以下,對本發明之實施形態加以詳細敍述。 本實施形態之不織布包含熱塑性纖維,可為藉由紡黏法製造之長纖維不織布、由梳棉法等製造之短纖維不織布。然而,於短纖維不織布之情形時,進行梳棉時纖維於X方向或Y方向被拉齊,表面容易變得平滑,就該情況、強度、生產性之觀點、減少對肌膚之刺激等觀點而言,作為構成織物之纖維,較佳為藉由紡黏法製造之長纖維。本案說明書中,所謂長纖維係指纖維長度為55 mm以上者。纖維長度越短,則纖維之端部分接觸肌膚之概率越大,因此給予紮刺之觸感,故纖維長度較佳為55 mm以上。 作為構成熱塑性纖維之熱塑性樹脂,例如可列舉:聚乙烯、聚丙烯、共聚合聚丙烯等聚烯烴系樹脂,聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯、聚萘二甲酸乙二酯、共聚合聚酯等聚酯系樹脂,尼龍-6、尼龍-66、共聚合尼龍等聚醯胺系樹脂,及聚乳酸、聚丁二酸丁二酯、聚丁二酸乙二酯等生物降解性樹脂,並無特別限定。就不織布之質感之觀點、所使用之用途多數為拋棄型材料之情況而言,就通用、回收之便利性之觀點而言,較佳為聚烯烴系樹脂。 作為熱塑性纖維之形態,就對不織布之表面結構賦予特徵之觀點而言,較佳為纖維捲縮。捲縮數較佳為5個/2.54 cm(吋)以上,更佳為5個/吋以上且45個/吋以下,進而較佳為10個/吋以上且40個/吋以下,尤佳為10個/吋以上且25個/吋以下。若為由捲縮數超過45個/吋之纖維構成之不織布,則纖維之捲縮所致之縮短或不均較顯眼,導致不織布之外觀變差,此外因不均而導致回滲指數變差。又,若為由捲縮數未達5個/吋之纖維構成之不織布,則無法獲得所需之表面粗糙度,而且厚度變薄,質感受損,或者難以獲得所需之透水性。 作為對上述纖維賦予捲縮之方法,可藉由將纖維截面設為異形截面形狀並於紡絲冷卻時偏冷卻而賦予捲縮。又,包含2種以上之熱塑性樹脂之複合纖維亦可表現出捲縮,藉由將其構成設為並列型(S/S)、偏芯鞘芯型(偏S/C)等,可進而容易地表現出捲縮。於偏芯鞘芯型(偏S/C)之情形時,芯部亦可於纖維表面露出,芯部於纖維表面中所占之比率以面積率計較佳為0~50%,更佳為0~30%。若芯部於纖維表面中所占之比率高至超過50%,則會影響作為不織布之接合時之接著,布強度容易降低,亦容易產生起毛。 於偏芯鞘芯型(偏S/C)之情形時,為了獲得所需之捲縮數,芯部之截面積之重心較佳為相對於複合纖維之截面積之重心而偏移5~40%。芯部之偏移係藉由下式算出。 芯部之偏移(%)=(複合纖維之截面積之重心與芯部之截面積之重心之最短距離)/(線之直徑)×100 於上述纖維係由2種以上之熱塑性樹脂組合而成之情形時,只要可發揮所需之效果,則可為上述熱塑性樹脂之任意組合,就纖維彼此之接合之觀點而言,較佳為存在熔點差之熱塑性樹脂之組合。熔點差較高之樹脂於纖維內所占之重量比率較佳為20 wt%以上且80 wt%以下,更佳為30 wt%以上且80 wt%以下,進而較佳為50 wt%以上且70 wt%以下。 又,就所獲得之不織布之質感之觀點而言,較佳為聚烯烴系樹脂彼此之組合、將聚烯烴系樹脂與聚酯系樹脂組合而使用。於將聚烯烴系樹脂組合而使用之情形時,可列舉由聚乙烯、聚丙烯、及該等之單體與其他α-烯烴之共聚物等樹脂組合而成之複合纖維。其他α-烯烴為碳數3~10者,具體而言可列舉丙烯、1-丁烯、1-戊烯、1-己烯、4-甲基-1-戊烯、1-辛烯等。 於將聚烯烴系樹脂與聚酯系樹脂組合之情形時,聚酯系樹脂較佳為使用聚對苯二甲酸乙二酯單一成分,或者使用包含間苯二甲酸等之共聚物。又,聚對苯二甲酸乙二酯亦可藉由摻合物等而改質,亦可賦予有添加劑等。 其中,作為熱塑性樹脂之組合,就強度較強而於使用時不易斷裂,且生產衛生材料時之加工適性優異,另外質感亦良好之方面而言,較佳為將第1成分設為聚丙烯,將第2成分設為聚乙烯,於複合纖維為偏芯鞘芯型之情形時,較佳為將芯部設為第1成分,將鞘部設為第2成分。 於由上述2種熱塑性樹脂形成纖維之情形時,第1成分之聚丙烯可為藉由通常之齊格勒-納塔觸媒所合成之聚合物,亦可為藉由茂金屬所代表之單點活性觸媒所合成之聚合物。又,亦可為乙烯無規共聚合聚丙烯。該等可單獨使用1種,亦可將2種以上組合。尤其就質感、強度、尺寸穩定性而言,較佳為以均聚丙烯作為主成分者。 又,就製造纖維時之紡絲性、所獲得之纖維之強度之方面而言,作為聚丙烯之MFR(melt mass flow rate,熔體質量流率),下限較佳為20 g/10 min以上,更佳為超過30 g/10 min,進而較佳為超過40 g/10 min,最佳為超過53 g/10 min。MFR之上限較佳為85 g/10 min以下,更佳為70 g/10 min以下,進而較佳為60 g/10 min以下。MFR係按照JIS-K7210「塑膠-熱塑性塑膠之熔體質量流率(MFR)及熔體容量流率(MVR,melt volume flow rate)之試驗方法」之表1、試驗溫度230℃、試驗荷重2.16 kg而進行測定。 於由上述2種熱塑性樹脂形成纖維之情形時,第2成分之聚乙烯可為藉由通常之齊格勒-納塔觸媒所合成之聚合物,亦可為藉由茂金屬所代表之單點活性觸媒所合成之聚合物。聚乙烯較佳為高密度聚乙烯、直鏈狀低密度聚乙烯,密度較佳為0.92~0.97 g/cm
3
,更佳為0.925~0.96 g/cm
3
