TWI650862B - Folded channel trench mosfet - Google Patents
Folded channel trench mosfet Download PDFInfo
- Publication number
- TWI650862B TWI650862B TW106145527A TW106145527A TWI650862B TW I650862 B TWI650862 B TW I650862B TW 106145527 A TW106145527 A TW 106145527A TW 106145527 A TW106145527 A TW 106145527A TW I650862 B TWI650862 B TW I650862B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- conductivity type
- epitaxial layer
- lightly doped
- doped epitaxial
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
一種溝槽MOSFET元件包括本體區和源極區,凹凸部分沿MOSFET元件 的通道寬度方向設置,使得本體區和源極區的深度變化沿通道寬度方向設置。凹凸部分增大了MOSFET的通道寬度。 A trench MOSFET device includes a body region and a source region, and the bump portion is along the MOSFET component The channel width direction is set such that the depth variations of the body region and the source region are set along the channel width direction. The bump portion increases the channel width of the MOSFET.
Description
本發明主要涉及積體電路,更確切地說是關於具有場效電晶體(FET)的積體電路元件。 The present invention relates generally to integrated circuits, and more particularly to integrated circuit components having field effect transistors (FETs).
場效電晶體(FET)是半導體電晶體元件,其中電絕緣閘極所加電壓控制了源極和汲極之間的電流流動。FET的一個例子是金屬氧化物半導體FET(MOSFET),其中通過氧化絕緣物,使閘極電極與半導體本體區絕緣。當閘極加載電壓時,所產生的電場穿通氧化物,在半導體-絕緣物交界處形成一個「反轉層」或「通道」。反轉層提供可以穿過電流的通道。改變閘極電壓調製該層的導電性,從而控制汲極和源極之間的電流。MOSFET可以具有不同的結構。在一個例子中,MOSFET可以具有一種平面結構,其中閘極、源極和汲極在元件上方,電流在平行於表面的通路中流動。在另一個例子中,MOSFET可以具有一種垂直結構,其中用摻雜多晶矽填充的溝槽,從源極延伸到汲極,側壁和地板都內襯一層熱生長的二氧化矽。這樣的溝槽MOSFET電晶體允許不收縮的電流流動,從而提供較小的比導通電阻。 A field effect transistor (FET) is a semiconductor transistor component in which a voltage applied to an electrically insulating gate controls the flow of current between the source and the drain. An example of a FET is a metal oxide semiconductor FET (MOSFET) in which a gate electrode is insulated from a semiconductor body region by oxidizing an insulator. When the gate is loaded with a voltage, the resulting electric field passes through the oxide, forming an "inversion layer" or "channel" at the semiconductor-insulator junction. The inversion layer provides a channel through which current can pass. Changing the gate voltage modulates the conductivity of the layer, thereby controlling the current between the drain and the source. The MOSFETs can have different structures. In one example, the MOSFET can have a planar structure in which the gate, source, and drain are above the component and current flows in a path parallel to the surface. In another example, the MOSFET can have a vertical structure in which a trench filled with doped polysilicon extends from the source to the drain, and the sidewall and the floor are lined with a layer of thermally grown cerium oxide. Such trench MOSFET transistors allow current that does not contract to flow, thereby providing a smaller specific on-resistance.
FET適合多種功率開關應用。在一種電池保護電路模塊(PCM)中使用的特殊結構中,兩個FET背對背配置,它們的汲極在浮動結構中連接在一 起。第1A圖表示這種結構的示意圖。第1B圖表示這種元件100連接電池保護電路模塊PCM 102、電池104以及負載或充電器106。在本例中FET 120和130充放電的閘極分別由控制器積體電路(IC)110獨立驅動。這種結構允許在兩個方向上控制電流:充電到電池和電池到負載。在正常的充電和放電操作中,MOSFET 120和130都接通(即導電)。在電池104發生過充電或充電過電流情況時,控制器IC 110斷開充電FET 120,並接通放電FET 130。在過放電或過電流情況下,控制器IC 110接通充電FET 120,並斷開放電FET 130。 FETs are suitable for a variety of power switching applications. In a special structure used in a battery protection circuit module (PCM), two FETs are arranged back to back with their drains connected in a floating structure Start. Fig. 1A shows a schematic view of such a structure. FIG. 1B shows such an element 100 connecting the battery protection circuit module PCM 102, the battery 104, and the load or charger 106. The gates for charging and discharging the FETs 120 and 130 in this example are independently driven by the controller integrated circuit (IC) 110, respectively. This configuration allows control of the current in both directions: charging to the battery and battery to the load. In normal charging and discharging operations, MOSFETs 120 and 130 are both turned "on" (i.e., conductive). When the battery 104 is overcharged or charged with an overcurrent condition, the controller IC 110 turns off the charge FET 120 and turns on the discharge FET 130. In the event of overdischarge or overcurrent, the controller IC 110 turns on the charge FET 120 and turns off the discharge FET 130.
正是在這一背景下,提出了本發明的各種實施例。 It is against this background that various embodiments of the invention have been presented.
本發明提供一種折疊通道溝槽MOSFET,獲得低通道電阻,減小源極-源極電阻。 The present invention provides a folded channel trench MOSFET that achieves low channel resistance and reduces source-source resistance.
為實現上述目的,本發明提供一種溝槽MOSFET元件,其特點是,其包含:第一導電類型的輕摻雜外延層,在第一導電類型的重摻雜半導體基板上;用導電材料填充的閘極溝槽,在輕摻雜外延層中延伸;與第一導電類型相反的第二導電類型的本體區,在一部分輕摻雜外延層中,其中本體區具有第一凹凸部分,沿通道寬度方向設置;以及第一導電類型的源極區,在本體區頂部,其中源極區具有第二凹凸部分,在第一凹凸部分上方沿通道寬度方向設置,其中MOSFET元件的通道寬度隨著引入第一和第二凹凸部分而增大。 To achieve the above object, the present invention provides a trench MOSFET device characterized by comprising: a lightly doped epitaxial layer of a first conductivity type on a heavily doped semiconductor substrate of a first conductivity type; filled with a conductive material a gate trench extending in the lightly doped epitaxial layer; a body region of a second conductivity type opposite to the first conductivity type, in a portion of the lightly doped epitaxial layer, wherein the body region has a first relief portion along the channel width a direction setting; and a source region of the first conductivity type, at the top of the body region, wherein the source region has a second concavo-convex portion disposed along the channel width direction above the first concavo-convex portion, wherein the channel width of the MOSFET element is introduced The first and second concave and convex portions are enlarged.
上述第一導電類型為N型,第二導電類型為P型。 The first conductivity type is an N type, and the second conductivity type is a P type.
上述輕摻雜外延層、本體區和源極區的深度沿通道寬度變化。 The depths of the lightly doped epitaxial layers, the body regions, and the source regions vary along the channel width.
