the level of the first reference voltage VREF_b. In the embodiment of the light-emitting element driving circuit 300 shown in FIGS. 7A-7B, for example, but not limited to, the second reference voltage VREF_a may be directly coupled to the first reference voltage VREF_b.

如此一來,如第7A圖所示,在一實施例中,當發光元件驅動電路300處於非致能階段時,第一開關S1受控於致能訊號EN且被致能訊號EN控制為不導通,且第二開關S2受控於一反相致能訊號ENb且被反相致能訊號ENb控制為導通,藉此,回饋訊號FB經由取樣維持電路15而與第一參考電壓VREF_b 彼此電連接,且回饋訊號FB經由取樣維持電路而與負載節點NLD彼此斷接。藉此,發光元件驅動電路300於非致能階段轉為致能階段的一轉折時點Ts (參閱第8圖之致能訊號EN的波形圖)時,前饋電容C1取樣一取樣電壓Vsmpl (參閱第8圖之輸出電壓VOUT與回饋訊號FB的波形圖)。值得注意的是,這裡所述的取樣電壓Vsmpl,其中的「Vsmpl」係指前饋電容 C1的跨壓VC1於非致能階段的情況下的電壓位準。In this way, as shown in FIG. 7A, in an embodiment, when the light-emitting element driving circuit 300 is in a non-enabled state, the first switch S1 is controlled by the enable signal EN and controlled by the enable signal EN to be inactive. Is turned on, and the second switch S2 is controlled by an inversion enabling signal ENb and controlled to be turned on by the inversion enabling signal ENb, whereby the feedback signal FB is electrically connected to the first reference voltage VREF_b through the sampling and maintaining circuit 15 , And the feedback signal FB is disconnected from the load node NLD through the sample and hold circuit. As a result, when the light-emitting element driving circuit 300 transitions from the non-enabled phase to the enabled phase Ts (see the waveform diagram of the enabling signal EN in FIG. 8), the feedforward capacitor C1 samples a sampling voltage Vsmpl (see Waveform diagram of output voltage VOUT and feedback signal FB in Fig. 8). It is worth noting that the “Vsmpl” of the sampling voltage Vsmpl mentioned here refers to the voltage level of the cross-voltage VC1 of the feedforward capacitor C1 in the non-enabled stage.

如第7B圖所示,在一實施例中,當發光元件驅動電路200處於致能階段時,第一開關S1受控於致能訊號EN且被致能訊號EN控制為導通,且第二開關S2受控於一反相致能訊號ENb且被反相致能訊號ENb控制為不導通,藉此,回饋訊號FB經由取樣維持電路15而與第一參考電壓VREF_b彼此斷接,且,回饋訊號FB經由取樣維持電路15而與負載節點NLD彼此耦接。As shown in FIG. 7B, in an embodiment, when the light-emitting element driving circuit 200 is in the enabling stage, the first switch S1 is controlled by the enabling signal EN and controlled to be turned on by the enabling signal EN, and the second switch S2 is controlled by an inversion enabling signal ENb and is controlled to be non-conducting by the inversion enabling signal ENb, whereby the feedback signal FB is disconnected from the first reference voltage VREF_b to each other through the sampling and holding circuit 15 and the feedback signal FB is coupled to the load node NLD via the sample and hold circuit 15.

藉此,當發光元件驅動電路300處於致能階段時,藉由前饋電容C1維持取樣電壓Vsmpl(亦即第8圖中Vhold約等於Vsmpl),使得於轉折時點Ts之後的預設電流上升時間Tr內 (參閱第8圖之回饋訊號FB的波形圖),回饋訊號FB與第一參考電壓VREF_b具有一足夠大之差值,而使得負載電流iLOAD在一預設電流上升時間Tr內上升以達到第一電流位準Ip。Therefore, when the light-emitting element driving circuit 300 is in the enable stage, the sampling voltage Vsmpl is maintained by the feedforward capacitor C1 (that is, Vhold in FIG. 8 is approximately equal to Vsmpl), so that the preset current rise time after the turning point Ts Within Tr (refer to the waveform diagram of the feedback signal FB in Fig. 8), the feedback signal FB and the first reference voltage VREF_b have a sufficiently large difference, so that the load current iLOAD rises within a preset current rise time Tr to reach First current level Ip.