。 又,就製造纖維時之紡絲性之觀點而言,聚乙烯之MI(Melt Index,熔融指數)之下限較佳為10 g/10 min以上,更佳為超過15 g/10 min。MI之上限較佳為100 g/10 min以下,更佳為60 g/10 min以下,進而較佳為40 g/10 min以下。MI係按照JIS-K7210「塑膠-熱塑性塑膠之熔體質量流率(MFR)及熔體容量流率(MVR)之試驗方法」之表1、試驗溫度190℃、試驗荷重2.16 kg而進行測定。 又,於使用聚酯系樹脂之情形時,溶液黏度ηsp/c之下限較佳為0.2以上,更佳為0.6以上。溶液黏度ηsp/c之上限較佳為0.9以下,更佳為0.8以下。 就強度、生產性之觀點而言,構成本實施形態之不織布之纖維較佳為使用紡黏法而成之長纖維之織物形態。於製成與2種以上之熱塑性樹脂組合而成之複合長纖維之情形時,例如自2台以上之不同之擠出機分別熔融擠出不同之熱塑性樹脂,自具有多數個紡絲孔之紡絲嘴於將2種以上之熱塑性樹脂複合之狀態下以絲線之形式噴出。繼而,一面向所噴出之絲線吹送經控制為5℃~20℃之冷風而進行冷卻,一面藉由牽引裝置進行牽引。自牽引裝置伸出之絲線於搬送機上堆積並以織物之形式被搬送。亦可將搬送中之織物積層而製成多層積層之不織網。於多層積層之不織布之情形時,各層可由不同之纖維徑形成,亦可將異形截面纖維、捲縮纖維、中空纖維等特殊形態之纖維之不織布積層。 上述不織網之接合可使用:利用接著劑進行接合之方法,藉由低熔點纖維或複合纖維進行接合之方法,於織物形成中散佈熱熔黏合劑而進行熔融接合之方法,利用針刺、水流等將纖維交纏等方法,並無特別限定。就高速生產性之觀點而言,亦可藉由部分熱壓接進行接合。例如,可使織物通過可賦予針點狀、橢圓形狀、菱形狀、矩形狀等之接合點之經加熱之壓紋/平坦輥間而進行接合。就強度保持及柔軟性、以及不織布之體積之保持、使表面之凹凸結構不會於輥間潰縮之觀點而言,部分熱壓接中之熱壓接面積率較佳為5~40%,更佳為5~25%。 又,就容易維持不織布表面結構之特徵或不織布之厚度之觀點而言,尤其於將2種以上之熱塑性樹脂組合而成之複合長纖維之情形時,只要為加熱至纖維彼此之交點可熔融並進行接著之溫度以上之方法,則可無特別限定地使用,作為進行加熱之方法,可使用熱風循環型、熱風貫通型、紅外線加熱器型、向不織布之兩面噴附熱風之方法、導入至加熱氣體中之方法等各種加熱方法。就以纖維彼此之交點獲得更多之纖維接著點且不織布之斷裂強度變高之觀點而言,較佳為利用熱風之加熱,尤佳為熱風貫通型。 熱風貫通型之熱風溫度較佳為調整為適於所組合之熱塑性樹脂中熔點較低且有助於接合之熱塑性樹脂的溫度。例如,於2種以上之熱塑性樹脂之低熔點之樹脂為聚乙烯之情形時,較佳之熱風溫度為聚乙烯熔融並進行接著之120~155℃,較佳為135~155℃,更佳為140℃~150℃。若接著溫度高於120℃,則可於纖維彼此之交點表現出纖維彼此之接著,並表現出作為不織布之強度。又,若接著溫度為155℃以上,則纖維之熔解度變得非常高,質感變硬。 熱風之風速較佳為0.5~3.0 m/s,更佳為0.7~2.5 m/s,進而較佳為2.0 m/s以下。若風速較慢,則熱風無法貫通不織布之厚度方向,導致強度變低。又,若風速較快,則雖然熱風貫通,但纖維亦同時潰縮而成為體積較小之不織布。 只要不對不織布之表面結構造成不良影響,則亦可對上述利用熱風之加熱接合前之不織網實施熱接著。就生產性之觀點而言,熱接著較佳為通過金屬壓紋輥與金屬平坦輥之組合之一對輥。就不織網之形態保持或最終獲得之不織布之強度之觀點而言,壓紋面積率較佳為5~30%,更佳為5~20%,進而較佳為6~15%。又,壓紋之深度越深,則越可保持不織布之厚度,較佳為0.5~2.0 mm,進而較佳為0.7~1.5 mm。壓紋形狀並無特別限定,較佳為圓形狀、橢圓形狀、菱形狀、矩形狀。 不織布之纖維之平均纖維徑較佳為8.0 μm以上且38.0 μm以下,更佳為9.0 μm以上且33.5 μm以下,進而較佳為11.0 μm以上且26.5 μm以下。就紡絲穩定性之觀點而言,平均纖維徑較佳為8.0 μm以上,就用於衛生材料之不織布之質感之觀點而言,更佳為38.0 μm以下。 不織布之單位面積重量較佳為8 g/m
2
以上且80 g/m
2
以下,更佳為10 g/m
2
以上且40 g/m
2
以下,進而較佳為10 g/m
2
以上且30 g/m
2
以下。若單位面積重量為8 g/m
2
以上,則作為用於衛生材料之不織布而滿足強度,若為80 g/m
2
以下,則滿足用於衛生材料之不織布之質感,外觀上不會有厚重之印象。 不織布無荷重時之高度較佳為140 μm以上,更佳為140 μm以上且3000 μm以下,進而較佳為140 μm以上且2000 μm以下。就不織布之質感及透水性之回滲性能之觀點而言,無荷重時之高度較佳為140 μm以上,若超過3000 μm,則外觀上會有厚重之印象,並且具有剛性而不適於用作衛生材料。 不織布之由X射線CT所得之配向指標為0.43以下,較佳為0.425以下。若由X射線CT所得之配向指數為該範圍,則佔據不織布之厚度方向之纖維變多,即便於荷重下體積亦不潰縮,成為具有蓬鬆性之不織布,可獲得緩衝性優異及回滲指數較低之親水性蓬鬆不織布。下限越低越好,但配向指標較佳為0.30以上,更佳為0.33以上。 本實施形態之不織布之壓縮作功量WC較佳為0.20 gf・cm/cm
2
以上且1.00 gf・cm/cm
2
以下,更佳為0.20 gf・cm/cm
2
以上且0.80 gf・cm・cm
2