上述輕摻雜外延層具有第三凹凸部分,沿MOSFET元件的通道寬度方向設置。 The lightly doped epitaxial layer has a third concavo-convex portion disposed along a channel width direction of the MOSFET element.
上述第三凹凸部分的深度延伸到半導體基板中,比輕摻雜外延層的其他部分更深的地方。 The depth of the third concavo-convex portion extends deep into the semiconductor substrate, deeper than other portions of the lightly doped epitaxial layer.
上述第一凹凸部分的深度延伸到輕摻雜外延層中,比本體區的其他部分更深的地方。 The depth of the first concavo-convex portion extends into the lightly doped epitaxial layer deeper than other portions of the body region.
上述第二凹凸部分的深度延伸到本體區中,比源極區的其他部分更深的地方。 The depth of the second concavo-convex portion extends into the body region deeper than other portions of the source region.
上述第一個和第二凹凸部分的錐形邊緣,其角度約在25度和90度之間。 The tapered edges of the first and second concave and convex portions described above have an angle of between about 25 and 90 degrees.
一種用於製備溝槽MOSFET元件的方法,其特點是,其包含:在第一導電類型的重摻雜半導體基板上,製備第一導電類型的輕摻雜外延層;在輕摻雜外延層中製備閘極電極;在輕摻雜外延層的一部分中,製備與第一導電類型相反的第二導電類型的本體區,其中本體區的第一凹凸部分沿通道寬度方向設置;並且在本體區頂部中,製備第一導電類型的源極區,其中源極區具有第二凹凸部分,沿第一凹凸部分上方的通道寬度方向設置。 A method for fabricating a trench MOSFET device, characterized in that it comprises: preparing a lightly doped epitaxial layer of a first conductivity type on a heavily doped semiconductor substrate of a first conductivity type; in a lightly doped epitaxial layer Preparing a gate electrode; in a portion of the lightly doped epitaxial layer, preparing a body region of a second conductivity type opposite to the first conductivity type, wherein the first relief portion of the body region is disposed along the channel width direction; and at the top of the body region A source region of the first conductivity type is prepared, wherein the source region has a second concavo-convex portion disposed along a channel width direction above the first concavo-convex portion.
上述第一導電類型為N型,第二導電類型為P型。 The first conductivity type is an N type, and the second conductivity type is a P type.
上述輕摻雜外延層具有第三凹凸部分,沿MOSFET元件的通道寬度方向設置。 The lightly doped epitaxial layer has a third concavo-convex portion disposed along a channel width direction of the MOSFET element.
其中在第一導電類型的重摻雜半導體基板上,製備第一導電類型的輕摻雜外延層,包含:在半導體基板上,製備第一外延層;利用第一遮罩,製備一個掩埋層,其中第一遮罩限定第三凹凸部分;並且在掩埋層上,製備一個第二外延層。 The lightly doped epitaxial layer of the first conductivity type is prepared on the heavily doped semiconductor substrate of the first conductivity type, comprising: preparing a first epitaxial layer on the semiconductor substrate; and preparing a buried layer by using the first mask Wherein the first mask defines a third relief portion; and on the buried layer, a second epitaxial layer is prepared.
其中在輕摻雜外延層中,製備一個閘極電極,包括:利用第二遮罩,在輕摻雜外延層中,製備一個閘極溝槽,其中第二遮罩限定閘極溝槽;用絕緣材料內襯閘極溝槽的內表面;並且用導電材料通過回刻填充閘極溝槽。 Wherein in the lightly doped epitaxial layer, preparing a gate electrode comprises: using a second mask, preparing a gate trench in the lightly doped epitaxial layer, wherein the second mask defines a gate trench; The insulating material lines the inner surface of the gate trench; and the gate trench is filled with a conductive material by etch back.
其中在一部分輕摻雜外延層中,製備與第一導電類型相反的第二導電類型的本體區,包括:在輕摻雜外延層上方,製備一第一絕緣材料層;在第一絕緣材料層上方,製備一第二絕緣材料層,其中第一絕緣材料層可以抵抗刻蝕第二絕緣材料層的擴散製程;在輕摻雜外延層上,製備第三遮罩,其中第三遮罩具有一個開口,以限定第一凹凸部分;並且在輕摻雜外延層中,注入第二導電類型的摻雜物,以形成本體區,其中第二導電類型的摻雜物注入到開口下方輕摻雜外延層內較深的地方,以形成第一凹凸部分。 Wherein in a portion of the lightly doped epitaxial layer, a body region of a second conductivity type opposite to the first conductivity type is prepared, including: preparing a first insulating material layer over the lightly doped epitaxial layer; and forming a first insulating material layer Upper, preparing a second insulating material layer, wherein the first insulating material layer is resistant to the diffusion process of etching the second insulating material layer; on the lightly doped epitaxial layer, the third mask is prepared, wherein the third mask has a Opening to define a first concavo-convex portion; and in the lightly doped epitaxial layer, injecting a dopant of a second conductivity type to form a body region, wherein a dopant of the second conductivity type is implanted under the opening to lightly doped epitaxial The deeper part of the layer to form the first concave and convex portion.
上述第一絕緣材料為氮化物。 The first insulating material is nitride.
上述第二絕緣材料為氧化物。 The second insulating material is an oxide.
其中第一絕緣材料層的厚度約為200Å至500Å。 The first insulating material layer has a thickness of about 200 Å to 500 Å.
其中第二絕緣材料層的厚度約為500Å至1000Å。 The second insulating material layer has a thickness of about 500 Å to 1000 Å.
其中第一凹凸部分的角度遵循開口的斜度。 The angle of the first concave and convex portion follows the slope of the opening.
其中在本體區頂部中,製備第一導電類型的源極區,包括:利用第三遮罩,製備本體區,其中第三遮罩具有開口,以限定第一凹凸部分;並在本體區中,注入第一導電類型的摻雜物,以形成源極區,其中第一導電類型的摻雜物注入到開口下方本體區中較深的地方,以形成第二凹凸部分。 Wherein the source region of the first conductivity type is prepared in the top of the body region, comprising: preparing a body region by using a third mask, wherein the third mask has an opening to define the first concave and convex portion; and in the body region, A dopant of a first conductivity type is implanted to form a source region, wherein a dopant of the first conductivity type is implanted deeper into the body region below the opening to form a second relief portion.
上述方法還包含:利用接觸溝槽遮罩,製備接觸溝槽;用第一導電材料,內襯接觸溝槽的內表面;用第二導電材料填充接觸溝槽,其中第二導電材料不同於第一導電材料;並且回刻第二導電材料。 The method further includes: preparing a contact trench by using a contact trench mask; contacting the inner surface of the trench with a first conductive material; filling the contact trench with a second conductive material, wherein the second conductive material is different from the first conductive material a conductive material; and etching the second conductive material.
