TWI650923B - Power-factor correction circuit structure - Google Patents
Power-factor correction circuit structure Download PDFInfo
- Publication number
- TWI650923B TWI650923B TW106122577A TW106122577A TWI650923B TW I650923 B TWI650923 B TW I650923B TW 106122577 A TW106122577 A TW 106122577A TW 106122577 A TW106122577 A TW 106122577A TW I650923 B TWI650923 B TW I650923B
- Authority
- TW
- Taiwan
- Prior art keywords
- diode
- switch
- inductor
- power
- power switch
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Dc-Dc Converters (AREA)
- Rectifiers (AREA)
Abstract
本發明提供一種功率因數校正電路結構,用於交流-直流電源轉換器,包括一第一升壓電路、一第二升壓電路、一維持電容、一組分壓電阻以及一控制器。該第一升壓電路以及該第二升壓電路個別用於接收一輸入訊號。該維持電容用於連接該第一升壓電路以及該第二升壓電路,以輸出一輸出訊號至一負載。該控制器用於控制該第一升壓電路以及該第二升壓電路交替接收並處理該輸入訊號。本發明藉由兩組升壓電路的交替作用,避免了二極體的頻繁開啟/關閉,進而降低了因二極體而產生的功率損耗。 The invention provides a power factor correction circuit structure for an AC-DC power converter, comprising a first boost circuit, a second boost circuit, a sustain capacitor, a component voltage resistor and a controller. The first boosting circuit and the second boosting circuit are used to receive an input signal. The sustain capacitor is used to connect the first boosting circuit and the second boosting circuit to output an output signal to a load. The controller is configured to control the first boosting circuit and the second boosting circuit to alternately receive and process the input signal. The invention avoids the frequent opening/closing of the diode by the alternating action of the two sets of boosting circuits, thereby reducing the power loss caused by the diode.
Description
本發明是關於一種功率因數校正電路結構,特別是關於交流-直流轉換的電源供應器。 The present invention relates to a power factor correction circuit structure, and more particularly to a power supply for AC-DC conversion.
世界各國均將節能與環保視為重要的政策之一,能源效率聯盟(80PLUS)訂定規範,要求離線式交流對直流(AC-DC)電源轉換器具備功率因數校正(power factor correction,PFC)功能,在10%、20%、50%以及100%等不同負載須達到其功率因數及效率。藉由功率因數校正技術的提升提高整體效率能夠使電源具有更高的效率以及低電磁(electromagnetic interference,EMI)。 Energy conservation and environmental protection are regarded as one of the important policies in the world. The Energy Efficiency Alliance (80PLUS) has established specifications that require off-line AC-to-DC (AC-DC) power converters with power factor correction (PFC). Function, the power factor and efficiency must be reached at different loads such as 10%, 20%, 50% and 100%. Increasing the overall efficiency by the power factor correction technology enables the power supply to have higher efficiency and lower electromagnetic interference (EMI).
參考第1圖,其為現有技術的電源轉換器的功率因數校正電路結構10的示意圖。該功率因數校正電路結構10包括一橋式二極體整流器13、一維持電容17、一升壓二極體16、一電感14、一功率開關15以及一控制器20。該控制器20控制該功率開關15以及該橋式二極體整流器13。藉由檢測經過該橋式二極體整流器13的電壓變化、該控制器20控制輸出電壓以及跟蹤該電感14瞬間電流的變化,進而實現功率因數校正以及負載調節的目的。該控制器20的開關頻率產生脈波調變以控制該功率開關15,藉此以進行功率因數校正。在工作時,當電流通過該電感14、該功率開關15以及該升壓二極體16,會有傳導損耗及開關損耗發生;因此通常只能採用更低損耗的功率開關及升壓二極體來增加轉換效率。 Referring to Figure 1, a schematic diagram of a power factor correction circuit structure 10 of a prior art power converter. The power factor correction circuit structure 10 includes a bridge diode rectifier 13, a sustain capacitor 17, a boost diode 16, an inductor 14, a power switch 15, and a controller 20. The controller 20 controls the power switch 15 and the bridge diode rectifier 13. Power factor correction and load regulation are achieved by detecting a change in voltage across the bridge diode rectifier 13, controlling the output voltage by the controller 20, and tracking changes in the instantaneous current of the inductor 14. The switching frequency of the controller 20 produces pulse wave modulation to control the power switch 15 whereby power factor correction is performed. During operation, when current flows through the inductor 14, the power switch 15, and the boost diode 16, conduction loss and switching loss occur; therefore, generally only lower loss power switches and boost diodes can be used. To increase conversion efficiency.
該現有技術電源轉換器的功率因數校正電路完整的操作過程為:一交流電壓源11產生一輸入訊號經過一電磁濾波器12處理後,接著由該功率因數校正電路結構10處理;當電壓經過該功率因數校正電路結構10由交流訊號轉換為直流訊號後,其再經過一直流-直流轉換器18的處理即可供一負載19使用。 The power factor correction circuit of the prior art power converter has a complete operation process: an AC voltage source 11 generates an input signal and is processed by an electromagnetic filter 12, and then processed by the power factor correction circuit structure 10; when the voltage passes through the The power factor correction circuit structure 10 is converted into a DC signal by an AC signal, and then processed by the DC-DC converter 18 to be used by a load 19.
需要注意的是,該橋式二極體整流器13是由多個二極體組成。二極體因為頻繁地開啟/關閉產生的損耗外,電流持續施加在該電感14、該功率開關15以及該升壓二極體16,造成溫度上升,還會產生熱功率損耗。 It should be noted that the bridge diode rectifier 13 is composed of a plurality of diodes. In addition to the losses caused by the frequent opening/closing of the diode, current is continuously applied to the inductor 14, the power switch 15, and the boosting diode 16, causing a temperature rise and a loss of thermal power.
現有的控制器頻率控制,只能對應固定負載進行運作,無法在10% 20% 50% 100%等不同負載對於功率因數及效率要求下進行頻率控制。控制器的頻率控制有以下幾種模式:1.固定頻率控制模式:透過一震盪器產生的固定頻率進行控制;2.編程固定頻率控制模式:通過外部電阻、外部電容或外部電容和電阻組合,進行頻率的設定;3.同步頻率控制模式:由外部提供一個頻率供控制器使用。 The existing controller frequency control can only operate with a fixed load, and it is impossible to perform frequency control under different factors such as 10% 20% 50% 100% for power factor and efficiency. The frequency control of the controller has the following modes: 1. Fixed frequency control mode: controlled by a fixed frequency generated by an oscillator; 2. Programming fixed frequency control mode: by external resistor, external capacitor or combination of external capacitor and resistor, Frequency setting; 3. Synchronous frequency control mode: A frequency is provided externally for the controller to use.