以下,保持該範圍之壓縮作功量WC之情況下,可獲得作為用於衛生材料之不織布之緩衝性及優異之回滲指數。 本實施形態之親水性蓬鬆不織布係含有或塗佈有透水劑。作為所使用之透水劑,考慮到對人體之安全性、步驟中之安全性等,可列舉:高級醇、高級脂肪酸、烷酚等加成有環氧乙烷之非離子系活性劑,烷基磷酸鹽、烷基硫酸鹽等陰離子系活性劑等單獨或由混合物等構成之界面活性劑。作為透水劑,例如亦可較佳地使用聚醚化合物、聚乙烯醚改性聚矽氧、聚醚改性聚矽氧、聚酯化合物、聚醯胺化合物、聚甘油化合物等。 作為含有或塗佈透水劑之方法,可採用向纖維中之混練或塗佈法(凹版塗佈機、接觸式塗佈機)、噴霧法等現有之方法,亦可視需要採用電暈放電處理、常壓電漿放電處理等前處理。作為塗佈後之乾燥方法,可採用利用對流傳熱、傳導傳熱、輻射傳熱等之已知之方法,可使用利用熱風或紅外線之乾燥、利用熱接觸之乾燥方法等。 透水劑之附著量係根據目標用途而不同,例如作為衛生材料用,通常相對於不織布而較佳為0.10 wt%以上且1.50 wt%以下之範圍,更佳為0.15 wt%以上且1.20 wt%以下。若未達0.10 wt%,則難以獲得令人滿意之透水性能,另一方面,若超過1.50 wt%,則容易於肌膚上產生斑疹或濕疹。 透水劑亦可利用水等溶劑進行稀釋而以水溶液之形式塗佈。又,為了不產生伴隨著設備之高速化的乾燥步驟中之乾燥不足等,透水劑水溶液之塗佈量以少為佳。對不織布之塗佈量(wt%)於上述任一塗佈方法中均較佳為1.0 wt%以上且65 wt%以下,更佳為3.0 wt%以上且60 wt%以下,進而較佳為5.0 wt%以上且50 wt%以下。若未達1.0 wt%,則無法獲得均勻之塗佈,另一方面,若超過65 wt%,則所需之乾燥能力變大,設備成本增大,而且可能產生乾燥不足。 例如,於利用凹版塗佈機進行之透水劑之塗佈中,凹版輥之圖樣可為格子型或稜錐型,較佳為透水劑不易殘留於凹版單元底部之斜線型。單元容積較佳為5 cm
3
/m
2
以上且40 cm
3
/m
2
以下,若未達5 cm
3
/m
2
,則塗佈量過少,因此難以進行均勻之塗佈,若超過40 cm
3
/m
2
,則塗佈量過多,因此產生因乾燥步驟中之乾燥不足或遷移所致的透水劑之附著不均等問題。 上述凹版單元之深度較佳為10 μm以上且80 μm以下,其間隔較佳為80目以上且250目以下之範圍內,較佳為以成為上述單元容積之方式進行設計。 就可應對設備之高速化,可效率良好地進行塗佈,即便為具有厚度之不織布亦可於厚度方向均勻地進行塗敷,又,即便透水劑及不織布之滲透性略差亦可均勻地進行塗敷,且因不存在使不織布通過一對輥間之步驟故而容易維持不織布之厚度的方面而言,較佳為利用噴霧法塗佈透水劑。作為噴霧法,可為通常公知之利用空氣壓縮之噴附法、或直接壓縮透水劑水溶液並進行噴霧之方法,就可均勻地塗佈於不織布之觀點而言,尤佳為轉子濕潤(rotor dampening)方式。藉由實施防止塗佈時之透水劑水溶液飛濺之策略,即便於設備高速運轉時亦可進行塗佈。所謂轉子濕潤方式,係向旋轉之轉子上供給透水劑水溶液,利用轉子旋轉之離心力噴霧透水劑水溶液的方法。於轉子濕潤方式中,能以僅於塗佈方向上僅於需塗佈之不織布側噴霧因轉子旋轉而飛出之透水劑水溶液之液體粒子之方式、且可於不織布之CD(Cross Direction,橫向)方向均勻地進行塗佈之方式限定開口部,藉由轉子轉速調整噴霧粒徑。 於上述轉子濕潤方式之情形時,例如選定轉子之直徑為40 mm以上且100 mm以下者,以透水劑水溶液可均勻地附著於需塗佈之不織布之CD方向之方式設定需塗佈之不織布面與轉子之中心之距離。較理想為以自鄰接轉子噴霧之塗佈分佈範圍之二分之一重疊之方式進行設定。又,轉子較理想為於CD方向上等間隔地配置於60 mm以上且220 mm以下之範圍內,且設為2段。 均勻塗佈之關鍵在於使噴霧粒子深入至需塗佈之不織布之內部,該噴霧粒徑較佳為0.010 mm以上且0.200 mm以下,進而較佳為0.030 mm以上且0.070 mm以下。為了形成最佳之噴霧粒徑,透水劑水溶液之表面張力變得重要,噴霧粒徑係藉由下式算出。 噴霧粒徑(μm)={100000×√(表面張力(N/m))}/(轉子直徑(mm)×轉子轉速(rpm)) 又,該等塗佈方法中之透水劑水溶液之溫度較佳為5℃以上且50℃以下,就溶液之均勻分散、穩定性之觀點而言,更佳為12℃以上且40℃以下。透水劑水溶液之黏度較佳為0.5 mPa・s以上且50 mPa・s以下,就容易更均勻地進行塗佈之觀點而言,更佳為0.8 mPa・s以上且20 mPa・s以下。若黏度超過50 mPa・s,則透水劑水溶液對不織布之滲透性較差,難以進行均勻之塗佈。 塗佈透水劑水溶液後之乾燥可使用通常之乾燥方式,並無特別限定,可採用利用對流傳熱、傳導傳熱、輻射傳熱等之已知之方法,可使用熱風循環型、熱風貫通型、紅外線加熱器型、向不織布之兩面噴附熱風之方法、導入至加熱氣體中之方法等各種乾燥方法。 如圖1所示,本實施形態之不織布之表面結構之特徵在於:於將該不織布表面上之測定基準長度設為100 μm時,由X方向Y方向界定之單位區塊內之最大高度相對於不織布無荷重時之高度(厚度)為30%以上的區塊之比率於相當於該不織布表面積20 mm×20 mm之每40000區塊數中為50%以上。 不織布表面上之測定基準長度、及最大高度如下所述。使用數位顯微鏡KH-8700(Hirox製造)於不織布之MD(Machine Direction,縱向)方向20 mm、CD方向20 mm中在各方向上以20 μm間隔測定採取不織布表面之高度資訊。以每100 μm對在不織布之MD方向20 mm×CD方向20 mm中所獲得之高度資訊進行劃分,將此時所劃分之長度作為測定基準長度。又,將該單位區塊內之最大值與最小值之差作為不織布表面之最大高度。最大高度相對於不織布無荷重時之高度(厚度)之比率係由最大高度(μm)/無荷重時之高度(μm)×100而算出。 即,最大高度相對於不織布無荷重時之高度(厚度)之比率為30%以上之區塊之比率越高,則不織布表面之微細區塊內之凹凸差越變大。