[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI657648B - Power supply device and power supply system using the same - Google Patents

Power supply device and power supply system using the same Download PDF

Info

Publication number
TWI657648B
TWI657648B TW106125711A TW106125711A TWI657648B TW I657648 B TWI657648 B TW I657648B TW 106125711 A TW106125711 A TW 106125711A TW 106125711 A TW106125711 A TW 106125711A TW I657648 B TWI657648 B TW I657648B
Authority
TW
Taiwan
Prior art keywords
power
power supply
frequency
voltage
converter
Prior art date
Application number
TW106125711A
Other languages
Chinese (zh)
Other versions
TW201904179A (en
Inventor
豊田勝
Original Assignee
日商東芝三菱電機產業系統股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東芝三菱電機產業系統股份有限公司 filed Critical 日商東芝三菱電機產業系統股份有限公司
Publication of TW201904179A publication Critical patent/TW201904179A/en
Application granted granted Critical
Publication of TWI657648B publication Critical patent/TWI657648B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inverter Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Rectifiers (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

穩定化電源裝置(1)之控制裝置(14)係具備:比較器(35)、及頻率調整部(32),該比較器(35)係比較電壓指令值(Vir)和三角波信號(Cu)的高低,並根據比較結果來產生用以控制轉換器(6)的IGBT(Q1至Q6)的閘極信號(Au、Bu、…),而該頻率調整部(32)係在直流電壓(Vdc)能夠設為參考直流電壓(Vr)的範圍內,將三角波信號(Cu)的頻率調整為下限值(fL)。因此,可減低轉換器(6)的IGBT(Q1至Q6)所產生的開關損失。 The control device (14) of the stabilized power supply device (1) includes a comparator (35) and a frequency adjustment section (32). The comparator (35) compares a voltage command value (Vir) and a triangle wave signal (Cu). And the gate signals (Au, Bu, ...) of the IGBTs (Q1 to Q6) used to control the converter (6) are generated according to the comparison result, and the frequency adjustment section (32) is based on a DC voltage (Vdc ) Can be set to the range of the reference DC voltage (Vr), and the frequency of the triangular wave signal (Cu) can be adjusted to the lower limit value (fL). Therefore, the switching loss caused by the IGBTs (Q1 to Q6) of the converter (6) can be reduced.

Description

電源裝置及使用該電源裝置之電源系統 Power supply device and power supply system using the same

本發明係有關於電源裝置及電源系統,特別是有關於具備將交流電力變換成直流電力之順變換器的電源裝置、以及使用該電源裝置的電源系統。 The present invention relates to a power supply device and a power supply system, and particularly to a power supply device including a forward converter that converts AC power to DC power, and a power supply system using the power supply device.

例如,日本特開2008-92734號公報(專利文獻1)係揭示具備順變換器、以及控制裝置的電源裝置,該順變換器,係包含複數個開關元件,將商用頻率的交流電力變換成直流電力,而該控制裝置,係根據商用頻率的正弦波信號及較商用頻率還充分高之頻率的三角波信號的比較結果,產生用以控制複數個開關元件的控制信號。複數個開關元件各自係以因應於三角波信號的頻率之值的頻率來導通(ON)及關斷(OFF)。 For example, Japanese Patent Application Laid-Open No. 2008-92734 (Patent Document 1) discloses a power supply device including a forward converter and a control device. The forward converter includes a plurality of switching elements and converts AC power at a commercial frequency into DC. Electric power, and the control device generates a control signal for controlling a plurality of switching elements according to a comparison result of a sine wave signal of a commercial frequency and a triangle wave signal of a frequency sufficiently higher than the commercial frequency. Each of the plurality of switching elements is turned on (ON) and turned off (OFF) at a frequency corresponding to the value of the frequency of the triangular wave signal.

(先前技術文獻) (Prior technical literature) (專利文獻) (Patent Literature)

專利文獻1:日本特開2008-92734號公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2008-92734

但,在習知之電源裝置中,每當開關元件導通及關斷時會產生開關損失,而會有電源裝置效率降低的問題。 However, in the conventional power supply device, a switching loss occurs every time the switching element is turned on and off, and there is a problem that the efficiency of the power supply device is reduced.

因此,本發明之主要目的為提供高效率的電源裝置、以及使用該電源裝置的電源系統。 Therefore, the main object of the present invention is to provide a high-efficiency power supply device and a power supply system using the same.

本發明之電源裝置係具備:順變換器,係包含複數個開關元件,且將商用頻率的交流電力變換成直流電力;第一控制部,係以參考直流電壓與順變換器的輸出直流電壓能成為無偏差之方式輸出商用頻率的正弦波信號;第二控制部,係比較正弦波信號及較商用頻率還高的頻率的三角波信號的高低,並根據其比較結果來產生用以控制複數個開關元件的控制信號;以及頻率調整部,係在能夠消除偏差的範圍內,將三角波信號的頻率調整為下限值。 The power supply device of the present invention is provided with a forward converter including a plurality of switching elements and converting AC power at a commercial frequency into DC power. The first control unit is configured to reference the DC voltage and the output DC voltage of the forward converter. It outputs a commercial frequency sine wave signal without deviation. The second control unit compares the level of the sine wave signal and the triangular wave signal with a frequency higher than the commercial frequency. Based on the comparison result, it generates a number of switches to control The control signal of the component; and the frequency adjustment unit adjusts the frequency of the triangular wave signal to a lower limit value within a range where the deviation can be eliminated.

由於本發明之電源裝置係在能夠消除參考直流電壓與順變換器的輸出直流電壓的偏差的範圍內,將三角波信號的頻率調整為下限值,故能將開關元件之導通及關斷的次數調整為下限值。因此,能將開關元件所產生的開關損失抑制為最小,且提高電源裝置的效率。 Since the power supply device of the present invention adjusts the frequency of the triangular wave signal to a lower limit within a range that can eliminate the deviation between the reference DC voltage and the output DC voltage of the forward converter, it can turn on and off the number of times of the switching element. Adjust to the lower limit. Therefore, the switching loss caused by the switching element can be minimized, and the efficiency of the power supply device can be improved.

1‧‧‧穩定化電源裝置 1‧‧‧ stabilized power supply unit

2、12‧‧‧電磁接觸器 2, 12‧‧‧ electromagnetic contactor

3、9‧‧‧電流檢測器 3, 9‧‧‧ current detector

4、4a、4b、4c‧‧‧電容器 4, 4a, 4b, 4c‧‧‧ capacitors

5、5a、5b、5c‧‧‧電抗器 5, 5a, 5b, 5c‧‧‧ reactor

6、55‧‧‧轉換器 6, 55‧‧‧ converter

7、11、11a、11b、11c‧‧‧電容器 7, 11, 11a, 11b, 11c‧‧‧ capacitors

8、37、59‧‧‧反向器 8, 37, 59‧‧‧ Inverter

10、10a、10b、10c‧‧‧電抗器 10, 10a, 10b, 10c‧‧‧ reactor

13、66‧‧‧操作部 13, 66‧‧‧Operation Department

14、67、70‧‧‧控制裝置 14, 67, 70‧‧‧ control device

15‧‧‧商用交流電源 15‧‧‧Commercial AC Power

16‧‧‧負載 16‧‧‧Load

21‧‧‧參考電壓產生電路 21‧‧‧reference voltage generating circuit

22‧‧‧電壓檢測器 22‧‧‧Voltage Detector

23、25‧‧‧減算器 23, 25‧‧‧ Subtractor

24‧‧‧輸出電壓控制電路 24‧‧‧Output voltage control circuit

26‧‧‧輸出電流控制電路 26‧‧‧Output current control circuit

27‧‧‧閘極控制電路 27‧‧‧Gate control circuit

31‧‧‧判定器 31‧‧‧ Judgment

32、41、42‧‧‧頻率調整部 32, 41, 42‧‧‧ Frequency Adjustment Department

33‧‧‧振盪器 33‧‧‧ Oscillator

34‧‧‧三角波產生器 34‧‧‧Triangular wave generator

35‧‧‧比較器 35‧‧‧ Comparator

36‧‧‧緩衝器 36‧‧‧Buffer

43‧‧‧開關 43‧‧‧Switch

45‧‧‧旁路交流電源 45‧‧‧ Bypass AC Power

51、57‧‧‧電磁接觸器 51, 57‧‧‧ electromagnetic contactor

52、60‧‧‧電流檢測器 52, 60‧‧‧ current detector

53、58、62‧‧‧電容器 53, 58, 62‧‧‧ capacitors

54、61‧‧‧電抗器 54, 61‧‧‧ reactor

56‧‧‧雙向截波器 56‧‧‧Bidirectional Chopper

63、65‧‧‧電磁接觸器 63, 65‧‧‧ electromagnetic contactor

64‧‧‧半導體開關 64‧‧‧Semiconductor Switch

B0、B1、B2‧‧‧電池 B0, B1, B2 ‧‧‧ batteries

D1、D2、D3、D4、D5、D6、D11、D12、D13、D14、D15、D16‧‧‧二極體 D1, D2, D3, D4, D5, D6, D11, D12, D13, D14, D15, D16‧‧‧ diode

LD1、LD2‧‧‧負載 LD1, LD2‧‧‧Load

Q1、Q2、Q3、Q4、Q5、Q6、Q11、Q12、Q13、Q14、Q15、Q16‧‧‧IGBT Q1, Q2, Q3, Q4, Q5, Q6, Q11, Q12, Q13, Q14, Q15, Q16‧‧‧IGBT

T1、T1a、T1b、T1c、T11‧‧‧交流輸入端子 T1, T1a, T1b, T1c, T11‧‧‧ AC input terminals

T2、T2a、T2b、T2c、T14‧‧‧交流輸出端子 T2, T2a, T2b, T2c, T14‧‧‧ AC output terminals

T12‧‧‧旁路輸入端子 T12‧‧‧bypass input terminal

T13‧‧‧電池端子 T13‧‧‧battery terminal

U0、U1、U2‧‧‧不斷電電源裝置 U0, U1, U2‧‧‧ Uninterruptible Power Supply Unit

43a‧‧‧第一端子 43a‧‧‧First terminal

43b‧‧‧第二端子 43b‧‧‧Second terminal

43c‧‧‧共通端子 43c‧‧‧common terminal

6a、6b、6c‧‧‧輸入節點 6a, 6b, 6c‧‧‧ input nodes

8a、8b、8c‧‧‧輸出節點 8a, 8b, 8c‧‧‧ output nodes

Au、Bu、Av、Bv、Aw、Bw‧‧‧閘極信號 Au, Bu, Av, Bv, Aw, Bw‧‧‧ Gate signals

Cu‧‧‧三角波信號 Cu‧‧‧ triangle wave signal

Ii‧‧‧交流輸入電流 Ii‧‧‧AC input current

Iif‧‧‧信號 Iif‧‧‧Signal

Io‧‧‧交流輸出電流 Io‧‧‧AC output current

Iof‧‧‧信號 Iof‧‧‧ signal

L1、L11、L2‧‧‧直流線 L1, L11, L2‧‧‧ DC line

N1、N2、N11、N12‧‧‧節點 N1, N2, N11, N12‧‧‧ nodes

NP‧‧‧中性點 NP‧‧‧Neutral point

Vb‧‧‧電池電壓 Vb‧‧‧ Battery voltage

Vdc‧‧‧直流電壓 Vdc‧‧‧DC voltage

Vdcf‧‧‧信號 Vdcf‧‧‧ Signal

Vi‧‧‧交流電壓 Vi‧‧‧AC voltage

Vir‧‧‧電壓指令值 Vir‧‧‧ Voltage Command Value

Vo‧‧‧交流輸出電壓 Vo‧‧‧AC output voltage

Vr‧‧‧參考直流電壓 Vr‧‧‧Reference DC voltage

Xu、Yu、Xv、Yv、Xw、Yw‧‧‧閘極信號 Xu, Yu, Xv, Yv, Xw, Yw‧‧‧ Gate signals

△Vdc‧‧‧偏差 △ Vdc‧‧‧deviation

31‧‧‧輸出信號 31‧‧‧output signal

33‧‧‧輸出時脈信號 33‧‧‧Output clock signal

43‧‧‧信號 43‧‧‧Signal

第1圖係顯示本發明之實施形態1的穩定化電源裝置之構成的電路方塊圖。 FIG. 1 is a circuit block diagram showing a configuration of a stabilized power supply device according to Embodiment 1 of the present invention.

第2圖係顯示第1圖所示之穩定化電源裝置之主要部分的電路圖。 FIG. 2 is a circuit diagram showing a main part of the stabilized power supply device shown in FIG. 1. FIG.

第3圖係顯示第1圖所示之控制裝置當中之與轉換器之控制相關連之部分的構成之方塊圖。 FIG. 3 is a block diagram showing the configuration of a part related to the control of the converter among the control devices shown in FIG. 1. FIG.

第4圖係顯示第3圖所示之閘極控制電路之主要部份的電路方塊圖。 FIG. 4 is a circuit block diagram showing a main part of the gate control circuit shown in FIG. 3.

第5圖係例示第4圖所示之電壓指令值、三角波信號、及閘極信號之波形的時序圖。 FIG. 5 is a timing chart illustrating waveforms of a voltage command value, a triangle wave signal, and a gate signal shown in FIG. 4.

第6圖係顯示實施形態1之變更例的電路方塊圖。 Fig. 6 is a circuit block diagram showing a modified example of the first embodiment.

第7圖係顯示實施形態1之另一變更例的電路方塊圖。 Fig. 7 is a circuit block diagram showing another modification of the first embodiment.

第8圖係顯示實施形態1之又另一變更例的電路方塊圖。 Fig. 8 is a circuit block diagram showing still another modification of the first embodiment.

第9圖係顯示本發明之實施形態2的不斷電電源系統之構成的方塊圖。 Fig. 9 is a block diagram showing the structure of a uninterruptible power supply system according to a second embodiment of the present invention.

第10圖係顯示第9圖所示之不斷電電源裝置U1之構成的電路方塊圖。 FIG. 10 is a circuit block diagram showing the configuration of the uninterruptible power supply device U1 shown in FIG.

第11圖係顯示本發明之實施形態3的不斷電電源系統之構成的方塊圖。 Fig. 11 is a block diagram showing the structure of a uninterruptible power supply system according to a third embodiment of the present invention.

第12圖係顯示第11圖所示之不斷電電源裝置U0之構成的電路方塊圖。 FIG. 12 is a circuit block diagram showing the structure of the uninterruptible power supply unit U0 shown in FIG. 11.

實施形態1 Embodiment 1

第1圖係顯示本發明之實施形態1的穩定化電源裝置1之構成的電路方塊圖。該穩定化電源裝置1係一旦將來自商用交流電源15的三相交流電力變換成直流電力,則將該直流電力變換成穩定化的三相交流電力並供應給負載16者。第1圖係為了圖示及說明的簡化,而僅顯示與三相(U相、V相、W相)當中之一相(例如U相)相對應之部分的電路。 FIG. 1 is a circuit block diagram showing a configuration of a stabilized power supply device 1 according to Embodiment 1 of the present invention. This stabilized power supply device 1 converts three-phase AC power from a commercial AC power source 15 into DC power, and then converts the DC power into stabilized three-phase AC power and supplies it to a load 16. FIG. 1 shows a circuit corresponding to only one of the three phases (U-phase, V-phase, and W-phase) (for example, U-phase) for simplicity of illustration and description.

在第1圖當中,該穩定化電源裝置1係具備:交流輸入端子T1、交流輸出端子T2、電磁接觸器2、12、電流檢測器3、9、電抗器5、10、轉換器(converter)6、直流線L1、電容器4、7、11、反向器(inverter,依中華民國國立教育研究院電子計算機名詞工具書有稱為反用換流器或逆變器之情形,有時則稱為反相器)8、操作部13、以及控制裝置14。 In FIG. 1, the stabilized power supply device 1 includes an AC input terminal T1, an AC output terminal T2, an electromagnetic contactor 2, 12, a current detector 3, 9, a reactor 5, 10, and a converter. 6, DC line L1, capacitors 4, 7, 11, and inverter (inverter, according to the National Computer Research Institute of the Republic of China computer terminology reference book is called a converter or inverter, sometimes called (Inverter) 8, operation unit 13, and control device 14.

交流輸入端子T1係自商用交流電源15接受商用頻率的交流電力。交流輸出端子T2係連接於負載16。負載16係藉由交流電力而驅動。電磁接觸器2及電抗器5係串聯連接於交流輸入端子T1及轉換器6的輸入節點之間。電容器4係連接於電磁接觸器2及電抗器5之間的節點N1。電磁接觸器2係在穩定化電源裝置1的使用時設為導通,而例如穩定化電源裝置1的維護時設為關斷。 The AC input terminal T1 receives AC power of a commercial frequency from the commercial AC power source 15. The AC output terminal T2 is connected to the load 16. The load 16 is driven by AC power. The electromagnetic contactor 2 and the reactor 5 are connected in series between the AC input terminal T1 and the input node of the converter 6. The capacitor 4 is connected to a node N1 between the electromagnetic contactor 2 and the reactor 5. The electromagnetic contactor 2 is turned on during use of the stabilized power supply device 1, and is turned off during maintenance of the stabilized power supply device 1, for example.