相較於先前技術,本實施例之發光元件驅動電路300的負載電流iLOAD在預設電流上升時間內Tr能夠快速上升以達到目標的電流位準Ip。以下利用第6與8圖說明本發明與先前技術的差異: 亦即, 本發明能夠提升發光元件驅動電路200的負載暫態反應(load-transient response),藉此使得負載電流iLOAD在預設電流上升時間內快速上升以達到目標的電流位準。Compared with the prior art, the load current iLOAD of the light-emitting element driving circuit 300 in this embodiment can rise rapidly within a preset current rise time Tr to reach the target current level Ip. The following uses Figures 6 and 8 to illustrate the differences between the present invention and the prior art: That is, the present invention can improve the load-transient response of the light-emitting element driving circuit 200, so that the load current iLOAD is at a preset current. Rise quickly during the rise time to reach the target current level.

在本實施例之發光元件驅動電路200與300中,當發光元件驅動電路200處於非致能階段時 (意即,致能訊號EN為低位準時),由於本發明包括有取樣維持電路15,如上所述的控制細節,使得回饋訊號FB經由取樣維持電路15而與第二參考電壓VREF_a 彼此電連接,其中第二參考電壓VREF_a的位準低於(第6圖)或等於(第8圖)第一參考電壓VREF_b的位準。如此一來,相較於先前技術之回饋訊號FB處於一個很高的電壓位準 (例如但不限於可為1.6V),本發明的回饋訊號FB於非致能階段時,乃是被耦接至第二參考電壓VREF_a或第一參考電壓VREF_b,亦即稍低於或等於致能階段時所欲達到的目標值(第一參考電壓VREF_b)。這樣的優點乃是: 如第6圖或第8圖所示,當本實施例之發光元件驅動電路200或300於非致能階段轉為致能階段(意即,致能訊號EN為高位準時)的一轉折時點Ts時,回饋訊號FB就不必須從原本很高的電壓位準降低至一個很低的電壓位準,如此可以有效縮短回饋訊號FB的反應時間,進而提高電流上升的速度。In the light-emitting element driving circuits 200 and 300 in this embodiment, when the light-emitting element driving circuit 200 is in a non-enabled stage (meaning that the enabling signal EN is at a low level), the present invention includes a sampling and holding circuit 15 as above. The control details make the feedback signal FB and the second reference voltage VREF_a electrically connected to each other via the sample and hold circuit 15, wherein the level of the second reference voltage VREF_a is lower than (FIG. 6) or equal to (FIG. 8) the A level of a reference voltage VREF_b. In this way, compared with the feedback signal FB of the prior art at a high voltage level (for example, but not limited to 1.6V), the feedback signal FB of the present invention is coupled when it is not enabled. To the second reference voltage VREF_a or the first reference voltage VREF_b, that is, slightly lower than or equal to the target value (the first reference voltage VREF_b) to be achieved in the enabling phase. This advantage is that, as shown in FIG. 6 or FIG. 8, when the light-emitting element driving circuit 200 or 300 of this embodiment is switched to the enable stage at a non-enable stage (that is, the enable signal EN is high on time) At a turning point Ts, the feedback signal FB does not have to be reduced from a very high voltage level to a very low voltage level. This can effectively shorten the response time of the feedback signal FB and thereby increase the current rising speed.

