[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI640005B - Method for generating a data set on an integrated circuit, method of manufacturing an integrated circuit, and integrated circuit device - Google Patents

Method for generating a data set on an integrated circuit, method of manufacturing an integrated circuit, and integrated circuit device Download PDF

Info

Publication number
TWI640005B
TWI640005B TW106107885A TW106107885A TWI640005B TW I640005 B TWI640005 B TW I640005B TW 106107885 A TW106107885 A TW 106107885A TW 106107885 A TW106107885 A TW 106107885A TW I640005 B TWI640005 B TW I640005B
Authority
TW
Taiwan
Prior art keywords
memory cells
resistive memory
programmable resistive
resistance range
resistance
Prior art date
Application number
TW106107885A
Other languages
Chinese (zh)
Other versions
TW201835921A (en
Inventor
曾柏皓
許凱捷
李峰旻
林昱佑
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/391,062 external-priority patent/US9811689B1/en
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Publication of TW201835921A publication Critical patent/TW201835921A/en
Application granted granted Critical
Publication of TWI640005B publication Critical patent/TWI640005B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3271Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using challenge-response
    • H04L9/3278Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using challenge-response using physically unclonable functions [PUF]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
    • G06F21/73Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information by creating or determining hardware identification, e.g. serial numbers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Semiconductor Memories (AREA)

Abstract

一種在包含可編程電阻式記憶胞的積體電路上生成資料集的方法,包含施加形成脈衝到可編程電阻式記憶胞之集合中的所有成員。形成脈衝具有形成脈衝位準,特色在於,在該集合的第一子集中引發從初始電阻範圍到中間電阻範圍的電阻變化,而在形成脈衝之後,該集合的第二子集具有落在該中間範圍外的電阻。所述方法包含施加編程脈衝到第一子集和第二子集。編程脈衝具有編程脈衝位準,特色在於,引發第一子集從中間範圍到第一最終範圍的電阻變化,而在編程脈衝之後,第二子集具有在第二最終範圍中的電阻,第一子集和第二子集藉此儲存所述資料集。A method of generating a data set on an integrated circuit containing a programmable resistive memory cell includes applying a pulse to all members of the set of programmable resistive memory cells. The forming pulse has a forming pulse level, which is characterized in that a resistance change from an initial resistance range to an intermediate resistance range is induced in the first subset of the set, and after the formation of the pulse, a second subset of the set has a fall in the middle Out of range resistance. The method includes applying a programming pulse to the first and second subsets. The programming pulse has a programming pulse level, which is characterized by inducing a change in the resistance of the first subset from the intermediate range to the first final range, and after the programming pulse, the second subset has a resistance in the second final range, the first The subset and the second subset thereby store the data set.

Description

在積體電路上生成資料集的方法、製造積體電路的方法、以及積體電路裝置Method for generating data set on integrated circuit, method for manufacturing integrated circuit, and integrated circuit device

本發明是關於具有使用物理不可複製函數生成之資料集(data set)的積體電路裝置、以及用於生成此種資料集的方法。The present invention relates to an integrated circuit device having a data set generated using a physical non-copyable function, and a method for generating such a data set.

物理不可複製函數(physical unclonable function, PUF)是一種能夠用在創造用於物理實體如積體電路之獨特、隨機金鑰的處理程序。PUF的使用是一種生成支持硬體固有安全(hardware intrinsic security, HIS)技術的識別碼(ID)的解決方案。PUF已經使用在具有高安全性要求之應用如可攜式和埋入式裝置的金鑰創造上。一種例示的PUF是環式振盪器PUF,其使用對於閘極的電路傳導延遲來說固有的製造變異性。另一種例示的PUF是靜態隨機存取記憶體(SRAM)PUF,其中電晶體中的臨界電壓不同使得SRAM電力開啟在邏輯「0」或邏輯「1」。A physical unclonable function (PUF) is a processing program that can be used to create unique, random keys for physical entities such as integrated circuits. The use of PUF is a solution to generate an identification code (ID) that supports hardware intrinsic security (HIS) technology. PUF has been used for key creation in applications with high security requirements such as portable and embedded devices. One exemplary PUF is a ring oscillator PUF that uses manufacturing variability inherent to the gate's circuit conduction delay. Another exemplary PUF is a static random access memory (SRAM) PUF, in which the threshold voltages in the transistors are different such that the SRAM power is turned on at a logic "0" or a logic "1".

期望的是,提供一種物理不可複製函數,用於在製程、電壓、溫度(process, voltage, temperature; PVT)條件下,以低位元錯誤率和高可靠性在可編程電阻式記憶體中創造資料集。It is desirable to provide a physically non-copyable function for creating data in programmable resistive memory with low bit error rate and high reliability under process, voltage, temperature (PVT) conditions set.

提供一種在一積體電路上生成一資料集的方法,該積體電路包含複數個可編程電阻式記憶胞。A method for generating a data set on an integrated circuit is provided. The integrated circuit includes a plurality of programmable resistive memory cells.

所述方法包含施加一形成脈衝(forming pulse)到該些可編程電阻式記憶胞之一集合中的所有成員。形成脈衝具有一形成脈衝位準,該形成脈衝位準的特色在於,在可編程電阻式記憶胞之該集合的一第一子集中,引發從一初始電阻範圍到一中間電阻範圍的電阻變化,而在該形成脈衝之後,可編程電阻式記憶胞之該集合的一第二子集具有落在該中間範圍之外的電阻。第一子集和第二子集中的成員隸屬,係由回應於跨越所述集合之該形成脈衝的物理性變化所決定。The method includes applying a forming pulse to all members of a set of the programmable resistive memory cells. The forming pulse has a forming pulse level, which is characterized in that in a first subset of the set of programmable resistive memory cells, a resistance change is initiated from an initial resistance range to an intermediate resistance range, After the forming pulse, a second subset of the set of programmable resistive memory cells has a resistance that falls outside the intermediate range. Member membership in the first and second subsets is determined by the physical change in response to the forming pulse across the set.

所述方法包含施加一編程脈衝(programming pulse)到可編程電阻式記憶胞的該第一子集和該第二子集。編程脈衝具有一編程脈衝位準,該編程脈衝位準的特色在於,引發第一子集從該中間範圍到一第一最終電阻範圍的電阻變化。該編程脈衝能夠在一惡劣的環境條件下,使得可編程電阻式記憶胞之一給定集合的第一子集和第二子集中的記憶胞分佈更加穩定。於在此所述的實施例中,編程脈衝能夠使得第一子集中的記憶胞與第二子集中的記憶胞之間的感測限度(margin)增加。在該編程脈衝之後,可編程電阻式記憶胞的該第二子集中的記憶胞能夠維持在接近該初始電阻範圍的電阻範圍,否則具有在一第二最終電阻範圍中的電阻,該第二最終電阻範圍與該第一最終電阻範圍不重疊。可編程記憶胞之該集合的第一子集和第二子集,係由形成脈衝與編程脈衝的組合所建立,並將會根據由材料的自然性質和製造程序所自然造成的可編程電阻式記憶胞的變異而變化。The method includes applying a programming pulse to the first subset and the second subset of a programmable resistive memory cell. The programming pulse has a programming pulse level, which is characterized by inducing a change in resistance of the first subset from the intermediate range to a first final resistance range. The programming pulse can make the memory cell distribution in the first and second subsets of a given set of one of the programmable resistive memory cells more stable under a harsh environmental condition. In the embodiment described herein, the programming pulse can increase the sensing margin between the memory cells in the first subset and the memory cells in the second subset. After the programming pulse, the memory cells in the second subset of the programmable resistive memory cells can be maintained in a resistance range close to the initial resistance range, otherwise having a resistance in a second final resistance range, the second final The resistance range does not overlap the first final resistance range. The first and second subsets of this set of programmable memory cells are established by the combination of forming pulses and programming pulses, and will be based on the programmable resistive type naturally caused by the natural properties of the material and the manufacturing process Changes in memory cells.