出現於節點N1之交流輸入電壓Vi的瞬間值係藉由控制裝置14來檢測。電流檢測器3係檢測流通於節點N1的交流輸入電流Ii,且將顯示該檢測值的信號Iif 傳送至控制裝置14。 The instantaneous value of the AC input voltage Vi appearing at the node N1 is detected by the control device 14. The current detector 3 detects the AC input current Ii flowing through the node N1, and displays a signal Iif showing the detected value. Transfer to control device 14.

電容器4及電抗器5係構成低通濾波器,使商用頻率的交流電力自商用交流電源15通過轉換器6,且防止轉換器6所產生之開關頻率的信號通過商用交流電源15。 The capacitor 4 and the reactor 5 constitute a low-pass filter, so that commercial-frequency AC power passes from the commercial AC power source 15 to the converter 6 and prevents signals of a switching frequency generated by the converter 6 from passing through the commercial AC power source 15.

轉換器6係由控制裝置14所控制,且將自商用交流電源15供應的交流電力變換成直流電力並輸出至直流線L1。電容器7係連接於直流線L1,且將直流線L1的電壓予以平滑化。轉換器6的輸出電壓係能控制成期望之值。出現於直流線L1之直流電壓Vdc的瞬間值係藉由控制裝置14來檢測。直流線L1係連接於反向器8的輸入節點。 The converter 6 is controlled by the control device 14 and converts AC power supplied from the commercial AC power source 15 into DC power and outputs the DC power to the DC line L1. The capacitor 7 is connected to the DC line L1 and smoothes the voltage of the DC line L1. The output voltage of the converter 6 can be controlled to a desired value. The instantaneous value of the DC voltage Vdc appearing on the DC line L1 is detected by the control device 14. The DC line L1 is connected to the input node of the inverter 8.

反向器8係由控制裝置14所控制,且將自轉換器6經由直流線L1所供應的直流電力變換成商用頻率的交流電力並輸出。反向器8的輸出電壓係能控制成期望之值。反向器8的輸出節點係連接於電抗器10的一方端子,電抗器10的另一方端子(節點N2)係經由電磁接觸器12而連接於交流輸出端子T2。電容器11係連接於節點N2。 The inverter 8 is controlled by the control device 14, and converts DC power supplied from the converter 6 via the DC line L1 into AC power of a commercial frequency and outputs the AC power. The output voltage of the inverter 8 can be controlled to a desired value. The output node of the inverter 8 is connected to one terminal of the reactor 10, and the other terminal (node N2) of the reactor 10 is connected to the AC output terminal T2 via the electromagnetic contactor 12. The capacitor 11 is connected to the node N2.

電流檢測器9係檢測反向器8的輸出電流Io的瞬間值,且將顯示該檢測值的信號Iof傳送至控制裝置14。出現於節點N2之交流輸出電壓Vo的瞬間值係藉由控制裝置14來檢測。 The current detector 9 detects an instantaneous value of the output current Io of the inverter 8 and transmits a signal Iof that displays the detected value to the control device 14. The instantaneous value of the AC output voltage Vo appearing at the node N2 is detected by the control device 14.

電抗器10及電容器11係構成低通濾波器,使反向器8所產生之商用頻率的交流電力通過交流輸出端 子T2,防止反向器8所產生之開關頻率的信號通過交流輸出端子T2。反向器8、電抗器10、以及電容器11係構成逆變換器。電磁接觸器12係在穩定化電源裝置1的使用時設為導通,而例如穩定化電源裝置1的維護時設為關斷。 The reactor 10 and the capacitor 11 constitute a low-pass filter, so that the commercial frequency AC power generated by the inverter 8 passes through the AC output terminal. The sub-T2 prevents the signal of the switching frequency generated by the inverter 8 from passing through the AC output terminal T2. The inverter 8, the reactor 10, and the capacitor 11 constitute an inverse converter. The electromagnetic contactor 12 is turned on during use of the stabilized power supply device 1, and is turned off during maintenance of the stabilized power supply device 1, for example.

操作部13係包含藉由穩定化電源裝置1的使用者所操作之複數個按鈕、以及顯示各種資訊的畫像顯示部等。使用者係藉由操作該操作部13,而能夠將穩定化電源裝置1的電源設為導通及關斷,或使穩定化電源裝置1設為手動運轉或自動運轉。 The operation unit 13 includes a plurality of buttons operated by a user of the stabilized power supply device 1, an image display unit that displays various information, and the like. The user can turn on and off the power of the stabilized power supply device 1 or operate the stabilized power supply device 1 manually or automatically by operating the operation unit 13.

控制裝置14係根據來自操作部13的信號、交流輸入電流Ii、直流電壓Vdc、交流輸出電流Io、及交流輸出電壓Vo等來控制穩定化電源裝置1整體。亦即,控制裝置14係以直流電壓Vdc形成參考直流電壓Vr之方式控制轉換器6。 The control device 14 controls the entire stabilized power supply device 1 based on a signal from the operation unit 13, an AC input current Ii, a DC voltage Vdc, an AC output current Io, and an AC output voltage Vo. That is, the control device 14 controls the converter 6 such that the DC voltage Vdc forms a reference DC voltage Vr.

此外,控制裝置14係根據電流檢測器9的輸出信號Iof動作,且比較反向器8的輸出電流Io(亦即,負載電流1L)與預定值lc的大小。控制裝置14係在Io>lc時,判定由穩定化電源裝置1供應交流電力給負載16,並選擇通常運轉模式(第二運轉模式)。控制裝置14係在Io<lc時,判定並不由穩定化電源裝置1供應交流電力給負載16,並選擇省電運轉模式(第一運轉模式)。 In addition, the control device 14 operates based on the output signal Iof of the current detector 9 and compares the magnitude of the output current Io (ie, the load current 1L) of the inverter 8 with a predetermined value lc. When Io> lc, the control device 14 determines that AC power is supplied from the stabilized power supply device 1 to the load 16 and selects a normal operation mode (second operation mode). When Io <lc, the control device 14 determines that the AC power is not supplied to the load 16 by the stabilized power supply device 1 and selects a power saving operation mode (first operation mode).

此外,控制裝置14係在選擇通常運轉模式時,比較商用頻率的正弦波信號與較商用頻率還充分高的頻率fH的三角波信號的高低,且根據該比較結果而產生用 以控制轉換器6之複數個閘極信號(控制信號)。 In addition, when the control device 14 selects the normal operation mode, it compares the level of the sine wave signal of the commercial frequency with the triangle wave signal of the frequency fH which is sufficiently higher than the commercial frequency, and generates a result based on the comparison result. A plurality of gate signals (control signals) of the converter 6 are controlled.

此外,控制裝置14係在選擇省電運轉模式時,在直流電壓Vdc能夠設為參考直流電壓Vr之範圍內而將三角波信號的頻率調整為下限值fL,且比較商用頻率的正弦波信號與頻率fL的三角波信號的高低,並根據該比較結果而產生用以控制轉換器6之複數個閘極信號。 In addition, the control device 14 adjusts the frequency of the triangular wave signal to a lower limit value fL when the DC voltage Vdc can be set to the reference DC voltage Vr when the power-saving operation mode is selected, and compares the sine wave signal of the commercial frequency with the commercial frequency. The level of the triangular wave signal at the frequency fL generates a plurality of gate signals for controlling the converter 6 according to the comparison result.

第2圖係顯示第1圖所示之穩定化電源裝置1之主要部分的電路圖。第1圖係僅顯示與三相交流電壓當中之一相相關連的部分,而第2圖係顯示與三相相關連的部分。此外,省略電磁接觸器2、12、操作部13、以及控制裝置14之圖示。 Fig. 2 is a circuit diagram showing a main part of the stabilized power supply device 1 shown in Fig. 1. Figure 1 shows only the parts related to one of the three-phase AC voltages, and Figure 2 shows the parts related to three-phase. The illustrations of the electromagnetic contactors 2, 12, the operation unit 13, and the control device 14 are omitted.

在第2圖當中,穩定化電源裝置1係具備:交流輸入端子T1a、T1b、T1c、交流輸出端子T2a、T2b、T2c、電流檢測器7、9、電容器4a、4b、4c、11a、11b、11c、電抗器5a、5b、5c、10a、10b、10c、轉換器6、直流線L1、L2、以及反向器8。 In FIG. 2, the stabilized power supply device 1 includes: AC input terminals T1a, T1b, T1c, AC output terminals T2a, T2b, T2c, current detectors 7, 9, capacitors 4a, 4b, 4c, 11a, 11b, 11c, reactors 5a, 5b, 5c, 10a, 10b, 10c, converter 6, DC lines L1, L2, and inverter 8.

交流輸入端子T1a、T1b、T1c係分別接受來自商用交流電源15(第1圖)之三相交流電壓(U相交流電壓、V相交流電壓、及W相交流電壓)。交流輸出端子T2a、T2b、T2c係輸出與來自商用交流電源15之三相交流電壓同步的三相交流電壓。負載16係藉由來自交流輸出端子T2a、T2b、T2c之三相交流電壓而驅動。 The AC input terminals T1a, T1b, and T1c respectively receive three-phase AC voltages (U-phase AC voltage, V-phase AC voltage, and W-phase AC voltage) from a commercial AC power source 15 (Figure 1). The AC output terminals T2a, T2b, and T2c output a three-phase AC voltage synchronized with the three-phase AC voltage from the commercial AC power source 15. The load 16 is driven by a three-phase AC voltage from the AC output terminals T2a, T2b, and T2c.

電抗器5a、5b、5c的一方端子係分別連接於交流輸入端子T1a、T1b、T1c,而電抗器5a、5b、5c的 另一方端子係分別連接於轉換器6的輸入節點6a、6b、6c。電容器4a、4b、4c的一方電極係分別連接於電抗器5a至5c的一方端子,而電容器4a、4b、4c的另一方電極係均連接於中性點NP。 One of the terminals of the reactors 5a, 5b, and 5c is connected to the AC input terminals T1a, T1b, and T1c, respectively. The other terminals are connected to the input nodes 6a, 6b, and 6c of the converter 6, respectively. One electrode system of the capacitors 4a, 4b, and 4c is connected to one terminal of the reactors 5a to 5c, and the other electrode system of the capacitors 4a, 4b, and 4c are connected to the neutral point NP.

電容器4a至4c及電抗器5a至5c係構成低通濾波器,使商用頻率的三相交流電力自交流輸入端子T1a、T1b、T1c通過轉換器6,且遮斷轉換器6所產生之開關頻率的信號。出現於電抗器5a之一方端子之交流輸入電壓Vi的瞬間值係由控制裝置14(第1圖)來檢測。電流檢測器7係檢測流通於節點N1(亦即交流輸入端子T1a)的交流輸入電流Ii,且將顯示該檢測值的信號Iif傳送至控制裝置14。 The capacitors 4a to 4c and the reactors 5a to 5c constitute a low-pass filter, so that three-phase AC power of commercial frequency passes from the AC input terminals T1a, T1b, T1c through the converter 6, and blocks the switching frequency generated by the converter 6. signal of. The instantaneous value of the AC input voltage Vi appearing at one terminal of the reactor 5a is detected by the control device 14 (FIG. 1). The current detector 7 detects an AC input current Ii flowing through the node N1 (that is, the AC input terminal T1a), and transmits a signal Iif displaying the detected value to the control device 14.

轉換器6係包含IGBT(Insulated Gate Bipolar Transistor,絕緣閘雙極電晶體)Q1至Q6、以及二極體D1至D6。IGBT係構成開關元件。IGBTQ1至Q3的集極係均連接於直流線L1,而IGBTQ1至Q3的射極係分別連接於輸入節點6a、6b、6c。IGBTQ4至Q6的集極係分別連接於輸入節點6a、6b、6c,而IGBTQ4至Q6的射極係均連接於直流線L2。二極體D1至D6係分別以反向之方式並聯於IGBTQ1至Q6。 The converter 6 includes IGBTs (Insulated Gate Bipolar Transistors) Q1 to Q6, and diodes D1 to D6. The IGBT system constitutes a switching element. The collectors of IGBTs Q1 to Q3 are all connected to the DC line L1, and the emitters of IGBTs Q1 to Q3 are connected to the input nodes 6a, 6b, and 6c, respectively. The collectors of IGBTs Q4 to Q6 are connected to the input nodes 6a, 6b, and 6c, respectively, and the emitters of IGBTs Q4 to Q6 are connected to the DC line L2. The diodes D1 to D6 are connected in parallel to the IGBTs Q1 to Q6, respectively.

IGBTQ1、Q4係分別由閘極信號Au、Bu所控制,IGBTQ2、Q5係分別由閘極信號Av、Bv所控制,而IGBTQ3、Q6係分別由閘極信號Aw、Bw所控制。閘極信號Bu、Bv、Bw係分別為閘極信號Au、Av、Aw的反轉信 號。 IGBTQ1 and Q4 are controlled by the gate signals Au and Bu, IGBTQ2 and Q5 are controlled by the gate signals Av and Bv, and IGBTQ3 and Q6 are controlled by the gate signals Aw and Bw, respectively. The gate signals Bu, Bv, and Bw are reverse signals of the gate signals Au, Av, and Aw, respectively. number.

IGBTQ1至Q3係閘極信號Au、Av、Aw分別為「H」準位時,設為導通,而閘極信號Au、Av、Aw分別為「L」準位時設為關斷。IGBTQ4至Q6係閘極信號Bu、Bv、Bw分別為「H」準位時設為導通,而閘極信號Bu、Bv、Bw分別為「L」準位時設為關斷。 IGBTs Q1 to Q3 are turned on when the gate signals Au, Av, and Aw are at the “H” level, and turned off when the gate signals Au, Av, and Aw are at the “L” level. IGBT Q4 to Q6 series gate signals Bu, Bv, Bw are set to ON when the "H" level is set, and gate signals Bu, Bv, Bw are set to "L" level to be turned off.

閘極信號Au、Bu、Av、Bv、Aw、Bw各自為脈衝信號列,且為PWM(Pulse Width Modulation,脈波寬度調變)信號。閘極信號Au、Bu的相位、閘極信號Av、Bv的相位、以及閘極信號Aw、Bw的相位係各個偏離120度。閘極信號Au、Bu、Av、Bv、Aw、Bw係藉由控制裝置14而產生。閘極信號Au、Bu、Av、Bv、Aw、Bw的產生方法係容於後述。 The gate signals Au, Bu, Av, Bv, Aw, and Bw are each a pulse signal train and are PWM (Pulse Width Modulation) signals. The phases of the gate signals Au and Bu, the phases of the gate signals Av and Bv, and the phases of the gate signals Aw and Bw are each offset by 120 degrees. The gate signals Au, Bu, Av, Bv, Aw, Bw are generated by the control device 14. The method of generating the gate signals Au, Bu, Av, Bv, Aw, and Bw is described later.

例如,交流輸入端子T1a的電壓準位較交流輸入端子T1b的電壓準位還高時,IGBTQ1、Q5設為導通,電流係自交流輸入端子T1a經由電抗器5a、IGBTQ1、直流線L1、電容器7、直流線L2、IGBTQ5、以及電抗器5b而流通至交流輸入端子T1b,且電容器7係被充電為正電壓。 For example, when the voltage level of the AC input terminal T1a is higher than the voltage level of the AC input terminal T1b, IGBTs Q1 and Q5 are turned on, and the current is from the AC input terminal T1a via the reactor 5a, IGBTQ1, DC line L1, and capacitor 7 The DC line L2, the IGBT Q5, and the reactor 5b flow to the AC input terminal T1b, and the capacitor 7 is charged to a positive voltage.

相反的,交流輸入端子T1b的電壓準位較交流輸入端子T1a的電壓準位還高時,IGBTQ2、Q4設為導通,電流係自交流輸入端子T1b經由電抗器5b、IGBTQ2、直流線L1、電容器7、直流線L2、IGBTQ4、以及電抗器5a而流通至交流輸入端子T1a,且電容器7係被充電為正電壓。其他的情形時亦相同。 In contrast, when the voltage level of the AC input terminal T1b is higher than the voltage level of the AC input terminal T1a, IGBTs Q2 and Q4 are set to be conductive, and the current is from the AC input terminal T1b via the reactor 5b, IGBTQ2, DC line L1, and capacitor 7. The DC line L2, the IGBT Q4, and the reactor 5a flow to the AC input terminal T1a, and the capacitor 7 is charged to a positive voltage. The same is true in other cases.

在預定的時序藉由閘極信號Au、Bu、Av、Bv、Aw、Bw而使IGBTQ1至Q6各個設為導通及關斷,並且調整IGBTQ1至Q6各個導通時間,藉此即能將施加至輸入節點6a至6c的三相交流電壓變換成直流電壓(電容器7的端子間電壓)。 The gate signals Au, Bu, Av, Bv, Aw, Bw are used to turn on and off each of the IGBTs Q1 to Q6 at a predetermined timing, and the respective on-times of the IGBTs Q1 to Q6 are adjusted, so that they can be applied to the input The three-phase AC voltages of the nodes 6a to 6c are converted into a DC voltage (the voltage between the terminals of the capacitor 7).