此外,由於輸出電壓VOUT因負載電流iLOAD而降低,藉由前饋電容C1的取樣與維持的功能(亦即如第6圖或第8圖中之Vsmpl與Vhold)),在轉折時點Ts之後的一段時間內(例如第6圖或第8圖中預設電流上升時間Tr的前段),回饋訊號FB的位準從第二參考電壓VREF_a與輸出電壓VOUT大致上同步地降低(由於第6圖或第8圖中預設電流上升時間Tr的前段內前饋電容C1跨壓VC1仍大致上維持為轉折時點上所取樣而得的電壓位準Vhold,約等於Vsmpl)至一個稍微低於第二參考電壓VREF_a的電壓位準(低於第一參考電壓VREF_b),此時對應的誤差放大訊號COMP便會快速響應或轉態(例如第6圖中從原本的高位準快速地降低至一低位準),藉此,電源轉換電路12將可快速地提供負載電流iLOAD,因此,在預設電流上升時間Tr內,負載電流iLOAD可快速地上升至目標的電流位準Ip。In addition, because the output voltage VOUT decreases due to the load current iLOAD, the function of sampling and maintaining the feedforward capacitor C1 (that is, Vsmpl and Vhold in Figure 6 or Figure 8), after the turning point Ts For a period of time (e.g., the previous stage of the preset current rise time Tr in FIG. 6 or FIG. 8), the level of the feedback signal FB decreases substantially synchronously from the second reference voltage VREF_a and the output voltage VOUT (due to The feed-forward capacitor C1 across the voltage VC1 in the previous section of the preset current rise time Tr in FIG. 8 is still substantially maintained at the voltage level Vhold sampled at the turning point, which is approximately equal to Vsmpl) to a value slightly lower than the second reference. The voltage level of the voltage VREF_a (below the first reference voltage VREF_b). At this time, the corresponding error amplification signal COMP will respond quickly or change state (for example, in Figure 6, the original high level is quickly reduced to a low level). Therefore, the power conversion circuit 12 can quickly provide the load current iLOAD, and therefore, within the preset current rise time Tr, the load current iLOAD can quickly rise to the target current level Ip.

請參考第10A~10B圖,其示出本發明提升發光元件驅動電路的負載暫態反應(load-transient response)的量測波形圖。如第10A圖所示,本實施例之發光元件驅動電路的負載電流iLOAD在預設電流上升時間內Tr能夠快速上升以達到目標的電流位準。第10B圖為第10A圖的放大示意圖,如第10B圖所示,更可清楚看到本實施例之發光元件驅動電路的負載電流iLOAD在預設電流上升時間內Tr能夠快速上升以達到目標的電流位準。Please refer to FIGS. 10A to 10B, which show measurement waveform diagrams of the load-transient response of the light-emitting element driving circuit of the present invention. As shown in FIG. 10A, the load current iLOAD of the light-emitting element driving circuit in this embodiment can quickly rise to reach the target current level within a preset current rise time Tr. FIG. 10B is an enlarged schematic diagram of FIG. 10A. As shown in FIG. 10B, it can be clearly seen that the load current iLOAD of the light-emitting element driving circuit of this embodiment can quickly rise to reach the target within a preset current rise time. Current level.

以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。在本發明之相同精神下,熟悉本技術者可以思及各種等效變化。例如,所示直接連接的電路元件間,可插置不影響電路主要功能的電路元件,如開關或電阻等。又例如,前述第一開關S1受控於致能訊號EN,且第二開關S2受控於反相致能訊號ENb,此僅為舉例而非限制,當第一開關S1與第二開關S2為不同型態之電晶體時,亦可皆受控於致能訊號EN。凡此種種,皆可根據本發明的教示類推而得。此外,所說明之各個實施例,並不限於單獨應用,亦可以組合應用,例如但不限於將兩實施例併用,或是以其中一個實施例的局部電路代換另一實施例的對應電路。因此,本發明的範圍應涵蓋上述及其他所有等效變化。此外,本發明的任一實施型態不必須達成所有的目的或優點,因此,請求專利範圍任一項也不應以此為限。The present invention has been described above with reference to the preferred embodiments, but the above is only for making those skilled in the art easily understand the content of the present invention, and is not intended to limit the scope of rights of the present invention. In the same spirit of the invention, those skilled in the art can think of various equivalent changes. For example, between the directly connected circuit elements, circuit elements such as switches or resistors that do not affect the main function of the circuit can be inserted. For another example, the aforementioned first switch S1 is controlled by the enabling signal EN, and the second switch S2 is controlled by the inverting enabling signal ENb. This is merely an example and not a limitation. When the first switch S1 and the second switch S2 are Different types of transistors can also be controlled by the enable signal EN. All these can be deduced by analogy according to the teachings of the present invention. In addition, each of the embodiments described is not limited to separate applications, and can also be applied in combination, such as, but not limited to, combining the two embodiments, or substituting a local circuit of one embodiment for a corresponding circuit of another embodiment. Therefore, the scope of the invention should cover the above and all other equivalent variations. In addition, any embodiment of the present invention does not have to achieve all the objectives or advantages. Therefore, any one of the scope of the claimed patent should not be limited to this.