於本實施形態中,最大高度相對於不織布無荷重時之高度(厚度)之比率為30%以上之區塊相對於在該不織布之MD方向20 mm×CD方向20 mm中以測定基準長度100 μm進行劃分所得之每40000區塊為50%以上。藉由具有此種不織布表面之結構之特徵,例如不論對不織布賦予之透水劑如何,於尿液等液體附著於不織布表面時,其接觸角均變低,使液體自不織布表面迅速移動至不織布內部。就不織布之液體移動性之觀點而言,於本實施形態中,最大高度相對於不織布無荷重時之高度(厚度)為30%以上之區塊之比率為50%以上,較佳為52%以上,更佳為55%以上,進而較佳為60%以上。藉由該比率處於該範圍內,可表現出良好之透水性。該比率越高越好,但就肌膚觸感變差之方面而言,較佳為98%以下。 成為本實施形態之不織布之透水性之指標的透水45度傾斜流長值為25 mm以下,較佳為22 mm以下,進而較佳為20 mm以下,最佳為18 mm以下。若透水45度傾斜流長值超過25 mm,則例如於用於拋棄式尿布等之表面材料之情形時,表面之液體流動變多,容易引起漏尿。 成為本實施形態之不織布之透水性之指標的第4次耐久透水指數為85%以上。若第4次耐久透水指數之值未達85%,則例如於用於拋棄式尿布等之表面材料之情形時,對於複數次之排尿,表面材料無法透水而喪失作為表面材料之功能,容易引起漏尿。 又,成為本實施形態之不織布之透水性之指標的回滲指數較佳為0.8 g以下,更佳為0.5 g以下。若回滲指數之值超過0.8 g,則例如於用於拋棄式尿布之表面材料之情形時,於表面材料接觸肌膚時有非常潮濕之觸感,使用感變差。回滲指數越低越好,但0.01 g以下之值為測定下限,測定偏差較大。 [實施例] 以下,藉由實施例、比較例具體地說明本發明,但本發明並非僅限定於以下之實施例。再者,各特性之評價方法如下所述,將所獲得之物性示於以下之表1。以下,將不織布製造中之行進方向稱為MD方向,將與該方向為直角之方向且寬度方向稱為CD方向。 1.平均纖維徑(μm) 於不織布之CD方向進行5等分而選取1 cm見方之試片,利用KEYENCE公司製造之顯微鏡VHX-700F於各20點測定纖維之直徑,並算出其平均值。 2.不織布之單位面積重量(g/m
2
) 依據JIS-L1906,以選取位置均等之方式於不織布之CD方向選取5片MD方向20 cm×CD方向5 cm之試片並測定質量,將其平均值換算成每單位面積之重量而求出單位面積重量(g/m
2
)。 3.不織布無荷重時之高度(厚度)(μm) 任意選取10片MD方向4 mm×CD方向10 mm之試片,使用KEYENCE製造之SEM(Scanning Electron Microscope,掃描式電子顯微鏡)(VE-8800)拍攝不織布截面之照片。所獲得之圖像係使用同為KEYENCE製造之圖像分析軟體,對每1圖像於5點測定厚度方向之距離,將其平均值作為無荷重時之高度(厚度)(μm)。 4.不織布表面之最大高度(μm) 於任意方向以20 mm×20 mm之正方形之尺寸切割選取不織布。繼而,使用數位顯微鏡KH-8700(Hirox製造)之3D分佈功能,於該不織布之正方形之各邊方向20 mm中在各方向上以20 μm間隔測定選取不織布表面之高度資訊。以每100 μm對在不織布之正方形之各邊20 mm×20 mm中所獲得之高度資訊進行劃分,將此時劃分之長度作為測定基準長度。又,將該區塊內之最大值與最小值之差作為不織布表面之最大高度。將該測定順序模式性地示於圖1。 藉由最大高度(μm)/無荷重時之高度(厚度)(μm)×100算出不織布表面之最大高度相對於不織布無荷重時之高度(厚度)(μm)之比率。 進而,將最大高度相對於不織布無荷重時之高度(厚度)之比率為30%以上之區塊數除以該不織布之正方形之各邊方向20 mm×20 mm中以測定基準長度100 μm所劃分之40000區塊數而算出比率(%)。 5.配向指數(X射線CT) 任意地切割MD方向5 mm×CD方向5 mm之試片並以圖像分析時之視場約3 mm×3 mm進行測定。測定裝置係使用高解析3DX射線顯微鏡nano3DX(Rigaku股份有限公司製造),並藉由即便為輕元素亦獲得對比度之低能量高亮度X射線之CT測定進行測定。將詳細之條件示於以下。 X射線靶:Cu X射線管電壓:40 kV X射線管電流:30 mA 透鏡:1.08 μm/pix 組合:2 旋轉角度:180° 投影數:1000張 曝光時間:10秒/張 相機像素:3300×2500 再構成:Feldkamp法 對藉由CT測定所獲得之三維之層析圖進行圖像分析,求出正交之3軸(x、y、z)之配向性指標Ix、Iy、Iz。使欲重點評價之樣本之厚度方向與z方向一致。此處所謂配向性指標Ix、Iy、Iz,係於將自x、y、z各方向觀察到之纖維表面之面積之和(各方向上之纖維表面之延伸投影面積之和)分別設為Ax、Ay、Az時,以 Ix=Ax/(Ax+Ay+Az) Iy=Ay/(Ax+Ay+Az) Iz=Az/(Ax+Ay+Az) 定義。Ax、Ay、Az係由層析圖求出。於該指標中,在值較小之方向上進行配向。又,於各向同性結構中全部成為1/3。 6.壓縮作功量(WC) 於CD方向選取5點之5 cm見方之試片,並使用Kato Tech公司製造之壓縮試驗裝置(KES-G5)進行測定。將試片設置於金屬製試樣台上,於具有加壓面積2 cm
2
之圓形平面之鋼板間進行壓縮。壓縮速度為0.067 mm/s,且壓縮最大荷重係設為3.4 kPa(35 gf/ cm
2