反向器8係包含IGBTQ11至Q16、以及二極體D11至D16。IGBT係構成開關元件。IGBTQ11至Q13的集極係均連接於直流線L1,而IGBTQ11至Q13的射極係分別連接於輸出節點8a、8b、8c。IGBT14至Q16的集極係分別連接於輸出節點8a、8b、8c,而IGBT14至Q16的射極係均連接於直流線L2。二極體D11至D16係分別以反向之方式並聯於IGBTQ11至Q16。 The inverter 8 includes IGBTs Q11 to Q16, and diodes D11 to D16. The IGBT system constitutes a switching element. The collectors of IGBTs Q11 to Q13 are all connected to the DC line L1, and the emitters of IGBTs Q11 to Q13 are connected to the output nodes 8a, 8b, and 8c, respectively. The collectors of IGBTs 14 to Q16 are connected to output nodes 8a, 8b, and 8c, respectively, and the emitters of IGBTs 14 to Q16 are connected to DC line L2. The diodes D11 to D16 are connected in parallel to the IGBTs Q11 to Q16, respectively.

IGBTQ11、Q14係分別藉由閘極信號Xu、Yu而控制,IGBTQ12、Q15係分別藉由閘極信號Xv、Yv而控制,而IGBTQ13、Q16係分別藉由閘極信號Xw、Yw而控制。閘極信號Yu、Yv、Yw係分別為閘極信號Xu、Xv、Xw的反轉信號。 IGBTQ11 and Q14 are controlled by the gate signals Xu and Yu respectively, IGBTQ12 and Q15 are controlled by the gate signals Xv and Yv respectively, and IGBTQ13 and Q16 are controlled by the gate signals Xw and Yw respectively. The gate signals Yu, Yv, and Yw are reverse signals of the gate signals Xu, Xv, and Xw, respectively.

IGBTQ11至Q13係閘極信號Xu、Xv、Xw分別為「H」準位時設為導通,而閘極信號Xu、Xv、Xw分別為「L」準位時設為關斷。IGBTQ14至Q16係閘極信號Yu、Yv、Yw分別為「H」準位時設為導通,而閘極信號Yu、Yv、Yw分別為「L」準位時設為關斷。 IGBT Q11 to Q13 series gate signals Xu, Xv, and Xw are set to ON when the “H” level is set, and gate signals Xu, Xv, and Xw are set to “L” to be turned off. IGBT Q14 to Q16 series gate signals Yu, Yv, and Yw are set to be on when the “H” level is respectively, and gate signals Yu, Yv, and Yw are to be turned off when they are “L”.

閘極信號Xu、Yu、Xv、Yv、Xw、Yw各自為脈衝信號列,且為PWM信號。閘極信號Xu、Yu的相位、 閘極信號Xv、Yv的相位、以及閘極信號Xw、Yw的相位係各個偏離120度。閘極信號Xu、Yu、Xv、Yv、Xw、Yw係藉由控制裝置14而產生。 The gate signals Xu, Yu, Xv, Yv, Xw, and Yw are each a pulse signal train and a PWM signal. Phase of gate signals Xu, Yu, The phases of the gate signals Xv and Yv and the phases of the gate signals Xw and Yw are each offset by 120 degrees. The gate signals Xu, Yu, Xv, Yv, Xw, and Yw are generated by the control device 14.

例如,當IGBTQ11、Q15設為導通時,正側的直流線L1經由IGBTQ11而連接於輸出節點8a,並且輸出節點8b經由IGBTQ15而連接於負側的直流線L2,正電壓係輸出至輸出節點8a、8b之間。 For example, when IGBTs Q11 and Q15 are turned on, the positive DC line L1 is connected to the output node 8a via IGBT Q11, and the output node 8b is connected to the negative DC line L2 via IGBT Q15. The positive voltage is output to output node 8a. , 8b.

此外,當IGBTQ12、Q14係作成導通狀態時,正側的直流線L1為經由IGBTQ12而連接於輸出節點8b的同時,輸出節點8a為經由IGBTQ14而連接於負側的直流線L2,負電壓係輸出至輸出節點8a、8b之間。 When the IGBTs Q12 and Q14 are turned on, the positive DC line L1 is connected to the output node 8b via the IGBT Q12, and the output node 8a is the DC line L2 connected to the negative side via the IGBT Q14. The negative voltage is output. To the output nodes 8a, 8b.

在預定的時序藉由閘極信號Xu、Yu、Xv、Yv、Xw、Yw而分別將IGBTQ11至Q16設為導通及關斷狀態,並且調整IGBTQ11至Q16各自的導通時序,藉此即能將直流線L1、L2之間的直流電壓變換成三相交流電壓。 At predetermined timing, the gate signals Xu, Yu, Xv, Yv, Xw, and Yw are used to set the IGBTs Q11 to Q16 to the on and off states, respectively, and the respective turn-on timings of the IGBTs Q11 to Q16 are adjusted. The DC voltage between the lines L1 and L2 is converted into a three-phase AC voltage.

電抗器10a至10c的一方端子係分別連接於反向器8的輸出節點8a、8b、8c,而電抗器10a至10c的另一方端子係分別連接於交流輸出端子T2a、T2b、T2c。電容器11a、11b、11c的一方電極係分別連接於電抗器10a至10c的另一方端子,而電容器11a、11b、11c的另一方電極係均連接於中性點NP。 One terminal of the reactors 10a to 10c is connected to the output nodes 8a, 8b, and 8c of the inverter 8, respectively, and the other terminal of the reactors 10a to 10c is connected to the AC output terminals T2a, T2b, and T2c, respectively. One electrode system of the capacitors 11a, 11b, and 11c is connected to the other terminals of the reactors 10a to 10c, and the other electrode system of the capacitors 11a, 11b, and 11c are connected to the neutral point NP.

電抗器10a至10c及電容器11a、11b、11c係構成低通濾波器,使商用頻率的三相交流電力自反向器8通過交流輸出端子T2a、T2b、T2c,且遮斷反向器8所產 生之開關頻率的信號。 The reactors 10a to 10c and the capacitors 11a, 11b, and 11c constitute a low-pass filter. The commercial frequency three-phase AC power from the inverter 8 passes through the AC output terminals T2a, T2b, and T2c, and blocks the inverter 8 Produce Signal of the switching frequency.

電流檢測器9係檢測流通於電抗器10a之交流輸出電流Io,且將顯示該檢測值的信號Iof施加至控制裝置14。出現於電抗器10a之另一方端子(節點N2)之交流輸出電壓Vo的瞬間值係藉由控制裝置14(第1圖)來檢測。 The current detector 9 detects an AC output current Io flowing through the reactor 10a, and applies a signal Iof showing the detected value to the control device 14. The instantaneous value of the AC output voltage Vo appearing at the other terminal (node N2) of the reactor 10a is detected by the control device 14 (FIG. 1).

又,出現於交流輸出端子T2a、T2b、T2c的三相交流電壓的電壓變動率係較來自商用交流電源15之三相交流電壓的電壓變動還小。交流電壓的電壓變動率係例如在將額定電壓作成基準(100%)時之交流電壓的變動範圍內而予以顯示。自商用交流電源15所供應的交流電壓Vi的電壓變動率係以額定電壓為基準為±10%。相對於此,自穩定化電源裝置1所輸出的交流電壓Vo的電壓變動率為±2%。 In addition, the voltage fluctuation rate of the three-phase AC voltage appearing at the AC output terminals T2a, T2b, and T2c is smaller than that of the three-phase AC voltage from the commercial AC power source 15. The voltage fluctuation rate of the AC voltage is displayed, for example, within a fluctuation range of the AC voltage when the rated voltage is used as a reference (100%). The voltage change rate of the AC voltage Vi supplied from the commercial AC power source 15 is ± 10% based on the rated voltage. In contrast, the voltage fluctuation rate of the AC voltage Vo output from the self-stabilizing power supply device 1 is ± 2%.

第3圖係顯示第1圖所示之控制裝置14之中的轉換器6之控制的相關部分之構成的方塊圖。在第3圖當中,控制裝置14係包含參考電壓產生電路21、電壓檢測器22、減算器23、25、輸出電壓控制電路24、輸出電流控制電路26、以及閘極控制電路27。 FIG. 3 is a block diagram showing the configuration of the relevant part of the control of the converter 6 in the control device 14 shown in FIG. In FIG. 3, the control device 14 includes a reference voltage generating circuit 21, a voltage detector 22, subtractors 23 and 25, an output voltage control circuit 24, an output current control circuit 26, and a gate control circuit 27.

參考電壓產生電路21係產生參考直流電壓Vr。該參考直流電壓Vr係電容器7的端子間電壓(亦即直流線L1、L2之間的直流電壓)Vdc的額定電壓。電壓檢測器22係檢測電容器7的直流電壓Vdc的瞬間值,且輸出顯示檢測值的信號Vdcf。減算器23係求得參考直流電壓Vr和電壓檢測器22的輸出信號Vdcf的偏差△Vdc。 The reference voltage generating circuit 21 generates a reference DC voltage Vr. The reference DC voltage Vr is a rated voltage of the voltage between the terminals of the capacitor 7 (that is, a DC voltage between the DC lines L1 and L2) Vdc. The voltage detector 22 detects the instantaneous value of the DC voltage Vdc of the capacitor 7 and outputs a signal Vdcf that displays the detected value. The subtractor 23 obtains a deviation ΔVdc between the reference DC voltage Vr and the output signal Vdcf of the voltage detector 22.

輸出電壓控制電路24係與偏差△Vdc成正比之值加上偏差△Vdc的積分值而產生電流指令值lir。減算器25係求得電流指令值lir和來自電流檢測器3的信號Iif的偏差△Ii。輸出電流控制電路26係將與偏差△Ii成正比之值加上偏差△Ii的積分值而產生電壓指令值Vir。電壓指令值Vir係形成商用頻率的正弦波信號。 The output voltage control circuit 24 generates a current command value lir by a value proportional to the deviation ΔVdc plus an integral value of the deviation ΔVdc. The subtractor 25 obtains a deviation ΔIi between the current command value lir and the signal Iif from the current detector 3. The output current control circuit 26 generates a voltage command value Vir by adding a value proportional to the deviation ΔIi and an integral value of the deviation ΔIi. The voltage command value Vir is a sine wave signal of a commercial frequency.

閘極控制電路27係根據電壓指令值Vir、電流檢測器3之輸出信號Iif、以及來自減算器23的偏差△Vdc而產生用以控制轉換器6之IGBTQ1至Q6的閘極信號Au、Bu、Av、Bv、Aw、Bw。 The gate control circuit 27 generates gate signals Au, Bu, and IGBTs Q1 to Q6 for controlling the converters 6 based on the voltage command value Vir, the output signal Iif of the current detector 3, and the deviation ΔVdc from the subtractor 23. Av, Bv, Aw, Bw.

第4圖係顯示閘極控制電路27之主要部分的電路方塊圖。在第4圖當中,閘極控制電路27係包含判定器31、頻率調整部32、振盪器33、三角波產生器34、比較器35、緩衝器36、以及反向器37。 FIG. 4 is a circuit block diagram showing a main part of the gate control circuit 27. In FIG. 4, the gate control circuit 27 includes a determiner 31, a frequency adjustment section 32, an oscillator 33, a triangle wave generator 34, a comparator 35, a buffer 36, and an inverter 37.

判定器31係根據電流檢測器9(第1圖、第2圖)的輸出信號Iof而動作,且比較反向器8的輸出電流Io(亦即,負載電流1L)和預定值lc的大小,並輸出顯示比較結果的信號31。當Io>lc時,信號31係設為「L」準位,並選擇通常運轉模式(第二運轉模式)。當Io<lc時,信號31係設為「H」準位,並選擇省電運轉模式(第一運轉模式)。 The determiner 31 operates based on the output signal Iof of the current detector 9 (FIG. 1 and FIG. 2), and compares the magnitude of the output current Io (that is, the load current 1L) of the inverter 8 with a predetermined value lc. And output a signal showing the comparison result 31. When Io> lc, the signal Set 31 to the "L" level and select the normal operation mode (second operation mode). When Io <lc, the signal Set 31 to the "H" level and select the power saving operation mode (first operation mode).

頻率調整部32係根據判定器31之輸出信號31、以及來自減算器23(第3圖)的偏差△Vdc來控制振盪器33的振盪頻率(亦即,振盪器33的輸出時脈信號33 的頻率)。振盪器33係例如電壓控制振盪器。振盪器33的振盪頻率(亦即,輸出時脈信號33的頻率)係能被控制。 The frequency adjustment section 32 is based on the output signal of the determiner 31 31, and the deviation ΔVdc from the subtractor 23 (FIG. 3) to control the oscillation frequency of the oscillator 33 (that is, the output clock signal of the oscillator 33) 33). The oscillator 33 is, for example, a voltage-controlled oscillator. The oscillation frequency of the oscillator 33 (that is, the output clock signal 33 frequency) can be controlled.

頻率調整部32係在判定器31之輸出信號31為「L」準位時(通常運轉模式時),將振盪器33之輸出時脈信號33的頻率設定為較商用頻率(例如60Hz)還充分高的預定頻率fH(例如20KHz)。該情形時,由於轉換器6的IGBTQ1至Q6係以充分高的頻率fH加以轉換,故能使轉換器6的響應速度變快。因此,即使負載電流1L大於預定值lc,亦可將直流電壓Vdc設為參考直流電壓Vr,且來自減算器23的偏差△Vdc=Vr-Vdc係成為零。 The frequency adjustment section 32 is an output signal from the determiner 31 When 31 is at "L" level (in normal operation mode), the clock signal of oscillator 33 is output The frequency of 33 is set to a predetermined frequency fH (for example, 20 KHz) which is sufficiently higher than a commercial frequency (for example, 60 Hz). In this case, since the IGBTs Q1 to Q6 of the converter 6 are converted at a sufficiently high frequency fH, the response speed of the converter 6 can be made faster. Therefore, even if the load current 1L is larger than the predetermined value lc, the DC voltage Vdc can be set as the reference DC voltage Vr, and the deviation ΔVdc = Vr−Vdc from the subtractor 23 becomes zero.

此外,頻率調整部32係在判定器31的輸出信號31為自「L」準位變更為「H」準位時(自通常運轉模式變更為省電模式時),將振盪器33的輸出時脈信號33的頻率自上述頻率fH起漸漸緩慢下降。 The frequency adjustment unit 32 is based on the output signal of the determiner 31. When 31 is changed from "L" level to "H" level (from normal operation mode to power saving mode), the output clock signal of the oscillator 33 is changed The frequency of 33 gradually decreases from the frequency fH.

將時脈信號33的頻率予以下降時,則轉換器6的IGBTQ1至Q6的開關頻率降低,且轉換器6的響應速度降低。因此,將直流電壓Vdc設為參考直流電壓Vr的響應速度降低,且來自減算器23的偏差△Vdc=Vr-Vdc係成為負值。 Clock signal When the frequency of 33 is decreased, the switching frequencies of the IGBTs Q1 to Q6 of the converter 6 are reduced, and the response speed of the converter 6 is reduced. Therefore, the response speed of the DC voltage Vdc is set to the reference DC voltage Vr, and the deviation ΔVdc = Vr−Vdc from the subtractor 23 becomes a negative value.

頻率調整部32係在偏差△Vdc成為負的預定值VM時,停止振盪器33之輸出時脈信號33的頻率的下降。該情形時,偏差△Vdc係在經過某個延遲時間之後而成為零。將偏差△Vdc較負的預定值VM更為降低時,則無法將偏差△Vdc設為零。因此,頻率調整部32係在 省電模式時,將時脈信號33的頻率調整為直流電壓Vdc能夠設為參考直流電壓Vr的範圍內的下限值fL。 The frequency adjustment unit 32 stops the output clock signal of the oscillator 33 when the deviation ΔVdc becomes a negative predetermined value VM. The frequency of 33 drops. In this case, the deviation ΔVdc becomes zero after a certain delay time has elapsed. When the deviation ΔVdc is reduced more than the negative predetermined value VM, the deviation ΔVdc cannot be set to zero. Therefore, when the frequency adjustment unit 32 is in the power saving mode, The frequency of 33 is adjusted so that the DC voltage Vdc can be set to the lower limit value fL within the range of the reference DC voltage Vr.

三角波產生器34係輸出和振盪器33之輸出時脈信號33相同頻率的三角波信號Cu。比較器35係比較來自輸出電流控制電路26(第3圖)的電壓指令值Vir、及來自三角波產生器34的三角波信號Cu的高低,且輸出顯示比較結果的閘極信號Au。緩衝器36係將閘極信號Au施加至轉換器6。反向器37係將閘極信號Au予以反轉,產生閘極信號Bu並施加至轉換器6。 The triangle wave generator 34 is the output and the oscillator 33 is the output clock signal. 33 triangular wave signal Cu of the same frequency. The comparator 35 compares the voltage command value Vir from the output current control circuit 26 (FIG. 3) with the level of the triangle wave signal Cu from the triangle wave generator 34, and outputs a gate signal Au showing the comparison result. The buffer 36 applies a gate signal Au to the converter 6. The inverter 37 inverts the gate signal Au to generate a gate signal Bu and applies it to the converter 6.