所述方法能夠包含在施加形成脈衝之前,藉由測試積體電路上之該些可編程電阻式記憶胞中的一些可編程電阻式記憶胞,找出形成脈衝位準。The method can include, before applying the forming pulse, testing the programmable resistive memory cells of the programmable resistive memory cells on the integrated circuit to find the forming pulse level.

為了找出形成脈衝位準,能夠以迭代方式施加具有一測試脈衝位準的一測試脈衝到與要用在創造獨特資料集的該些記憶胞位在相同積體電路上、且較佳地具有相同結構的可編程電阻式記憶胞。對於每次迭代,能夠使用不同於先前使用之測試集合的可編程電阻式記憶胞之一測試集合。能夠決定在測試集合中具有在中間電阻範圍中的電阻的該些記憶胞的一比例。如果該比例低於一閾值,可接著更新測試脈衝位準,重複施加測試脈衝和決定比例的操作,直到所決定的比例達到該閾值、或更佳地落在大約50%(例如40%到60%)的一特定範圍內,並且,能夠基於在達到該閾值或落在該特定範圍內之迭代中的測試脈衝位準,設定形成脈衝位準。In order to find the formation pulse level, a test pulse with a test pulse level can be applied iteratively to the same integrated circuit as the memory cells to be used to create a unique data set, and preferably have Programmable resistive memory cells of the same structure. For each iteration, one of the test sets can be used that is different from the previously used test set. It is possible to determine a proportion of the memory cells in the test set having a resistance in the intermediate resistance range. If the ratio is lower than a threshold value, the test pulse level may be updated, and the operation of applying the test pulse and determining the ratio is repeated until the determined ratio reaches the threshold value, or more preferably falls to about 50% (for example, 40% to 60). %), And the formation pulse level can be set based on a test pulse level in an iteration that reaches the threshold or falls within the specific range.

所述資料集能夠用在形成例如是在安全協定的例子中對於挑戰(challenge)的回應。一種使用資料集的方法包含使用一讀取電壓感測全部或部分的該資料集,該讀取電壓用在介於第一最終電阻範圍與第二最終電阻範圍之間的電阻,其中第一最終電阻範圍與第二最終電阻範圍由一讀取限度分離。如前述提及,該讀取限度能夠大於初始電阻範圍與該中間範圍之間的限度。The data set can be used to form a response to a challenge, such as in the example of a security agreement. A method of using a data set includes sensing all or part of the data set with a read voltage for a resistance between a first final resistance range and a second final resistance range, where the first final The resistance range is separated from the second final resistance range by a read limit. As mentioned earlier, the read limit can be greater than the limit between the initial resistance range and the intermediate range.

該些可編程電阻式記憶胞能夠包括複數個可編程電阻式記憶元件。在一實施例中,可編程電阻式記憶元件的特色能夠在於,在一高電阻範圍中的一初始電阻,其中所述中間電阻範圍低於該高電阻範圍,第一最終電阻範圍低於中間電阻範圍,第二最終電阻範圍高於第一最終電阻範圍。The programmable resistive memory cells can include a plurality of programmable resistive memory elements. In one embodiment, the programmable resistive memory element can be characterized by an initial resistance in a high resistance range, wherein the intermediate resistance range is lower than the high resistance range, and the first final resistance range is lower than the intermediate resistance. Range, the second final resistance range is higher than the first final resistance range.

在另一實施例中,可編程電阻式記憶元件的特色能夠在於,在一低電阻範圍中的一初始電阻,其中所述中間電阻範圍高於該低電阻範圍,第一最終電阻範圍高於中間電阻範圍,第二最終電阻範圍低於第一最終電阻範圍。In another embodiment, the programmable resistive memory element can be characterized by an initial resistance in a low resistance range, wherein the intermediate resistance range is higher than the low resistance range, and the first final resistance range is higher than the middle Resistance range, the second final resistance range is lower than the first final resistance range.

施加如在此所述的形成脈衝,能夠使得連接第一子集中的記憶胞的第一電極和第二電極的一導電細絲形成,且並未使得連接第二子集中的記憶胞的第一電極和第二電極的一導電細絲形成。Applying the formation pulse as described herein can form a conductive filament that connects the first electrode and the second electrode of the memory cells in the first subset, and does not make the first electrode that connects the memory cells in the second subset. An electrode and a conductive filament of the second electrode are formed.

如在此所述的編程脈衝能夠穩定並加強第一子集中的記憶胞的該導電細絲的導電性,且並未使得第二子集中的記憶胞的一導電細絲形成。The programming pulse described herein can stabilize and strengthen the conductivity of the conductive filaments of the memory cells in the first subset, and does not cause a conductive filament of the memory cells in the second subset to form.

另外也提供一種製造一積體電路的方法,其係根據在此提供的用於生成一資料集的方法。A method for manufacturing an integrated circuit is also provided, which is based on the method for generating a data set provided herein.

另外也敘述一種裝置,其包括一積體電路,該積體電路具有使用PUF以創造和儲存一獨特資料集的一記憶體。在所述技術這個方面的裝置包含一控制器,該控制器係配置成用以執行PUF。該控制器能夠包含位在與該記憶體相同之積體電路上的一狀態機、在能夠置於與該記憶體或者晶片內和晶片外邏輯之組合形成通訊的一分離系統上的邏輯如電腦程式。A device is also described that includes an integrated circuit having a memory that uses PUF to create and store a unique data set. The apparatus in this aspect of the technology includes a controller configured to perform a PUF. The controller can include a state machine located on the same integrated circuit as the memory, and logic such as a computer on a separate system that can be placed in communication with the memory or a combination of on-chip and off-chip logic Program.

本技術的其他方面和優點,能夠藉由檢閱以下的圖式、詳細敘述、和請求項而得見。Other aspects and advantages of the technology can be seen by reviewing the drawings, detailed description, and claims below.