綜上所述,現有技術的電源轉換器的功率因數校正電路結構10存在傳導損耗、開關損耗以及熱功率損耗。現有技術只能針對不同的功率負載下,不同的傳導損耗、不同的開關損耗以及不同的熱功率損耗進行改善,無法同時改善在不同負載下的功率因數以及效率。 In summary, the power factor correction circuit structure 10 of the prior art power converter has conduction loss, switching loss, and thermal power loss. The prior art can only improve different conduction losses, different switching losses, and different thermal power losses under different power loads, and cannot simultaneously improve the power factor and efficiency under different loads.
因此,如何有效降低二極體頻繁地開啟/關閉以及降低操作溫度是亟需解決的問題。 Therefore, how to effectively reduce the frequent opening/closing of the diode and lower the operating temperature is an urgent problem to be solved.
參考第2圖,其為現有技術的電源轉換器的功率因數校正電路的兩相電流檢測電路30的示意圖,當中包括三個電容、二個電阻、二個二極體以及二組感應電感。眾多的元件數量造成了無法避免的功率損耗。該兩組感應電感是用於感測輸入線路的電流以便得到輸入線路的電流的不可或缺元件。 Referring to FIG. 2, a schematic diagram of a two-phase current detecting circuit 30 of a power factor correction circuit of a prior art power converter includes three capacitors, two resistors, two diodes, and two sets of inductive inductors. The sheer number of components creates an unavoidable power loss. The two sets of inductive inductors are indispensable components for sensing the current of the input line in order to obtain the current of the input line.
參考第3圖,其為現有技術的電源轉換器的功率因數校正電路的輸入訊號電壓檢測電路40的示意圖。該電源轉換器的功率因數校正電路連接到該控制器20之間還需要兩個電阻搭配一個電容才能夠量測到輸入訊號電壓數值。如同上述電流檢測電路30,過多的零件使用都會造成不必要的阻抗損失,是需要解決的問題。 Referring to Fig. 3, there is shown a schematic diagram of an input signal voltage detecting circuit 40 of a power factor correction circuit of a prior art power converter. The power factor correction circuit of the power converter is connected to the controller 20 and requires two resistors together with a capacitor to measure the input signal voltage value. As with the current detecting circuit 30 described above, excessive use of parts causes unnecessary impedance loss, which is a problem to be solved.
因此,如何有效的降低元件的數量亦是亟需解決的問題。 Therefore, how to effectively reduce the number of components is also an urgent problem to be solved.
本發明提供一種功率因數校正電路結構,藉由兩組升壓電路的交替作用,避免了二極體的頻繁開啟/關閉,進而降低了因二極體而產生的功率損耗;藉由一電流偵測電阻便能得到電流的資訊,藉由減少元件的數量,使工作溫度下降、體積縮小以及成本下降。進而在10%、20%、50%以及100%等不同負載須達到要求的功率因數及效率。 The invention provides a power factor correction circuit structure, which avoids the frequent opening/closing of the diode by the alternating action of the two sets of boost circuits, thereby reducing the power loss caused by the diode; The resistance can be used to obtain current information. By reducing the number of components, the operating temperature is reduced, the volume is reduced, and the cost is reduced. Further, the required power factor and efficiency must be achieved at different loads such as 10%, 20%, 50%, and 100%.
為解決上述技術問題,本發明提供一種功率因數校正電路結構,用於交流-直流電源轉換器,包括一第一升壓電路、一第二升壓電路、一維持電容、一組分壓電阻以及一控制器。 To solve the above technical problem, the present invention provides a power factor correction circuit structure for an AC-DC power converter, including a first boost circuit, a second boost circuit, a sustain capacitor, a component voltage resistor, and A controller.
該第一升壓電路以及該第二升壓電路個別用於接收一輸入訊號。該維持電容用於連接該第一升壓電路以及該第二升壓電路,以輸出一輸出訊號至一負載。該組分壓電阻與該維持電容並聯。該控制器包括一集成電壓感測模組以及一可編程頻率控制模組。該控制器用於控制該第一升壓電路以及該第二升壓電路輪流接收並處理該輸入訊號;該集成電壓感測模組根據該輸入訊號的電流訊息產生該輸入訊號的電壓訊息;該可編程頻率控制模組連接一頻率改變單元改變該控制器的運作頻率。 The first boosting circuit and the second boosting circuit are used to receive an input signal. The sustain capacitor is used to connect the first boosting circuit and the second boosting circuit to output an output signal to a load. The component voltage resistor is connected in parallel with the sustain capacitor. The controller includes an integrated voltage sensing module and a programmable frequency control module. The controller is configured to control the first booster circuit and the second booster circuit to receive and process the input signal in turn; the integrated voltage sensing module generates a voltage signal of the input signal according to the current message of the input signal; The programming frequency control module is connected to a frequency changing unit to change the operating frequency of the controller.
在一較佳實施例中,該第一升壓電路包括一第一電感、一第一升壓二極體、一第一回路二極體以及一第一功率開關,該第二升壓電路包括一第二電感、一第二升壓二極體、一第二回路二極體以及一第二功率 開關。 In a preferred embodiment, the first boosting circuit includes a first inductor, a first boosting diode, a first loop diode, and a first power switch, and the second boosting circuit includes a second inductor, a second boost diode, a second loop diode, and a second power switch.
在一較佳實施例中,該第一電感的第一端接收該輸入訊號,該第一電感的第二端連接該第一升壓二極體的第一端以及該第一功率開關的第一端,該第一升壓二極體的第二端連接該維持電容的第一端,該第一功率開關的第二端連接該維持電容的第二端以及該第一回路二極體的第一端,該第一回路二極體的第二端連接該第一電感的該第一端。 In a preferred embodiment, the first end of the first inductor receives the input signal, and the second end of the first inductor is connected to the first end of the first step-up diode and the first end of the first power switch The second end of the first boosting diode is connected to the first end of the sustaining capacitor, and the second end of the first power switch is connected to the second end of the sustaining capacitor and the first loop diode The first end of the first circuit diode is connected to the first end of the first inductor.
該第二電感的第一端接收該輸入訊號,該第二電感的第二端連接該第二升壓二極體的第一端以及該第二功率開關的第一端,該第二升壓二極體的第二端連接該維持電容的第一端,該第二功率開關的第二端連接該維持電容的第二端以及該第二回路二極體的第一端,該第二回路二極體的第二端連接該第二電感的該第一端,該第一升壓二極體的該第二端連接該第二升壓二極體的該第二端,該第一功率開關的該第二端連接該第二功率開關的該第二端。 The first end of the second inductor receives the input signal, and the second end of the second inductor is connected to the first end of the second step-up diode and the first end of the second power switch, the second boost a second end of the diode is connected to the first end of the sustain capacitor, and a second end of the second power switch is connected to the second end of the sustain capacitor and the first end of the second loop diode, the second loop a second end of the diode is connected to the first end of the second inductor, and the second end of the first step-up diode is connected to the second end of the second step-up diode, the first power The second end of the switch is coupled to the second end of the second power switch.