閘極控制電路27係以和閘極信號Au、Bu相同的方法產生閘極信號Av、Bv、以及閘極信號Aw、Bw。其中,閘極信號Au、Bu的相位、閘極信號Av、Bv的相位、以及閘極信號Aw、Bw的相位係各個偏離120度。 The gate control circuit 27 generates the gate signals Av and Bv and the gate signals Aw and Bw in the same manner as the gate signals Au and Bu. The phases of the gate signals Au and Bu, the phases of the gate signals Av and Bv, and the phases of the gate signals Aw and Bw are each offset by 120 degrees.

第5圖(A)、(B)、(C)係顯示第4圖所示的電壓指令值Vir、三角波信號Cu、以及閘極信號Au、Bu之波形的時序圖。如第5圖(A)所示,電壓指令值Vir係商用頻率的正弦波信號。三角波信號Cu的頻率係較電壓指令值Vir的頻率(商用頻率)還高。三角波信號Cu之正側的峰值係較電壓指令值Vir之正側的峰值還高。三角波信號Cu之負側的峰值係較電壓指令值Vir之負側的峰值還低。 (A), (B), and (C) of FIG. 5 are timing charts showing waveforms of the voltage command value Vir, the triangular wave signal Cu, and the gate signals Au and Bu shown in FIG. As shown in FIG. 5 (A), the voltage command value Vir is a sine wave signal of a commercial frequency. The frequency of the triangular wave signal Cu is higher than the frequency (commercial frequency) of the voltage command value Vir. The peak of the positive side of the triangular wave signal Cu is higher than the peak of the positive side of the voltage command value Vir. The peak value on the negative side of the triangular wave signal Cu is lower than the peak value on the negative side of the voltage command value Vir.

如第5圖(A)、(B)所示,三角波信號Cu的準位係較電壓指令值Vir還高時,閘極信號Au係形成「L」準位,三角波信號Cu的準位係較電壓指令值Vir還低時,閘極信號Au係形成「H」準位。閘極信號Au係形成正脈衝 信號列。 As shown in Figs. 5 (A) and (B), when the level of the triangular wave signal Cu is higher than the voltage command value Vir, the gate signal Au forms the "L" level, and the level of the triangular wave signal Cu is relatively high. When the voltage command value Vir is still low, the gate signal Au forms the "H" level. Gate signal Au system forms positive pulse Signal column.

在電壓指令值Vir為正極性的期間,當電壓指令值Vir上升時,閘極信號Au的脈衝幅度增大。在電壓指令值Vir為負極性的期間,當電壓指令值Vir降低時,閘極信號Au的脈衝幅度減少。如第5圖(B)、(C)所示,閘極信號Bu係形成閘極信號Au的反轉信號。閘極信號Au、Bu各自為PWM信號。 While the voltage command value Vir is positive, when the voltage command value Vir rises, the pulse amplitude of the gate signal Au increases. While the voltage command value Vir is negative, when the voltage command value Vir decreases, the pulse amplitude of the gate signal Au decreases. As shown in FIGS. 5 (B) and (C), the gate signal Bu forms an inverted signal of the gate signal Au. The gate signals Au and Bu are each a PWM signal.

閘極信號Av、Bv以及閘極信號Aw、Bw各自的波形係和閘極信號Au、Bu的波形相同。其中,閘極信號Au、Bu的相位、閘極信號Av、Bv的相位、以及閘極信號Aw、Bw的相位係各自移離120度。 The waveforms of the gate signals Av and Bv and the gate signals Aw and Bw are the same as those of the gate signals Au and Bu. Among them, the phases of the gate signals Au and Bu, the phases of the gate signals Av and Bv, and the phases of the gate signals Aw and Bw are each shifted by 120 degrees.

由第5圖(A)、(B)、(C)可得知,當提高三角波信號Cu的頻率時,閘極信號Au、Bu、Av、Bv、Aw、Bw的頻率變高,且IGBTQ1至Q6的開關頻率(導通及關斷的次數/秒)變高。當IGBTQ1至Q6的開關頻率變高時,則IGBTQ1至Q6所產生的開關損失係增大,且穩定化電源裝置1的效率降低。其中,當IGBTQ1至Q6的開關頻率變高時,負載電流1L為較大時,亦可縮小直流電壓Vdc的電壓變動率。當直流電壓Vdc為穩定時,則交流輸出電壓Vo的電壓變動率減少,且獲得得高品質的交流輸出電壓Vo。 It can be known from Fig. 5 (A), (B), (C) that when the frequency of the triangular wave signal Cu is increased, the frequencies of the gate signals Au, Bu, Av, Bv, Aw, and Bw become higher, and IGBTs Q1 to The switching frequency (number of on / off times / second) of Q6 becomes higher. When the switching frequencies of the IGBTs Q1 to Q6 become higher, the switching losses generated by the IGBTs Q1 to Q6 increase, and the efficiency of the stabilized power supply device 1 decreases. Among them, when the switching frequencies of the IGBTs Q1 to Q6 become higher and the load current 1L is larger, the voltage fluctuation rate of the DC voltage Vdc can also be reduced. When the DC voltage Vdc is stable, the voltage change rate of the AC output voltage Vo is reduced, and a high-quality AC output voltage Vo is obtained.

相反的,當降低三角波信號Cu的頻率時,則閘極信號Au、Bu、Av、Bv、Aw、Bw的頻率變低,且IGBTQ1至Q6的開關頻率變低。當IGBTQ1至Q6的開關頻率變低時,則IGBTQ1至Q6所產生的開關損失減少,且提高穩定 化電源裝置1的效率。其中,當IGBTQ1至Q6的開關頻率變低時,負載電流1L為較大時,則直流電壓Vdc的電壓變動率增大。當直流電壓Vdc產生變動時,則交流輸出電壓Vo的電壓變動率增大,而交流輸出電壓Vo的波形劣化。 Conversely, when the frequency of the triangular wave signal Cu is reduced, the frequencies of the gate signals Au, Bu, Av, Bv, Aw, and Bw become lower, and the switching frequencies of the IGBTs Q1 to Q6 become lower. When the switching frequencies of IGBTs Q1 to Q6 become lower, the switching losses generated by IGBTs Q1 to Q6 are reduced and stability is improved. Efficiency of the power supply device 1. Among them, when the switching frequencies of the IGBTs Q1 to Q6 become low and the load current 1L is large, the voltage fluctuation rate of the DC voltage Vdc increases. When the DC voltage Vdc fluctuates, the voltage fluctuation rate of the AC output voltage Vo increases, and the waveform of the AC output voltage Vo deteriorates.

在習知的穩定化電源裝置中,將三角波信號Cu的頻率固定為較商用頻率(例如60Hz)還充分高的頻率fH(例如20KHz),且將電壓變動率抑制於較小的值(±2%)。因此,能驅動對電壓變動率的容許範圍較小的負載16(例如電腦),相反的,IGBTQ1至Q6產生較大的開關損失,且穩定化電源裝置的效率降低。 In the conventional stabilized power supply device, the frequency of the triangular wave signal Cu is fixed to a frequency fH (for example, 20KHz) sufficiently higher than the commercial frequency (for example, 60Hz), and the voltage fluctuation rate is suppressed to a small value (± 2 %). Therefore, it is possible to drive a load 16 (for example, a computer) having a small allowable range of the voltage fluctuation rate. On the contrary, IGBTs Q1 to Q6 generate a large switching loss and stabilize the efficiency of the power supply device.

但,負載電流1L為充分小時、或負載16為待機狀態且不消耗電流時,則將三角波信號Cu的頻率設定為較上述商用頻率fH更低的頻率fL(例如15KHz),且能將IGBTQ1至Q6所產生的開關損失予以減低化。 However, when the load current 1L is sufficiently small, or when the load 16 is in a standby state and does not consume current, the frequency of the triangular wave signal Cu is set to a frequency fL (for example, 15KHz) lower than the commercial frequency fH described above, and IGBTs Q1 to Q6 reduces switching losses.

因此,在本實施形態1中,設置有通常運轉模式、以及省電運轉模式,該通常運轉模式係將三角波信號Cu的頻率設定為相對較高的頻率fH來降低電壓變動率者,而該省電運轉模式係在交流輸出電壓Vo能夠設為參考交流電壓Vr的範圍內將三角波信號Cu的頻率設定為下限值fL來降低開關損失者。反向器8的輸出電流Io較預定值lc還大時,選擇通常運轉模式,而反向器8的輸出電流Io較預定值lc還小時,選擇省電運轉模式。 Therefore, in the first embodiment, a normal operation mode and a power-saving operation mode are provided. The normal operation mode is one in which the frequency of the triangular wave signal Cu is set to a relatively high frequency fH to reduce the voltage fluctuation rate. In the electric operation mode, the frequency of the triangular wave signal Cu is set to the lower limit value fL in a range where the AC output voltage Vo can be set to the reference AC voltage Vr to reduce the switching loss. When the output current Io of the inverter 8 is larger than the predetermined value lc, the normal operation mode is selected, and when the output current Io of the inverter 8 is smaller than the predetermined value lc, the power-saving operation mode is selected.

以下,說明有關於該穩定化電源裝置1的使用方法及動作。首先,說明有關於自穩定化電源裝置1供 應交流電力至負載16,且輸出電流Io(亦即負載電流1L)較預定值lc還大的情形。該情形時,電磁接觸器2、12係設為導通。自商用交流電源15所供應的三相交流電壓係藉由轉換器6而變換成直流電壓Vdc。 The method and operation of using the stabilized power supply device 1 will be described below. First, the self-stabilizing power supply device 1 will be described. A case where AC power should be applied to the load 16 and the output current Io (ie, the load current 1L) is larger than a predetermined value lc. In this case, the electromagnetic contactors 2 and 12 are turned on. The three-phase AC voltage supplied from the commercial AC power source 15 is converted into a DC voltage Vdc by the converter 6.

亦即,在控制裝置14(第3圖)中,藉由參考電壓產生電路21來產生參考直流電壓Vr,且藉由電壓檢測器22產生顯示直流電壓Vdc的檢測值的信號Vdcf。利用減算器23產生參考直流電壓Vr和信號Vdcf的偏差△Vdc,根據該偏差△Vdc並藉由輸出電壓控制電路24來產生電流指令值lir。藉由減算器25產生電流指令值lir和來自電流檢測器3(第1圖、第2圖)的信號Iif的偏差△Ii,且根據該偏差△Ii並藉由輸出電流控制電路26來產生電壓指令值Vir。 That is, in the control device 14 (FIG. 3), a reference DC voltage Vr is generated by the reference voltage generating circuit 21, and a signal Vdcf showing a detection value of the DC voltage Vdc is generated by the voltage detector 22. The subtractor 23 generates a deviation ΔVdc between the reference DC voltage Vr and the signal Vdcf, and the current command value lir is generated by the output voltage control circuit 24 based on the deviation ΔVdc. The deviation ΔIi of the current command value lir and the signal Iif from the current detector 3 (FIG. 1 and FIG. 2) is generated by the subtractor 25, and a voltage is generated by the output current control circuit 26 based on the deviation ΔIi. Command value Vir.

在閘極控制電路27(第4圖)中,由於輸出電流Io較預定值lc還大,故判定器31的輸出信號31係作成「L」準位,且選擇通常運轉模式。31作成「L」準位時,則藉由頻率調整部32、振盪器33、以及三角波產生器34而產生相較較高頻率fH的三角波信號Cu。藉由比較器35比較電壓指令值Vir和三角波信號Cu,且藉由緩衝器36及反向器37來產生閘極信號Au、Bu。 In the gate control circuit 27 (FIG. 4), since the output current Io is larger than the predetermined value lc, the output signal of the determiner 31 The 31 series is set to the "L" level and the normal operation mode is selected. When the "L" level is made at 31, a triangle wave signal Cu having a relatively high frequency fH is generated by the frequency adjustment unit 32, the oscillator 33, and the triangle wave generator 34. The voltage command value Vir and the triangular wave signal Cu are compared by the comparator 35, and the gate signals Au and Bu are generated by the buffer 36 and the inverter 37.

此外,在閘極控制電路27中,以和閘極信號Au、Bu相同的方法產生閘極信號Av、Bv、以及閘極信號Aw、Bw。在轉換器6(第2圖)中,IGBTQ1至Q6各自根據閘極信號Au、Bu、Av、Bv、Aw、Bw來設為導通及關斷, 來自商用交流電源15的商用頻率的三相交流電壓係變換成直流電壓Vdc。該直流電壓Vdc係藉由反向器8再變換成商用頻率的三相交流電壓並供應至負載16。負載16係藉由自穩定化電源裝置1所供應的三相交流電力而運轉。 In addition, in the gate control circuit 27, the gate signals Av and Bv and the gate signals Aw and Bw are generated in the same manner as the gate signals Au and Bu. In converter 6 (Figure 2), IGBTs Q1 to Q6 are each turned on and off according to the gate signals Au, Bu, Av, Bv, Aw, and Bw. The commercial three-phase AC voltage from the commercial AC power source 15 is converted into a DC voltage Vdc. The DC voltage Vdc is converted into a commercial three-phase AC voltage by the inverter 8 and supplied to the load 16. The load 16 is operated by three-phase AC power supplied from the stabilized power supply device 1.

該通常運轉模式中,由於IGBTQ1至Q6各自係以相對較高的頻率fH導通及關斷,故即使負載電流1L為較大時,亦可產生穩定的直流電壓Vdc,且可產生電壓變動率較小的高品質的交流電壓Vo。其中,IGBTQ1至Q6所產生的開關損失變大,且穩定化電源裝置1的效率降低。 In this normal operation mode, since IGBTs Q1 to Q6 are turned on and off at a relatively high frequency fH, even when the load current 1L is large, a stable DC voltage Vdc can be generated, and the voltage change rate can be relatively low. Small high-quality AC voltage Vo. Among them, the switching losses generated by the IGBTs Q1 to Q6 become larger, and the efficiency of the stabilized power supply device 1 decreases.

以下,說明有關於例如負載16為待機狀態,自穩定化電源裝置1未供應交流電力至負載16,且輸出電流Io(亦即負載電流1L)較預定值lc還小的情形。該情形時,電磁接觸器2、12亦設為導通。自商用交流電源15所供應的三相交流電壓係藉由轉換器6而變換成直流電壓Vdc。 Hereinafter, a case where the load 16 is in a standby state, the self-stabilized power supply device 1 does not supply AC power to the load 16, and the output current Io (that is, the load current 1L) is smaller than a predetermined value lc will be described. In this case, the electromagnetic contactors 2 and 12 are also turned on. The three-phase AC voltage supplied from the commercial AC power source 15 is converted into a DC voltage Vdc by the converter 6.

亦即,在控制裝置14(第3圖)中,藉由參考電壓產生電路21來產生參考直流電壓Vr,且藉由電壓檢測器22產生顯示直流電壓Vdc的檢測值的信號Vdcf。利用減算器23產生參考直流電壓Vr和信號Vdcf的偏差△Vdc,而根據該偏差△Vdc並藉由輸出電壓控制電路24來產生電流指令值lir。藉由減算器25產生電流指令值lir和來自電流檢測器3(第1圖、第2圖)的信號Iif的偏差△Ii,且根據該偏差△Ii並藉由輸出電流控制電路26來產 生電壓指令值Vir。 That is, in the control device 14 (FIG. 3), a reference DC voltage Vr is generated by the reference voltage generating circuit 21, and a signal Vdcf showing a detection value of the DC voltage Vdc is generated by the voltage detector 22. The subtractor 23 generates a deviation ΔVdc between the reference DC voltage Vr and the signal Vdcf, and the current command value lir is generated by the output voltage control circuit 24 based on the deviation ΔVdc. The deviation ΔIi of the current command value lir and the signal Iif from the current detector 3 (FIG. 1 and FIG. 2) is generated by the subtractor 25, and the output current control circuit 26 is used to produce the deviation ΔIi based on the deviation ΔIi. Generate voltage command value Vir.

在閘極控制電路27(第4圖)中,由於輸出電流Io較預定值lc還小,故判定器31的輸出信號31係作成「H」準位,且選擇省電運轉模式。信號31作成「H」準位時,藉由頻率調整部32而將振盪器33的輸出時脈信號33的頻率自上述頻率fH起漸漸緩慢下降。 In the gate control circuit 27 (FIG. 4), since the output current Io is smaller than the predetermined value lc, the output signal of the determiner 31 The 31 series creates the "H" level and selects the power saving operation mode. signal When the “H” level is established at 31, the frequency signal output from the oscillator 33 is output by the frequency adjustment unit 32 The frequency of 33 gradually decreases from the frequency fH.

當時脈信號33的頻率下降時,則將直流電壓Vdc設為參考交流電壓Vr的響應速度降低,且來自減算器23(第3圖)的偏差△Vdc係成為負值。當偏差△Vo達到負的預定值VM時,則藉由頻率調整部32來停止振盪器33的振盪頻率的下降。藉此,在交流電壓Vo能夠設為參考交流電壓Vr的範圍內使時脈信號33的頻率設定為下限值fL。 Clock signal When the frequency of 33 decreases, the response speed of the DC voltage Vdc is set to the reference AC voltage Vr, and the deviation ΔVdc from the subtractor 23 (FIG. 3) becomes negative. When the deviation ΔVo reaches a negative predetermined value VM, the frequency adjustment unit 32 stops the decrease in the oscillation frequency of the oscillator 33. Thereby, the clock signal is made within a range where the AC voltage Vo can be set to the reference AC voltage Vr. The frequency of 33 is set to the lower limit value fL.