本技術之實施例的詳細敘述,係參照所附圖式而提供。應理解的是,並沒有將技術限制在明確揭露的結構性實施例和方法的意圖,而可以使用其他特徵、元件、方法、和實施例來實行所述技術。較佳的實施例係敘述來描述本技術,而非限制由請求項所定義出的範圍。本發明所屬技術領域中具有通常知識者,將認知到以下敘述的各種等價變化型。各種不同實施例中的相似元件,通常以類似的元件符號加以指示。A detailed description of embodiments of the present technology is provided with reference to the accompanying drawings. It should be understood that there is no intention to limit the technology to explicitly disclosed structural embodiments and methods, but that other features, elements, methods, and embodiments may be used to implement the technology. The preferred embodiment is described to describe the technology, rather than limiting the scope defined by the claims. Those skilled in the art to which this invention pertains will recognize various equivalent variations described below. Similar elements in the various embodiments are generally indicated by similar element symbols.

第1圖是一裝置的簡化方塊圖,其包括複數個可編程電阻式記憶胞和一控制器,控制器用於執行PUF以在該些可編程電阻式記憶胞中儲存一資料集。在這個例子中,所述裝置包括一積體電路100,積體電路100具有使用可編程電阻式記憶胞形成的一記憶體,該記憶體使用PUF編程以創造和儲存一獨特的資料集,其能夠用於例如作為獨特的晶片ID、用於認證或加密協議的金鑰、或其他類型的秘密或獨特資料值。FIG. 1 is a simplified block diagram of a device, which includes a plurality of programmable resistive memory cells and a controller. The controller executes PUF to store a data set in the programmable resistive memory cells. In this example, the device includes an integrated circuit 100 having a memory formed using a programmable resistive memory cell, which is programmed using PUF to create and store a unique data set, which Can be used, for example, as a unique chip ID, a key for an authentication or encryption protocol, or other types of secret or unique data values.

積體電路100包含任務函數電路(mission function circuit)110,其能夠包括特殊用途邏輯(有時稱為特定應用積體電路邏輯)、資料處理器資源(例如用在微處理器和數位信號處理器)、大型記憶體(例如快閃記憶體、動態隨機存取記憶體(DRAM)、可編程電阻式記憶體)、以及被稱為晶片系統配置的各種不同類型電路的組合。積體電路100包含一輸入/輸出介面120,其能夠包括提供存取到其他裝置或網路的無線或有線埠。在這個簡化的圖解中,一存取控制塊115設置在輸入/輸出介面120與任務函數電路110之間。存取控制塊115由匯流排116耦接到輸入/輸出介面120,並由匯流排111耦接到任務函數電路110。一存取控制協定係由存取控制塊115所執行,以允許或禁止任務函數電路110和輸入/輸出介面120之間的通訊。The integrated circuit 100 includes a mission function circuit 110, which can include special purpose logic (sometimes referred to as application-specific integrated circuit logic), data processor resources (e.g., used in microprocessors and digital signal processors) ), Large-scale memory (such as flash memory, dynamic random access memory (DRAM), programmable resistive memory), and a combination of various types of circuits called chip system configuration. The integrated circuit 100 includes an input / output interface 120, which can include a wireless or wired port that provides access to other devices or networks. In this simplified illustration, an access control block 115 is provided between the input / output interface 120 and the task function circuit 110. The access control block 115 is coupled to the input / output interface 120 by the bus 116 and is coupled to the task function circuit 110 by the bus 111. An access control protocol is executed by the access control block 115 to enable or disable communication between the task function circuit 110 and the input / output interface 120.

在存取控制塊115的支持下,安全邏輯125在這個例子中設置在晶片上。安全邏輯125耦接到一PUF編程的記憶陣列130,其在PUF執行之後儲存一獨特的資料集。該獨特的資料集經由一PUF編程控制器140而可在安全邏輯125旁的匯流排131上存取,並由跨越走線122與存取控制塊115通訊的安全邏輯所使用。With the support of the access control block 115, the security logic 125 is provided on the chip in this example. The security logic 125 is coupled to a PUF-programmed memory array 130 that stores a unique data set after the PUF is executed. The unique data set is accessible via a PUF programming controller 140 on the bus 131 next to the security logic 125 and is used by the security logic that communicates with the access control block 115 across the trace 122.

PUF編程的記憶陣列130包括可編程電阻式記憶胞,其包含具有一可編程電阻的可編程元件。可編程元件能夠包括一金屬氧化物,例如鎢氧化物(WO x)、鉿氧化物(HfO x)、鈦氧化物(TiO x)、鉭氧化物(TaO x)、鈦氮氧化物(TiNO)、鎳氧化物(NiO x)、鐿氧化物(YbO x)、鋁氧化物(AlO x)、鈮氧化物(NbO x)、鋅氧化物(ZnO x)、銅氧化物(CuO x)、釩氧化物(VO x)、鉬氧化物(MoO x)、釕氧化物(RuO x)、銅矽氧化物(CuSiO x)、銀鋯氧化物(AgZrO)、鋁鎳氧化物(AlNiO)、鋁鈦氧化物(AlTiO)、釓氧化物(GdO x)、鎵氧化物(GaO x)、鋯氧化物(ZrO x)、鉻摻雜SrZrO 3、鉻摻雜SrTiO 3、PCMO、或LaCaMnO等等。在一些案例中,記憶胞的可編程元件能夠是半導體氧化物,例如矽氧化物(SiO x)。 The PUF-programmed memory array 130 includes a programmable resistive memory cell, which includes a programmable element having a programmable resistor. The programmable device can include a metal oxide, such as tungsten oxide (WO x ), hafnium oxide (HfO x ), titanium oxide (TiO x ), tantalum oxide (TaO x ), and titanium oxynitride (TiNO) , Nickel oxide (NiO x ), hafnium oxide (YbO x ), aluminum oxide (AlO x ), niobium oxide (NbO x ), zinc oxide (ZnO x ), copper oxide (CuO x ), vanadium Oxide (VO x ), molybdenum oxide (MoO x ), ruthenium oxide (RuO x ), copper silicon oxide (CuSiO x ), silver zirconium oxide (AgZrO), aluminum nickel oxide (AlNiO), aluminum titanium Oxide (AlTiO), hafnium oxide (GdO x ), gallium oxide (GaO x ), zirconium oxide (ZrO x ), chromium-doped SrZrO 3 , chromium-doped SrTiO 3 , PCMO, or LaCaMnO, and the like. In some cases, the programmable element of the memory cell can be a semiconductor oxide, for example silicon oxide (SiO x).

在裝置的這個例子中,PUF編程控制器140實施為例如是位在具有該些可編程電阻式記憶胞的積體電路上的一狀態機,PUF編程控制器140提供信號以控制偏壓配置提供電壓的應用,以進行PUF程序及其他涉及為了PUF和為了讀取儲存在PUF編程的記憶陣列130中的資料集而存取PUF編程的記憶陣列130的操作。控制器140能夠使用本發明所屬技術領域所知的特殊用途邏輯電路來實施。在替代性的實施例中,控制器140包括一般用途處理器,能夠實施在執行電腦程式以控制裝置的操作的相同積體電路上。在又另外的實施例中,特殊用途邏輯電路和一般用途處理器的組合能夠用於實施控制器140。In this example of the device, the PUF programming controller 140 is implemented as, for example, a state machine on an integrated circuit with the programmable resistive memory cells. The PUF programming controller 140 provides signals to control the bias configuration. The application of voltage to perform PUF procedures and other operations involving accessing the PUF-programmed memory array 130 for PUF and for reading data sets stored in the PUF-programmed memory array 130. The controller 140 can be implemented using special-purpose logic circuits known in the technical field to which the present invention pertains. In an alternative embodiment, the controller 140 includes a general-purpose processor that can be implemented on the same integrated circuit that executes a computer program to control the operation of the device. In yet other embodiments, a combination of special-purpose logic circuits and a general-purpose processor can be used to implement the controller 140.