在一較佳實施例中,該第一電感以及該第二電感是獨立鐵芯電感或共用鐵芯集成電感器。 In a preferred embodiment, the first inductor and the second inductor are independent core inductors or shared core integrated inductors.
在一較佳實施例中,該第一回路二極體的該第一端藉由一電流偵測電阻連接至該控制器的第一接腳以量取該輸出訊號的電流資訊。 In a preferred embodiment, the first end of the first loop diode is connected to the first pin of the controller by a current detecting resistor to measure the current information of the output signal.
在一較佳實施例中,該第一功率開關包括一第一開關以及一第一逆止二極體,該第二功率開關包括一第二開關以及一第二逆止二極體,該控制器的第二接腳連接該第一開關以及該第二開關,以控制該第一開關以及該第二開關的開啟/關閉。 In a preferred embodiment, the first power switch includes a first switch and a first backstop diode, the second power switch includes a second switch and a second backstop diode, the control The second pin of the device is connected to the first switch and the second switch to control the opening and closing of the first switch and the second switch.
在一較佳實施例中,該第一功率開關包括一第一場效電晶體以及一第一逆止二極體,該第二功率開關包括一第二場效電晶體以及一第二逆止二極體,該控制器連接該第一場效電晶體以及該第二場效電晶體,以控制該第一場效電晶體以及該第二場效電晶體的開啟/關閉。 In a preferred embodiment, the first power switch includes a first field effect transistor and a first backstop diode, and the second power switch includes a second field effect transistor and a second backstop. a diode, the controller connecting the first field effect transistor and the second field effect transistor to control on/off of the first field effect transistor and the second field effect transistor.
在一較佳實施例中,該功率因數校正電路結構還包括一第三 升壓電路,該第三升壓電路用於接收該輸入訊號。該維持電容亦用於連接該第三升壓電路,以輸出該輸出訊號。該控制器亦用於控制該第一升壓電路、該第二升壓電路該以及該第三升壓電路輪流接收並處理該輸入訊號。 In a preferred embodiment, the power factor correction circuit structure further includes a third a boost circuit, the third boost circuit is configured to receive the input signal. The sustain capacitor is also used to connect the third boost circuit to output the output signal. The controller is further configured to control the first boosting circuit, the second boosting circuit, and the third boosting circuit to receive and process the input signal in turn.
在一較佳實施例中,該第三升壓電路包括一第三電感、一第三升壓二極體、一第三回路二極體以及一第三功率開關。該第三電感的第一端接收該輸入訊號,及該第三電感的第二端連接該第三升壓二極體的第一端以及該第三功率開關的第一端。該第三升壓二極體的第二端連接該維持電容的第一端。該第三功率開關的第二端連接該維持電容的第二端以及該第三回路二極體的第一端。該第三回路二極體的第二端連接該第三電感的該第一端。該第三升壓二極體的該第二端連接該第二升壓二極體的該第二端。該第三功率開關的該第二端連接該第二功率開關的該第二端。 In a preferred embodiment, the third boosting circuit includes a third inductor, a third boosting diode, a third loop diode, and a third power switch. The first end of the third inductor receives the input signal, and the second end of the third inductor is connected to the first end of the third step-up diode and the first end of the third power switch. The second end of the third boost diode is connected to the first end of the sustain capacitor. The second end of the third power switch is connected to the second end of the sustain capacitor and the first end of the third loop diode. The second end of the third loop diode is connected to the first end of the third inductor. The second end of the third step-up diode is connected to the second end of the second step-up diode. The second end of the third power switch is coupled to the second end of the second power switch.
在一較佳實施例中,該第三功率開關包括一第三開關以及一第三逆止二極體。該控制器的該第二接腳連接該第三開關以及該第二開關,以控制該第三開關的開啟/關閉。 In a preferred embodiment, the third power switch includes a third switch and a third backstop diode. The second pin of the controller is connected to the third switch and the second switch to control the opening/closing of the third switch.
在一較佳實施例中,該第三功率開關包括一第三場效電晶體以及一第三逆止二極體。該控制器連接該第三場效電晶體,以控制該第三場效電晶體的開啟/關閉。 In a preferred embodiment, the third power switch includes a third field effect transistor and a third backstop diode. The controller is coupled to the third field effect transistor to control the opening/closing of the third field effect transistor.
在一較佳實施例中,該控制器是一可編程的頻率控制器。 In a preferred embodiment, the controller is a programmable frequency controller.
在一較佳實施例中,該頻率改變單元包括至少一頻率控制電阻或至少一頻率控制電容或電阻與電容組合(RC)的其中之一或多個的組合。 In a preferred embodiment, the frequency varying unit comprises at least one frequency control resistor or at least one frequency control capacitor or a combination of one or more of a resistor and capacitor combination (RC).
在一較佳實施例中,該頻率改變單元還包括至少一開關,用以控制該至少一頻率控制電阻或該至少一頻率控制電容或該至少一電阻與電容組合。 In a preferred embodiment, the frequency changing unit further includes at least one switch for controlling the at least one frequency control resistor or the at least one frequency control capacitor or the at least one resistor and capacitor combination.
在一較佳實施例中,該至少一開關電性連接該負載。 In a preferred embodiment, the at least one switch is electrically connected to the load.
相較於現有技術,本發明藉由兩組升壓電路的交替作用,避 免了二極體的頻繁開啟/關閉,進而降低了因二極體而產生的功率損耗;藉由一電流偵測電阻便能得到電流的資訊,藉由減少元件的數量,使工作溫度下降、體積縮小以及成本下降。進而在10%、20%、50%以及100%等不同負載須達到要求的功率因數及效率。 Compared with the prior art, the present invention avoids the alternating action of two sets of boost circuits. The frequent opening/closing of the diode is avoided, thereby reducing the power loss caused by the diode; the current can be obtained by a current detecting resistor, and the operating temperature is lowered by reducing the number of components. Volume reduction and cost reduction. Further, the required power factor and efficiency must be achieved at different loads such as 10%, 20%, 50%, and 100%.