藉由三角波產生器34而產生和時脈信號33相同頻率fL的三角波信號Cu。藉由比較器35比較電壓指令值Vir和三角波信號Cu,且藉由緩衝器36及反向器37而產生閘極信號Au、Bu。 Clock signal generated by triangle wave generator 34 33 triangular wave signal Cu of the same frequency fL. The voltage command value Vir and the triangle wave signal Cu are compared by the comparator 35, and the gate signals Au and Bu are generated by the buffer 36 and the inverter 37.

此外,在閘極控制電路27中,以和閘極信號Au、Bu相同的方法來產生閘極信號Av、Bv、以及閘極信號Aw、Bw。在轉換器6(第2圖)中,IGBTQ1至Q6各自根據閘極信號Au、Bu、Av、Bv、Aw、Bw設為導通及關斷,來自商用交流電源15的商用頻率的三相交流電壓係變換成直流電壓Vdc。該直流電壓Vdc係藉由反向器8再變換成商用頻率的三相交流電壓並供應至負載16。負載16係 接受三相交流電力,且待機而未消耗電流。 In addition, in the gate control circuit 27, the gate signals Av and Bv and the gate signals Aw and Bw are generated in the same manner as the gate signals Au and Bu. In converter 6 (figure 2), IGBTs Q1 to Q6 are turned on and off according to the gate signals Au, Bu, Av, Bv, Aw, and Bw, respectively, and a three-phase AC voltage of a commercial frequency from a commercial AC power source 15 The system is converted into a DC voltage Vdc. The DC voltage Vdc is converted into a commercial three-phase AC voltage by the inverter 8 and supplied to the load 16. Load 16 series Accepts three-phase AC power and is on standby without consuming current.

在該省電運轉模式中,由於IGBTQ1至Q6各自係以相對較低的頻率fL設為導通及關斷,故IGBTQ1至Q6所產生的開關損失變小,且提高穩定化電源裝置1的效率。 In this power-saving operation mode, since the IGBTs Q1 to Q6 are each turned on and off at a relatively low frequency fL, the switching losses generated by the IGBTs Q1 to Q6 are reduced, and the efficiency of the stabilized power supply device 1 is improved.

如上述,在本實施形態1中,負載電流1L較預定值lc還大時,則將三角波信號Cu的頻率設定為相對較高的頻率fH,而負載電流1L較預定值lc還小時,則在將直流電壓Vdc能夠設為參考直流電壓Vr的範圍內將三角波信號Cu的頻率設定為下限值fL。因此,負載16為不消耗電流的待機狀態時,可減低轉換器6的IGBTQ1至Q6所產生的開關損失,且可提高穩定化電源裝置1的效率。 As described above, in the first embodiment, when the load current 1L is larger than the predetermined value lc, the frequency of the triangular wave signal Cu is set to a relatively high frequency fH, and the load current 1L is smaller than the predetermined value lc. The frequency of the triangular wave signal Cu is set to the lower limit value fL within a range where the DC voltage Vdc can be set to the reference DC voltage Vr. Therefore, when the load 16 is in a standby state that does not consume current, the switching losses generated by the IGBTs Q1 to Q6 of the converter 6 can be reduced, and the efficiency of the stabilized power supply device 1 can be improved.

第6圖係顯示實施形態1之變更例的電路方塊圖,且為和第4圖對比的圖示。在第6圖當中,該變更例係以頻率調整部41置換頻率調整部32。頻率調整部41係在判定器31的輸出信號31作成「H」準位時,在監視來自減算器23的偏差△Vo的狀態下,將振盪器33的輸出時脈信號33的頻率自fH且下降。 FIG. 6 is a circuit block diagram showing a modified example of the first embodiment, and is a diagram compared with FIG. 4. In FIG. 6, this modification example is performed by replacing the frequency adjustment unit 32 with the frequency adjustment unit 41. The frequency adjustment unit 41 is based on the output signal of the determiner 31 When the "H" level is established at 31, the output clock signal of the oscillator 33 is monitored while monitoring the deviation ΔVo from the subtractor 23. The frequency of 33 decreases from fH.

當時脈信號33的頻率下降時,則將直流電壓Vdc設為參考直流電壓Vr的響應速度變慢,且來自減算器23的偏差△Vdc=Vr-Vdcf係成為負值。當偏差△Vdc達到負的預定值Vm時,則頻率調整部41係將振盪器33的輸出時脈信號33的頻率漸漸緩慢地上升,當形成△Vdc=0時,停止時脈信號33的頻率之上升。 Clock signal When the frequency of 33 decreases, the response speed of the DC voltage Vdc is set to the reference DC voltage Vr, and the deviation ΔVdc = Vr-Vdcf from the subtractor 23 becomes a negative value. When the deviation ΔVdc reaches a negative predetermined value Vm, the frequency adjusting section 41 outputs the clock signal of the oscillator 33 The frequency of 33 rises slowly, and when △ Vdc = 0 is formed, the clock signal is stopped. The frequency of 33 rises.

藉此,時脈信號33的頻率,在直流電壓Vdc能夠設為參考直流電壓Vr的範圍內設定為下限值fL。由於其他構成及動作和實施形態1相同,故不重覆其說明。該變更例亦能獲得和實施形態1相同的功效。 With this, the clock signal The frequency of 33 is set to the lower limit value fL within a range where the DC voltage Vdc can be set to the reference DC voltage Vr. Since other structures and operations are the same as those of the first embodiment, the description thereof will not be repeated. This modification can also obtain the same effect as that of the first embodiment.

第7圖係顯示實施形態1之另一變更例的電路方塊圖,且為和第4圖對比之圖示。在第7圖當中,該變更例係以頻率調整部42置換頻率調整部32。頻率調整部42係在判定器31的輸出信號31為自「H」準位下降至「L」準位時,在監視來自減算器23的偏差△Vdc的狀態下,使振盪器33的輸出時脈信號33的頻率自fL起上升。 FIG. 7 is a circuit block diagram showing another modification of the first embodiment, and is a diagram compared with FIG. 4. In FIG. 7, this modification example is performed by replacing the frequency adjustment unit 32 with the frequency adjustment unit 42. The frequency adjustment section 42 is based on the output signal of the determiner 31 When 31 is falling from the "H" level to the "L" level, the clock signal of the oscillator 33 is output while monitoring the deviation ΔVdc from the subtractor 23. The frequency of 33 rises from fL.

將時脈信號33的頻率予以上升時,則將直流電壓Vdc設為參考直流電壓Vr的響應速度變快,且來自減算器23的偏差△Vdc=Vr-Vdcf係自負值起朝零而改變。頻率調整部41係當形成△Vdc=0時,停止時脈信號33的頻率之上升。 Clock signal When the frequency of 33 is increased, the response speed of the DC voltage Vdc is set to the reference DC voltage Vr, and the deviation ΔVdc = Vr-Vdcf from the subtractor 23 changes from negative to zero. The frequency adjustment unit 41 stops the clock signal when ΔVdc = 0 is formed. The frequency of 33 rises.

藉此,時脈信號33的頻率(亦即三角波信號Cu的頻率)係與負載電流1L的大小無關,而在直流電壓Vdc能夠設為參考直流電壓Vr的範圍內來設定為下限值。由於其他構成及動作和實施形態1相同,故不重覆其說明。該變更例亦能獲得和實施形態1相同的功效。 With this, the clock signal The frequency of 33 (that is, the frequency of the triangular wave signal Cu) is independent of the magnitude of the load current 1L, and is set to a lower limit value within a range where the DC voltage Vdc can be set to the reference DC voltage Vr. Since other structures and operations are the same as those of the first embodiment, the description thereof will not be repeated. This modification can also obtain the same effect as that of the first embodiment.

第8圖係顯示實施形態1之又另一變更例的電路方塊圖,且為和第4圖對比之圖示。在第8圖當中,該變更例係在判定器31和頻率調整部32之間追加開關43。開關43的第一端子43a係接受判定器31的輸出信號 31,開關43的第二端子43b係接受操作部13(第1圖)所產生的信號SE,而開關43的共通端子43c係連接於頻率調整部32。穩定化電源裝置1的使用者係操作該操作部13而產生信號43及信號SE。 FIG. 8 is a circuit block diagram showing still another modification of the first embodiment, and is a diagram compared with FIG. 4. In FIG. 8, this modification is based on the addition of a switch 43 between the determiner 31 and the frequency adjustment unit 32. The first terminal 43a of the switch 43 receives the output signal of the determiner 31 31. The second terminal 43b of the switch 43 receives the signal SE generated by the operation unit 13 (FIG. 1), and the common terminal 43c of the switch 43 is connected to the frequency adjustment unit 32. The user of the stabilized power supply device 1 generates a signal by operating the operation unit 13 43 and signal SE.

開關43係藉由操作部13所產生的信號43來控制。信號43為「H」準位時,開關43的第一端子43a及共通端子43c之間導通,而判定器31的輸出信號31係經由開關43來施加至頻率調整部32。該情形,該變更例係和實施形態1相同。 The switch 43 is a signal generated by the operation unit 13 43 to control. signal When 43 is at the "H" level, the first terminal 43a and the common terminal 43c of the switch 43 are conducted, and the output signal of the determiner 31 is 31 is applied to the frequency adjustment section 32 via the switch 43. In this case, this modification example is the same as that in the first embodiment.

信號43為「L」準位時,則開關43的第二端子43b及共通端子43c之間導通,而來自操作部13的信號SE係經由開關43來施加至頻率調整部32。頻率調整部32係信號SE為「L」準位時,將振盪器33的輸出時脈信號33的頻率設定為相對較高的頻率fH。 signal When 43 is at the "L" level, the second terminal 43b and the common terminal 43c of the switch 43 are conducted, and the signal SE from the operation unit 13 is applied to the frequency adjustment unit 32 via the switch 43. When the frequency adjustment unit 32 series signal SE is at the "L" level, the clock signal output from the oscillator 33 is output. The frequency of 33 is set to a relatively high frequency fH.

此外,頻率調整部32係信號SE為「H」準位時,在直流電壓Vdc能夠設為參考直流電壓Vr的範圍內,將振盪器33的輸出時脈信號33的頻率設定為下限值fL。 In addition, when the frequency adjustment unit 32 series signal SE is at the "H" level, the output clock signal of the oscillator 33 is set within a range where the DC voltage Vdc can be set to the reference DC voltage Vr. The frequency of 33 is set to the lower limit value fL.

亦即,頻率調整部32係信號SE為「H」準位時,負載電流1L減少而偏差△Vdc成為正值時,在監視偏差△Vdc的狀態下,將三角波信號Cu的頻率下降,偏差△Vdc成為負值VM時,停止三角波信號Cu的頻率的下降,藉此將三角波信號Cu之值調整為下限值。 That is, when the frequency adjustment unit 32 series signal SE is at the "H" level, the load current 1L decreases and the deviation ΔVdc becomes a positive value, while the deviation ΔVdc is being monitored, the frequency of the triangular wave signal Cu is decreased and the deviation Δ When Vdc becomes a negative value VM, the frequency of the triangular wave signal Cu is stopped from decreasing, thereby adjusting the value of the triangular wave signal Cu to a lower limit value.

此外,頻率調整部32係信號SE為「H」準位時,負載電流1L增加而偏差△Vo成為負值時,在監視偏 差△Vo的狀態下,將三角波信號Cu的頻率上升,偏差△Vdc成為零時,停止三角波信號Cu的頻率的上升,藉此將三角波信號Cu之值調整為下限值。 In addition, when the frequency adjustment unit 32 series signal SE is at the "H" level, the load current 1L increases and the deviation ΔVo becomes a negative value. In the state of the difference ΔVo, the frequency of the triangle wave signal Cu is increased, and when the deviation ΔVdc becomes zero, the frequency of the triangle wave signal Cu is stopped to increase the value of the triangle wave signal Cu to a lower limit value.

該變更例係除了獲得和實施形態1相同的功效之外,藉由操作該操作部13而能選擇通常運轉模式(43=L,SE=L)與省電運轉模式(43=L,SE=H)之中之期望的運轉模式,該通常運轉模式(43=L,SE=L)係將三角波信號Cu的頻率設定為相對較高值fH者,而省電運轉模式(43=L,SE=H)係將三角波信號Cu的頻率設定為下限值fL者。又,亦可設置頻率調整部41(第6圖)或頻率調整部42(第7圖)以取代頻率調整部32。 This modified example allows the normal operation mode to be selected by operating the operation unit 13 except that the same effect as that of the first embodiment is obtained ( 43 = L, SE = L) and power-saving operation mode ( 43 = L, SE = H), the normal operation mode ( (43 = L, SE = L) means the frequency of the triangular wave signal Cu is set to a relatively high value fH, and the power-saving operation mode ( (43 = L, SE = H) means the frequency of the triangular wave signal Cu is set to the lower limit value fL. Instead of the frequency adjustment section 32, a frequency adjustment section 41 (FIG. 6) or a frequency adjustment section 42 (FIG. 7) may be provided.

實施形態2 Embodiment 2

第9圖係顯示本發明之實施形態2的不斷電電源系統之構成的方塊圖。在第9圖當中,該不斷電電源系統係具備穩定化電源裝置1、複數(第9圖為兩個)個不斷電電源裝置U1、U2、以及複數(該情形時為兩個)個電池B1、B2。 Fig. 9 is a block diagram showing the structure of a uninterruptible power supply system according to a second embodiment of the present invention. In FIG. 9, the uninterruptible power supply system includes a stabilized power supply device 1, a plurality (two in FIG. 9) of the uninterruptible power supply devices U1, U2, and a plurality (two in this case). B1, B2.

如第1圖所示,穩定化電源裝置1係包含交流輸入端子T1、以及交流輸出端子T2。交流輸入端子T1係接受來自旁路(by pass)交流電源45的交流電壓Vi。旁路交流電源45係輸出交流電力的自家發電機,亦可為商用交流電源。 As shown in FIG. 1, the stabilized power supply device 1 includes an AC input terminal T1 and an AC output terminal T2. The AC input terminal T1 receives an AC voltage Vi from a by-pass AC power source 45. The bypass AC power supply 45 is its own generator that outputs AC power, and it can also be a commercial AC power supply.

穩定化電源裝置1係如實施形態1所說明之方式,一旦將自旁路交流電源45所接受的交流電壓Vi變換成直流電壓Vdc,則將該直流電壓Vdc變換成商用頻率 之交流電壓Vo並輸出至交流輸出端子T2。交流輸出電壓Vo的電壓變動率(例如±2%)係較交流輸入電壓Vi的電壓變動率(例如±10%)還小。 The stabilized power supply device 1 is the method described in the first embodiment. Once the AC voltage Vi received from the bypass AC power supply 45 is converted into a DC voltage Vdc, the DC voltage Vdc is converted into a commercial frequency. The AC voltage Vo is output to the AC output terminal T2. The voltage change rate (for example, ± 2%) of the AC output voltage Vo is smaller than the voltage change rate (for example, ± 10%) of the AC input voltage Vi.

此外,穩定化電源裝置1係如實施形態1所說明之方式,輸出電流Io較預定值lc還小時,在直流電壓Vdc能夠設為參考直流電壓Vr的範圍內,將三角波信號Cu的頻率調整為下限值fL,減低轉換器6所產生的損失。此外,穩定化電源裝置1輸出電流Io較預定值lc還大時,將三角波信號Cu的頻率設定為相對較高值fH,且穩定地維持直流電壓Vdc於參考直流電壓Vr。 In addition, the stabilized power supply device 1 is the same as that described in the first embodiment. The output current Io is smaller than the predetermined value lc, and the frequency of the triangular wave signal Cu is adjusted to a range where the DC voltage Vdc can be set to the reference DC voltage Vr. The lower limit value fL reduces the loss caused by the converter 6. In addition, when the output current Io of the stabilized power supply device 1 is larger than the predetermined value lc, the frequency of the triangular wave signal Cu is set to a relatively high value fH, and the DC voltage Vdc is stably maintained at the reference DC voltage Vr.

不斷電電源裝置U1、U2各自係具備交流輸入端子T11、旁路輸入端子T12、電池端子T13、以及交流輸出端子T14。交流輸入端子T11係自商用交流電源15接受商用頻率的交流電壓Vi。旁路輸入端子T12係自穩定化電源裝置1的交流輸出端子T2接受交流電壓Vo。 The uninterruptible power supply devices U1 and U2 each include an AC input terminal T11, a bypass input terminal T12, a battery terminal T13, and an AC output terminal T14. The AC input terminal T11 receives an AC voltage Vi from a commercial AC power source 15 at a commercial frequency. The bypass input terminal T12 is an AC output terminal T2 of the self-stabilizing power supply device 1 and receives an AC voltage Vo.

電池端子T13係連接於對應的電池B1或B2。電池B1、B2各自儲存直流電力。交流輸出端子T14係連接於對應的負載LD1或LD2。負載LD1、LD2係分別藉由不斷電電源裝置U1、U2所供應的交流電力而驅動。 The battery terminal T13 is connected to the corresponding battery B1 or B2. The batteries B1 and B2 each store DC power. The AC output terminal T14 is connected to the corresponding load LD1 or LD2. The loads LD1 and LD2 are driven by AC power supplied by the uninterruptible power supply devices U1 and U2, respectively.