)。恢復過程亦以同一速度進行測定,並算出壓縮作功量之平均值。 7.捲縮數(個/2.54 cm(吋)) 於不織布之CD方向進行5等分而選取5 cm見方之試片,藉由KEYENCE公司製造之顯微鏡VH-Z450於未對纖維施加荷重之狀態下選擇5根纖維並測定每1吋之長度之捲縮數,根據其平均值算出捲縮數(個/吋)。 8.透水45度傾斜流長值(mm) 於經傾斜為45度之板上重疊10張衛生紙(Itoman股份有限公司製造之HARD SINGLE 1R55m)作為吸收體,於其上方放置試驗布(20 cm見方),自布上方10 mm之高度滴加0.1 cc之生理鹽水。讀取生理鹽水自滴加位置至吸收結束所流落之距離。於試驗布內任意20點進行該測定,將其平均值作為透水45度傾斜流長值(mm)。 9.耐久透水指數(%) 重疊10張衛生紙(Itoman股份有限公司製造之HARD SINGLE 1R55m)作為吸收體,於其上方放置試驗布(20 cm×30 cm)。進而於其上方放置等間隔地於10處開設有直徑1.5 cm之孔之不鏽鋼製之板,自位於各孔之布上方10 mm之高度滴加生理鹽水0.3 cc,經過3分鐘後,再次同樣地滴加。第3次滴加後,對10秒以內吸收之孔之個數(A)進行計數。對相同試樣40處進行該試驗並將{((A)/(孔10處×試樣40處)×100)}作為第3次透水耐久指數(%)。又,繼續於第4次滴加後亦與第3次同樣地對10秒以內吸收之孔之數量(B)進行計數,將{((B)/( 孔10處×試樣40個處)×100)}作為第4次透水耐久指數(%)。 10.回滲指數(g) 為了作為吸收體而預先使吸收體之特性一定化,於3片特定濾紙(Ahlstrоm公司製造之GRADE:989)上放置試驗布。進而於其上方放置10 cm見方且中央開設有直徑25 mm之孔之板(約800 g),自中央孔之上部25 mm高度滴加生理鹽水(吸收體重量之3.5倍之液體量)並使其吸收。其次,去掉試驗布上方之板,輕輕放置3.5 kg之砝碼(10 cm見方)並耗時3分鐘使吸收體中液體之分佈一定化。繼而,暫時去掉3.5 kg之砝碼,迅速將2張預先經稱量之測定用濾紙(HOLLINGSWORTH&VOSE.CONPANY製造之ERTMWWS SHEETS,12.5 cm見方)放置於試驗布之上方,並再次輕輕放置3.6 kg之砝碼。2分鐘後稱量該測定濾紙之重量增加。將該增加量之值(g)作為回滲指數。 11.透水劑水溶液之塗佈量(wt%) 將根據透水賦予加工1小時之透水劑水溶液消耗量藉由下式算出之值作為透水劑水溶液之塗佈量(wt%)。 塗佈量(wt%)=透水劑水溶液消耗量(g)/{不織布單位面積重量(g/m
2
)×寬度(m)×加工速度(m/min)×60(min)}×100 12.透水劑純附著量(wt%) 對以25℃×40%RH之溫度濕度進行24小時濕度控制之附著有透水劑之不織布試樣之重量(W1)、及使用甲醇自該不織布試樣進行索氏萃取所得之透水劑之重量(W2)進行測定,藉由下式求出透水劑純附著量C(wt%)。 C(wt%)=[W2/W1]×100 不織布試樣之取樣係於MD方向以30 cm間隔自5處、於CD方向在不織布之寬度內等間隔地自5處以切割寬度為5 cm~10 cm範圍且不織布試樣成為約2 g之長度進行切割,選取合計10片試驗布。進行上述測定並將該等之平均值作為透水劑純附著量(wt%)。 13.分散 以50 cm×50 cm選取不織布,藉由目測判定按不織布外觀之以下評價基準進行分級。分散評價之觀點係設定為條紋狀等斑紋是否不具規則性,或者單紗是否均勻地擴展(是否未成為塊狀)。等級越高,表示分散越良好。 5:非常良好 4:良好 3:通常(可作為製品而使用之水準) 2:較差 1:非常差 [實施例1] 將MFR為55 g/10 min(依據JIS-K7210,於溫度230℃、荷重2.16 kg下進行測定)之聚丙烯(PP)樹脂作為第1成分,將MI為26 g/10 min(依據JIS-K7210,於溫度190℃、荷重2.16 kg下進行測定)之高密度聚乙烯(HDPE)樹脂作為第2成分,藉由紡黏法於紡絲溫度220℃下擠出第1成分之噴出量為0.4 g/min・hоle、第2成分之噴出量為0.4 g/min・hоle且總噴出量為0.8 g/min・hоle、第1成分與第2成分之比成為1/1的纖維,使用利用空氣噴射之高速氣流牽引裝置以紡速3200 m/min朝向移動捕獲面擠出該長絲群,製備平均纖維徑17.9 μm之偏芯鞘芯型複合長纖維織物。 繼而,對於所獲得之織物,藉由熱風溫度142℃、熱風風速0.7 m/s之熱風將纖維彼此接著,獲得單位面積重量18 g/m
2
、捲縮數15個/吋之複合長纖維不織布。 繼而,將包含六甘油單硬脂酸酯、聚醚改性聚矽氧與聚氧伸烷基蓖麻油醚之混合物之透水劑之3 wt%水溶液調整為液溫20℃、液黏度3.2 mPa・s而作為用於所獲得之不織布之透水劑水溶液,以塗佈量成為10 wt%之方式,藉由轉子濕潤方式塗佈於上述不織布。所使用之轉子之直徑為80 mm,各轉子係於CD方向以115 mm間隔、以使轉子中心與所塗佈之不織布之距離成為180 mm之方式進行配置。又,調整轉子轉速,使所噴霧之透水劑水溶液之噴霧粒徑成為35 μm。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布無荷重時之高度(厚度)為30%以上的區塊之比率為85%,不織布之透水45度傾斜流長值為16 mm,第4次耐久透水指數為99%,回滲指數為0.12 g。將結果示於以下之表1。 [實施例2] 利用與實施例1同樣之方法,獲得平均纖維徑17.9 μm、單位面積重量10 g/m
2