10、100、200、300、400、500、600‧‧‧功率因數校正電路結構 10, 100, 200, 300, 400, 500, 600‧‧‧ power factor correction circuit structure
11、160‧‧‧交流電壓源 11, 160‧‧‧ AC voltage source
12、170‧‧‧電磁濾波器 12, 170‧‧ ‧ electromagnetic filter
13‧‧‧橋式二極體整流器 13‧‧‧Bridge diode rectifier
14‧‧‧電感 14‧‧‧Inductance
15‧‧‧功率開關 15‧‧‧Power switch
16‧‧‧升壓二極體 16‧‧‧Boost diode
17、140‧‧‧維持電容 17, 140‧‧‧ Maintain Capacitance
18‧‧‧直流-直流轉換器 18‧‧‧DC-DC converter
19、150‧‧‧負載 19, 150‧‧‧ load
20、130‧‧‧控制器 20, 130‧‧ ‧ controller
30‧‧‧兩相電流檢測電路 30‧‧‧Two-phase current detection circuit
40‧‧‧輸入訊號電壓檢測電路 40‧‧‧Input signal voltage detection circuit
110‧‧‧第一升壓電路 110‧‧‧First booster circuit
111‧‧‧第一電感 111‧‧‧First inductance
112‧‧‧第一升壓二極體 112‧‧‧First booster diode
113‧‧‧第一功率開關 113‧‧‧First power switch
114‧‧‧第一回路二極體 114‧‧‧First loop diode
115‧‧‧第一開關 115‧‧‧First switch
116‧‧‧第一逆止二極體 116‧‧‧First backstop diode
120‧‧‧第二升壓電路 120‧‧‧second boost circuit
121‧‧‧第二電感 121‧‧‧second inductance
122‧‧‧第二升壓二極體 122‧‧‧second booster diode
123‧‧‧第二功率開關 123‧‧‧second power switch
124‧‧‧第二回路二極體 124‧‧‧Second circuit diode
125‧‧‧第二開關 125‧‧‧second switch
126‧‧‧第二逆止二極體 126‧‧‧second backstop diode
131‧‧‧電流偵測電阻 131‧‧‧ Current Sense Resistor
132‧‧‧第一接腳 132‧‧‧First pin
133‧‧‧第二接腳 133‧‧‧second pin
134‧‧‧集成電壓感測模組 134‧‧‧Integrated voltage sensing module
135‧‧‧可編程頻率控制模組 135‧‧‧Programmable Frequency Control Module
171‧‧‧分壓電阻 171‧‧‧voltage resistor
172‧‧‧頻率改變單元 172‧‧‧frequency change unit
173‧‧‧第一頻率控制電阻 173‧‧‧First frequency control resistor
174‧‧‧第二頻率控制電阻 174‧‧‧Second frequency control resistor
Va‧‧‧第一電感的第一端的電壓 Va‧‧‧ voltage at the first end of the first inductor
Vb‧‧‧第二電感的第一端的電壓 Vb‧‧‧ voltage at the first end of the second inductor
180‧‧‧第三升壓電路 180‧‧‧ Third booster circuit
181‧‧‧第三電感 181‧‧‧ Third inductance
182‧‧‧第三升壓二極體 182‧‧‧ Third booster diode
183‧‧‧第三功率開關 183‧‧‧ Third power switch
184‧‧‧第三回路二極體 184‧‧‧ Third loop diode
185‧‧‧第三開關 185‧‧‧ third switch
186‧‧‧第三逆止二極體 186‧‧‧ Third backstop diode
第1圖顯示現有技術的電源轉換器的功率因數校正電路結構的示意圖;第2圖顯示現有技術的電源轉換器的功率因數校正電路的兩相電流檢測電路的示意圖;第3圖顯示現有技術的電源轉換器的功率因數校正電路的輸入訊號電壓檢測電路的示意圖;第4圖顯示本發明的第一較佳實施例的電源轉換器的功率因數校正電路結構的示意圖;第5圖顯示本發明的第二較佳實施例的電源轉換器的功率因數校正電路結構的示意圖;第6圖顯示本發明的第三較佳實施例的電源轉換器的功率因數校正電路結構的示意圖;第7圖顯示本發明的第四較佳實施例的電源轉換器的功率因數校正電路結構的示意圖;第8圖顯示本發明的第五較佳實施例的電源轉換器的功率因數校正電路結構的示意圖;以及第9圖顯示本發明的第六較佳實施例的電源轉換器的功率因數校正電路結構的示意圖。 1 is a schematic diagram showing a structure of a power factor correction circuit of a power converter of the prior art; FIG. 2 is a schematic diagram showing a two-phase current detecting circuit of a power factor correction circuit of a power converter of the prior art; and FIG. 3 is a view showing a prior art Schematic diagram of an input signal voltage detecting circuit of a power factor correction circuit of a power converter; FIG. 4 is a view showing a structure of a power factor correction circuit of a power converter of a first preferred embodiment of the present invention; FIG. 6 is a schematic diagram showing the structure of a power factor correction circuit of a power converter of a third preferred embodiment of the present invention; FIG. 7 is a view showing the structure of a power factor correction circuit of a power converter according to a third preferred embodiment of the present invention; A schematic diagram of a power factor correction circuit structure of a power converter of a fourth preferred embodiment of the invention; FIG. 8 is a diagram showing a structure of a power factor correction circuit of a power converter of a fifth preferred embodiment of the present invention; and The figure shows a schematic diagram of the power factor correction circuit configuration of the power converter of the sixth preferred embodiment of the present invention.
參考第4圖,顯示本發明的第一較佳實施例的電源轉換器的功率因數校正電路結構100的示意圖。該功率因數校正電路結構100用於交 流-直流電源轉換器,包括一第一升壓電路110、一第二升壓電路120、一維持電容140、一組分壓電阻171以及一控制器130。 Referring to Fig. 4, there is shown a schematic diagram of a power factor correction circuit structure 100 of a power converter of a first preferred embodiment of the present invention. The power factor correction circuit structure 100 is used for The DC-DC power converter includes a first boost circuit 110, a second boost circuit 120, a sustain capacitor 140, a component voltage resistor 171, and a controller 130.