不斷電電源裝置U1係在自商用交流電源15而供應交流電力的通常時,一旦將來自商用交流電源15的交流電力變換成直流電力,則將該直流電力儲存於電池B1,並且變換成商用頻率的交流電力並供應至負載LD1。 The uninterruptible power supply unit U1 is normally used to supply AC power from the commercial AC power source 15. Once the AC power from the commercial AC power source 15 is converted into DC power, the DC power is stored in the battery B1 and converted into commercial power. Frequency AC power is supplied to the load LD1.

此時,不斷電電源裝置U1一旦將自商用交 流電源15所接受的交流電壓Vi變換成直流電壓Vdc,則將該直流電壓Vdc變換成商用頻率之交流電壓Vo並輸出至交流輸出端子T14。輸出交流電壓Vo的電壓變動率(例如±2%)係較交流輸入電壓Vi的電壓變動率(例如±10%)還小。 At this time, once the uninterruptible power supply unit U1 The AC voltage Vi received by the current source 15 is converted into a DC voltage Vdc, and then the DC voltage Vdc is converted into an AC voltage Vo at a commercial frequency and output to the AC output terminal T14. The voltage change rate (for example, ± 2%) of the output AC voltage Vo is smaller than the voltage change rate (for example, ± 10%) of the AC input voltage Vi.

此外,不斷電電源裝置U1係在停止來自商用交流電源15之交流電力的供應的停電時,將電池B1的直流電力變換成商用頻率的交流電力並供應至負載LD1。因此,即使產生停電之情形時,在直流電力儲存於電池B1的期間,亦能持續負載LD1的運轉。 In addition, the uninterruptible power supply device U1 converts the DC power of the battery B1 into AC power of a commercial frequency and supplies it to the load LD1 when the power supply of the AC power from the commercial AC power supply 15 is stopped. Therefore, even when a power failure occurs, the operation of the load LD1 can be continued while the DC power is stored in the battery B1.

再者,不斷電電源裝置U1係在內建的反向器產生故障時,則將來自穩定化電源裝置1的交流電力供應於負載LD1。不斷電電源裝置U2亦和不斷電電源裝置U1相同。 In addition, when a failure occurs in the built-in inverter of the uninterruptible power supply device U1, the AC power from the stabilized power supply device 1 is supplied to the load LD1. The uninterruptible power supply unit U2 is also the same as the uninterruptible power supply unit U1.

不斷電電源裝置U1、U2的反向器未故障時,由於不進行自穩定化電源裝置1向負載LD1、LD2的電力供應,故穩定化電源裝置1的輸出電流Io係較預定值lc還小。該情形,穩定化電源裝置1的轉換器6係藉由下限值fL的頻率而驅動,且轉換器6所產生的損失變小。 When the inverters of the uninterruptible power supply devices U1 and U2 are not faulty, since the power supply of the self-stabilizing power supply device 1 to the loads LD1 and LD2 is not performed, the output current Io of the stabilized power supply device 1 is also higher than the predetermined value lc. small. In this case, the converter 6 of the stabilized power supply device 1 is driven by the frequency of the lower limit value fL, and the loss generated by the converter 6 is reduced.

不斷電電源裝置U1(或U2)的反向器產生故障時,由於自穩定化電源裝置1而供應交流電力於負載LD1(或LD2),故穩定化電源裝置1的輸出電流Io變得較預定值lc還大。該情形,穩定化電源裝置1的轉換器6係藉由較高頻率fH而驅動,且供應電壓變動率較小的交流電 壓Vo至負載LD1(或LD2)。 When the inverter of the uninterruptible power supply device U1 (or U2) fails, the AC power is supplied to the load LD1 (or LD2) by the self-stabilizing power supply device 1, so the output current Io of the stabilized power supply device 1 becomes smaller. The predetermined value lc is also large. In this case, the converter 6 of the stabilized power supply device 1 is driven by a higher frequency fH and supplies an AC power with a smaller rate of voltage change. Press Vo to load LD1 (or LD2).

第10圖係顯示不斷電電源裝置U1之構成的電路方塊圖。該不斷電電源裝置U1係一旦將來自商用交流電源15的三相交流電力變換成直流電力,則將該直流電力變換成三相交流電力並供應於負載LD1者。第10圖係為了圖示及說明的簡單化,而僅顯示與三相(U相、V相、W相)之中的一相(例如U相)相應於之部分的電路。 Fig. 10 is a circuit block diagram showing the structure of the uninterruptible power supply unit U1. This uninterruptible power supply device U1 is one that converts three-phase AC power from commercial AC power source 15 to DC power, and then converts this DC power to three-phase AC power and supplies it to load LD1. FIG. 10 shows a circuit corresponding to only one of the three phases (U-phase, V-phase, and W-phase) (for example, U-phase) for simplicity of illustration and description.

在第10圖當中,該不斷電電源裝置U1係具備交流輸入端子T11、旁路輸入端子T12、電池端子T13、以及交流輸出端子T14。交流輸入端子T11係自商用交流電源15接受商用頻率的交流電力。旁路輸入端子T12係自穩定化電源裝置1接受商用頻率的交流電力。 In FIG. 10, the uninterruptible power supply device U1 includes an AC input terminal T11, a bypass input terminal T12, a battery terminal T13, and an AC output terminal T14. The AC input terminal T11 receives AC power of a commercial frequency from the commercial AC power source 15. The bypass input terminal T12 is a self-stabilized power supply device 1 that receives AC power at a commercial frequency.

電池端子T13係連接於電池(電力儲存裝置)B1。電池B1係儲存直流電力。亦可連接電容器以取代電池B1。交流輸出端子T14係連接於負載LD1。負載LD1係藉由交流電力而驅動。 The battery terminal T13 is connected to a battery (power storage device) B1. Battery B1 stores DC power. A capacitor can also be connected instead of battery B1. The AC output terminal T14 is connected to the load LD1. The load LD1 is driven by AC power.

該不斷電電源裝置U1係又具備電磁接觸器51、57、63、65、電流檢測器52、60、電容器53、58、62、電抗器54、61、轉換器55、雙向截波器56、反向器59、半導體開關64、操作部66、以及控制裝置67。 This uninterruptible power supply unit U1 is equipped with electromagnetic contactors 51, 57, 63, 65, current detectors 52, 60, capacitors 53, 58, 62, reactors 54, 61, converters 55, and two-way interceptors 56. , Inverter 59, semiconductor switch 64, operation section 66, and control device 67.

電磁接觸器51及電抗器54係串聯連接於交流輸入端子T11和轉換器55的輸入節點之間。電容器53係連接於電磁接觸器51及電抗器54之間的節點N11。電磁接觸器51係在不斷電電源裝置U1的使用時設為導通, 例如不斷電電源裝置U1的維護時設為關斷。 The electromagnetic contactor 51 and the reactor 54 are connected in series between the AC input terminal T11 and the input node of the converter 55. The capacitor 53 is connected to a node N11 between the electromagnetic contactor 51 and the reactor 54. The electromagnetic contactor 51 is turned on when the uninterruptible power supply device U1 is used. For example, it is turned off during maintenance of the uninterruptible power supply unit U1.

出現於節點N11之交流輸入電壓Vi的瞬間值係藉由控制裝置67而檢測。根據交流輸入電壓Vi的瞬間值來判定有無產生停電之情形。電流檢測器52係檢測流通於節點N11之交流輸入電流Ii,且將顯示該檢測值的信號Iif施加至控制裝置67。 The instantaneous value of the AC input voltage Vi appearing at the node N11 is detected by the control device 67. The presence or absence of a power outage is determined based on the instantaneous value of the AC input voltage Vi. The current detector 52 detects an AC input current Ii flowing through the node N11, and applies a signal Iif that displays the detected value to the control device 67.

電容器53及電抗器54係構成低通濾波器,使商用頻率的交流電力自商用交流電源15通過轉換器55,且防止轉換器55所產生之開關頻率的信號通過商用交流電源15。 The capacitor 53 and the reactor 54 constitute a low-pass filter, so that commercial-frequency AC power passes from the commercial AC power source 15 to the converter 55, and prevents signals of a switching frequency generated by the converter 55 from passing through the commercial AC power source 15.

轉換器55係藉由控制裝置67而控制,而在自商用交流電源15而供應交流電力的通常時,將交流電力變換成直流電力並輸出至直流線L11。在停止來自商用交流電源15的交流電力之供應的停電時,停止轉換器55的運轉。 The converter 55 is controlled by the control device 67. When the AC power is normally supplied from the commercial AC power source 15, the AC power is converted into DC power and output to the DC line L11. When the power supply of the AC power from the commercial AC power source 15 is stopped, the operation of the converter 55 is stopped.

轉換器55係例如和轉換器6(第2圖)相同的構成,且包含六組的IGBT、以及二極體。轉換器55的輸出電壓係能控制為期望之值。電容器53、電抗器54、以及轉換器55係構成順變換器。 Converter 55 has, for example, the same configuration as converter 6 (FIG. 2), and includes six sets of IGBTs and diodes. The output voltage of the converter 55 can be controlled to a desired value. The capacitor 53, the reactor 54, and the converter 55 constitute a forward converter.

電容器58係連接於直流線L11,且將直流線L11的電壓予以平滑化。出現於直流線L11之直流電壓Vdc的瞬間值係藉由控制裝置67而檢測。直流線L11係連接於雙向截波器56的高電壓側節點,雙向截波器56的低電壓側節點係經由電磁接觸器57而連接於電池端子T13。 The capacitor 58 is connected to the DC line L11 and smoothes the voltage of the DC line L11. The instantaneous value of the DC voltage Vdc appearing on the DC line L11 is detected by the control device 67. The DC line L11 is connected to the high-voltage-side node of the bidirectional clipper 56, and the low-voltage-side node of the bidirectional clipper 56 is connected to the battery terminal T13 via the electromagnetic contactor 57.

電磁接觸器57係在不斷電電源裝置U1的使用時設為導通,例如不斷電電源裝置U1及電池B1的維護時設為關斷。出現於電池端子T13的電池B1之端子間電壓Vb的瞬間值係藉由控制裝置67來檢測。 The electromagnetic contactor 57 is turned on when the uninterruptible power supply device U1 is in use, and is turned off when the uninterruptible power supply device U1 and the battery B1 are maintained, for example. The instantaneous value of the inter-terminal voltage Vb of the battery B1 appearing at the battery terminal T13 is detected by the control device 67.

雙向截波器56係藉由控制裝置67來檢測,在自商用交流電源15而供應交流電力的通常時,則將轉換器55所產生的直流電力係儲存於電池B1,在停止來自商用交流電源15的交流電力之供應的停電時,電池B1的直流電力係經由直流線L11供應至反向器59。 The bidirectional interceptor 56 is detected by the control device 67. When the AC power is normally supplied from the commercial AC power source 15, the DC power generated by the converter 55 is stored in the battery B1, and the commercial AC power source is stopped when the When the supply of the AC power of 15 is interrupted, the DC power of the battery B1 is supplied to the inverter 59 via the DC line L11.

雙向截波器56係在將直流電力儲存於電池B1時,則將直流線L11之直流電壓Vdc予以降壓並施加至電池B1。此外,雙向截波器56係在將電池B1的直流電力供應至反向器59時,則將電池B1之端子間電壓Vb予以升壓並輸出至直流線L11。直流線L11係連接於反向器59之輸入節點。 When the bidirectional clipper 56 stores DC power in the battery B1, the DC voltage Vdc of the DC line L11 is stepped down and applied to the battery B1. In addition, when the bidirectional clipper 56 supplies the DC power of the battery B1 to the inverter 59, it boosts the voltage Vb between the terminals of the battery B1 and outputs it to the DC line L11. The DC line L11 is connected to an input node of the inverter 59.

反向器59係藉由控制裝置67來控制,將自轉換器55或雙向截波器56經由直流線L11而供應的直流電力變換成商用頻率的交流電力而輸出。亦即,反向器59係在通常時,將自轉換器55經由直流線L11而供應的直流電力變換成交流電力,在停電時,則將自電池B1經由雙向截波器56而供應的直流電力變換成交流電力。反向器59的輸出電壓係能控制成期望之值。反向器59係和反向器8(第2圖)相同的構成,且包含六組的IGBT、以及二極體。 The inverter 59 is controlled by the control device 67, and converts DC power supplied from the converter 55 or the bidirectional clipper 56 via the DC line L11 into AC power of a commercial frequency and outputs the AC power. That is, the inverter 59 converts the DC power supplied from the converter 55 via the DC line L11 into AC power at the normal time, and converts the DC power supplied from the battery B1 through the bidirectional chopper 56 during a power failure. Power is converted into AC power. The output voltage of the inverter 59 can be controlled to a desired value. The inverter 59 has the same configuration as the inverter 8 (FIG. 2), and includes six sets of IGBTs and diodes.

反向器59的輸出節點係連接於電抗器61的一方端子,電抗器61的另一方端子(節點N12)係經由電磁接觸器63而連接於交流輸出端子T4。電容器62係連接於節點N12。 The output node of the inverter 59 is connected to one terminal of the reactor 61, and the other terminal (node N12) of the reactor 61 is connected to the AC output terminal T4 via the electromagnetic contactor 63. The capacitor 62 is connected to the node N12.

電流檢測器60係檢測反向器59的輸出電流Io的瞬間值,且將顯示該檢測值的信號Iof施加至控制裝置67。出現於節點N12之交流輸出電壓Vo的瞬間值係藉由控制裝置67來檢測。 The current detector 60 detects an instantaneous value of the output current Io of the inverter 59, and applies a signal Iof that displays the detected value to the control device 67. The instantaneous value of the AC output voltage Vo appearing at the node N12 is detected by the control device 67.

電抗器61及電容器62係構成低通濾波器,將反向器59所產生之商用頻率的交流電力通過交流輸出端子T14,且防止反向器59所產生之開關頻率的信號通過交流輸出端子T14。反向器59、電抗器61、以及電容器62係構成逆變換器。 The reactor 61 and the capacitor 62 constitute a low-pass filter. The commercial frequency AC power generated by the inverter 59 passes through the AC output terminal T14, and the signal of the switching frequency generated by the inverter 59 is prevented from passing through the AC output terminal T14. . The inverter 59, the reactor 61, and the capacitor 62 constitute an inverse converter.

電磁接觸器63係藉由控制裝置67來控制,反向器59所產生之交流電力供應至負載LD1之反向器供電模式時設為導通,而來自穩定化電源裝置1之交流電力供應至負載LD1之旁路供電模式時設為關斷。 The electromagnetic contactor 63 is controlled by the control device 67. When the AC power generated by the inverter 59 is supplied to the load LD1, the inverter power supply mode is set to be on, and the AC power from the stabilized power supply device 1 is supplied to the load. LD1 is set to shutdown in bypass power mode.

半導體開關64係包含閘流體,且連接於旁路輸入端子T12及交流輸出端子T14之間。電磁接觸器65係並聯連接於半導體開關64。半導體開關64係藉由控制裝置67而控制,通常時設為關斷,當反向器59產生故障時則瞬間設為導通,且將來自穩定化電源裝置1之交流電力供應至負載LD1。半導體開關64係在設為導通起經過預定時間之後才設為關斷。 The semiconductor switch 64 includes a brake fluid and is connected between the bypass input terminal T12 and the AC output terminal T14. The electromagnetic contactor 65 is connected to the semiconductor switch 64 in parallel. The semiconductor switch 64 is controlled by the control device 67, and is normally set to be turned off. When a failure occurs in the inverter 59, it is turned on instantaneously, and the AC power from the stabilized power supply device 1 is supplied to the load LD1. The semiconductor switch 64 is turned off after a predetermined time has elapsed since it was turned on.

電磁接觸器65係在由反向器59所產生之交流電力供應至負載LD1之反向器供電模式時設為關斷,而來自穩定化電源裝置1的交流電力供應至負載LD1之旁路供電模式時設為導通。 The magnetic contactor 65 is turned off when the AC power generated by the inverter 59 is supplied to the load LD1 in the inverter power supply mode, and the AC power from the stabilized power supply device 1 is supplied to the bypass power supply of the load LD1. Set to ON in mode.

此外,電磁接觸器65係在反向器59產生故障時設為導通,且將來自來自穩定化電源裝置1的交流電力供應至負載LD1。亦即,當反向器59產生故障時,半導體開關64係瞬間設為導通達預定時間,並且亦電磁接觸器65設為導通。這是為了防止半導體開關64因過熱而損壞。 In addition, the electromagnetic contactor 65 is turned on when the inverter 59 fails, and supplies AC power from the stabilized power supply device 1 to the load LD1. That is, when the inverter 59 fails, the semiconductor switch 64 is set to be turned on for a predetermined time instantaneously, and the electromagnetic contactor 65 is also set to be turned on. This is to prevent the semiconductor switch 64 from being damaged due to overheating.