、捲縮數15個/吋之偏芯鞘芯型複合長纖維不織布。繼而,將與實施例1同樣之透水劑水溶液以同樣之塗敷條件塗佈於所獲得之複合長纖維不織布。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布無荷重時之高度(厚度)為30%以上的區塊之比率為87%,不織布之透水45度傾斜流長值為14 mm,第4次耐久透水指數為99%,回滲指數為0.50 g。將結果示於以下之表1。 [實施例3] 第1成分之噴出量為0.54 g/min・hоle,第2成分之噴出量為0.26 g/min・hоle且總噴出量為0.80 g/min・hоle,第1成分與第2成分之比係設為約2/1,除此以外,以與實施例1同樣之方法製備平均纖維徑為17.9 μm之偏芯鞘芯型複合長纖維織物。 對於所獲得之偏芯鞘芯型複合長纖維織物,藉由熱風溫度145℃、熱風風速1.0 m/s之熱風將纖維彼此接著,獲得單位面積重量18 g/m
2
、捲縮數10個/吋之複合長纖維不織布。 繼而,將與實施例1同樣之透水劑水溶液以同樣之塗敷條件塗佈於所獲得之複合長纖維不織布。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布無荷重時之高度(厚度)為30%以上的區塊之比率為74%,不織布之透水45度傾斜流長值為16 mm,第4次耐久透水指數為99%,回滲指數為0.12 g。將結果示於以下之表1。 [實施例4] 以與實施例3同樣之方法獲得平均纖維徑17.9 μm、單位面積重量18 g/m
2
、捲縮數10個/吋之複合長纖維不織布。 將透水劑之1 wt%水溶液調整為液溫20℃、液體濃度2.3 mPa・s,以凹版塗敷方式使用斜線圖樣120目、單元容積22 cm
3
/m
2
之凹版輥,以塗佈量成為30 wt%之方式塗佈於所獲得之複合長纖維不織布,繼而,通過120℃之滾筒乾燥機進行乾燥並捲取。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布無荷重時之高度(厚度)為30%以上的區塊之比率為70%,不織布之透水45度傾斜流長值為17 mm,第4次耐久透水指數為97%,回滲指數為0.22 g。將結果示於以下之表1。 [實施例5] 將第1成分設為與實施例1同樣之聚丙烯樹脂,將第2成分設為MI為16.8 g/10 min(依據JIS‐K7210,於溫度190℃、荷重2.16 kg下進行測定)之直鏈狀低密度聚乙烯(LLDPE)樹脂,藉由紡黏法於紡絲溫度220℃下擠出第1成分之噴出量為0.54 g/min・hоle、第2成分之噴出量為0.26 g/min・hоle且總噴出量為0.8 g/min・hоle、第1成分與第2成分之比為約2/1的纖維,使用利用空氣噴射之高速氣流牽引裝置朝向移動捕獲面擠出該長絲群,製備平均纖維徑20.5 μm之偏芯鞘芯型長纖維織物。 對於所獲得之偏芯鞘芯型長纖維織物,藉由熱風溫度150℃、熱風風速0.3 m/s之熱風將纖維彼此接著,獲得單位面積重量18 g/m
2
、捲縮數40個/吋之複合長纖維不織布。 繼而,將與實施例1同樣之透水劑水溶液以同樣之塗敷條件塗佈於所獲得之複合長纖維不織布。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布無荷重時之高度(厚度)為30%以上的區塊之比率為92%,不織布之透水45度傾斜流長值為15 mm,第4次耐久透水指數為99%,回滲指數為0.35 g。將結果示於以下之表1。 [實施例6] 利用與實施例5同樣之方法獲得平均纖維徑20.5 μm、單位面積重量18 g/m
2
、捲縮數40個/吋之偏芯鞘芯型複合長纖維不織布。繼而,將除了使透水劑水溶液之濃度為5 wt%以外與實施例1同樣之透水劑水溶液以同樣之塗敷條件塗佈於所獲得之複合長纖維不織布。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布無荷重時之高度(厚度)為30%以上的區塊之比率為92%,不織布之透水45度傾斜流長值為13 mm,第4次耐久透水指數為99%,回滲指數為0.47 g。將結果示於以下之表1。 [實施例7] 利用與實施例1同樣之方法製備平均纖維徑17.9 μm之偏芯鞘芯型複合長纖維織物。 繼而,使所獲得之偏芯鞘芯型複合長纖維不織網通過100℃之平坦輥與壓紋輥(圖案規格:直徑1.00 mm之圓形、錯位排列、橫向間距4.4 mm、縱向間距4.4 mm、壓接面積率7.9%)之間而將纖維彼此暫時接著,繼而,藉由熱風溫度142℃、熱風風速0.7 m/s之熱風將纖維彼此接著,獲得單位面積重量18 g/m
2
、捲縮數17個/吋之複合長纖維不織布。 繼而,將與實施例1同樣之透水劑水溶液以同樣之塗敷條件塗佈於所獲得之複合長纖維不織布。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布無荷重時之高度(厚度)為30%以上的區塊之比率為72%,不織布之透水45度傾斜流長值為18 mm,第4次耐久透水指數為95%,回滲指數為0.18 g。將結果示於以下之表1。 [實施例8] 以與實施例7同樣之方法獲得平均纖維徑17.9 μm、單位面積重量8 g/m
2