本發明折疊通道溝槽MOSFET與現有技術相比,其優點在於,本發明通過折疊溝槽MOSFET的通道區,來獲得低通道電阻,減小源極-源極電阻。 The advantage of the folded channel trench MOSFET of the present invention over the prior art is that the present invention achieves low channel resistance and reduces source-source resistance by folding the channel region of the trench MOSFET.
100、200、500、700‧‧‧元件 100, 200, 500, 700‧‧‧ components
102‧‧‧電路模塊PCM 102‧‧‧Circuit module PCM
104‧‧‧電池 104‧‧‧Battery
106‧‧‧負載或充電器 106‧‧‧Load or charger
110‧‧‧控制器IC 110‧‧‧Controller IC
120‧‧‧充電FET 120‧‧‧Charge FET
130‧‧‧放電FET 130‧‧‧Discharge FET
220、230‧‧‧MOSFET 220, 230‧‧‧ MOSFET
242‧‧‧背部金屬 242‧‧‧Back metal
244、710、810‧‧‧基板 244, 710, 810‧‧‧ substrates
246、720、812‧‧‧外延層 246, 720, 812‧‧ ‧ epitaxial layer
246‧‧‧外延漂流層 246‧‧‧Extension drift layer
246‧‧‧外延區 246‧‧‧Extension area
246、720‧‧‧輕摻雜外延層 246, 720‧‧‧Lightly doped epitaxial layer
250、604‧‧‧本體區 250, 604‧‧‧ body area
252‧‧‧溝槽 252‧‧‧ trench
254‧‧‧絕緣物 254‧‧‧Insulators
256‧‧‧電絕緣閘極電極 256‧‧‧Electrically insulated gate electrode
260、406‧‧‧源極 260, 406‧‧‧ source
260、406、606、750、850、660a‧‧‧源極區 260, 406, 606, 750, 850, 660a‧‧‧ source area
265‧‧‧源極金屬層 265‧‧‧ source metal layer
267‧‧‧源極接頭 267‧‧‧Source connector
280、282‧‧‧通道終點 280, 282‧ ‧ channel end point
284、286‧‧‧保護環 284, 286‧‧ ‧ protection ring
400‧‧‧FinFET 400‧‧‧FinFET
400‧‧‧電晶體 400‧‧‧Optoelectronics
400‧‧‧FinFET電晶體 400‧‧‧FinFET transistor
402‧‧‧矽本體 402‧‧‧矽Ontology
404‧‧‧汲極 404‧‧‧汲polar
404‧‧‧汲極區 404‧‧‧Bungee Area
408‧‧‧通道 408‧‧‧ channel
410‧‧‧閘極結構 410‧‧‧ gate structure
412、860‧‧‧介電層 412, 860‧‧‧ dielectric layer
600、700‧‧‧溝槽MOSFET元件 600, 700‧‧‧ trench MOSFET components
600‧‧‧溝槽MOSFET 600‧‧‧ trench MOSFET
602、742、842a‧‧‧閘極電極 602, 742, 842a‧‧‧ gate electrodes
725、735、755‧‧‧凹凸部分 725, 735, 755‧‧‧ concave part
730、830‧‧‧本體區 730, 830‧‧‧ body area
740、840‧‧‧閘極溝槽 740, 840‧‧ ‧ gate trench
790‧‧‧角度 790‧‧‧ angle
812‧‧‧EPI 812‧‧‧EPI
812、820‧‧‧EPI層 812, 820‧‧‧EPI layer
814‧‧‧掩埋層 814‧‧‧buried layer
819‧‧‧遮罩 819‧‧‧ mask
822、824‧‧‧絕緣層 822, 824‧‧‧ insulation
824‧‧‧閘極氧化層 824‧‧‧ gate oxide layer
826‧‧‧第一絕緣材料 826‧‧‧First insulation material
826‧‧‧層 826‧‧ ‧
826‧‧‧氮化層 826‧‧‧nitriding layer
826‧‧‧鈍化層 826‧‧‧passivation layer
828‧‧‧第二絕緣材料 828‧‧‧Second insulation material
828‧‧‧絕緣材料 828‧‧‧Insulation materials
828‧‧‧氧化層 828‧‧‧Oxide layer
829‧‧‧本體遮罩 829‧‧‧ body mask
842‧‧‧導電材料 842‧‧‧Electrical materials
869‧‧‧光致抗蝕劑 869‧‧‧Photoresist
870‧‧‧接觸溝槽 870‧‧‧Contact groove
872‧‧‧圍牆金屬 872‧‧‧Wall metal
874‧‧‧導電插頭 874‧‧‧Electrical plug
880‧‧‧金屬層 880‧‧‧metal layer
824a‧‧‧氧化物 824a‧‧‧Oxide
A-A'‧‧‧線A-A' A-A'‧‧‧ Line A-A'
B-B'‧‧‧線B-B' B-B'‧‧‧ Line B-B'
L‧‧‧通道長度 L‧‧‧ channel length
W‧‧‧通道寬度 W‧‧‧ channel width
閱讀以下詳細說明並參照以下所附圖式之後,本發明的其他特徵和優勢將顯而易見:第1A圖表示一種具有兩個背對背MOSFET的傳統開關電路的示意圖;第1B圖表示一種傳統的電池保護電路模塊(PCM)的示意圖;第2A圖表示在並排結構中具有兩個背對背MOSFET的傳統的開關元件的平面示意圖;第2B圖表示沿第2A圖的A-A’線,第2A圖所示傳統的開關電路的剖面示意圖;第3圖表示傳統的平面MOSFET元件的示意圖;第4圖表示傳統的FinFET元件的示意圖;第5圖表示折疊通道平面MOSFET元件的示意圖;第6圖表示傳統的溝槽MOSFET元件的示意圖;第7圖表示依據本發明的各個方面,溝槽MOSFET元件的示意圖;第8AA’-29AA’圖表示在第7圖所示的A-A’剖面中製備溝槽MOSFET製程的剖面圖;以及第8BB’-29BB’圖表示在第7圖所示的B-B’剖面中製備溝槽MOSFET製程的剖面圖。 Other features and advantages of the present invention will become apparent after reading the following detailed description, in which <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Schematic diagram of a module (PCM); Figure 2A shows a schematic plan view of a conventional switching element having two back-to-back MOSFETs in a side-by-side configuration; Figure 2B shows a line along the AA' line of Figure 2A, Figure 2A Schematic diagram of a switching circuit; Figure 3 shows a schematic diagram of a conventional planar MOSFET device; Figure 4 shows a schematic diagram of a conventional FinFET device; Figure 5 shows a schematic diagram of a folded channel planar MOSFET device; Figure 6 shows a conventional trench Schematic diagram of a MOSFET device; Figure 7 shows a schematic diagram of a trench MOSFET device in accordance with various aspects of the present invention; and Figure 8AA'-29AA' shows a trench MOSFET process in the A-A' profile shown in FIG. A cross-sectional view; and an 8BB'-29BB' diagram showing a cross-sectional view of a trench MOSFET process in the B-B' profile shown in FIG.