該第一升壓電路110以及該第二升壓電路120個別用於接收一輸入訊號。詳細地,該輸入訊號是由一交流電壓源160經過一電磁濾波器170處理過而產生的。該維持電容140用於連接該第一升壓電路110以及該第二升壓電路120,以輸出一輸出訊號至一負載150。該組分壓電阻171與該維持電容140並聯。該控制器130用於控制該第一升壓電路110以及該第二升壓電路120交替接收並處理該輸入訊號。詳細地,該輸出訊號用於供一負載150使用。該控制器130包括一集成電壓感測模組134以及一可編程頻率控制模組135。該集成電壓感測模組134根據該輸入訊號的電流訊息產生該輸入訊號的電壓訊息。詳細地,該組分壓電阻171包括兩個電阻,其中從該兩個電阻的連接處拉出一根訊號線至集成電壓感測模組134以便得知該輸入訊號的電壓訊息與升壓電路的電壓訊息。相較於現有技術需要額外使用一個接腳,使用一個電阻搭配一組電阻-電容(RC)阻抗,經過計算得到才能得知輸入訊號的電壓資訊,本發明因為使用的元件大幅減少(僅需一個接腳),使成本大幅下降,而且不需要如同現有技術需要使用控制器的兩個接腳以分別得知輸入訊號與升壓電路的電壓資訊。該可編程頻率控制模組135連接一頻率改變單元172以改變該控制器130的運作頻率。 The first boosting circuit 110 and the second boosting circuit 120 are used to receive an input signal. In detail, the input signal is generated by an AC voltage source 160 processed by an electromagnetic filter 170. The sustain capacitor 140 is configured to connect the first booster circuit 110 and the second booster circuit 120 to output an output signal to a load 150. The component voltage resistor 171 is connected in parallel with the sustain capacitor 140. The controller 130 is configured to control the first boosting circuit 110 and the second boosting circuit 120 to alternately receive and process the input signal. In detail, the output signal is used for a load 150. The controller 130 includes an integrated voltage sensing module 134 and a programmable frequency control module 135. The integrated voltage sensing module 134 generates a voltage message of the input signal according to the current message of the input signal. In detail, the component voltage resistor 171 includes two resistors, wherein a signal line is pulled from the connection of the two resistors to the integrated voltage sensing module 134 to know the voltage signal and the boosting circuit of the input signal. Voltage message. Compared with the prior art, an extra pin is needed, and a resistor is used together with a set of resistance-capacitance (RC) impedance. After calculation, the voltage information of the input signal can be known, and the invention uses a large reduction of components (only one required) The pin) makes the cost drop drastically, and it is not necessary to use the two pins of the controller as in the prior art to separately know the voltage information of the input signal and the boost circuit. The programmable frequency control module 135 is coupled to a frequency changing unit 172 to change the operating frequency of the controller 130.
參考第5圖,顯示本發明的第二較佳實施例的電源轉換器的功率因數校正電路結構200的示意圖。本較佳實施例與第一較佳實施例的差異在於將該第一升壓電路110以及該第一升壓電路110的詳細接線方式一一說明。該第一升壓電路110包括一第一電感111、一第一升壓二極體112、一第一回路二極體114以及一第一功率開關113。該第二升壓電路120包括一第二電感121、一第二升壓二極體122、一第二回路二極體124以及一第二功率開關123。 Referring to Fig. 5, there is shown a schematic diagram of a power factor correction circuit structure 200 of a power converter of a second preferred embodiment of the present invention. The difference between the preferred embodiment and the first preferred embodiment is that the detailed connection manners of the first boosting circuit 110 and the first boosting circuit 110 are described one by one. The first boosting circuit 110 includes a first inductor 111, a first boosting diode 112, a first loop diode 114, and a first power switch 113. The second boosting circuit 120 includes a second inductor 121 , a second boosting diode 122 , a second loop diode 124 , and a second power switch 123 .
該第一電感111的第一端接收該輸入訊號,該第一電感111 的第二端連接該第一升壓二極體112的第一端以及該第一功率開關113的第一端;該第一升壓二極體112的第二端連接該維持電容140的第一端;該第一功率開關113的第二端連接該維持電容140的第二端以及該第一回路二極體114的第一端;該第一回路二極體114的第二端連接該第一電感111的該第一端。 The first end of the first inductor 111 receives the input signal, and the first inductor 111 The second end of the first boosting diode 112 is connected to the first end of the first boosting diode 112 and the first end of the first power switch 113; the second end of the first boosting diode 112 is connected to the first of the sustaining capacitors 140 One end of the first power switch 113 is connected to the second end of the first capacitor diode 114 and the second end of the first circuit diode 114; The first end of the first inductor 111.
該第二電感121的第一端接收該輸入訊號,該第二電感121的第二端連接該第二升壓二極體122的第一端以及該第二功率開關123的第一端;該第二升壓二極體122的第二端連接該維持電容140的第一端;該第二功率開關123的第二端連接該維持電容140的第二端以及該第二回路二極體124的第一端;該第二回路二極體124的第二端連接該第二電感121的該第一端;該第一升壓二極體112的該第二端連接該第二升壓二極體122的該第二端;該第一功率開關113的該第二端連接該第二功率開關123的該第二端。 The first end of the second inductor 121 receives the input signal, and the second end of the second inductor 121 is connected to the first end of the second step-up diode 122 and the first end of the second power switch 123; The second end of the second boosting diode 122 is connected to the first end of the sustaining capacitor 140; the second end of the second power switch 123 is connected to the second end of the sustaining capacitor 140 and the second loop diode 124 The first end of the second loop diode 124 is connected to the first end of the second inductor 121; the second end of the first boost diode 112 is connected to the second booster The second end of the first power switch 113 is connected to the second end of the second power switch 123.
詳細地,該控制器130至少包括一第一接腳132。該第一回路二極體114的該第一端藉由該電流偵測電阻131連接至該控制器130的第一接腳132以量取該輸出訊號的電流資訊。換言之,該第一接腳132就是電流感測接腳(current sense pin)。相較於現有技術需要使用電感偵測電流,才能經過計算得到電流資訊,本發明因為使用的元件大幅減少(僅需一個電阻),可使成本大幅下降。 In detail, the controller 130 includes at least a first pin 132. The first end of the first circuit diode 114 is connected to the first pin 132 of the controller 130 by the current detecting resistor 131 to measure the current information of the output signal. In other words, the first pin 132 is a current sense pin. Compared with the prior art, it is necessary to use the inductor to detect the current, so that the current information can be calculated. The invention can greatly reduce the cost because the components used are greatly reduced (only one resistor is needed).
詳細地,該第一功率開關113包括一第一開關115以及一第一逆止二極體116。該第二功率開關123包括一第二開關125以及一第二逆止二極體126。該控制器130的第二接腳133連接該第一開關115以及該第二開關125,以控制該第一開關115以及該第二開關125的開啟/關閉。 In detail, the first power switch 113 includes a first switch 115 and a first backstop diode 116. The second power switch 123 includes a second switch 125 and a second backstop diode 126. The second pin 133 of the controller 130 is connected to the first switch 115 and the second switch 125 to control the opening/closing of the first switch 115 and the second switch 125.