操作部66係包含藉由不斷電電源裝置U1的使用者所操作的複數個按鈕、以及顯示各種資訊的畫像顯示部等。使用者係藉由操作該操作部66,將不斷電電源裝置U1的電源設為導通及關斷、或可選擇旁路供電模式及反向器供電模式之中之任意一方的模式。 The operation unit 66 includes a plurality of buttons operated by a user of the uninterruptible power supply device U1, an image display unit that displays various information, and the like. The user operates the operation unit 66 to set the power source of the uninterruptible power supply device U1 to on and off, or to select one of a bypass power supply mode and an inverter power supply mode.

控制裝置67係根據來自操作部66的信號、交流輸入電壓Vi、交流輸入電流Ii、直流電壓Vdc、電池電壓Vb、交流輸出電流Io、以及交流輸出電壓Vo等來控制不斷電電源裝置U1整體。亦即,控制裝置67係根據交流輸入電壓Vi的檢測值來檢測停電是否發生,且與交流輸入電壓Vi的相位同步而控制轉換器55、以及反向器59。 The control device 67 controls the entire uninterruptible power supply device U1 based on a signal from the operation unit 66, an AC input voltage Vi, an AC input current Ii, a DC voltage Vdc, a battery voltage Vb, an AC output current Io, and an AC output voltage Vo. . That is, the control device 67 detects whether a power failure has occurred based on the detected value of the AC input voltage Vi, and controls the converter 55 and the inverter 59 in synchronization with the phase of the AC input voltage Vi.

再者,控制裝置67係在自商用交流電源15供應交流電力的通常時,以直流電壓Vdc成為參考直流電壓Vr之方式控制轉換器55,在來自商用交流電源15的交流電力之供應被停止的停電時,停止轉換器55的運轉。 In addition, the control device 67 controls the converter 55 such that the DC voltage Vdc becomes the reference DC voltage Vr when the AC power is normally supplied from the commercial AC power source 15, and the supply of the AC power from the commercial AC power source 15 is stopped. When a power failure occurs, the operation of the converter 55 is stopped.

再者,控制裝置67係在通常時,以電池電壓Vb成為參考電池電壓Vbr之方式控制雙向截波器56,在停電時,以直流電壓Vdc成為參考直流電壓Vr之方式控制雙向截波器56。再者,控制裝置67係以交流輸出電壓Vo成為參考交流電壓Vor之方式控制反向器59。 In addition, the control device 67 controls the bidirectional clipper 56 such that the battery voltage Vb becomes the reference battery voltage Vbr at normal time, and controls the bidirectional clipper 56 such that the DC voltage Vdc becomes the reference DC voltage Vr during a power failure. . The control device 67 controls the inverter 59 so that the AC output voltage Vo becomes the reference AC voltage Vor.

以下,說明有關於該不斷電電源裝置U1的動作,且不斷電電源裝置U1的使用者操作該操作部66而選擇反向器供電模式。在自商用交流電源15供應交流電力的通常時,當選擇反向器供電模式時,則將半導體開關64及電磁接觸器65設為關斷,並且電磁接觸器51、57、63設為導通。 The operation of the uninterruptible power supply device U1 will be described below, and the user of the uninterruptible power supply device U1 operates the operation unit 66 to select the inverter power supply mode. When the AC power is normally supplied from the commercial AC power source 15, when the inverter power supply mode is selected, the semiconductor switch 64 and the electromagnetic contactor 65 are turned off, and the electromagnetic contactors 51, 57, 63 are turned on.

自商用交流電源15所供應的交流電力係藉由轉換器55而變換成直流電力。藉由轉換器55所產生的直流電力係藉由雙向截波器57而儲存於電池B1,並且藉由反向器59而變換成商用頻率的交流電力並供應至負載LD1。 The AC power supplied from the commercial AC power source 15 is converted into DC power by a converter 55. The DC power generated by the converter 55 is stored in the battery B1 by the bidirectional clipper 57, and is converted into commercial frequency AC power by the inverter 59 and supplied to the load LD1.

當來自商用交流電源15的交流電力之供應被停止時,亦即停電發生時,則轉換器55的運轉停止,且電池B1的直流電力係藉由雙向截波器56而供應至反向器59。反向器59係將來自雙向截波器56的直流電力變換成商用頻率的交流電力並供應至負載LD1。因此,在直流電力儲存於電池B1的期間,亦可持續負載LD1的運轉。 When the supply of AC power from the commercial AC power source 15 is stopped, that is, when a power outage occurs, the operation of the converter 55 is stopped, and the DC power of the battery B1 is supplied to the inverter 59 through the bidirectional chopper 56. . The inverter 59 converts the DC power from the bidirectional clipper 56 into AC power of a commercial frequency and supplies it to the load LD1. Therefore, while the DC power is stored in the battery B1, the operation of the load LD1 can be continued.

如此,在反向器供電模式當中,反向器59未故障時,由於不進行自穩定化電源裝置1向負載LD1的 電力供應,故穩定化電源裝置1的輸出電流Io係大約零A,且較預定值lc還小。因此,穩定化電源裝置1的轉換器6係藉由下限值的頻率fL而驅動,且轉換器6所產生的損失抑制於最小。 In this way, in the inverter power supply mode, when the inverter 59 is not faulty, since the self-stabilizing power supply device 1 does not perform the load to the load LD1. Since the power is supplied, the output current Io of the stabilized power supply device 1 is approximately zero A and is smaller than a predetermined value lc. Therefore, the converter 6 of the stabilized power supply device 1 is driven by the frequency fL having a lower limit value, and the loss generated by the converter 6 is minimized.

在反向器供電模式時當中,反向器59故障時,半導體開關64瞬間設為導通,而電磁接觸器63設為關斷,並且電磁接觸器65設為導通。據此,來自穩定化電源裝置1的交流電力係經由半導體開關64、以及電磁接觸器65而供應至負載LD1,且持續負載LD1的運轉。在固定時間後,半導體開關64設為關斷,而防止半導體開關64因過熱而損壞。 In the inverter power supply mode, when the inverter 59 fails, the semiconductor switch 64 is set to be turned on instantaneously, the electromagnetic contactor 63 is set to be turned off, and the electromagnetic contactor 65 is set to be turned on. Accordingly, the AC power from the stabilized power supply device 1 is supplied to the load LD1 via the semiconductor switch 64 and the electromagnetic contactor 65, and the operation of the load LD1 is continued. After a fixed time, the semiconductor switch 64 is set to be turned off to prevent the semiconductor switch 64 from being damaged due to overheating.

該情形時,由於自穩定化電源裝置1供應交流電力至負載LD1,故穩定化電源裝置1的輸出電流Io變得較預定值lc還大,因此,穩定化電源裝置1的轉換器6係藉由相對較高頻率fH而驅動,且供應電壓變動率小的交流電壓Vo至負載LD1。 In this case, since the stabilized power supply device 1 supplies AC power to the load LD1, the output current Io of the stabilized power supply device 1 becomes larger than a predetermined value lc. Therefore, the converter 6 of the stabilized power supply device 1 borrows It is driven by a relatively high frequency fH and supplies an AC voltage Vo with a small rate of voltage change to the load LD1.

此外,不斷電電源裝置U1的使用者係操作該操作部66而選擇旁路供電模式時,和反向器供電模式當中的反向器59故障時相同。亦即,電磁接觸器63及半導體開關64設為關斷,並且電磁接觸器65設為導通,且自穩定化電源裝置1經由電磁接觸器65而供應交流電力至負載LD1。此時,由於穩定化電源裝置1的輸出電流Io變得較預定值lc還大,故穩定化電源裝置1的轉換器6係藉由相對較高頻率fH而驅動,且供應電壓變動率小的交流電壓 Vo至負載LD1。 In addition, when the user of the uninterruptible power supply device U1 operates the operation unit 66 to select the bypass power supply mode, it is the same as when the inverter 59 fails in the inverter power supply mode. That is, the electromagnetic contactor 63 and the semiconductor switch 64 are turned off, and the electromagnetic contactor 65 is turned on, and the self-stabilizing power supply device 1 supplies AC power to the load LD1 through the electromagnetic contactor 65. At this time, since the output current Io of the stabilized power supply device 1 becomes larger than the predetermined value lc, the converter 6 of the stabilized power supply device 1 is driven by a relatively high frequency fH and the supply voltage variation rate is small. AC voltage Vo to load LD1.

由於不斷電電源裝置U2的構成及動作和不斷電電源裝置U1相同,故不重覆其說明。該實施形態2亦能獲得和實施形態1相同的功效。 Since the configuration and operation of the uninterruptible power supply device U2 are the same as those of the uninterruptible power supply device U1, the description thereof will not be repeated. The second embodiment can also obtain the same effects as the first embodiment.

實施形態3 Embodiment 3

第11圖係顯示本發明之實施形態3的不斷電電源系統之構成的方塊圖,且為和第9圖對比之圖示。參考第11圖,該不斷電電源系統和第9圖之不斷電電源系統的不同之點,在於以不斷電電源裝置U0、以及電池B0置換穩定化電源裝置1之點。 FIG. 11 is a block diagram showing the structure of a uninterruptible power supply system according to Embodiment 3 of the present invention, and is a diagram compared with FIG. 9. Referring to FIG. 11, the difference between the uninterruptible power supply system and the uninterruptible power supply system of FIG. 9 is that the stabilized power supply device 1 is replaced with the uninterruptible power supply device U0 and the battery B0.

不斷電電源裝置U0係具有穩定化電源裝置1、以及不斷電電源裝置U1之兩者的功能。亦即,不斷電電源裝置U0係具備交流輸入端子T11、旁路輸入端子T12、電池端子T13、以及交流輸出端子T14。交流輸入端子T11係自商用交流電源15接受商用頻率的交流電壓Vi。旁路輸入端子T12係自旁路交流電源45接受商用頻率的交流電壓Vi。電池端子T13係連接於電池B0。電池B0係儲存直流電力。交流輸出端子T14係連接於不斷電電源裝置U1、U2的旁路輸入端子T12。 The uninterruptible power supply device U0 has the functions of both the stabilized power supply device 1 and the uninterruptible power supply device U1. That is, the uninterruptible power supply device U0 includes an AC input terminal T11, a bypass input terminal T12, a battery terminal T13, and an AC output terminal T14. The AC input terminal T11 receives an AC voltage Vi from a commercial AC power source 15 at a commercial frequency. The bypass input terminal T12 receives a commercial frequency AC voltage Vi from the bypass AC power source 45. The battery terminal T13 is connected to the battery B0. Battery B0 stores DC power. The AC output terminal T14 is connected to the bypass input terminal T12 of the uninterruptible power supply devices U1 and U2.

不斷電電源裝置U0係在自商用交流電源15供應交流電力的通常時,一旦將來自商用交流電源15的交流電力變換成直流電力,則將該直流電力儲存於電池B0,並且變換成商用頻率之交流電力並供應至不斷電電源裝置U1、U2的旁路輸入端子T12。 When the uninterruptible power supply unit U0 is supplying AC power from the commercial AC power source 15, once the AC power from the commercial AC power source 15 is converted into DC power, the DC power is stored in the battery B0 and converted into a commercial frequency. The AC power is supplied to the bypass input terminals T12 of the uninterruptible power supply devices U1 and U2.

此時,不斷電電源裝置U0係一旦將自商用交流電源15所接受的交流電壓Vi變換成直流電壓Vdc,則將該直流電壓Vdc變換成商用頻率之交流電壓Vo並輸出至交流輸出端子T14。交流輸出電壓Vo的電壓變動率(例如±2%)係較交流輸入電壓Vi的電壓變動率(例如±10%)還小。 At this time, once the uninterruptible power supply device U0 converts the AC voltage Vi received from the commercial AC power source 15 into a DC voltage Vdc, the DC voltage Vdc is converted into an AC voltage Vo at a commercial frequency and output to the AC output terminal T14. . The voltage change rate (for example, ± 2%) of the AC output voltage Vo is smaller than the voltage change rate (for example, ± 10%) of the AC input voltage Vi.

此外,不斷電電源裝置U0係在來自商用交流電源15的交流電力之供應被停止的停電時,將電池B0的直流電力變換成商用頻率的交流電力並輸出至交流輸出端子T14。因此,即使例如不斷電電源裝置U1在旁路供電模式之情形中停電發生時,在直流電力儲存於電池B0的期間,亦能持續負載LD1的運轉。 In addition, the uninterruptible power supply device U0 converts the DC power of the battery B0 into AC power of a commercial frequency and outputs the AC power to the AC output terminal T14 when the AC power supply from the commercial AC power supply 15 is stopped. Therefore, even when the power failure occurs in the case of the uninterruptible power supply device U1 in the bypass power supply mode, the operation of the load LD1 can be continued while the DC power is stored in the battery B0.

再者,不斷電電源裝置U0係在內藏的反向器故障時,將來自旁路交流電源45的交流電力供應至不斷電電源裝置U1、U2的旁路輸入端子T12。 In addition, when the uninterruptible power supply device U0 is a built-in inverter, the AC power from the bypass AC power supply 45 is supplied to the bypass input terminals T12 of the uninterruptible power supply devices U1 and U2.

再者,不斷電電源裝置U0係和穩定化電源裝置1相同的,當輸出電流Io較預定值lc還小時,在直流電壓Vdc能夠設為參考直流電壓Vr的範圍內,將三角波信號Cu的頻率調整為下限值fL,減低轉換器55所產生的損失。此外,不斷電電源裝置U0係在輸出電流Io較預定值lc還大時,將三角波信號Cu的頻率設定為較高值fH,且穩定地維持直流電壓Vdc於參考直流電壓Vr。 Furthermore, the uninterruptible power supply device U0 is the same as the stabilized power supply device 1. When the output current Io is smaller than the predetermined value lc, the triangle wave signal Cu is within a range where the DC voltage Vdc can be set to the reference DC voltage Vr. The frequency is adjusted to the lower limit value fL to reduce the loss caused by the converter 55. In addition, when the output current Io is larger than the predetermined value lc, the uninterruptible power supply device U0 sets the frequency of the triangular wave signal Cu to a high value fH, and stably maintains the DC voltage Vdc to the reference DC voltage Vr.

不斷電電源裝置U1、U2的反向器59未故障時,由於不進行自不斷電電源裝置U0向負載LD1、LD2 的電力供應,故不斷電電源裝置U0的輸出電流Io係較預定值lc還小。該情形時,不斷電電源裝置U0的轉換器55係藉由下限值fL的頻率而驅動,且轉換器55所產生的損失變小。 When the inverters 59 of the uninterruptible power supply units U1 and U2 are not faulty, since the uninterruptible power supply units U0 are not applied to the loads LD1 and LD2 The output current Io of the uninterruptible power supply device U0 is smaller than the predetermined value lc. In this case, the converter 55 of the uninterruptible power supply device U0 is driven by the frequency of the lower limit value fL, and the loss generated by the converter 55 is reduced.

不斷電電源裝置U1(或U2)的反向器故障時,由於自不斷電電源裝置U0供應交流電力至負載LD1(或LD2),故不斷電電源裝置U0的輸出電流Io係變得較預定值lc還大。該情形時,不斷電電源裝置U0的轉換器55係藉由相對較高頻率fH而驅動,且供應電壓變動率小的交流電壓Vo至負載LD1(或LD2)。 When the inverter of the uninterruptible power supply unit U1 (or U2) fails, since the AC power is supplied from the uninterruptible power supply unit U0 to the load LD1 (or LD2), the output current Io of the uninterruptible power supply unit U0 becomes It is larger than the predetermined value lc. In this case, the converter 55 of the uninterruptible power supply device U0 is driven by a relatively high frequency fH, and supplies the AC voltage Vo with a small rate of voltage change to the load LD1 (or LD2).

第12圖係顯示不斷電電源裝置U0之構成的電路方塊圖,且為和第10圖對比之圖示。參考第12圖,不斷電電源裝置U0和第10圖之不斷電電源裝置U1的不同之點,在於以控制裝置70置換控制裝置67之點。 FIG. 12 is a circuit block diagram showing the structure of the uninterruptible power supply device U0, and is a diagram compared with FIG. 10. Referring to FIG. 12, the difference between the uninterruptible power supply device U0 and the uninterruptible power supply device U1 of FIG. 10 is that the control device 67 is replaced with the control device 70.

控制裝置70係除了進行和控制裝置67相同的動作之外,當輸出電流Io較預定值lc還小時,在直流電壓Vdc能夠設為參考直流電壓Vr的範圍內,將三角波信號Cu的頻率調整為下限值fL,減低轉換器55所產生的損失。此外,控制裝置70係在輸出電流Io較預定值lc還大時,將三角波信號Cu的頻率設定為相對較高值fH,且穩定地維持直流電壓Vdc於參考直流電壓Vr。 The control device 70 performs the same operation as the control device 67. When the output current Io is smaller than the predetermined value lc, the frequency of the triangular wave signal Cu is adjusted to a range where the DC voltage Vdc can be set to the reference DC voltage Vr The lower limit value fL reduces the loss caused by the converter 55. In addition, the control device 70 sets the frequency of the triangular wave signal Cu to a relatively high value fH when the output current Io is larger than the predetermined value lc, and stably maintains the DC voltage Vdc to the reference DC voltage Vr.