以下結合所附圖式,進一步說明本發明的具體實施例。 Specific embodiments of the present invention are further described below in conjunction with the drawings.
引言introduction
第2A圖表示具有兩個完全絕緣的垂直MOSFET 220和230的元件200的傳統佈局,兩個MOSFET 220和230都具有各自的端接和通道終點。 MOSFET 1和MOSFET 2之間要求有大量的死空間,以提供各自的端接區和通道終點。 Figure 2A shows a conventional layout of an element 200 having two fully insulated vertical MOSFETs 220 and 230, both having respective termination and channel terminations. A large amount of dead space is required between MOSFET 1 and MOSFET 2 to provide respective termination regions and channel terminations.
第2A圖所示元件的剖面圖表示在第2B圖中。每個垂直MOSFET 220/230都包括多個有源元件晶胞,形成在較重摻雜的基板244上生長的輕摻雜外延層246中。在本例中,重摻雜(例如N+)基板244作為汲極,兩個MOSFET 220和230的汲極通過形成在基板244背面的背部金屬242電連接在一起。有源元件形成在較輕摻雜的外延漂流層246中,外延漂流層246具有相同的導電類型(例如N-型),生長在基板244的正面。本體區250的導電類型與基板244和外延區246相反(例如P-型),形成在一部分外延層246中。溝槽252形成在外延層246中,然後內襯絕緣物254(例如氧化物)。電絕緣閘極電極256,例如由多晶體矽(多晶矽)製成,置於溝槽252中。與基板244導電類型相同的重摻雜(例如N+)源極區260形成在溝槽252附近。通過源極金屬層265和垂直源極接頭267,形成到源極區的外部電接頭。利用與閘極電極類似的絕緣電極,製備通道終點280、282,閘極電極通過外延區中的源極型導電區,短接至外延漂流區。端接還包括由本體型導電區形成的保護環284、286。 A cross-sectional view of the element shown in Fig. 2A is shown in Fig. 2B. Each vertical MOSFET 220/230 includes a plurality of active element cells formed in a lightly doped epitaxial layer 246 grown on a heavily doped substrate 244. In this example, the heavily doped (e.g., N+) substrate 244 acts as a drain and the drains of the two MOSFETs 220 and 230 are electrically coupled together by a back metal 242 formed on the back side of the substrate 244. The active elements are formed in a lightly doped epitaxial drift layer 246 having the same conductivity type (eg, N-type) grown on the front side of the substrate 244. The conductivity type of body region 250 is opposite (eg, P-type) to substrate 244 and epitaxial region 246, formed in a portion of epitaxial layer 246. A trench 252 is formed in the epitaxial layer 246 and then lined with an insulator 254 (e.g., an oxide). An electrically insulating gate electrode 256, for example made of polycrystalline germanium (polysilicon), is placed in trench 252. A heavily doped (e.g., N+) source region 260 of the same conductivity type as substrate 244 is formed adjacent trench 252. An external electrical junction to the source region is formed by source metal layer 265 and vertical source junction 267. Channel terminations 280, 282 are prepared using an insulated electrode similar to the gate electrode, with the gate electrode passing through the source-type conductive region in the epitaxial region and shorted to the epitaxial drift region. The termination also includes guard rings 284, 286 formed by the body-type conductive regions.
該元件的一個關鍵特徵在於,兩個MOSFET 220和230接通下的源極至源極電阻。必須使該電阻盡可能地小。總的源極-源極電阻Rss由下式給出:
其中Rch為當閘極接通時,通過源極260和本體區250的導電通道的電阻,Rdrift是外延層246的電阻,Rbackmetal是背部金屬242的電阻以及Rsubstrate是基板244的電阻。由於通道電阻(Rch)為總的源極-源極電阻Rss的最大組成部分之一,因此必須使導電通道電阻(Rch)盡可能地小。 Where R ch is the resistance of the conductive path through source 260 and body region 250 when the gate is turned on, R drift is the resistance of epitaxial layer 246, R backmetal is the resistance of back metal 242 and R substrate is the resistance of substrate 244 . Since the channel resistance (R ch ) is one of the largest components of the total source-source resistance R ss , the conductive path resistance (R ch ) must be made as small as possible.
第3圖表示一種傳統的平面MOSFET中,其通道長度(L)和通道寬度(W)的示意圖。半導體元件領域中技術人員眾所周知,通道電阻(Rch) 與通道長度(L)成正比,與通道寬度(W)成反比。對於指定的晶片尺寸來說,通道電阻(Rch)也與通道密度成反比。為了減小通道電阻(Rch),傳統的方法是減小MOSFET的晶胞尺寸,從而增大通道密度。然而,由於製造水平,使得一個晶胞中的套接件和一個鄰近晶胞中的另一個套接件之間的距離存在一個極限。 Figure 3 shows a schematic diagram of channel length (L) and channel width (W) in a conventional planar MOSFET. As is well known to those skilled in the art of semiconductor components, the channel resistance (R ch ) is proportional to the channel length (L) and inversely proportional to the channel width (W). The channel resistance (R ch ) is also inversely proportional to the channel density for a given wafer size. In order to reduce the channel resistance (R ch ), the conventional method is to reduce the cell size of the MOSFET, thereby increasing the channel density. However, due to manufacturing levels, there is a limit to the distance between the socket in one unit cell and the other socket in one adjacent unit cell.