在實際操作過程中,該交流電壓源160會持續的輸出弦波(正負交替),即該第一電感111的第一端的電壓Va減掉該第二電感121的第一端的電壓Vb會正負交替。可以有以下幾種狀況: During the actual operation, the AC voltage source 160 continuously outputs a sine wave (positive and negative alternate), that is, the voltage Va at the first end of the first inductor 111 subtracts the voltage Vb at the first end of the second inductor 121. Positive and negative alternate. There are several situations:
1.當該第一電感111的第一端的電壓Va減掉該第二電感121 的第一端的電壓Vb大於零以及該第一功率開關113以及該第二功率開關123均導通時,電流會由該第一升壓電路110進行處理,依序經過該第一電感111、該第一開關115以及該第二回路二極體124,同時該第一回路二極體114是屬於不導通的狀態。因為該第二升壓二極體122以及該第二回路二極體124的設置,使該第一升壓電路110正常運作。當該第一電感111的第一端的電壓Va減掉該第二電感121的第一端的電壓Vb小於零以及該第一功率開關113以及該第二功率開關123均導通時,電流會由該第二升壓電路120進行處理,依序經過該第二電感121、該第二開關125以及該第一回路二極體114,同時該第二回路二極體124是屬於不導通的狀態。因為該第一升壓二極體112以及該第一回路二極體114的設置,使該第二升壓電路120正常運作。 1. When the voltage Va of the first end of the first inductor 111 subtracts the second inductor 121 When the voltage Vb of the first end is greater than zero and the first power switch 113 and the second power switch 123 are both turned on, the current is processed by the first boosting circuit 110, sequentially passing through the first inductor 111, The first switch 115 and the second loop diode 124 are simultaneously in a non-conducting state. Because of the arrangement of the second step-up diode 122 and the second loop diode 124, the first booster circuit 110 operates normally. When the voltage Va of the first end of the first inductor 111 minus the voltage Vb of the first end of the second inductor 121 is less than zero, and the first power switch 113 and the second power switch 123 are both turned on, the current will be The second boosting circuit 120 performs processing to sequentially pass through the second inductor 121, the second switch 125, and the first loop diode 114, and the second loop diode 124 is in a non-conducting state. Because the first boosting diode 112 and the first loop diode 114 are disposed, the second boosting circuit 120 operates normally.
2.當該第一電感111的第一端的電壓Va減掉該第二電感121的第一端的電壓Vb大於零以及該第一功率開關113以及該第二功率開關123均關閉時,電流會由該第一升壓電路110進行處理,依序經過該第一電感111、該第一升壓二極體112、該維持電容140以及該第二回路二極體124,進而提供升壓後的電力供該負載150使用,同時該第一回路二極體114是屬於不導通的狀態。因為該第二升壓二極體122以及該第二回路二極體124的設置,使該第一升壓電路110正常運作。當該第一電感111的第一端的電壓Va減掉該第二電感121的第一端的電壓Vb小於零以及該第一功率開關113以及該第二功率開關123均關閉時,電流會由該第二升壓電路120進行處理,依序經過該第二電感121、該第二升壓二極體122、該維持電容140以及該第一回路二極體114,進而提供升壓後的電力供該負載150使用,同時該第二回路二極體124是屬於不導通的狀態。因為該第一升壓二極體112以及該第一回路二極體114的設置,使該第二升壓電路120正常運作。 2. When the voltage Va at the first end of the first inductor 111 minus the voltage Vb at the first end of the second inductor 121 is greater than zero and the first power switch 113 and the second power switch 123 are both off, the current The first booster circuit 110 processes the first inductor 111, the first boost diode 112, the sustain capacitor 140, and the second loop diode 124 to provide boosting. The power is used by the load 150 while the first return diode 114 is in a non-conducting state. Because of the arrangement of the second step-up diode 122 and the second loop diode 124, the first booster circuit 110 operates normally. When the voltage Va of the first end of the first inductor 111 minus the voltage Vb of the first end of the second inductor 121 is less than zero, and the first power switch 113 and the second power switch 123 are both turned off, the current will be The second boosting circuit 120 performs processing to sequentially pass the second inductor 121, the second boosting diode 122, the sustaining capacitor 140, and the first loop diode 114 to provide boosted power. The load 150 is used while the second loop diode 124 is in a non-conducting state. Because the first boosting diode 112 and the first loop diode 114 are disposed, the second boosting circuit 120 operates normally.
綜上所述,通過設置該第一回路二極體114以及該第二回路二極體124的設置,該功率因數校正電路結構200能夠在該第一功率開關113以及該第二功率開關123在開啟/關閉時正常運作。 In summary, by setting the first circuit diode 114 and the second circuit diode 124, the power factor correction circuit structure 200 can be in the first power switch 113 and the second power switch 123. It works normally when turned on/off.
詳細地,該第一電感111以及該第二電感121是獨立鐵芯電感或共用鐵芯集成電感器,也可以依照不同導磁率、鐵芯損失以及溫度穩定性等要求採用不同類型的磁通密度鐵芯。因此可以在元件尺寸、成本及效率上,根據設計而變化使用。 In detail, the first inductor 111 and the second inductor 121 are independent core inductors or shared core integrated inductors, and different types of magnetic flux densities may be adopted according to different magnetic permeability, core loss, and temperature stability requirements. Iron core. Therefore, it can be used depending on the design in terms of component size, cost, and efficiency.
參考第6圖,顯示本發明的第三較佳實施例的電源轉換器的功率因數校正電路結構300的示意圖。本較佳實施例與第二較佳實施例的差異在於該第一開關115是一第一場效電晶體,該第二開關125是一第二場效電晶體,該控制器130連接該第一場效電晶體以及該第二場效電晶體。詳細地,該控制器130的第二接腳133連接該第一場效電晶體的柵極以及該第二場效電晶體的柵極以控制該第一場效電晶體以及該第二場效電晶體的開啟/關閉。進一步,為了增強該控制器130的驅動能力,可以有以下幾種方式:1.外加一顆NPN電晶體以及一顆PNP電晶體,或一顆N通道場效電晶體(N CHANNEL MOSFET)以及一顆P通道場效電晶體(P CHANNEL MOSFET)之驅動電路,或同上述的驅動晶片(IC);2.外加一顆驅動電路用單通道或多通道的柵極驅動晶片(IC)。增強該驅動能力或當並聯多顆場效電晶體時驅動用,以有效降低溫度,其驅動方式和該控制器130的該第二接腳133的驅動方式相同。 Referring to Fig. 6, there is shown a schematic diagram of a power factor correction circuit structure 300 of a power converter of a third preferred embodiment of the present invention. The difference between the preferred embodiment and the second preferred embodiment is that the first switch 115 is a first field effect transistor, the second switch 125 is a second field effect transistor, and the controller 130 is connected to the first A potent crystal and the second field effect transistor. In detail, the second pin 133 of the controller 130 is connected to the gate of the first field effect transistor and the gate of the second field effect transistor to control the first field effect transistor and the second field effect. The transistor is turned on/off. Further, in order to enhance the driving capability of the controller 130, there are several ways: 1. plus an NPN transistor and a PNP transistor, or an N-channel field effect transistor (N CHANNEL MOSFET) and a A P-channel field effect transistor (P CHANNEL MOSFET) drive circuit, or the same as the above-mentioned driver chip (IC); 2. Add a drive circuit with a single-channel or multi-channel gate drive chip (IC). The driving capability is enhanced or driven when a plurality of field effect transistors are connected in parallel to effectively lower the temperature, and the driving manner is the same as that of the second pin 133 of the controller 130.