在一實施例中,一種裝置包括一晶片外系統(例如第4圖中的410)和一積體電路(例如第4圖中的440、第1圖中的100)。晶片外系統用於控制物理不可複製函數在積體電路上的執行。舉例來說,晶片外系統能夠運作積體電路上的一PUF編程控制器(例如第1圖中的140),以進行所有在施加形成脈衝、施加編程脈衝、和找出形成脈衝位準的操作中的一些操作。舉例來說,系統能夠將一電阻閾值傳達到積體電路,該電阻閾值能夠用在決定一形成脈衝位準。舉例來說,系統能夠將一形成脈衝位準傳達到積體電路,該形成脈衝位準能夠用在施加形成脈衝。舉例來說,系統能夠生成用於積體電路中之記憶陣列中的測試集合的記憶胞之用在找出該形成脈衝位準的位址,並將位址傳達到耦接至系統一積體電路。在另一實施例中,積體電路上的PUF編程控制器140包含所有對於施加形成脈衝和編程脈衝、以及找出形成脈衝位準來說是必須性的邏輯。在這個實施例中,PUF編程控制器140能夠回應於來自一外部來源的設定命令而執行邏輯,無須用於在一積體電路上執行物理不可複製函數的系統的控制。In one embodiment, an apparatus includes an off-chip system (such as 410 in FIG. 4) and an integrated circuit (such as 440 in FIG. 4 and 100 in FIG. 1). The off-chip system is used to control the execution of physically non-reproducible functions on integrated circuits. For example, the off-chip system can operate a PUF programming controller (such as 140 in Figure 1) on the integrated circuit to perform all operations of applying the forming pulse, applying the programming pulse, and finding the forming pulse level Some operations. For example, the system can communicate a resistance threshold to the integrated circuit, which can be used to determine a pulse formation level. For example, the system can communicate a formation pulse level to the integrated circuit, which can be used to apply a formation pulse. For example, the system can generate memory cells for a test set in a memory array in an integrated circuit to find the address that forms the pulse level and communicate the address to an integrated system that is coupled to the system. Circuit. In another embodiment, the PUF programming controller 140 on the integrated circuit includes all the logic necessary to apply the forming pulse and the programming pulse, and to find out the forming pulse level. In this embodiment, the PUF programming controller 140 can execute logic in response to a set command from an external source, and does not need to be used for control of a system that executes a physically non-copyable function on an integrated circuit.

PUF編程控制器140係配置成用以經由一匯流排141,施加一形成脈衝到PUF編程的記憶陣列130中之可編程電阻式記憶胞的一集合中的所有成員。形成脈衝具有一形成脈衝位準,該形成脈衝位準的特色在於,在記憶胞之該集合的一第一子集中,引發從一初始電阻範圍到一中間電阻範圍的電阻變化,而在該形成脈衝之後,可編程電阻式記憶胞之該集合的一第二子集具有落在該中間範圍之外的電阻。The PUF programming controller 140 is configured to apply a formation pulse to all members of a set of programmable resistive memory cells in the PUF-programmed memory array 130 via a bus 141. The forming pulse has a forming pulse level, which is characterized in that in a first subset of the set of memory cells, a resistance change is initiated from an initial resistance range to an intermediate resistance range, and in the formation After the pulse, a second subset of the set of programmable resistive memory cells has a resistance that falls outside the intermediate range.

PUF編程控制器140係配置成用以施加一編程脈衝到可編程電阻式記憶胞的第一子集和第二子集。編程脈衝具有一編程脈衝位準,該編程脈衝位準的特色在於,引發第一子集從該中間電阻範圍到一第一最終電阻範圍的電阻變化。編程脈衝能夠使得第一子集中的記憶胞與第二子集中的記憶胞之間的感測限度增加。在該編程脈衝之後,可編程電阻式記憶胞的第二子集中的記憶胞能夠維持在接近初始電阻範圍的電阻範圍,否則具有在一第二最終電阻範圍中的電阻,該第二最終電阻範圍與該第一最終電阻範圍不重疊。可編程記憶胞之該集合的第一子集和第二子集,係由形成脈衝與編程脈衝的組合所建立,並將會根據由材料的自然性質和製造程序所自然造成的可編程電阻式記憶胞的變異而變化。The PUF programming controller 140 is configured to apply a programming pulse to the first and second subsets of the programmable resistive memory cell. The programming pulse has a programming pulse level, which is characterized by inducing a first subset of resistance changes from the intermediate resistance range to a first final resistance range. The programming pulse can increase the sensing limit between the memory cells in the first subset and the memory cells in the second subset. After the programming pulse, the memory cells in the second subset of the programmable resistive memory cells can be maintained in a resistance range close to the initial resistance range, otherwise having a resistance in a second final resistance range, the second final resistance range Does not overlap the first final resistance range. The first and second subsets of this set of programmable memory cells are established by the combination of forming pulses and programming pulses, and will be based on the programmable resistive type naturally caused by the natural properties of the material and the manufacturing process Changes in memory cells.

PUF編程控制器140能夠配置成用以在施加形成脈衝之前,藉由測試積體電路上之可編程電阻式記憶胞中的一些記憶胞,找出形成脈衝位準。受到測試的可編程電阻式記憶胞能夠是在PUF編程的記憶陣列130的測試集合中。可編程電阻式記憶胞的測試集合與要用在創造獨特資料集的該些記憶胞位在相同的積體電路上。測試集合能夠置於PUF編程的記憶陣列130中的一記憶胞區塊中、或PUF編程的記憶陣列130中的分散位置,或者是在裝置上的其他位置。在一些實施例中,測試集合是PUF編程的記憶陣列130的一部份、或位在相鄰於記憶陣列130處,並使用與用於形成PUF電路相同的製程來形成,使得它們能夠用在預測PUF電路回應於在此所述的形成和編程處理程序的行為。The PUF programming controller 140 can be configured to find the formation pulse level by testing some memory cells of the programmable resistive memory cells on the integrated circuit before applying the formation pulse. The programmable resistive memory cell under test can be in a test set of the PUF-programmed memory array 130. The test set of programmable resistive memory cells is on the same integrated circuit as the memory cells to be used to create the unique data set. The test set can be placed in a memory cell block in the PUF-programmed memory array 130, or in a discrete location in the PUF-programmed memory array 130, or at other locations on the device. In some embodiments, the test set is part of the PUF-programmed memory array 130 or is located adjacent to the memory array 130 and is formed using the same process as used to form the PUF circuit, so that they can be used in The behavior of the predictive PUF circuit in response to the formation and programming handlers described herein.