FINFETFINFET
鰭式場效電晶體(「FinFET」)是一種建立在絕緣體上矽基板的非平面電晶體。Hisamoto等人在《用於深亞第十微米時代的折疊通道MOSFET》1032 IEDM(1998)中,介紹了一種FinFET結構,其中包括一個垂直的超薄矽魚鰭,兩個自對準到源極和汲極的閘極,一個升高的源極和汲極,以降低寄生電阻,以及一個準平面結構。第4圖表示一種改良型FinFET電晶體400的透視圖。 電晶體400由矽本體402製成,矽本體402包括一個汲極區404、一個源極區406和一個鰭形通道區408,連接在汲極區404和源極區406之間。汲極404、源極406和鰭-通道408被介電層412覆蓋。閘極結構410穿過鰭形通道408並纏繞在它上面,使得閘極結構與通道408的三個邊交接。FinFET 400的結構提供優於通道傳導的改良電控制,有助於降低漏電流水平,克服其他的短通道效應。另外,要注意的是,FinFET的通道通過在通道408上方纏繞閘極,其寬度大約為通道區鰭高度的兩倍。此後,人們提出了多種方法,通過折疊如第5圖所示的元件500等元件,增大平面MOSFET的通道寬度。 A fin field effect transistor ("FinFET") is a non-planar transistor built on a germanium substrate on an insulator. Hisamoto et al., "Folding Channel MOSFETs for the Deep Tenth Micron Age", 1032 IEDM (1998), introduces a FinFET structure that includes a vertical ultra-thin fin, two self-aligned to source And the gate of the drain, a raised source and drain to reduce parasitic resistance, and a quasi-planar structure. Figure 4 shows a perspective view of a modified FinFET transistor 400. The transistor 400 is fabricated from a crucible body 402 that includes a drain region 404, a source region 406, and a fin channel region 408 coupled between the drain region 404 and the source region 406. The drain 404, source 406, and fin-channel 408 are covered by a dielectric layer 412. The gate structure 410 passes through the fin channel 408 and is wound thereon such that the gate structure interfaces with the three sides of the channel 408. The FinFET 400's structure provides improved electrical control over channel conduction, helping to reduce leakage current levels and overcome other short channel effects. In addition, it is noted that the FinFET channel is wound around the channel 408 by a width that is approximately twice the height of the channel region fin. Since then, various methods have been proposed to increase the channel width of a planar MOSFET by folding an element such as the element 500 shown in FIG.
折疊通道溝槽MOSFET,以減小RFold the channel trench MOSFET to reduce R ssSs
依據本發明的各個方面,要闡明折疊通道MOSFET的優勢,必須理解傳統的溝槽MOSFET。第6圖表示一部分傳統的溝槽MOSFET元件600。溝槽MOSFET 600包括一個閘極電極602、一個本體區604以及一個在基板上方的源極區606(圖中沒有表示出)。要注意的是,雖然第6圖僅表示出了一個閘極電極 602,但是在源極區606a邊緣的附近,可能存在另一個閘極電極。溝槽MOSFET 600的通道長度(L)為源極區606的底部和本體區604的底部(即基板頂部)之間,通道寬度(W)為如圖所示剖面的第三維度。為了通過減小溝槽MOSFET 600的通道電阻(Rch)來改善總的源極-源極電阻Rss,必須減小其通道長度(L)或增大其通道寬度(W)。 In accordance with various aspects of the present invention, to clarify the advantages of folded-channel MOSFETs, conventional trench MOSFETs must be understood. Figure 6 shows a portion of a conventional trench MOSFET component 600. Trench MOSFET 600 includes a gate electrode 602, a body region 604, and a source region 606 (not shown) above the substrate. It is to be noted that although FIG. 6 shows only one gate electrode 602, there may be another gate electrode in the vicinity of the edge of the source region 606a. The channel length (L) of the trench MOSFET 600 is between the bottom of the source region 606 and the bottom of the body region 604 (ie, the top of the substrate), and the channel width (W) is the third dimension of the cross-section as shown. In order to improve the total source-source resistance R ss by reducing the channel resistance (R ch ) of the trench MOSFET 600, it is necessary to reduce its channel length (L) or increase its channel width (W).
本發明的各個方面通過“折疊”溝槽MOSFET的通道區,來獲得低通道電阻。第7圖表示依據本發明的各個方面,溝槽MOSFET元件700的示意圖。要注意的是,雖然第7圖僅表示出了一部分有源元件晶胞,但是元件700可以具有多個有源元件晶胞。溝槽MOSFET元件700包括一個第一導電類型的輕摻雜外延層720(例如N-),形成在相同導電類型(例如N+)的重摻雜半導體基板710上方。與基板710和外延層720(例如P型)相反,具有第二導電類型的本體區730,形成在一部分輕摻雜外延層720中。用電絕緣閘極電極742(例如多晶矽)填充的閘極溝槽740,在輕摻雜外延層720中延伸。與基板(例如N+)導電類型相同的重摻雜源極區750,形成在本體區730內的溝槽附近。 Aspects of the invention achieve low channel resistance by "folding" the channel region of the trench MOSFET. FIG. 7 shows a schematic diagram of trench MOSFET component 700 in accordance with various aspects of the present invention. It is to be noted that although FIG. 7 shows only a part of the active element cells, the element 700 may have a plurality of active element cells. Trench MOSFET element 700 includes a lightly doped epitaxial layer 720 (e.g., N-) of a first conductivity type formed over a heavily doped semiconductor substrate 710 of the same conductivity type (e.g., N+). In contrast to substrate 710 and epitaxial layer 720 (eg, P-type), body region 730 having a second conductivity type is formed in a portion of lightly doped epitaxial layer 720. A gate trench 740 filled with an electrically insulating gate electrode 742 (e.g., polysilicon) extends in the lightly doped epitaxial layer 720. A heavily doped source region 750 of the same conductivity type as the substrate (e.g., N+) is formed adjacent the trench in the body region 730.
如第7圖所示,外延層720具有一個凹凸部分725(或凹陷部分),沿元件700的通道寬度方向設置,使得外延層720的深度變化在外延層720和基板710之間的交界面處沿通道寬度方向設置。另外,本體區730具有一個凹凸部分735,沿凹凸部分725上方的通道寬度方向設置,使得本體區730的深度變化在本體區730和外延層720之間的交界面處沿通道寬度方向設置。源極區750具有一個凹凸部分755,沿凹凸部分725和735上方的通道寬度方向設置,使得源極區750的深度變化在源極區750和本體區730之間的交界面處沿通道寬度方向設置。如圖所示,凹凸部分725、735和755都具有一個凹陷的底面和錐形邊緣。引入凹凸部分725、735和755之後,元件700的通道就「折疊」起來了,如第7圖所示,從而減小了通道寬度,降低了通道電阻。在一個例子中,當凹凸部分725、735和 755的錐形邊緣角度790約為45度時,通道電阻可以降低16.3%。要注意的是,角度790越尖,通道電阻(Rch)的減小越顯著。作為例子,但不作為局限,凹凸部分725、735和755的錐形邊緣的角度約在25度和90度之間。 As shown in FIG. 7, the epitaxial layer 720 has a concavo-convex portion 725 (or a recessed portion) disposed along the channel width direction of the element 700 such that the depth of the epitaxial layer 720 varies at the interface between the epitaxial layer 720 and the substrate 710. Set along the width of the channel. In addition, the body region 730 has a concavo-convex portion 735 disposed along the channel width direction above the concavo-convex portion 725 such that the depth variation of the body region 730 is disposed along the channel width direction at the interface between the body region 730 and the epitaxial layer 720. The source region 750 has a concavo-convex portion 755 disposed along the channel width direction above the concavo-convex portions 725 and 735 such that the depth variation of the source region 750 is along the channel width direction at the interface between the source region 750 and the body region 730. Settings. As shown, the relief portions 725, 735 and 755 each have a concave bottom surface and a tapered edge. After the introduction of the concavo-convex portions 725, 735, and 755, the channel of the element 700 is "folded" as shown in Fig. 7, thereby reducing the channel width and reducing the channel resistance. In one example, when the tapered edge angle 790 of the relief portions 725, 735, and 755 is about 45 degrees, the channel resistance can be reduced by 16.3%. It is to be noted that the sharper the angle 790, the more significant the reduction in channel resistance (R ch ). By way of example, but not by way of limitation, the angle of the tapered edges of the relief portions 725, 735, and 755 is between about 25 and 90 degrees.