、捲縮數17個/吋之偏芯鞘芯型複合長纖維不織布。繼而,將與實施例1同樣之透水劑水溶液以同樣之塗敷條件塗佈於所獲得之複合長纖維不織布。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布無荷重時之高度(厚度)為30%以上的區塊之比率為74%,不織布之透水45度傾斜流長值為16 mm,第4次耐久透水指數為97%,回滲指數為0.42 g。將結果示於以下之表1。 [實施例9] 使用與實施例1同樣之成分,藉由紡黏法於紡絲溫度220℃下擠出第1成分之噴出量為0.40 g/min・hоle、第2成分之噴出量為0.40 g/min・hоle且總噴出量為0.8 g/min・hоle、第1成分與第2成分之比成為1/1的纖維。使用利用空氣噴射之高速氣流牽引裝置以紡速3200 m/min朝向移動捕獲面擠出該長絲群,製備平均纖維徑17.9 μm之並列型複合長纖維織物。 繼而,對於所獲得之並列型複合長纖維織物,與實施例7同樣地使纖維彼此接著,獲得單位面積重量18 g/m
2
、捲縮數23個/吋之複合長纖維不織布。繼而,將與實施例1同樣之透水劑水溶液以同樣之塗敷條件塗佈於所獲得之複合長纖維不織布。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布之無荷重狀態之高度(厚度)為30%以上的區塊之比率為76%,不織布之透水45度傾斜流長值為15 mm,第4次耐久透水指數為99%,回滲指數為0.15 g。將結果示於以下之表1。 [實施例10] 將第1成分設為溶液黏度0.75 ηsp/c之聚對苯二甲酸乙二酯(PET),將第2成分設為與實施例1同樣之高密度聚乙烯(HDPE),藉由紡黏法於紡絲溫度295℃下擠出第1成分之噴出量為0.54 g/min・hоle、第2成分之噴出量為0.26 g/min・hоle且總噴出量為0.80 g/min・hоle、第1成分與第2成分之比為約2/1的纖維,使用利用空氣噴射之高速氣流牽引裝置朝向移動捕獲面擠出該長絲群,製備平均纖維徑18.7 μm之偏芯鞘芯型複合長纖維織物。 對於所獲得之偏芯鞘芯型複合長纖維織物,與實施例1同樣地將纖維彼此接著,獲得單位面積重量18 g/m
2
、捲縮數20個/吋之複合長纖維不織布。 繼而,將與實施例1同樣之透水劑水溶液以同樣之塗敷條件塗佈於所獲得之複合長纖維不織布。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布無荷重時之高度(厚度)為30%以上的區塊之比率為87%,不織布之透水45度傾斜流長值為15 mm,第4次耐久透水指數為99%,回滲指數為0.15 g。將結果示於以下之表1。 [實施例11] 使用與實施例1同樣之成分,第1成分之噴出量為0.24 g/min・hоle,第2成分之噴出量為0.56 g/min・hоle且總噴出量為0.8 g/min・hоle,第1成分與第2成分之比係設為3/7,除此以外,以與實施例1同樣之方法製備平均纖維徑17.9 μm之偏芯鞘芯型複合長纖維織物。 對於所獲得之偏芯鞘芯型複合長纖維織物,與實施例1同樣地將纖維彼此接著,獲得單位面積重量18 g/m
2
、捲縮數17個/吋之複合長纖維不織布。繼而,將與實施例4同樣之透水劑水溶液以同樣之塗敷條件塗佈於所獲得之複合長纖維不織布。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布之無荷重狀態之高度(厚度)為30%以上的區塊之比率為70%,不織布之透水45度傾斜流長值為18 mm,第4次耐久透水指數為95%,回滲指數為0.18 g。將結果示於以下之表1。 [實施例12] 使用與實施例1同樣之成分,第1成分之噴出量為0.16 g/min・hоle,第2成分之噴出量為0.64 g/min・hоle且總噴出量為0.8 g/min・hоle,第1成分與第2成分之比係設為1:4,除此以外,以與實施例1同樣之方法製備平均纖維徑18.7 μm之偏芯鞘芯型複合長纖維織物。 對於所獲得之偏芯鞘芯型複合長纖維織物,與實施例1同樣地將纖維彼此接著,獲得單位面積重量18 g/m
2
、捲縮數5個/吋之複合長纖維不織布。繼而,將與實施例1同樣之透水劑水溶液以同樣之塗敷條件塗佈於所獲得之複合長纖維不織布。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布之無荷重狀態之高度(厚度)為30%以上的區塊之比率為52%,不織布之透水45度傾斜流長值為22 mm,第4次耐久透水指數為85%,回滲指數為0.45 g。將結果示於以下之表1。 [實施例13] 使用與實施例1同樣之成分,藉由紡黏法於紡絲溫度220℃下擠出第1成分之噴出量為0.40 g/min・hоle、第2成分之噴出量為0.40 g/min・hоle且總噴出量為0.8 g/min・hоle、第1成分與第2成分之比為1:1的纖維。所擠出之長絲係利用移動捕獲面之抽吸力於牽引區域內經延伸之後,通過擴散器而堆積於移動捕獲面,製備平均纖維徑20.5 μm之並列型複合長纖維織物。 繼而,對於所獲得之並列型複合長纖維織物,與實施例1同樣地使纖維彼此接著,獲得單位面積重量18 g/m
2
、捲縮數25個/吋之複合長纖維不織布。繼而,將與實施例1同樣之透水劑水溶液以同樣之塗敷條件塗佈於所獲得之複合長纖維不織布。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布之無荷重狀態之高度(厚度)為30%以上的區塊之比率為90%,不織布之透水45度傾斜流長值為14 mm,第4次耐久透水指數為99%,回滲指數為0.17 g。將結果示於以下之表1。 [實施例14] 以與實施例13同樣之方法獲得平均纖維徑20.5 μm、單位面積重量30 g/m
2