為了找出形成脈衝位準,PUF編程控制器140能夠配置成用以以迭代方式施加具有一測試脈衝位準的一測試脈衝到在相同積體電路上之可編程電阻式記憶胞的複數個測試集合中的一測試集合,並決定在測試集合中具有在中間電阻範圍中的電阻的記憶胞的一比例,並且,如果該比例低於一閾值,接著更新測試脈衝位準,重複施加測試脈衝和決定比例的操作,直到所決定的比例達到該閾值,並且,基於在達到該閾值之迭代中的測試脈衝位準,設定形成脈衝位準。對於每次迭代,能夠使用不同於先前使用之測試集合的可編程電阻式記憶胞之一測試集合。In order to find the formation pulse level, the PUF programming controller 140 can be configured to iteratively apply a test pulse having a test pulse level to a plurality of tests of a programmable resistive memory cell on the same integrated circuit A test set in the set, and determines a ratio of the memory cells in the test set having a resistance in the intermediate resistance range, and if the ratio is lower than a threshold value, then the test pulse level is updated, and the test pulse and The operation of determining the ratio is until the determined ratio reaches the threshold, and based on the test pulse level in the iterations that reach the threshold, the formation pulse level is set. For each iteration, one of the test sets can be used that is different from the previously used test set.

PUF編程控制器140能夠配置成用以經由安全電路(例如第1圖中的125)使用一讀取電壓來感測編程的記憶陣列130中全部或部分的資料集,該讀取電壓用在介於第一最終電阻範圍與第二最終電阻範圍之間的電阻,其中第一範圍與第二範圍由一讀取限度分離,該讀取限度大於初始電阻範圍與中間範圍之間的限度。The PUF programming controller 140 can be configured to sense all or part of the data set in the programmed memory array 130 using a read voltage via a safety circuit (such as 125 in Figure 1), the read voltage being used in the media The resistance between the first final resistance range and the second final resistance range, wherein the first range and the second range are separated by a read limit that is greater than a limit between the initial resistance range and the intermediate range.

可編程電阻式記憶胞能夠包括可編程電阻式記憶元件。在一實施例中,可編程電阻式記憶元件的特色能夠在於,在一高電阻範圍中的一初始電阻,其中所述中間電阻範圍低於該高電阻範圍,第一最終電阻範圍低於中間電阻範圍,第二最終電阻範圍高於第一最終電阻範圍。The programmable resistive memory cell can include a programmable resistive memory element. In one embodiment, the programmable resistive memory element can be characterized by an initial resistance in a high resistance range, wherein the intermediate resistance range is lower than the high resistance range, and the first final resistance range is lower than the intermediate resistance. Range, the second final resistance range is higher than the first final resistance range.

在另一實施例中,可編程電阻式記憶元件的特色能夠在於,在一低電阻範圍中的一初始電阻,其中所述中間電阻範圍高於該低電阻範圍,第一最終電阻範圍高於中間電阻範圍,第二最終電阻範圍低於第一最終電阻範圍。In another embodiment, the programmable resistive memory element can be characterized by an initial resistance in a low resistance range, wherein the intermediate resistance range is higher than the low resistance range, and the first final resistance range is higher than the middle Resistance range, the second final resistance range is lower than the first final resistance range.

施加如在此所述的形成脈衝,能夠使得連接第一子集中的記憶胞的第一電極和第二電極的一導電細絲形成,且並未使得連接第二子集中的記憶胞的第一電極和第二電極的一導電細絲形成。Applying the formation pulse as described herein can form a conductive filament that connects the first electrode and the second electrode of the memory cells in the first subset, and does not make the first electrode that connects the memory cells in the second subset. An electrode and a conductive filament of the second electrode are formed.

如在此所述的編程脈衝能夠穩定並加強第一子集中的記憶胞的該導電細絲的導電性,且並未使得第二子集中的記憶胞的一導電細絲形成。The programming pulse described herein can stabilize and strengthen the conductivity of the conductive filaments of the memory cells in the first subset, and does not cause a conductive filament of the memory cells in the second subset to form.

第2圖示出在包含可編程電阻式記憶胞的積體電路上生成一資料集的例示流程圖。在步驟210,藉由測試積體電路上之可編程電阻式記憶胞中的一些可編程電阻式記憶胞,找出一形成脈衝位準。這個步驟係參照第3圖作進一步的敘述。在步驟220,施加一形成脈衝到積體電路上之可編程電阻式記憶胞的一集合。該形成脈衝具有在步驟210找出的形成脈衝位準。該形成脈衝位準的特色在於,在記憶胞之該集合的一第一子集中,引發從一初始電阻範圍到一中間電阻範圍的電阻變化,而在該形成脈衝之後,可編程電阻式記憶胞之該集合的一第二子集具有落在該中間範圍之外的電阻。舉例來說,對於具有在一高電阻範圍中的初始電阻之基於WO x(鎢氧化物)的可編程電阻式記憶體,一初始電阻範圍能夠介於約2700 kohm(千歐姆)與3000 kohm之間(第7A圖),一中間電阻範圍能夠在約400 kohm之一閾值位準之下的一範圍中,並可例如介於約100 kohm與400 kohm之間(第7B圖),第二子集在形成脈衝之後落在中間範圍之外的一電阻能夠在與初始電阻範圍重疊的一範圍中,否則維持在高於中間電阻範圍的電阻。舉例來說,第二子集能夠具有在約2700 kohm之一閾值位準之上的電阻。 FIG. 2 illustrates an exemplary flowchart of generating a data set on a integrated circuit including a programmable resistive memory cell. In step 210, by detecting some of the programmable resistive memory cells on the programmable resistive memory cell on the integrated circuit, a pulse formation level is found. This step is further described with reference to FIG. 3. At step 220, a set of programmable resistive memory cells forming a pulse on the integrated circuit is applied. The formation pulse has a formation pulse level found in step 210. The pulse formation level is characterized in that a resistance change from an initial resistance range to an intermediate resistance range is induced in a first subset of the set of memory cells, and after the formation pulse, a programmable resistive memory cell A second subset of the set has a resistance that falls outside the intermediate range. For example, for a WO x (tungsten oxide) -based programmable resistive memory with an initial resistance in a high resistance range, an initial resistance range can be between about 2700 kohm (thousand ohms) and 3000 kohm. (Figure 7A), an intermediate resistance range can be in a range below a threshold level of about 400 kohm, and can be, for example, between about 100 kohm and 400 kohm (Figure 7B), the second sub A resistor set that falls outside the intermediate range after forming a pulse can be in a range that overlaps the initial resistance range, otherwise it maintains a resistance higher than the intermediate resistance range. For example, the second subset can have a resistance above a threshold level of about 2700 kohm.