第8AA’-29AA’圖和第8BB’-29BB’圖表示第7圖所示的A-A’和B-B’剖面中,溝槽MOSFET的製備製程。在第8AA’和8BB’圖中,該製程使用第一導電類型的半導體基板810作為初始材料。在一些例子中,基板810可以是重摻雜的N型(N+)矽晶圓。然後,在N+基板810上沉積一個薄的外延層(EPI)812。在一些例子中,EPI 812為矽的輕摻雜N-型層。在第9AA’和9BB’圖中,在EPI層812上使用一個掩埋層遮罩819,然後注入輕摻雜的N型雜質(N+),形成掩埋層814。如第9AA’圖所示,一部分EPI 812被掩埋層遮罩819覆蓋,以限定凹凸部分的位置。在第10AA’和10BB圖中,例如通過退火,驅動雜質。要注意的是,如第10AA’圖所示,在退火製程除去掩埋層遮罩819之後,被掩埋層遮罩819覆蓋的那部分EPI 812留下,裸露出來。在下一步中,與基板810具有相同導電類型的厚EPI層820,製備在基板810上方,如第11AA’和11BB’圖上方。在一些實施例中,厚EPI層820為輕摻雜N型層。在一些配置中,厚EPI層820的厚度約為1μm至3μm之間。如第11AA’圖所示,在上述步驟中掩埋層注入物的掩埋,導致之前被掩埋層遮罩819覆蓋的那部分EPI層820更厚且更深,之前未被掩埋層遮罩819覆蓋的那部分區域更薄且更淺。EPI層820的較厚且較深區形成第一凹凸部分。 Figs. 8AA'-29AA' and 8BB'-29BB' show the preparation process of the trench MOSFET in the A-A' and B-B' sections shown in Fig. 7. In the 8AA' and 8BB' drawings, the process uses the semiconductor substrate 810 of the first conductivity type as a starting material. In some examples, substrate 810 can be a heavily doped N-type (N+) germanium wafer. A thin epitaxial layer (EPI) 812 is then deposited over the N+ substrate 810. In some examples, EPI 812 is a lightly doped N-type layer of germanium. In the 9AA' and 9BB' diagrams, a buried layer mask 819 is used on the EPI layer 812, and then a lightly doped N-type impurity (N+) is implanted to form a buried layer 814. As shown in Figure 9AA', a portion of the EPI 812 is covered by a buried layer mask 819 to define the location of the relief portion. In the 10AA' and 10BB diagrams, impurities are driven, for example, by annealing. It is to be noted that, as shown in FIG. 10AA', after the buried layer mask 819 is removed in the annealing process, the portion of the EPI 812 covered by the buried layer mask 819 remains and is exposed. In the next step, a thick EPI layer 820 of the same conductivity type as the substrate 810 is prepared over the substrate 810, as shown above in Figures 11AA' and 11BB'. In some embodiments, the thick EPI layer 820 is a lightly doped N-type layer. In some configurations, the thick EPI layer 820 has a thickness between about 1 [mu]m and 3 [mu]m. As shown in FIG. 11AA', the burying of the buried layer implant in the above steps results in the portion of the EPI layer 820 previously covered by the buried layer mask 819 being thicker and deeper, which was previously not covered by the buried layer mask 819. Some areas are thinner and lighter. The thicker and deeper regions of the EPI layer 820 form a first relief portion.
在第12AA’和12BB’圖中,絕緣層822製備在EPI層820上方。在一些實施例中,絕緣層822為氧化層。在絕緣層822上方使用光致抗蝕劑(圖中沒有表示出),並形成圖案,以限定閘極溝槽。帶圖案的光致抗蝕劑包括在閘極溝槽位置處的開口。如第13AA’和13BB’圖所示,通過刻蝕製程,刻蝕掉通過光致抗蝕劑中的開口暴露於刻蝕劑的那部分絕緣層822。除去光致抗蝕劑之後,剩 餘的那部分絕緣層822用作遮罩,向下刻蝕下方的EPI層820的相應部分,形成閘極溝槽840,如第14AA’和14BB’圖所示。然後,除去剩餘的那部分絕緣層822。 In the 12A' and 12BB' figures, an insulating layer 822 is prepared over the EPI layer 820. In some embodiments, the insulating layer 822 is an oxide layer. A photoresist (not shown) is used over the insulating layer 822 and patterned to define the gate trenches. The patterned photoresist includes an opening at the location of the gate trench. As shown in Figures 13AA' and 13BB', the portion of the insulating layer 822 exposed to the etchant through the opening in the photoresist is etched away by an etching process. After removing the photoresist, left The remaining portion of insulating layer 822 acts as a mask, and the corresponding portion of the underlying EPI layer 820 is etched down to form gate trenches 840, as shown in Figures 14AA' and 14BB'. Then, the remaining portion of the insulating layer 822 is removed.
然後,可以生長並除去一個犧牲氧化層(圖中沒有表示出)以改善矽表面。然後在EPI層820上方,沿閘極溝槽840的內表面,形成一個絕緣層(例如閘極氧化物)824,如第15AA’和15BB’圖所示。在第16AA’和16BB’圖中,導電材料842沉積在閘極氧化層824上方。在一些實施例中,導電材料可以是原位摻雜或未摻雜的多晶矽。然後,回刻導電材料842,形成閘極電極842a,如第17AA’和17BB’圖所示。在第18AA’和18BB’圖中,進行退火製程。如第18BB’圖所示,通過在退火配方中加入一些氧氣,可以在閘極電極842a上方形成一個氧化物824a的薄層。 A sacrificial oxide layer (not shown) can then be grown and removed to improve the surface of the crucible. An insulating layer (e.g., gate oxide) 824 is formed over the EPI layer 820 over the inner surface of the gate trench 840, as shown in Figures 15AA' and 15BB'. In panels 16AA' and 16BB', conductive material 842 is deposited over gate oxide layer 824. In some embodiments, the electrically conductive material can be an in situ doped or undoped polysilicon. Then, the conductive material 842 is etched back to form the gate electrode 842a as shown in Figs. 17AA' and 17BB'. In the 18AA' and 18BB' diagrams, an annealing process is performed. As shown in Fig. 18BB', a thin layer of oxide 824a can be formed over gate electrode 842a by adding some oxygen to the annealing recipe.