在本發明中,該控制器130可以是一可編程的頻率控制器,可以採用各種MOSFET、GaN、SiC、IGBT等功率開關,以提供各類型產品應用,滿足各種不同功率需求。 In the present invention, the controller 130 can be a programmable frequency controller, and can adopt various power switches such as MOSFET, GaN, SiC, IGBT, etc., to provide various types of product applications to meet various power requirements.
第7圖顯示本發明的第四較佳實施例的電源轉換器的功率因數校正電路結構400的示意圖。本較佳實施例與第二較佳實施例的差異在於進一步包括一第三升壓電路180。該第三升壓電路180包括一第三電感181、一第三升壓二極體182、一第三回路二極體184以及一第三功率開關183。 Figure 7 is a diagram showing a power factor correction circuit structure 400 of a power converter of a fourth preferred embodiment of the present invention. The difference between the preferred embodiment and the second preferred embodiment is that a third boosting circuit 180 is further included. The third boosting circuit 180 includes a third inductor 181, a third boosting diode 182, a third loop diode 184, and a third power switch 183.
該第三電感181的第一端接收該輸入訊號,該第三電感181的第二端連接該第三升壓二極體182的第一端以及該第三功率開關183的第 一端;該第三升壓二極體182的第二端連接該維持電容140的第一端;該第三功率開關183的第二端連接該維持電容140的第二端以及該第三回路二極體184的第一端;該第三回路二極體184的第二端連接該第三電感181的該第一端;該第三升壓二極體182的該第二端連接該第二升壓二極體122的該第二端;該第三功率開關183的該第二端連接該第二功率開關123的該第二端。 The first end of the third inductor 181 receives the input signal, and the second end of the third inductor 181 is connected to the first end of the third step-up diode 182 and the third end of the third power switch 183 The second end of the third boosting diode 182 is connected to the first end of the sustain capacitor 140; the second end of the third power switch 183 is connected to the second end of the sustain capacitor 140 and the third loop a first end of the third body diode 184 is connected to the first end of the third inductor 181; the second end of the third step-up diode 182 is connected to the second end The second end of the second power switch 183 is connected to the second end of the second power switch 123.
同理,該第三回路二極體184的該第一端藉由該電流偵測電阻131連接至該控制器130的第一接腳132以量取該輸出訊號的電流資訊。 Similarly, the first end of the third circuit diode 184 is connected to the first pin 132 of the controller 130 by the current detecting resistor 131 to measure the current information of the output signal.
詳細地,該第三功率開關183包括一第三開關185以及一第三逆止二極體186。該控制器130的第二接腳133亦連接該第三開關185,以控制該第三開關185的開啟/關閉。 In detail, the third power switch 183 includes a third switch 185 and a third backstop diode 186. The second pin 133 of the controller 130 is also connected to the third switch 185 to control the opening/closing of the third switch 185.
然而,在其他較佳實施例中,也可以有大於三組升壓電路的設計,並不以此為限。 However, in other preferred embodiments, there may be more than three sets of booster circuits, and are not limited thereto.
參考第8圖,顯示本發明的第五較佳實施例的電源轉換器的功率因數校正電路結構500的示意圖。本較佳實施例與第四較佳實施例的差異在於該第一開關115是一第一場效電晶體,該第二開關125是一第二場效電晶體,該第三開關185是一第三場效電晶體;該控制器130連接該第一場效電晶體、該第二場效電晶體以及該第三場效電晶體。其餘說明請參考第四較佳實施例,不再贅述。 Referring to Fig. 8, there is shown a schematic diagram of a power factor correction circuit structure 500 of a power converter of a fifth preferred embodiment of the present invention. The difference between the preferred embodiment and the fourth preferred embodiment is that the first switch 115 is a first field effect transistor, the second switch 125 is a second field effect transistor, and the third switch 185 is a a third field effect transistor; the controller 130 is coupled to the first field effect transistor, the second field effect transistor, and the third field effect transistor. For the rest of the description, please refer to the fourth preferred embodiment, and details are not described herein again.
參考第9圖,顯示本發明的第六較佳實施例的電源轉換器的功率因數校正電路結構600的示意圖。本較佳實施例與第一較佳實施例的差別在於該可編程頻率控制模組135,通過該頻率改變單元172可不加設置開關及第二頻率控制電阻174控制,單獨由第一頻率控制電阻173使用一個溫度係數電阻,進行編程變動頻率控制,即可改變控制器130的操作頻率。或藉由該負載150回授的電壓變化,選擇增加設置開關及第二頻率控制電阻174控制,進行編程調變頻率控制,該頻率改變單元172進一步包括一第一頻率控制電阻173以及一第二頻率控制電阻174,透過開關控制改變阻值, 就能夠使該控制器的操作頻率隨之改變。同理該第一頻率控制電阻173以及該第二頻率控制電阻174也可以是頻率控制電容,當開關控制容值改變,就能夠使該控制器的操作頻率隨之改變。同理該第一頻率控制電阻173及該第二頻率控制電阻174也可以是電阻與電容之組合(RC)。同理同樣也可以透過多個開關控制,進行多段編程調變頻率控制,控制多個頻率電阻、多個頻率電容或多個電阻及電容組合(RC),改變該控制器的操作頻率。舉例來說,如本實施例僅有一個開關時,便能夠有兩組不同的頻率。頻率改變單元172之第一頻率控制電阻173及第二頻率控制電阻174可以是溫度係數電阻,排阻等各類型電阻,經由不同組合而成多種編程調變變動頻率控制模式。 Referring to Fig. 9, there is shown a schematic diagram of a power factor correction circuit structure 600 of a power converter of a sixth preferred embodiment of the present invention. The difference between the preferred embodiment and the first preferred embodiment is that the programmable frequency control module 135 can be controlled by the frequency control unit 172 without the setting switch and the second frequency control resistor 174, and the first frequency control resistor is separately used. The operating frequency of the controller 130 can be changed by using a temperature coefficient resistor for program variable frequency control. Or by the voltage change feedback of the load 150, selecting the increase setting switch and the second frequency control resistor 174 to perform program modulation frequency control, the frequency changing unit 172 further includes a first frequency control resistor 173 and a second The frequency control resistor 174 changes the resistance through the switch control. It is possible to change the operating frequency of the controller accordingly. Similarly, the first frequency control resistor 173 and the second frequency control resistor 174 may also be frequency control capacitors. When the switch control capacitance changes, the operating frequency of the controller can be changed accordingly. Similarly, the first frequency control resistor 173 and the second frequency control resistor 174 may also be a combination of a resistor and a capacitor (RC). Similarly, through multiple switch control, multi-stage programming frequency control can be performed to control multiple frequency resistors, multiple frequency capacitors or multiple resistors and capacitor combinations (RC) to change the operating frequency of the controller. For example, if there is only one switch in this embodiment, there can be two different sets of frequencies. The first frequency control resistor 173 and the second frequency control resistor 174 of the frequency changing unit 172 may be various types of resistors such as temperature coefficient resistors and resistors, and are combined to form a plurality of programmable modulation variable frequency control modes.