由於其他構成及動作係和實施形態2相同,故不重覆其說明。該實施形態3亦能獲得和實施形態1相同的功效。 Since other structures and operations are the same as those of the second embodiment, the description thereof will not be repeated. The third embodiment can also obtain the same effects as the first embodiment.

又,亦可適當的組合上述的實施形態1、2、3、以及各種的變更例而自無爭議。 In addition, the above-mentioned embodiments 1, 2, 3, and various modification examples may be appropriately combined without dispute.

本次所揭示之實施形態係全部之點皆為例示而不限定。本發明係除了上述的說明之外,亦包含由申請專利範圍所示,和申請專利範圍均等的意義及範圍內之全部的變更。 All aspects of the embodiment disclosed this time are illustrative and not limiting. In addition to the above description, the present invention includes all changes within the meanings and scopes indicated by the scope of the patent application and the scope of the patent application.

Claims (11)

一種電源裝置,係具備:順變換器,係包含複數個開關元件,且將商用頻率的交流電力變換成直流電力;第一控制部,係以參考直流電壓與前述順變換器的輸出直流電壓成為無偏差之方式輸出前述商用頻率的正弦波信號;第二控制部,係比較前述正弦波信號及較前述商用頻率還高頻率之三角波信號的高低,並根據其比較結果來產生用以控制前述複數個開關元件的控制信號;以及頻率調整部,係在能夠消除前述偏差的範圍內,將前述三角波信號的頻率調整為下限值;前述頻率調整部係執行選自第一運轉模式及第二運轉模式之中之一方的運轉模式,該第一運轉模式係在能夠消除前述偏差的範圍內,將前述三角波信號的頻率調整為前述下限值者,而該第二運轉模式係將前述三角波信號的頻率設定為較前述下限值還大的預定之值者;該電源裝置還具備:逆變換器,係將藉由前述順變換器而產生的直流電力變換成前述商用頻率的交流電力並供應至負載;電流檢測器,係檢測負載電流;以及判定器,係在前述電流檢測器的檢測值較預定之電流值還小時選擇前述第一運轉模式,而在前述電流檢測器的檢測值較前述預定之電流值還大時選擇前述第二運轉模式。A power supply device includes: a forward converter that includes a plurality of switching elements and converts AC power at a commercial frequency into DC power; a first control unit that uses a reference DC voltage and the output DC voltage of the forward converter to become Output the sine wave signal of the commercial frequency without deviation; the second control unit compares the level of the sine wave signal and the triangle wave signal with a higher frequency than the commercial frequency, and generates a control signal for the complex number based on the comparison result. Control signals of two switching elements; and a frequency adjustment unit that adjusts the frequency of the triangle wave signal to a lower limit value within a range that can eliminate the deviation; the frequency adjustment unit executes the operation selected from the first operation mode and the second operation The first operation mode is one in which the frequency of the triangle wave signal is adjusted to the lower limit value within a range in which the deviation can be eliminated, and the second operation mode is the one in which the triangle wave signal is adjusted. The frequency is set to a predetermined value larger than the lower limit; the power supply device further includes: The converter converts the DC power generated by the forward converter to the AC power of the commercial frequency and supplies it to the load; the current detector detects the load current; and the determiner detects the current of the current detector. When the value is smaller than the predetermined current value, the first operation mode is selected, and when the detection value of the current detector is larger than the predetermined current value, the second operation mode is selected. 如申請專利範圍第1項所述之電源裝置,其中,該電源裝置還具備操作部,該操作部係選擇前述第一及第二運轉模式之中之期望的運轉模式。The power supply device according to item 1 of the scope of patent application, wherein the power supply device further includes an operation portion that selects a desired operation mode among the first and second operation modes. 如申請專利範圍第1項所述之電源裝置,其中,前述順變換器係將商用交流電源供應的交流電力變換成直流電力,在自前述商用交流電源供應交流電力的通常時,藉由前述順變換器所產生的直流電力係供應至前述逆變換器,並且儲存於電力儲存裝置,在來自前述商用交流電源的交流電力之供應被停止的停電時,前述電力儲存裝置的直流電力係供應至前述逆變換器。The power supply device according to item 1 of the scope of patent application, wherein the forward converter converts AC power supplied by a commercial AC power source into DC power. When the AC power is normally supplied from the commercial AC power source, The DC power generated by the converter is supplied to the inverse converter and stored in the power storage device. When the power supply of the AC power from the commercial AC power supply is stopped, the DC power of the power storage device is supplied to the foregoing. Inverter. 如申請專利範圍第3項所述之電源裝置,其中,該電源裝置還具備電磁接觸器,該電磁接觸器係接受由前述逆變換器所產生之前述商用頻率的交流電力、以及自旁路交流電源所供應之前述商用頻率的交流電力,且在前述逆變換器為正常時,將來自前述逆變換器的交流電力施加至前述負載,而在前述逆變換器為故障時,將來自前述旁路交流電源的交流電力施加至前述負載。The power supply device according to item 3 of the scope of patent application, wherein the power supply device further includes an electromagnetic contactor that receives the AC power of the aforementioned commercial frequency generated by the aforementioned inverting converter, and a self-bypass AC The AC power of the commercial frequency supplied by the power supply, and when the inverting converter is normal, the AC power from the inverting converter is applied to the load, and when the inverting converter is faulty, the from the bypass The AC power of the AC power source is applied to the aforementioned load. 一種電源系統,係組構成:具備第一及第二電源裝置,前述第一電源裝置係包含:第一順變換器,係將來自商用交流電源之商用頻率的交流電力變換成直流電力;以及第一逆變換器,係將直流電力變換成前述商用頻率的交流電力,在自前述商用交流電源供應交流電力的通常時,藉由前述第一順變換器而產生的直流電力係供應於前述第一逆變換器,並且儲存於第一電力儲存裝置,在來自前述商用交流電源的交流電力之供應被停止的停電時,前述第一電力儲存裝置的直流電力係供應至前述第一逆變換器,前述第二電源裝置係包含:第二順變換器,係具有複數個開關元件,且將前述商用頻率的交流電力變換成直流電力;第二逆變換器,係將藉由前述第二順變換器所產生的直流電力變換成前述商用頻率的交流電力;第一控制部,係以參考直流電壓及前述第二順變換器的輸出直流電壓成為無偏差之方式輸出前述商用頻率的正弦波信號;第二控制部,係比較前述正弦波信號及較前述商用頻率還高頻率之三角波信號的高低,並根據其比較結果來產生用以控制前述複數個開關元件的控制信號;以及頻率調整部,係在能夠消除前述偏差的範圍內,將前述三角波信號的頻率調整為下限值,在前述第一電源裝置為正常時,自前述第一逆變換器供應交流電力至負載,並且自前述第二逆變換器向前述負載之交流電力的供應被停止,前述第一電源裝置為故障時,自前述第一逆變換器向前述負載之交流電力的供應被停止,並且自前述第二逆變換器供應交流電力至前述負載。A power supply system is composed of a first power supply device and a second power supply device. The first power supply device includes a first forward converter that converts AC power of a commercial frequency from a commercial AC power source into DC power; and An inverting converter converts DC power into AC power of the aforementioned commercial frequency. When the AC power is normally supplied from the commercial AC power source, the DC power generated by the first forward converter is supplied to the first The inverse converter is stored in the first power storage device. When the power supply of the AC power from the commercial AC power supply is stopped, the DC power of the first power storage device is supplied to the first inverse converter. The second power supply device includes: a second forward converter having a plurality of switching elements and converting the AC power of the commercial frequency into DC power; a second inverting converter that is The generated DC power is converted into AC power of the aforementioned commercial frequency; the first control unit is based on the reference DC voltage and the aforementioned first The output DC voltage of the forward converter outputs the sine wave signal of the aforementioned commercial frequency in a non-deviation manner; the second control unit compares the level of the sine wave signal and the triangle wave signal of a higher frequency than the commercial frequency, and compares them As a result, a control signal for controlling the plurality of switching elements is generated; and a frequency adjusting unit adjusts the frequency of the triangle wave signal to a lower limit value within a range capable of eliminating the deviation, and the first power supply device is normal. When the AC power is supplied from the first inverse converter to the load, and the AC power supply from the second inverse converter to the load is stopped, and when the first power supply device is faulty, the The supply of AC power to the load is stopped, and AC power is supplied to the load from the second inverting converter. 如申請專利範圍第5項所述之電源系統,其中,前述頻率調整部係執行選自第一運轉模式及第二運轉模式之中之一方的運轉模式,該第一運轉模式係在能夠消除前述偏差的範圍內,將前述三角波信號的頻率調整為下限值者,而該第二運轉模式係將前述三角波信號的頻率設定為較前述下限值還大的預定之值者。The power supply system according to item 5 of the scope of patent application, wherein the frequency adjustment unit executes an operation mode selected from the first operation mode and the second operation mode, and the first operation mode is capable of eliminating the foregoing Within the range of the deviation, the frequency of the triangle wave signal is adjusted to a lower limit value, and the second operation mode is one in which the frequency of the triangle wave signal is set to a predetermined value larger than the lower limit value. 如申請專利範圍第6項所述之電源系統,其中,前述第二電源裝置還包含:電流檢測器,係檢測前述第二逆變換器的輸出電流;以及判定器,係在前述電流檢測器的檢測值較預定之電流值還小時選擇前述第一運轉模式,而在前述電流檢測器的檢測值較前述預定之電流值還大時選擇前述第二運轉模式。The power supply system according to item 6 of the patent application scope, wherein the second power supply device further includes: a current detector that detects an output current of the second inverse converter; and a determiner that is connected to the current detector. The first operation mode is selected when the detection value is smaller than the predetermined current value, and the second operation mode is selected when the detection value of the current detector is larger than the predetermined current value. 如申請專利範圍第6項所述之電源系統,其中前述第二電源裝置還包含操作部,該操作部係選擇前述第一及第二運轉模式之中之期望的運轉模式。The power supply system according to item 6 of the scope of patent application, wherein the second power supply device further includes an operation portion that selects a desired operation mode among the first and second operation modes. 如申請專利範圍第5項所述之電源系統,其中前述第二順變換器將來自旁路交流電源的前述商用頻率的交流電力變換成直流電力。The power supply system according to item 5 of the scope of patent application, wherein the second forward converter converts AC power of the commercial frequency from a bypass AC power source into DC power. 如申請專利範圍第5項所述之電源系統,其中前述第二順變換器係將來自前述商用交流電源的交流電力變換成直流電力,在自前述商用交流電源供應交流電力的通常時,藉由前述第二順變換器而產生的直流電力係供應至前述第二逆變換器,並且儲存於第二電力儲存裝置,在來自前述商用交流電源的交流電力之供應被停止的停電時,前述第二電力儲存裝置的直流電力係供應至前述第二逆變換器。The power supply system according to item 5 of the scope of patent application, wherein the second forward converter converts AC power from the commercial AC power source into DC power. When the AC power is normally supplied from the commercial AC power source, The DC power generated by the second forward converter is supplied to the second inverse converter and stored in a second power storage device. When the power supply of the AC power from the commercial AC power supply is stopped, the second The DC power of the power storage device is supplied to the aforementioned second inverse converter. 如申請專利範圍第10項所述之電源系統,其中前述第一電源裝置還包含第一電磁接觸器,該第一電磁接觸器係包含:第一輸入節點,係接受前述第一逆變換器所產生之前述商用頻率的交流電力;第二輸入節點,係接受來自前述第二電源裝置之前述商用頻率的交流電力;以及第一輸出節點,係連接於前述負載;且在前述第一逆變換器為正常時,將前述第一輸入節點連接於前述第一輸出節點,而在前述第一逆變換器為故障時,將前述第二輸入節點連接於前述第一輸出節點,前述第二電源裝置還包含第二電磁接觸器,該第二電磁接觸器係包含:第三輸入節點,係接受前述第二逆變換器所產生之前述商用頻率的交流電力;第四輸入節點,係接受來自旁路交流電源之前述商用頻率的交流電力;以及第二輸出節點,係連接於前述第二輸入節點;且在前述第二逆變換器為正常時,將前述第三輸入節點連接於前述第二輸出節點,而在前述第二逆變換器為故障時,將前述第四輸入節點連接於前述第二輸出節點。The power supply system according to item 10 of the patent application scope, wherein the first power supply device further includes a first electromagnetic contactor, and the first electromagnetic contactor includes: a first input node that receives the first inverse converter. The AC power of the aforementioned commercial frequency is generated; the second input node is to receive the AC power of the aforementioned commercial frequency from the aforementioned second power supply device; and the first output node is connected to the aforementioned load; and When it is normal, the first input node is connected to the first output node, and when the first inverting converter is faulty, the second input node is connected to the first output node, and the second power supply device is also Containing a second electromagnetic contactor, the second electromagnetic contactor includes: a third input node that receives the aforementioned commercial frequency AC power generated by the second inverse converter; a fourth input node that receives AC power from a bypass AC power of the aforementioned commercial frequency of the power supply; and a second output node connected to the aforementioned second input node; and When the converter is normal, and the third input node connected to said second output node, while the second inverse transformer to the fault, said fourth input node connected to said second output node.
TW106125711A 2017-06-01 2017-07-31 Power supply device and power supply system using the same TWI657648B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??PCT/JP2017/020386 2017-06-01
PCT/JP2017/020386 WO2018220777A1 (en) 2017-06-01 2017-06-01 Power supply device and power supply system which uses same

Publications (2)

Publication Number Publication Date
TW201904179A TW201904179A (en) 2019-01-16
TWI657648B true TWI657648B (en) 2019-04-21

Family

ID=64454560

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106125711A TWI657648B (en) 2017-06-01 2017-07-31 Power supply device and power supply system using the same

Country Status (3)

Country Link
JP (1) JP6714157B2 (en)
TW (1) TWI657648B (en)
WO (1) WO2018220777A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692184B (en) * 2019-01-25 2020-04-21 美律實業股份有限公司 Power supply apparatus and power supply method
JP6864103B2 (en) * 2019-03-05 2021-04-21 東芝三菱電機産業システム株式会社 Power supply
US11894780B2 (en) * 2019-11-22 2024-02-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion unit
JP6980134B1 (en) * 2020-05-21 2021-12-15 東芝三菱電機産業システム株式会社 Power conversion device, power conversion control device, and control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW393824B (en) * 1996-03-28 2000-06-11 Mitsubishi Electric Corp Frequency converter
CN104300815A (en) * 2013-07-18 2015-01-21 株式会社日立制作所 Power conversion device and elevator
JP2015188299A (en) * 2014-03-11 2015-10-29 パナソニックIpマネジメント株式会社 power converter
TW201620232A (en) * 2014-11-27 2016-06-01 東芝三菱電機產業系統股份有限公司 Uninterruptable power device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298626A (en) * 1994-04-19 1995-11-10 Sanyo Electric Co Ltd System interconnection inverter
JPH09247947A (en) * 1996-03-12 1997-09-19 Toshiba Corp Power converter
JPH1028378A (en) * 1996-07-11 1998-01-27 Toshiba Corp Method for controlling power converter and method for controlling power converting system
JP2006158109A (en) * 2004-11-30 2006-06-15 Kyosan Electric Mfg Co Ltd Chopper
JP4591710B2 (en) * 2006-10-04 2010-12-01 サンケン電気株式会社 AC power supply
WO2016035209A1 (en) * 2014-09-05 2016-03-10 三菱電機株式会社 Power conversion device and refrigeration cycle device
JP6100292B2 (en) * 2015-01-26 2017-03-22 株式会社日本製鋼所 Control method for power supply device of electric injection molding machine and power supply device
WO2016194126A1 (en) * 2015-06-02 2016-12-08 東芝三菱電機産業システム株式会社 Uninterruptible power supply device
JP6668556B2 (en) * 2017-06-01 2020-03-18 東芝三菱電機産業システム株式会社 Power supply device and power supply system using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW393824B (en) * 1996-03-28 2000-06-11 Mitsubishi Electric Corp Frequency converter
CN104300815A (en) * 2013-07-18 2015-01-21 株式会社日立制作所 Power conversion device and elevator
JP2015188299A (en) * 2014-03-11 2015-10-29 パナソニックIpマネジメント株式会社 power converter
TW201620232A (en) * 2014-11-27 2016-06-01 東芝三菱電機產業系統股份有限公司 Uninterruptable power device

Also Published As

Publication number Publication date
TW201904179A (en) 2019-01-16
JP6714157B2 (en) 2020-06-24
WO2018220777A1 (en) 2018-12-06
JPWO2018220777A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
JP6957621B2 (en) Uninterruptible power system
TWI657648B (en) Power supply device and power supply system using the same
US10615636B2 (en) Uninterruptible power supply
TWI660566B (en) Power converter
WO2016084179A1 (en) Uninterruptible power supply
KR102343983B1 (en) power supply
JP2011050228A (en) Uninterruptible power supply system
TWI634731B (en) Power supply device and power supply system using the same
JP6533357B1 (en) Uninterruptible power system
JP6718019B2 (en) Power supply
WO2021255788A1 (en) Power conversion device
US11196292B2 (en) Uninterruptible power supply system
TWI625036B (en) Power converting apparatus
TWI640153B (en) Power conversion device
JPS63206165A (en) Uninterruptible power supply
KR20230007479A (en) uninterruptible power supply
JPH0429527A (en) Synchronous control circuit and control method