在第19AA’和19BB’圖中,在閘極氧化層824上方,沉積一個第一絕緣材料826的薄層。在一些實施例中,第一絕緣材料826的薄層厚度範圍在200Å至500Å之間。在第20AA’和20BB’圖中,一第二絕緣材料828層沉積在第一絕緣材料826的薄層上方。在一些實施例中,第二絕緣材料828的層厚約為500Å至1000Å。薄層826和層828是兩種不同的絕緣材料,每種材料都可以抵抗刻蝕另一種材料的刻蝕製程。也就是說,第一絕緣材料826的薄層可以抵抗刻蝕第二絕緣材料828層的刻蝕製程,反之亦然。第一絕緣材料826的薄層可以形成一個刻蝕終點,用於後續在第二絕緣材料828層上的刻蝕。在一些實施例中,薄層826為氮化層,第二絕緣材料828層為氧化層。處理絕緣材料828,使得開口的邊緣在刻蝕後為斜坡或錐形。例如,表面可以摻雜或注入,以增大刻蝕深度,改善跟切,用於濕刻蝕。如果使用等離子刻蝕的話,可以在刻蝕過程中加入氧氣,以腐蝕光致抗蝕劑,形成傾斜的邊緣。因此,可以定制所需角度的開口斜度。 In the 19A' and 19BB' diagrams, a thin layer of a first insulating material 826 is deposited over the gate oxide layer 824. In some embodiments, the first insulating material 826 has a thin layer thickness ranging from 200 Å to 500 Å. In the 20A' and 20BB' views, a second layer of insulating material 828 is deposited over the thin layer of first insulating material 826. In some embodiments, the second insulating material 828 has a layer thickness of about 500 Å to 1000 Å. Thin layer 826 and layer 828 are two different insulating materials, each of which is resistant to etching of another material. That is, the thin layer of the first insulating material 826 can resist the etching process of etching the second insulating material 828 layer, and vice versa. The thin layer of the first insulating material 826 can form an etch end point for subsequent etching on the second insulating material 828 layer. In some embodiments, the thin layer 826 is a nitride layer and the second insulating material 828 layer is an oxide layer. The insulating material 828 is treated such that the edges of the opening are sloped or tapered after etching. For example, the surface can be doped or implanted to increase the etch depth, improve the dicing, and be used for wet etching. If plasma etching is used, oxygen can be added during the etching to etch the photoresist to form a slanted edge. Therefore, the opening slope of the desired angle can be customized.
然後,進行本體注入和本體擴散。在第21AA’和21BB’圖中,使用本體遮罩829用於本體注入。要注意的是,本體遮罩829具有一開口,表示在 A-A’平面中,而不是在B-B’平面中。如第22AA’和22BB’圖所示,摻雜物通過氧化層828和薄氮化層826注入到EPI層820中。摻雜離子的導電類型與基板810的摻雜相反。在一些實施例中,對於N通道元件來說,摻雜離子可以是硼離子。在一些實施例中,對於P-通道元件來說,可以使用磷或砷離子。由於遮罩開口下方的氧化層828和鈍化層826並不厚,因此,摻雜物可以注入到開口下方EPI層820中較深的地方,形成第二凹凸部分。凹凸部分的角度遵循氧化物開口的斜度。如第23AA’和23BB’圖所示,用熱活化摻雜原子,並驅動摻雜物擴散,形成本體區830。 Then, body injection and bulk diffusion are performed. In the 21A' and 21BB' diagrams, a body mask 829 is used for bulk implantation. It should be noted that the body mask 829 has an opening indicating In the A-A' plane, not in the B-B' plane. As shown in Figures 22AA' and 22BB', dopants are implanted into EPI layer 820 through oxide layer 828 and thin nitride layer 826. The conductivity type of the doped ions is opposite to the doping of the substrate 810. In some embodiments, for an N-channel element, the dopant ion can be a boron ion. In some embodiments, phosphorus or arsenic ions can be used for the P-channel element. Since the oxide layer 828 and the passivation layer 826 under the mask opening are not thick, the dopant can be implanted deeper into the EPI layer 820 below the opening to form a second relief. The angle of the relief portion follows the slope of the oxide opening. As shown in Figures 23AA' and 23BB', the dopant atoms are activated by heat and the dopant is driven to diffuse to form body regions 830.
製備本體區830之後,進行源極注入和源極擴散。首先,如第24AA’和24BB’圖所示,通過相同的開口,進行源極注入。摻雜離子的導電類型與基板810的摻雜相同。在一些實施例中,對於N-通道元件來說,可以注入砷離子。對於P-通道元件來說,還可選擇注入硼離子。由於,遮罩開口下方的氧化層828和氮化層826並不厚,因此,摻雜物可以注入到開口下方本體區830中較深的地方,形成第三凹凸部分。在第25AA’和25BB’圖中,利用標準的擴散製程,在本體區830中形成源極區850。然後,如第26AA’和26BB’圖所示,依據標準製程,除去氧化層828和氮化層826。 After the body region 830 is prepared, source implantation and source diffusion are performed. First, as shown in Figs. 24AA' and 24BB', source implantation is performed through the same opening. The conductivity type of the doped ions is the same as the doping of the substrate 810. In some embodiments, arsenic ions can be implanted for the N-channel element. For P-channel components, it is also possible to implant boron ions. Since the oxide layer 828 and the nitride layer 826 under the mask opening are not thick, the dopant can be implanted into a deeper portion of the body region 830 below the opening to form a third concavo-convex portion. In the 25A' and 25BB' diagrams, a source region 850 is formed in the body region 830 using a standard diffusion process. Then, as shown in Figures 26AA' and 26BB', oxide layer 828 and nitride layer 826 are removed in accordance with standard processes.
如第27AA’和27BB’圖所示,在閘極氧化層824上方,沉積一個介電層860,例如氧化物。在一些實施例中,介電層860可以通過低溫氧化物隨後一層含有硼酸的矽玻璃(BPSG)構成。 As shown in Figures 27AA' and 27BB', a dielectric layer 860, such as an oxide, is deposited over the gate oxide layer 824. In some embodiments, the dielectric layer 860 can be formed by a low temperature oxide followed by a layer of barium glass (BPSG) containing boric acid.