100‧‧‧習知的發光元件驅動電路100‧‧‧ conventional light-emitting element driving circuit

VREF‧‧‧習知的參考電壓 VREF‧‧‧Reference voltage

T1‧‧‧習知的時間 T1‧‧‧ Learned time

200、300‧‧‧發光元件驅動電路 200, 300‧‧‧ light-emitting element driving circuit

12‧‧‧電源轉換電路 12‧‧‧Power Conversion Circuit

13‧‧‧誤差放大電路 13‧‧‧Error amplification circuit

14‧‧‧負載電流產生電路 14‧‧‧Load current generating circuit

141‧‧‧壓控電流源 141‧‧‧Voltage-controlled current source

15‧‧‧取樣維持電路 15‧‧‧Sampling and holding circuit

C1‧‧‧前饋電容 C1‧‧‧Feed-forward capacitor

COMP‧‧‧誤差放大訊號 COMP‧‧‧Error amplification signal

EN‧‧‧致能訊號 EN‧‧‧Enable signal

ENb‧‧‧反相致能訊號 ENb‧‧‧ Reverse Phase Enable Signal

FB‧‧‧回饋訊號 FB‧‧‧ feedback signal

iLOAD‧‧‧負載電流 iLOAD‧‧‧Load current

Ip‧‧‧第一電流位準 Ip‧‧‧first current level

LD‧‧‧發光元件 LD‧‧‧Light-emitting element

NLD‧‧‧負載節點 NLD‧‧‧Load Node

OUT‧‧‧輸出端 OUT‧‧‧output

R1‧‧‧電阻 R1‧‧‧ resistance

S1‧‧‧第一開關 S1‧‧‧First switch

S2‧‧‧第二開關 S2‧‧‧Second switch

Tf‧‧‧預設電流下降時間 Tf‧‧‧Preset current fall time

Tr‧‧‧預設電流上升時間 Tr‧‧‧Preset current rise time

Ts‧‧‧轉折時點 Ts‧‧‧ turning point

Tw‧‧‧脈波寬度 Tw‧‧‧pulse width

ΔV‧‧‧電壓差 ΔV‧‧‧Voltage difference

VC1‧‧‧前饋電容的跨壓 VC1‧‧‧ Crossover voltage of feedforward capacitor

VOUT‧‧‧輸出電壓 VOUT‧‧‧Output voltage

Vsmpl‧‧‧取樣電壓 Vsmpl‧‧‧Sampling voltage

Vhold‧‧‧電壓位準 Vhold‧‧‧Voltage Level

VREF_a‧‧‧第二參考電壓 VREF_a‧‧‧second reference voltage

VREF_b‧‧‧第一參考電壓 VREF_b‧‧‧first reference voltage

第1圖示出先前技術的發光元件驅動電路的示意圖。 第2圖示出先前技術的發光元件驅動電路的操作訊號波形示意圖。 第3圖示出本發明的發光元件驅動電路的一實施例的方塊示意圖。 第4圖示出本發明之負載電流產生電路的一實施例示意圖。 第5A圖示出本發明的發光元件驅動電路處於非致能階段時的一具體實施例示意圖。 第5B圖示出本發明的發光元件驅動電路處於致能階段時的一具體實施例示意圖。 第6圖示出,對應於第5A-5B圖,本發明的發光元件驅動電路的操作訊號波形示意圖。 第7A圖示出本發明的發光元件驅動電路處於非致能階段時的另一具體實施例示意圖。 第7B圖示出本發明的發光元件驅動電路處於致能階段時的另一具體實施例示意圖。 第8圖示出,對應於第7A-7B圖,本發明的發光元件驅動電路的操作訊號波形示意圖。 第9A圖示出本發明之電源轉換電路的一實施例示意圖。 第9B圖示出本發明之電源轉換電路的另一實施例示意圖。 第10A~10B圖示出本發明提升發光元件驅動電路的負載暫態反應(load-transient response)量測波形圖。