在步驟230,施加一編程脈衝到可編程電阻式記憶胞的第一子集和第二子集,其增加第一子集中的記憶胞與第二子集中的記憶胞之間的讀取限度。編程脈衝具有一編程脈衝位準,該編程脈衝位準的特色在於,引發第一子集從中間範圍到在一第一最終電阻範圍的電阻中的一閾值位準之下的電阻變化。編程脈衝能夠使得第一子集中的記憶胞與第二子集中的記憶胞之間的感測限度增加。在該編程脈衝之後,可編程電阻式記憶胞的第二子集中的記憶胞能夠維持在於在遠大於第一最終電阻範圍之最大位準的一閾值位準之上的一電阻範圍中,例如接近初始電阻範圍,否則具有在一第二最終電阻範圍中的電阻,該第二最終電阻範圍與該第一最終電阻範圍不重疊。可編程記憶胞之該集合的第一子集和第二子集,係由形成脈衝與編程脈衝的組合所建立,並將會根據由材料的自然性質和製造程序所自然造成的可編程電阻式記憶胞的變異而變化。舉例來說,對於具有在一高電阻範圍中的初始電阻之基於WO x(鎢氧化物)的可編程電阻式記憶體(第7C圖),一第一最終電阻範圍能夠介於約0 kohm與100 kohm之間,一第二最終電阻範圍能夠介於約2700 kohm與3000 kohm之間。第一最終電阻範圍與第二最終電阻範圍由一讀取限度745分離,其大於如參照第7B和7C圖所示和敘述的初始電阻範圍與中間電阻範圍之間的一限度725。 At step 230, a programming pulse is applied to the first and second subsets of the programmable resistive memory cells, which increases the read limit between the memory cells in the first subset and the memory cells in the second subset. The programming pulse has a programming pulse level which is characterized by inducing a change in resistance of the first subset from a middle range to below a threshold level in a resistance of a first final resistance range. The programming pulse can increase the sensing limit between the memory cells in the first subset and the memory cells in the second subset. After the programming pulse, the memory cells in the second subset of the programmable resistive memory cells can be maintained in a resistance range that is well above a threshold level that is much greater than the maximum level of the first final resistance range, such as close to The initial resistance range, otherwise has a resistance in a second final resistance range, which does not overlap the first final resistance range. The first and second subsets of this set of programmable memory cells are established by the combination of forming pulses and programming pulses, and will be based on the programmable resistive type naturally caused by the natural properties of the material and the manufacturing process Changes in memory cells. For example, for a WO x (tungsten oxide) -based programmable resistive memory (Figure 7C) having an initial resistance in a high resistance range, a first final resistance range can be between about 0 kohm and Between 100 kohm, a second final resistance range can be between about 2700 kohm and 3000 kohm. The first final resistance range is separated from the second final resistance range by a read limit 745 which is greater than a limit 725 between the initial resistance range and the intermediate resistance range as shown and described with reference to FIGS. 7B and 7C.

第3圖示出找出一形成脈衝位準的例示流程圖,對應第2圖中的步驟210。在步驟310,施加具有一測試脈衝位準的一測試脈衝到可編程電阻式記憶胞一新的測試集合。該測試集合具有小於可編程電阻式記憶胞之所述集合的尺寸。舉例來說,測試集合能夠具有64位元的尺寸,而所述集合能夠具有1000位元的尺寸。測試集合能夠是在PUF編程的記憶陣列(例如第1圖中的130)中。對於每次迭代,使用一新的測試集合。如在此使用,一新的測試集合係積體電路中之可編程電阻式記憶胞不同於任何先前使用之測試集合的一測試集合。為了找出一形成脈衝位準的目的,可在積體電路上,例如PUF編程的記憶陣列130(第1圖)中,得到多個測試集合。在步驟320,決定在所述測試集合中具有在中間電阻範圍中的電阻的記憶胞的一比例。FIG. 3 shows an exemplary flowchart for finding a pulse formation level, corresponding to step 210 in FIG. 2. In step 310, a test pulse with a test pulse level is applied to a new test set of programmable resistive memory cells. The test set has a smaller size than the set of programmable resistive memory cells. For example, a test set can have a size of 64 bits, and the set can have a size of 1000 bits. The test set can be in a PUF-programmed memory array (eg, 130 in Figure 1). For each iteration, a new test set is used. As used herein, a new test set is a programmable resistive memory cell in a integrated circuit that is different from a test set of any previously used test set. In order to find out the purpose of forming a pulse level, a plurality of test sets can be obtained on an integrated circuit, such as a memory array 130 (FIG. 1) programmed by PUF. In step 320, a proportion of the memory cells having a resistance in the intermediate resistance range in the test set is determined.

在步驟330,如果該比例低於一閾值(例如40%到50%),接著在步驟340,更新測試脈衝位準,並重複施加測試脈衝的步驟310和決定比例的步驟320,直到所決定的比例達到該閾值。在重複步驟310和步驟320時,使用一新的測試集合。在找出形成脈衝位準的過程中對於每次迭代使用一新的測試集合,因此能夠使用在初始電阻範圍中的不同測試集合決定形成脈衝位準,以偕同在相同初始電阻範圍中的可編程電阻式記憶胞的所述集合使用。對應於更新的測試脈衝位準,能夠決定不同測試集合中具有在中間電阻範圍中的電阻的記憶胞的比例的一範圍。舉例來說,對於具有在一高電阻範圍中的初始電阻之基於WO x(鎢氧化物)的可編程電阻式記憶體(第9~13圖),對應於更新的、對應施加在個別測試集合上之不同字元線電壓和位元線電壓的測試脈衝位準,在不同測試集合中具有在中間電阻範圍中的電阻的記憶胞的比例,具有介於8%和90%之間的一範圍。 In step 330, if the ratio is below a threshold (for example, 40% to 50%), then in step 340, the test pulse level is updated, and step 310 of applying the test pulse and step 320 of determining the ratio are repeated until the determined The ratio reaches this threshold. When steps 310 and 320 are repeated, a new test set is used. In the process of finding the formation of the pulse level, a new test set is used for each iteration, so different test sets in the initial resistance range can be used to determine the formation of the pulse level, which is different from the programmable in the same initial resistance range. The collection of resistive memory cells is used. Corresponding to the updated test pulse level, it is possible to determine a range of the proportion of memory cells having resistance in the intermediate resistance range in different test sets. For example, for WO x (tungsten oxide) -based programmable resistive memory with initial resistance in a high resistance range (Figures 9-13), corresponding to the newer, applied to the individual test set The test pulse levels of different word line voltages and bit line voltages above, the proportion of memory cells with resistance in the intermediate resistance range in different test sets, with a range between 8% and 90% .