在介電層860上,使用接觸光致抗蝕劑869,其圖案是在接觸溝槽的位置處有一開口。在第28AA’和28BB’圖中,通過刻蝕製程,除去介電層860未被覆蓋的部分,並在本體區830中形成接觸溝槽870。在第29AA’和29BB’圖中,首先用圍牆金屬872內襯接觸溝槽870的內表面。在一些實施例中,圍牆金屬872可以是鈦(Ti)和氮化鈦(TiN)。在接觸溝槽870中,可以全面沉積鎢(W) 等導電材料,然後向上回刻到介電層860的表面,形成導電插頭874。最終,如第29AA’和29BB’圖所示,在上面沉積一個金屬層880。在一些實施例中,金屬層880可以是鋁(Al)或鋁銅(AlCu)。 On the dielectric layer 860, a contact photoresist 869 is used, the pattern of which has an opening at the location where the trench is contacted. In the 28AA' and 28BB' diagrams, portions of the dielectric layer 860 that are not covered are removed by an etching process, and contact trenches 870 are formed in the body region 830. In the 29AA' and 29BB' drawings, the inner surface of the groove 870 is first lined with the surrounding metal 872. In some embodiments, the perimeter metal 872 can be titanium (Ti) and titanium nitride (TiN). In the contact trench 870, tungsten (W) can be completely deposited The conductive material is then etched back up to the surface of the dielectric layer 860 to form a conductive plug 874. Finally, as shown in Figures 29AA' and 29BB', a metal layer 880 is deposited thereon. In some embodiments, the metal layer 880 can be aluminum (Al) or aluminum copper (AlCu).
儘管本發明關於某些較佳的版本已經做了詳細的敘述,但是仍可能存在其他版本。因此,本發明的範圍不應由上述說明決定,與之相反,本發明的範圍應參照所附的申請專利範圍及其全部等效內容。任何套接件(無論首選與否),都可與其他任何套接件(無論首選與否)組合。在以下申請專利範圍中,除非特別聲明,否則不定冠詞「一個」或「一種」都指下文內容中的一個或多個項目的數量。除非用「意思是」明確指出限定功能,否則所附的申請專利範圍並不應認為是意義和功能的局限。申請專利範圍中沒有進行特定功能的精確指明「意義是」的任何項目,都不應理解為美國§ 112,6中35所述的「意義」或「步驟」。 Although the invention has been described in detail with respect to certain preferred versions, other versions are possible. Therefore, the scope of the invention should be construed as being limited by the scope of the appended claims. Any socket (whether preferred or not) can be combined with any other socket (whether preferred or not). In the following claims, the indefinite article "a" or "an" The scope of the attached patent application should not be construed as a limitation of meaning and function unless the meaning of the function is clearly indicated by "meaning". Any item in the scope of patent application that does not carry out a specific function and accurately indicates "meaning is" should not be construed as US § 112. "meaning" or "step" as described in 6 of 35.
儘管本發明的內容已經通過上述較佳實施例作了詳細介紹,但應當認識到上述的描述不應被認為是對本發明的限制。在本領域技術人員閱讀了上述內容後,對於本發明的多種修改和替代都將是顯而易見的。因此,本發明的保護範圍應由所附的申請專利範圍來限定。 Although the present invention has been described in detail by the preferred embodiments thereof, it should be understood that the foregoing description should not be construed as limiting. Various modifications and alterations of the present invention will be apparent to those skilled in the art. Therefore, the scope of the invention should be limited by the scope of the appended claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106145527A TWI650862B (en) | 2017-12-25 | 2017-12-25 | Folded channel trench mosfet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106145527A TWI650862B (en) | 2017-12-25 | 2017-12-25 | Folded channel trench mosfet |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI650862B true TWI650862B (en) | 2019-02-11 |
TW201929223A TW201929223A (en) | 2019-07-16 |
Family
ID=66214020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106145527A TWI650862B (en) | 2017-12-25 | 2017-12-25 | Folded channel trench mosfet |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI650862B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080265241A1 (en) * | 2007-04-26 | 2008-10-30 | Infineon Technologies Ag | Semiconductor device and a method for manufacturing a semiconductor device |
TW200943449A (en) * | 2008-04-10 | 2009-10-16 | Alpha & Omega Semiconductor Ltd | Structure for measuring body pinch resistance of high density trench MOSFET array |
TW200945584A (en) * | 2008-02-14 | 2009-11-01 | Maxpower Semiconductor Inc | Semiconductor device structures and related processes |
WO2010008617A1 (en) * | 2008-07-15 | 2010-01-21 | Maxpower Semiconductor Inc. | Mosfet switch with embedded electrostatic charge |
US20110180909A1 (en) * | 2005-12-22 | 2011-07-28 | Fuji Electric Co., Ltd. | Semiconductor device |
-
2017
- 2017-12-25 TW TW106145527A patent/TWI650862B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110180909A1 (en) * | 2005-12-22 | 2011-07-28 | Fuji Electric Co., Ltd. | Semiconductor device |
US20080265241A1 (en) * | 2007-04-26 | 2008-10-30 | Infineon Technologies Ag | Semiconductor device and a method for manufacturing a semiconductor device |
TW200945584A (en) * | 2008-02-14 | 2009-11-01 | Maxpower Semiconductor Inc | Semiconductor device structures and related processes |
TW200943449A (en) * | 2008-04-10 | 2009-10-16 | Alpha & Omega Semiconductor Ltd | Structure for measuring body pinch resistance of high density trench MOSFET array |
WO2010008617A1 (en) * | 2008-07-15 | 2010-01-21 | Maxpower Semiconductor Inc. | Mosfet switch with embedded electrostatic charge |
Also Published As
Publication number | Publication date |
---|---|
TW201929223A (en) | 2019-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI695454B (en) | Bidirectional switch element with back-to-back field effect transistor and manufacturing method thereof | |
CN203659875U (en) | Semiconductor device | |
TWI500114B (en) | Semiconductor component and manufacturing method | |
CN103094348B (en) | Field-effect transistor | |
US10355125B2 (en) | Electrode contact structure for semiconductor device | |
CN102194699B (en) | Shielded gate trench MOS with improved source pickup layout | |
JP3954541B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3117426B2 (en) | MOS gate type device having self-aligned cell and method of manufacturing the same | |
US7989293B2 (en) | Trench device structure and fabrication | |
JP2000252468A (en) | MOS gate device having buried gate and method of manufacturing the same | |
CN101908562A (en) | Structures and methods for forming shielded gate trench FETs | |
CN102034712A (en) | Direct contact in trench with three mask shielded gate process | |
CN101395719A (en) | Termination of Trench Field Plates for Power Devices | |
US8575688B2 (en) | Trench device structure and fabrication | |
EP1162665A2 (en) | Trench gate MIS device and method of fabricating the same | |
US7494876B1 (en) | Trench-gated MIS device having thick polysilicon insulation layer at trench bottom and method of fabricating the same | |
JP2008103378A (en) | Semiconductor device and manufacturing method thereof | |
TWI650862B (en) | Folded channel trench mosfet | |
CN108122988B (en) | Folded channel trench MOSFET | |
JP2004063844A (en) | Semiconductor device and its manufacturing method | |
WO2010098742A1 (en) | Trench device structure and fabrication |