FIG. 1 is a schematic diagram showing a light-emitting element driving circuit of the prior art. FIG. 2 is a schematic diagram showing an operation signal waveform of a light-emitting element driving circuit of the prior art. FIG. 3 is a block diagram illustrating an embodiment of a light-emitting element driving circuit according to the present invention. FIG. 4 is a schematic diagram of an embodiment of a load current generating circuit according to the present invention. FIG. 5A is a schematic diagram of a specific embodiment when the light-emitting element driving circuit of the present invention is in a non-enabled stage. FIG. 5B is a schematic diagram of a specific embodiment when the light-emitting element driving circuit of the present invention is in an enabling stage. FIG. 6 is a schematic diagram of operation signal waveforms of the light-emitting element driving circuit of the present invention corresponding to FIGS. 5A-5B. FIG. 7A shows a schematic diagram of another specific embodiment when the light-emitting element driving circuit of the present invention is in a non-enabled stage. FIG. 7B is a schematic diagram of another specific embodiment when the light-emitting element driving circuit of the present invention is in an enabling stage. FIG. 8 is a schematic diagram of operation signal waveforms of the light-emitting element driving circuit of the present invention corresponding to FIGS. 7A-7B. FIG. 9A illustrates a schematic diagram of an embodiment of a power conversion circuit according to the present invention. FIG. 9B illustrates a schematic diagram of another embodiment of the power conversion circuit of the present invention. 10A to 10B are diagrams showing load-transient response measurement waveform diagrams of the light-emitting element driving circuit of the present invention.

Claims (13)