在步驟350,基於在達到該閾值之迭代中的測試脈衝位準,設定形成脈衝位準。步驟310、320、330、340、和350能夠由參照示於第1圖之積體電路100所述的PUF編程控制器140執行。形成脈衝位準能夠基於用在一特定迭代的一特定測試脈衝位準,該特定測試脈衝位準的結果是,與在不同測試集合中具有在中間電阻範圍中之電阻的記憶胞的比例之所述範圍中的其他比例相比,更接近閾值的一比例。舉例來說,如果閾值是50%,則形成脈衝位準能夠基於在結果是53%的記憶胞具有在中間電阻範圍中之電阻的迭代中的測試脈衝位準(第11圖)。In step 350, the formation pulse level is set based on the test pulse level in the iterations that reach the threshold. Steps 310, 320, 330, 340, and 350 can be performed by the PUF programming controller 140 described with reference to the integrated circuit 100 shown in FIG. The formation of the pulse level can be based on a specific test pulse level used in a specific iteration, the result of which is the ratio to the ratio of memory cells with resistance in the intermediate resistance range in different test sets Compared to other ratios in the range, a ratio closer to the threshold. For example, if the threshold is 50%, the formation pulse level can be based on the test pulse level in an iteration that results in 53% of the memory cells having a resistance in the intermediate resistance range (Figure 11).

第2和3圖的程序夠是用於製造一積體電路的製程的一部分,該製程包括形成複數個可編程電阻式記憶胞在積體電路上,連接該積體電路到一系統,該系統係配置成用以施加一物理不可複製函數到積體電路上的可編程電阻式記憶胞,以及使用該系統,以在該些可編程電阻式記憶胞中的可編程電阻式記憶胞之一集合中,藉由在此所述的處理程序,生成一資料集。在本發明所屬技術領域的許多已知之製造程序中包含形成複數個可編程電阻式記憶胞的一個例子如Lee等人之發明名稱為”RRAM PROCESS WITH ROUGHNESS TUNING TECHNOLOGY”的美國專利申請公開案第US 2016/0218146號所示,該公開案通過引用併入本文,如同在本文中完全闡述一般。The procedures of Figures 2 and 3 are sufficient as part of a process for manufacturing an integrated circuit. The process includes forming a plurality of programmable resistive memory cells on the integrated circuit, connecting the integrated circuit to a system, the system. A programmable resistive memory cell configured to apply a physically non-copyable function to an integrated circuit, and using the system to a set of programmable resistive memory cells among the programmable resistive memory cells In the process described herein, a data set is generated. An example of forming a plurality of programmable resistive memory cells is included in many known manufacturing procedures in the technical field to which the present invention pertains. For example, the invention name of Lee et al. Is US Patent Application Publication No. As shown in 2016/0218146, the publication is incorporated herein by reference as if fully set forth herein.

第4圖繪示用於在積體電路上執行一物理不可複製函數的一例示系統。複數個可編程電阻式記憶胞形成在積體電路上。該積體電路連接到一系統,該系統係配置成用以施加一物理不可複製函數到積體電路上的可編程電阻式記憶胞。使用該系統,能夠在該些可編程電阻式記憶胞中的可編程電阻式記憶胞之一集合中,生成一資料集。該系統能夠使用例如參照第2和3圖的流程圖所述的方法。FIG. 4 illustrates an example system for performing a physically non-copyable function on an integrated circuit. A plurality of programmable resistive memory cells are formed on the integrated circuit. The integrated circuit is connected to a system configured to apply a physically non-copyable function to a programmable resistive memory cell on the integrated circuit. Using the system, a data set can be generated in one of the sets of programmable resistive memory cells among the programmable resistive memory cells. The system can use, for example, the method described with reference to the flowcharts of FIGS. 2 and 3.

系統所使用的方法能夠包含施加一形成脈衝到所述集合中的所有成員,其中該形成脈衝具有一形成脈衝位準,該形成脈衝位準的特色在於,在可編程電阻式記憶胞之集合的一第一子集中,引發從一初始電阻範圍到一中間電阻範圍的電阻變化,而在該形成脈衝之後,可編程電阻式記憶胞之集合的一第二子集具有落在該中間範圍之外的電阻。The method used by the system can include applying a forming pulse to all members of the set, wherein the forming pulse has a forming pulse level, which is characterized by the fact that it is in a set of programmable resistive memory cells. A first subset that induces a change in resistance from an initial resistance range to an intermediate resistance range, and after the forming pulse, a second subset of the set of programmable resistive memory cells has fallen outside the intermediate range The resistance.

系統所使用的方法能夠包含施加一編程脈衝到可編程電阻式記憶胞的第一子集和第二子集,其中該編程脈衝具有一編程脈衝位準,該編程脈衝位準的特色在於,引發第一子集從中間電阻範圍到一第一最終電阻範圍的電阻變化。編程脈衝能夠使得第一子集中的記憶胞與第二子集中的記憶胞之間的感測限度增加。在該編程脈衝之後,可編程電阻式記憶胞的第二子集中的記憶胞能夠維持在接近初始電阻範圍的電阻範圍,否則具有在一第二最終電阻範圍中的電阻,該第二最終電阻範圍與該第一最終電阻範圍不重疊。可編程記憶胞之集合的第一子集和第二子集,係由形成脈衝與編程脈衝的組合所建立,並將會根據由材料的自然性質和製造程序所自然造成的可編程電阻式記憶胞的變異而變化。系統所使用的方法能夠包含在施加形成脈衝之前,藉由測試積體電路上之可編程電阻式記憶胞的不同測試集合,找出形成脈衝位準。The method used by the system can include applying a programming pulse to the first and second subsets of the programmable resistive memory cell, wherein the programming pulse has a programming pulse level, and the programming pulse level is characterized in that The first subset changes the resistance from the intermediate resistance range to a first final resistance range. The programming pulse can increase the sensing limit between the memory cells in the first subset and the memory cells in the second subset. After the programming pulse, the memory cells in the second subset of the programmable resistive memory cells can be maintained in a resistance range close to the initial resistance range, otherwise having a resistance in a second final resistance range, the second final resistance range Does not overlap the first final resistance range. The first and second subsets of the set of programmable memory cells are established by the combination of forming pulses and programming pulses, and will be based on the programmable resistive memory naturally created by the natural properties of the material and the manufacturing process Cell changes. The method used by the system can include finding the formation pulse level by testing different test sets of programmable resistive memory cells on the integrated circuit before applying the formation pulse.

用於在積體電路上執行一物理不可複製函數的一例示系統,能夠包含多個裝置測試器、多個裝置針測器(prober)、多個裝置處置器、和多個介面測試配接器(interface test adapter)。裝置測試器可與裝置針測器交互作用,以測試晶圓形式的積體電路晶片。裝置測試器也可與裝置處置器交互作用,以測試封裝後的積體電路。如第4圖所示,一例示的系統410包含PUF邏輯和驅動器420、和耦接到裝置測試器(420)的一裝置處置器/針測器430。要受到PUF邏輯和驅動器420支配的積體電路440,耦接到裝置處置器/針測器430。積體電路440包含一安全電路。安全電路中的一PUF ID電路包含由施加到系統的形成脈衝與編程脈衝的組合所建立的可編程電阻式記憶胞之集合的第一子集和第二子集。An example system for executing a physically non-copyable function on an integrated circuit can include multiple device testers, multiple device probes, multiple device handlers, and multiple interface test adapters (interface test adapter). The device tester can interact with the device pin tester to test integrated circuit wafers in wafer form. The device tester can also interact with the device handler to test the packaged integrated circuit. As shown in FIG. 4, an exemplary system 410 includes a PUF logic and driver 420, and a device handler / stylus 430 coupled to a device tester (420). The integrated circuit 440 to be subject to the PUF logic and the driver 420 is coupled to the device handler / probe 430. The integrated circuit 440 includes a safety circuit. A PUF ID circuit in the security circuit includes a first subset and a second subset of a set of programmable resistive memory cells established by a combination of forming pulses and programming pulses applied to the system.