相較於現有技術,本發明藉由兩組升壓電路的交替作用,避免了二極體的頻繁開啟/關閉,進而降低了因二極體而產生的功率損耗;藉由一電流偵測電阻便能得到電流的資訊,藉由減少元件的數量,使工作溫度下降、體積縮小以及成本下降。無需檢測輸入線電壓,通過該集成電壓感測模組134便能根據輸入訊號的電流的訊息轉換得知輸入訊號的電壓訊息,減少接腳的數量。同時該可編程頻率控制模組135,通過該頻率改變單元172控制,可以不加設置開關及第二頻率控制電阻174控制,單獨由第一頻率控制電阻173使用一個溫度係數電阻進行編程頻率變動模式。或者,藉由該負載150回授的電壓變化,選擇增加設置開關及第二頻率控制電阻174控制,進行電阻調變、電容調變或電阻及電容組合(RC)調變,進行編程可調變頻率控制模式;再者,也可多段編程調變頻率控制模式,採用各類型電阻組合而成多種編程調變變動頻率控制模式。因此可以根據不同的負載改變操作的頻率,進而在10%、20%、50%以及100%等不同負載須達到要求的功率因數及效率。 Compared with the prior art, the present invention avoids the frequent opening/closing of the diode by the alternating action of the two boosting circuits, thereby reducing the power loss caused by the diode; and a current detecting resistor The current information can be obtained, and by reducing the number of components, the operating temperature is reduced, the volume is reduced, and the cost is reduced. There is no need to detect the input line voltage, and the integrated voltage sensing module 134 can convert the voltage information of the input signal according to the information of the current of the input signal, thereby reducing the number of pins. At the same time, the programmable frequency control module 135 is controlled by the frequency changing unit 172, and can be controlled by the first frequency control resistor 173 using a temperature coefficient resistor without the setting switch and the second frequency control resistor 174. . Alternatively, by the voltage change feedbacked by the load 150, the increase setting switch and the second frequency control resistor 174 are selected to perform resistance modulation, capacitance modulation or resistance and capacitance combination (RC) modulation, and programmable variable frequency conversion is performed. Rate control mode; in addition, it is also possible to program the variable frequency control mode in multiple stages, and use various types of resistors to form a plurality of programmable modulation and variable frequency control modes. Therefore, the frequency of operation can be changed according to different loads, and the required power factor and efficiency must be achieved at different loads such as 10%, 20%, 50%, and 100%.
雖然本發明已用較佳實施例揭露如上,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請 專利範圍所界定者為準。 While the invention has been described above by way of a preferred embodiment, the invention is not intended to be limited thereto, and the invention may be modified and modified without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention is attached to the application The scope defined by the patent scope shall prevail.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106122577A TWI650923B (en) | 2017-07-05 | 2017-07-05 | Power-factor correction circuit structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106122577A TWI650923B (en) | 2017-07-05 | 2017-07-05 | Power-factor correction circuit structure |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI650923B true TWI650923B (en) | 2019-02-11 |
TW201907648A TW201907648A (en) | 2019-02-16 |
Family
ID=66213208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106122577A TWI650923B (en) | 2017-07-05 | 2017-07-05 | Power-factor correction circuit structure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI650923B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI803926B (en) * | 2021-08-03 | 2023-06-01 | 博盛半導體股份有限公司 | Circuit with metal-oxide semiconductor field-effect transistor and diode module and implementation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200938988A (en) * | 2008-03-11 | 2009-09-16 | Delta Electronics Inc | Bridgeless PFC for critical conduction mode and controlling method thereof |
TW201705658A (en) * | 2015-07-29 | 2017-02-01 | 台達電子工業股份有限公司 | High efficiency bridgeless power factor correction converter |
-
2017
- 2017-07-05 TW TW106122577A patent/TWI650923B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200938988A (en) * | 2008-03-11 | 2009-09-16 | Delta Electronics Inc | Bridgeless PFC for critical conduction mode and controlling method thereof |
TW201705658A (en) * | 2015-07-29 | 2017-02-01 | 台達電子工業股份有限公司 | High efficiency bridgeless power factor correction converter |
Also Published As
Publication number | Publication date |
---|---|
TW201907648A (en) | 2019-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109156058B (en) | Half-bridge resonant converter, circuit using same, and corresponding control method | |
JP5704124B2 (en) | Switching power supply | |
JP6588531B2 (en) | Driver device and driving method | |
US6815937B2 (en) | Stepping inductor for fast transient response of switching converter | |
US9136699B2 (en) | Dynamic damper and lighting driving circuit comprising the dynamic damper | |
US10505445B2 (en) | Power converter with output voltage control | |
JP5736772B2 (en) | Constant current power supply | |
CN105305848A (en) | Boost inductor demagnetization detection for bridgeless boost pfc converter operating in boundary-conduction mode | |
US9237621B1 (en) | Current control circuit and method for floating IC driven buck-boost converter | |
EP3186877B1 (en) | Floating output voltage boost-buck regulator using a buck controller with low input and low output ripple | |
CN105262328B (en) | A kind of input filter on power electronic system | |
JP2017028987A (en) | Circuits and methods for synchronous rectification in resonant converters | |
Namadmalan et al. | Self-oscillating switching technique for current source parallel resonant induction heating systems | |
CN103687167B (en) | Lighting device | |
JP5424031B2 (en) | Power factor correction circuit | |
US9369059B2 (en) | AC-DC converter for wide range output voltage and high switching frequency | |
US10097109B1 (en) | Three-level voltage bus apparatus and method | |
TWI650923B (en) | Power-factor correction circuit structure | |
CN103916015A (en) | Control device for dual-mode power supply switching | |
Khatua et al. | A high-frequency LCLC network based resonant DC-DC converter for automotive LED driver applications | |
TWM591640U (en) | Power conversion circuit with single-stage double-switch wide input range | |
WO2015178106A1 (en) | Power supply device | |
WO2017024995A1 (en) | Ac-ac converter and control method thereof | |
CN109980959A (en) | Method and system based on the peak point current Operation switch power adapter by switch element | |
JP2017108592A (en) | Switching electric power supply |