一種發光元件驅動電路,用以提供一負載電流至一發光元件,以驅動該發光元件,該發光元件驅動電路包含: 一電源轉換電路,用以根據一誤差放大訊號,轉換一輸入電壓而產生一輸出電壓於一輸出端並且提供該負載電流至該發光元件,該發光元件耦接於該輸出端與一負載節點之間; 一誤差放大電路,根據一第一參考電壓與一回饋訊號的一差值,產生該誤差放大訊號; 一取樣維持電路,耦接於該回饋訊號與該負載節點之間; 一負載電流產生電路,與該取樣維持電路及該發光元件共同耦接於該負載節點,該負載電流產生電路用以於一致能階段決定該負載電流之一第一電流位準,且用以於一非致能階段,決定該負載電流之一第二電流位準;以及 一前饋電容 (feed-forward capacitor),耦接於該輸出端與該回饋訊號之間; 其中,當該發光元件驅動電路處於該非致能階段時,該回饋訊號經由該取樣維持電路而與一第二參考電壓彼此電連接,且,該回饋訊號經由該取樣維持電路而與該負載節點彼此斷接,藉此,於該非致能階段轉為該致能階段的一轉折時點時,該前饋電容取樣一取樣電壓; 其中,當該發光元件驅動電路處於該致能階段時,該回饋訊號經由該取樣維持電路而與該第二參考電壓彼此斷接,且,該回饋訊號經由該取樣維持電路而與該負載節點彼此耦接,其中,藉由該前饋電容維持該取樣電壓,使得於該轉折時點之後的一預設電流上升時間內,該回饋訊號與該第一參考電壓具有一足夠大之差值,而使得該負載電流在該預設電流上升時間內上升以達到該第一電流位準。 .A light-emitting element driving circuit for providing a load current to a light-emitting element to drive the light-emitting element. The light-emitting element driving circuit includes: a power conversion circuit for amplifying a signal according to an error and converting an input voltage to generate a An output voltage is provided at an output terminal and the load current is provided to the light emitting element, the light emitting element is coupled between the output terminal and a load node; an error amplifying circuit, according to a difference between a first reference voltage and a feedback signal Value, the error amplification signal is generated; a sampling and maintaining circuit is coupled between the feedback signal and the load node; a load current generating circuit is coupled to the load node with the sampling and maintaining circuit and the light emitting element, the The load current generating circuit is used to determine a first current level of the load current in a uniform energy phase, and is used to determine a second current level of the load current in a non-enabled phase; and a feedforward capacitor ( feed-forward capacitor), coupled between the output terminal and the feedback signal; wherein when the light-emitting element driving circuit is in the During the enabling phase, the feedback signal is electrically connected to a second reference voltage with each other through the sampling and holding circuit, and the feedback signal is disconnected from the load node with each other through the sampling and holding circuit, thereby enabling the non-enabled When the phase transitions to a turning point in the enabling phase, the feedforward capacitor samples a sampling voltage; wherein, when the light-emitting element driving circuit is in the enabling phase, the feedback signal passes through the sampling and maintaining circuit to communicate with the second The reference voltages are disconnected from each other, and the feedback signal is coupled to the load node with each other via the sampling and holding circuit, wherein the sampling voltage is maintained by the feedforward capacitor, so that a preset current after the turning point is increased Within time, the feedback signal and the first reference voltage have a sufficiently large difference, so that the load current rises within the preset current rise time to reach the first current level. . 如申請專利範圍第1項所述之發光元件驅動電路,其中該第二參考電壓的位準小於該第一參考電壓的位準。The light-emitting element driving circuit according to item 1 of the application, wherein a level of the second reference voltage is smaller than a level of the first reference voltage. 如申請專利範圍第1項所述之發光元件驅動電路,其中該第二參考電壓的位準等於該第一參考電壓的位準。The light-emitting element driving circuit according to item 1 of the scope of patent application, wherein the level of the second reference voltage is equal to the level of the first reference voltage. 如申請專利範圍第1項所述之發光元件驅動電路,其中於該致能階段,該負載電流產生電路根據該負載節點之電壓而決定該第一電流位準。According to the light-emitting element driving circuit described in the first item of the patent application scope, in the enabling stage, the load current generating circuit determines the first current level according to the voltage of the load node. 如申請專利範圍第4項所述之發光元件驅動電路,其中該第一電流位準相關於該第一參考電壓。The light-emitting element driving circuit according to item 4 of the patent application, wherein the first current level is related to the first reference voltage. 