、捲縮數25個/吋之偏芯鞘芯型複合長纖維不織布。繼而,將與實施例1同樣之透水劑水溶液以同樣之塗敷條件塗佈於所獲得之複合長纖維不織布。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布無荷重時之高度(厚度)為30%以上的區塊之比率為89%,不織布之透水45度傾斜流長值為14 mm,第4次耐久透水指數為99%,回滲指數為0.12 g。將結果示於以下之表1。 [實施例15] 使用配置有八字形異形噴嘴之紡絲頭以紡絲溫度240℃、噴出量為0.80 g/min・hоle擠出MFR為38 g/10 min之聚丙烯(PP),並使用利用空氣噴射之高速氣流牽引裝置朝向移動捕獲面擠出該長絲群,獲得平均纖維徑18.7 μm之長纖維織物。 繼而,使所獲得之長纖維織物通過經設定為溫度135℃、壓力60 kg/cm之平坦輥與壓紋輥(圖案規格:直徑0.425 mm之圓形、錯位排列、橫向間距2.1 mm、縱向間距1.1 mm、壓接面積率6.3%)之間而將纖維彼此部分地接著,獲得單位面積重量25 g/m
2
、捲縮數28個/吋之長纖維不織布。 繼而,將與實施例4同樣之透水劑水溶液以同樣之塗敷條件塗佈於所獲得之長纖維不織布。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布無荷重時之高度(厚度)為30%以上的區塊之比率為55%,不織布之透水45度傾斜流長值為23 mm,第4次耐久透水指數為89%,回滲指數為0.12 g。將結果示於以下之表1。 [表1]
藉由紡黏法於紡絲溫度220℃下以單一成分擠出MFR為55 g/10 min(依據JIS-K7210,於溫度230℃、荷重2.16 kg下進行測定)之聚丙烯(PP)樹脂,使用利用空氣噴射之高速氣流牽引裝置朝向移動捕獲面擠出該長絲群,製備平均纖維徑17.9 μm之長纖維織物。 繼而,使所獲得之織物通過141℃之平坦輥與壓紋輥(圖案規格:直徑0.425 mm之圓形、錯位排列、橫向間距2.1 mm、縱向間距1.1 mm、壓接面積率6.3%)之間而將纖維彼此接著,獲得單位面積重量18 g/m
2
之纖維未捲縮之長纖維不織布。 繼而,將與實施例4同樣之透水劑水溶液以同樣之塗敷條件塗佈於所獲得之長纖維不織布。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布無荷重時之高度(厚度)為30%以上的區塊之比率為40%,不織布之透水45度傾斜流長值為28 mm,第4次耐久透水指數為74%,回滲指數為0.56 g。將結果示於以下之表2。 [比較例2] 使比較例1中獲得之長纖維不織布通過1邊0.9 mm、線寬0.1 mm之連續蜂巢形狀圖樣(龜殼凹圖樣)(按壓面積率:12.5%,圖樣間距:縱向2.8 mm、橫向3.2 mm、深度0.7 mm)之壓紋輥(80℃)與表面硬度60度(JIS-A硬度)之橡膠輥之間,以2 kg/cm
2
之壓力按壓圖樣。獲得龜殼周邊經按壓而具有高密度區域且中央凸起之柔軟之長纖維不織布。 繼而,將與實施例4同樣之透水劑水溶液以同樣之塗敷條件塗佈於所獲得之長纖維不織布。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布無荷重時之高度(厚度)為30%以上的區塊之比率為42%,不織布之透水45度傾斜流長值為27 mm,第4次耐久透水指數為80%,回滲指數為0.68 g。將結果示於以下之表2。 [比較例3] 使用與實施例1同樣之成分,藉由紡黏法於紡絲溫度220℃下擠出第1成分之噴出量為0.72 g/min・hоle、第2成分之噴出量為0.08 g/min・hоle且總噴出量為0.8 g/min・hоle、第1成分與第2成分之比為9/1的纖維,使用利用空氣噴射之高速氣流牽引裝置朝向移動捕獲面擠出該長絲群,製備平均纖維徑16.7 μm之偏芯鞘芯型複合長纖維織物。 繼而,對於所獲得之偏芯鞘芯型複合長纖維織物,藉由熱風溫度142℃、熱風風速0.7 m/s之熱風將纖維彼此接著,獲得單位面積重量18 g/m
2
、捲縮數0個/吋之複合長纖維不織布。 繼而,將與實施例4同樣之透水劑水溶液以同樣之塗敷條件塗佈於所獲得之複合長纖維不織布。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布無荷重時之高度(厚度)為30%以上的區塊之比率為48%,不織布之透水45度傾斜流長值為28 mm,第4次耐久透水指數為64%,回滲指數為0.52 g。將結果示於以下之表2。 [比較例4] 使用與實施例1同樣之成分,藉由紡黏法於紡絲溫度220℃下擠出第1成分之噴出量為0.54 g/min・hоle、第2成分之噴出量為0.26 g/min・hоle且總噴出量為0.8 g/min・hоle、第1成分與第2成分之比為2/1的纖維,使用利用空氣噴射之高速氣流牽引裝置朝向移動捕獲面擠出該長絲群,製備平均纖維徑16.7 μm之鞘芯型複合長纖維織物。 繼而,關於所獲得之織物,以與比較例3同樣之方法及條件將纖維彼此接著之後,塗佈透水劑水溶液,獲得單位面積重量18 g/m
2
、捲縮數0個/吋之複合長纖維不織布。 將所獲得之不織布之表面之測定基準長度設為100 μm時之區塊內之最大高度相對於不織布無荷重時之高度(厚度)為30%以上的區塊之比率為46%,不織布之透水45度傾斜流長值為26 mm,第4次耐久透水指數為73%,回滲指數為0.60 g。將結果示於以下之表2。 [表2]
[產業上之可利用性] 本發明之親水性蓬鬆不織布具有優異之透水性,因此可較佳用於衛生材料之製造。關於衛生材料,可較佳地用於拋棄式尿布、經期衛生棉或失禁墊之表面之頂部片材。又,本發明之親水性蓬鬆不織布並不限於上述用途,亦可用於例如口罩、懷爐、膠帶底布、貼布藥底布、創口貼底布、包裝材料、擦拭製品、醫用長袍、繃帶、衣物、護膚用片材等。