如申請專利範圍第4項所述之發光元件驅動電路,其中該負載電流產生電路包括一壓控電流源,用以根據該負載節點之電壓而調節該負載電流。The light-emitting element driving circuit according to item 4 of the scope of the patent application, wherein the load current generating circuit includes a voltage-controlled current source for adjusting the load current according to the voltage of the load node. 如申請專利範圍第1至6項之任一項中所述之發光元件驅動電路,其中該取樣維持電路包括: 一電阻; 一第一開關,與該電阻彼此串聯耦接於該負載節點與該回饋訊號之間;以及 一第二開關,耦接於該回饋訊號與該第二參考電壓之間; 其中當該發光元件驅動電路處於該非致能階段時,該第一開關控制為不導通,且該第二開關控制為導通,藉此,該回饋訊號經由該取樣維持電路而與該第二參考電壓彼此電連接,且該回饋訊號與該負載節點彼此斷接,且當該發光元件驅動電路處於該致能階段時,該第一開關控制為導通,且該第二開關控制為不導通,藉此,該回饋訊號與該第二參考電壓彼此斷接,且該回饋訊號與該負載節點彼此耦接。The light-emitting element driving circuit as described in any one of claims 1 to 6, wherein the sampling and holding circuit includes: a resistor; a first switch coupled with the resistor in series with each other between the load node and the load node; Between the feedback signal; and a second switch coupled between the feedback signal and the second reference voltage; wherein when the light-emitting element driving circuit is in the non-enabled stage, the first switch is controlled to be non-conducting, and The second switch is controlled to be on, whereby the feedback signal and the second reference voltage are electrically connected to each other through the sampling and holding circuit, and the feedback signal and the load node are disconnected from each other, and when the light-emitting element driving circuit is in During the enabling phase, the first switch is controlled to be conductive and the second switch is controlled to be non-conductive, whereby the feedback signal and the second reference voltage are disconnected from each other, and the feedback signal and the load node are coupled to each other Pick up. 如申請專利範圍第1項所述之發光元件驅動電路,其中該前饋電容於該發光元件驅動電路處於該致能階段時,提供前饋(feed-forward)功能,藉此該發光元件驅動電路操作於一穩定狀態,且該發光元件驅動電路的頻寬高於一預設之頻率。The light-emitting element driving circuit according to item 1 of the patent application scope, wherein the feed-forward capacitor provides a feed-forward function when the light-emitting element driving circuit is in the enabling stage, thereby the light-emitting element driving circuit It operates in a stable state, and the bandwidth of the light-emitting element driving circuit is higher than a preset frequency. 如申請專利範圍第7項所述之發光元件驅動電路,其中該預設電流上升時間相關於該電阻的電阻值與該前饋電容的電容值的乘積。The light-emitting element driving circuit according to item 7 of the scope of the patent application, wherein the preset current rise time is related to a product of a resistance value of the resistor and a capacitance value of the feedforward capacitor. 如申請專利範圍第1項所述之發光元件驅動電路,其中該預設電流上升時間小於1微秒 (micro second,μs)。The light-emitting element driving circuit according to item 1 of the application, wherein the preset current rise time is less than 1 microsecond (μs). 如申請專利範圍第1項所述之發光元件驅動電路,其中該電源轉換電路包括一線性穩壓器或一切換式電源供應器。The light-emitting element driving circuit according to item 1 of the patent application scope, wherein the power conversion circuit includes a linear regulator or a switching power supply. 如申請專利範圍第1項所述之發光元件驅動電路,其中該第二電流位準為0。The light-emitting element driving circuit according to item 1 of the scope of patent application, wherein the second current level is zero. 如申請專利範圍第1項所述之發光元件驅動電路,其中該足夠大之差值小於一預設之電壓差值上限,使得該負載電流在該預設電流上升時間內上升以達到該第一電流位準。The light-emitting element driving circuit according to item 1 of the scope of patent application, wherein the sufficiently large difference is smaller than a preset upper limit of the voltage difference, so that the load current rises within the preset current rise time to reach the first Current level.
TW107123631A 2018-02-06 2018-07-09 Driver circuit for driving light emitting device TWI659671B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/198,860 US10356878B1 (en) 2018-02-06 2018-11-22 Driver circuit for driving light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862627109P 2018-02-06 2018-02-06
US62/627109 2018-02-06

Publications (2)

Publication Number Publication Date
TWI659671B true TWI659671B (en) 2019-05-11
TW201936009A TW201936009A (en) 2019-09-01

Family

ID=67348021

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107123631A TWI659671B (en) 2018-02-06 2018-07-09 Driver circuit for driving light emitting device

Country Status (2)

Country Link
CN (1) CN110120627B (en)
TW (1) TWI659671B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110995049A (en) * 2019-12-23 2020-04-10 苏州易德龙科技股份有限公司 Method for improving current response speed of pulse power supply

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340755A (en) * 2008-08-12 2009-01-07 深圳市联德合微电子有限公司 High-speed driving circuit of LED capable of overshooting prevention
CN102243505A (en) * 2011-07-07 2011-11-16 杭州矽力杰半导体技术有限公司 Low-offset and fast-response voltage-controlled current source, control method and power circuit applying voltage-controlled current source
CN103428959A (en) * 2012-05-16 2013-12-04 理查德·兰德里·格雷 Component and method for driving LED lamp
TWI507086B (en) * 2011-01-12 2015-11-01 Green Solution Tech Co Ltd Led driving control circuit and led driving circuit
US9215763B2 (en) * 2013-10-31 2015-12-15 Silergy Semiconductor Technology (Hangzhou) Ltd Pulse current LED driving circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262584B2 (en) * 2004-02-19 2007-08-28 Analog Modules, Inc Efficient fast pulsed laser or light-emitting diode driver
TWI290640B (en) * 2004-06-16 2007-12-01 Mediatek Inc Laser power controller and method for performing an auto power control
JP5595126B2 (en) * 2010-06-03 2014-09-24 ローム株式会社 LED driving device and electronic apparatus equipped with the same
WO2014194081A1 (en) * 2013-05-29 2014-12-04 Lutron Electronics Co., Inc. Load control device for a light-emitting diode light source
TWI552645B (en) * 2015-03-18 2016-10-01 隆達電子股份有限公司 Dimming circuit
CN107094329B (en) * 2017-05-03 2019-01-29 矽力杰半导体技术(杭州)有限公司 LED drive circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340755A (en) * 2008-08-12 2009-01-07 深圳市联德合微电子有限公司 High-speed driving circuit of LED capable of overshooting prevention
TWI507086B (en) * 2011-01-12 2015-11-01 Green Solution Tech Co Ltd Led driving control circuit and led driving circuit
CN102243505A (en) * 2011-07-07 2011-11-16 杭州矽力杰半导体技术有限公司 Low-offset and fast-response voltage-controlled current source, control method and power circuit applying voltage-controlled current source
CN103428959A (en) * 2012-05-16 2013-12-04 理查德·兰德里·格雷 Component and method for driving LED lamp
US9215763B2 (en) * 2013-10-31 2015-12-15 Silergy Semiconductor Technology (Hangzhou) Ltd Pulse current LED driving circuit

Also Published As

Publication number Publication date
TW201936009A (en) 2019-09-01
CN110120627B (en) 2020-09-01
CN110120627A (en) 2019-08-13

Similar Documents

Publication Publication Date Title
TWI430549B (en) Gate driver topology for maximum load efficiency and method thereof
US10869372B2 (en) Current source circuit and LED driving circuit
US8581564B2 (en) Switching power supply apparatus
US9699840B2 (en) High-precision LED control circuit, method and LED driver thereof
US20130043849A1 (en) Voltage Converter Including Variable Mode Switching Regulator And Related Method
JP6576306B2 (en) Voltage-current conversion circuit and load drive circuit
US20090212710A1 (en) Vehicle lighting control device
CN110083002B (en) Light source device, projection display device, and semiconductor device
JP2014160803A (en) Led driving device
US10143054B2 (en) Light-emitting diode driver
JP4566692B2 (en) LIGHT EMITTING DIODE DRIVING DEVICE AND OPTICAL TRANSMISSION DEVICE HAVING THE SAME
KR20170073500A (en) Led driving circuit, led device comprising the same, and driving method of led
CN108075655B (en) Power supply conversion device
TWI659671B (en) Driver circuit for driving light emitting device
US20230016715A1 (en) Voltage Adjustment Apparatus, Chip, Power Source, and Electronic Device
US7274182B2 (en) Spring modulation with fast load-transient response for a voltage regulator
JP2005011280A (en) Power supply circuit
US7071663B2 (en) Power supply circuit
US10220636B2 (en) Drive apparatus that drives light emitting device
JP2012120289A (en) Switching power circuit and electronic apparatus using the same
US10356878B1 (en) Driver circuit for driving light emitting device
TWI436593B (en) High-precision oscillator systems with feed forward compensation for ccfl driver systems and methods thereof
US9577521B2 (en) Average current control for a switched power converter
US20230283252A1 (en) Method for compensating for an internal voltage offset between two inputs of an amplifier
TW201427251A (en) DC-DC controller and control method thereof