在系統410中的一例示的積體電路,可為積體電路100,如參照第1圖所述者。在積體電路100的製造過程中,系統410進行第2和3圖的流程圖中所標識的動作。An example integrated circuit in the system 410 may be the integrated circuit 100, as described with reference to FIG. 1. During the manufacturing process of the integrated circuit 100, the system 410 performs the actions identified in the flowcharts of FIGS. 2 and 3.

第5A、5B、和5C圖繪示在一可編程電阻式記憶胞中的一導電細絲和一不導電細絲。第5A圖繪示一可編程電阻式記憶胞。一個可編程電阻式記憶胞500包含一第一電極、一第二電極、和位於第一電極和第二電極之間的一可編程金屬氧化物記憶元件510。形成脈衝能夠具有高到足以在記憶胞的可編程金屬氧化物記憶元件中生成一導電部分的電壓。在一些金屬氧化物記憶體材料中,該導電部分能夠包括由跨越材料的電場所引發並排列以提供一導電路徑的氧空缺。施加到記憶胞如記憶胞之所述集合的第一子集和第二子集中的記憶胞500的形成脈衝,能夠使得連接第一子集中的記憶胞的第一電極和第二電極的一導電細絲形成,且並未使得連接第二子集中的記憶胞的第一電極和第二電極的一導電細絲形成。於是,第一子集中的記憶胞能夠在一低電阻狀態(第5B圖),而第二子集中的記憶胞能夠在一高電阻狀態(第5C圖)。所述低電阻狀態和高電阻狀態能夠用於在資料集中指示邏輯「1」或「0」。Figures 5A, 5B, and 5C show a conductive filament and a non-conductive filament in a programmable resistive memory cell. Figure 5A shows a programmable resistive memory cell. A programmable resistive memory cell 500 includes a first electrode, a second electrode, and a programmable metal oxide memory element 510 located between the first electrode and the second electrode. The forming pulse can have a voltage high enough to generate a conductive portion in the programmable metal oxide memory element of the memory cell. In some metal oxide memory materials, the conductive portion can include an oxygen vacancy induced and arranged by an electrical field across the material to provide a conductive path. The formation pulses applied to the first subset and the second subset of memory cells in the set of memory cells, such as the memory cells, can make one of the first electrodes and the second electrodes connecting the memory cells in the first subset conductive. The filament is formed without forming a conductive filament that connects the first electrode and the second electrode of the memory cells in the second subset. Thus, the memory cells in the first subset can be in a low resistance state (Figure 5B), and the memory cells in the second subset can be in a high resistance state (Figure 5C). The low-resistance state and high-resistance state can be used to indicate a logic "1" or "0" in the data set.

在形成脈衝之後施加到可編程電阻式記憶胞之第一子集和第二子集的編程脈衝,能夠穩定並加強第一子集中的記憶胞的該導電細絲的導電性,且並未使得第二子集中的記憶胞的一導電細絲形成。The programming pulses applied to the first and second subsets of the programmable resistive memory cells after forming the pulses can stabilize and strengthen the conductivity of the conductive filaments of the memory cells in the first subset without making A conductive filament of memory cells in the second subset is formed.

第5B圖繪示一例示的導電細絲,經由金屬氧化物記憶元件中氧空缺形成的二條導電路徑,連接第一子集中的記憶胞的第一電極和第二電極。第5C圖繪示一例示的不導電細絲,其中氧空缺並未形成連接第二子集中的記憶胞的第一電極和第二電極的路徑。雖然第5A、5B、和5C圖繪示可編程電阻式記憶胞包含可編程金屬氧化物記憶元件,在此所述的技術能夠應用到其他類型的可編程電阻式記憶體材料。FIG. 5B illustrates an exemplary conductive filament connected to the first electrode and the second electrode of the memory cell in the first subset through two conductive paths formed by an oxygen vacancy in the metal oxide memory element. FIG. 5C illustrates an exemplary non-conductive filament, in which the oxygen vacancy does not form a path connecting the first electrode and the second electrode of the memory cells in the second subset. Although Figures 5A, 5B, and 5C show that programmable resistive memory cells include programmable metal oxide memory elements, the techniques described herein can be applied to other types of programmable resistive memory materials.

第6A和6B圖繪示在用以生成一資料集之操作中的複數個電阻範圍。在具有一形成脈衝位準的一形成脈衝施加到可編程電阻式記憶胞之一集合之前,該集合的所有成員在一初始電阻範圍(例如範圍610、610b)。在形成脈衝施加到該集合之後,可編程電阻式記憶胞之集合的一第一子集中的電阻變化到一中間電阻範圍(例如範圍620、620b),而可編程電阻式記憶胞之集合的一第二子集具有落在中間範圍之外(例如範圍630、630b)的電阻。在編程脈衝施加到集合之後,第一子集的電阻從中間範圍變化到一第一最終電阻範圍(例如範圍640、640b),而可編程電阻式記憶胞的第二子集具有在一第二最終電阻範圍(例如範圍650、650b)的電阻,第二最終電阻範圍與第一最終電阻範圍不重疊。Figures 6A and 6B illustrate a plurality of resistance ranges in an operation for generating a data set. Before a forming pulse with a forming pulse level is applied to a set of programmable resistive memory cells, all members of the set are in an initial resistance range (eg, ranges 610, 610b). After the formation pulse is applied to the set, the resistance in a first subset of the set of programmable resistive memory cells changes to an intermediate resistance range (for example, range 620, 620b), and one of the set of programmable resistive memory cells The second subset has resistances that fall outside the middle range (eg, ranges 630, 630b). After the programming pulse is applied to the set, the resistance of the first subset changes from a middle range to a first final resistance range (for example, the range 640, 640b), and the second subset of the programmable resistive memory cell has a second The resistance of the final resistance range (for example, ranges 650, 650b), and the second final resistance range does not overlap the first final resistance range.

在如第6A圖所示的一實施例中,初始電阻範圍(例如610)是一高電阻範圍,中間電阻範圍(例如620)低於初始電阻範圍(例如610),第一最終電阻範圍(例如640)低於中間電阻範圍(例如620),第二最終電阻範圍(例如650)高於第一最終電阻範圍(例如640)。這個實施例中的編程脈衝稱為設定脈衝。設定脈衝具有高到足以重新連接在記憶胞之集合的第一子集的可編程電阻式記憶元件中的細絲中的導電路徑的電壓,所以可編程記憶元件在低電阻狀態。細絲係參照第5A、5B、和5C圖而有進一步的敘述。這個實施例適合用於其中記憶胞具有在一高電阻範圍中的初始電阻並接著形成到一較低的中間範圍的技術,例如以造成高初始電阻之一氧化製程製造的基於WO x的可編程電阻式記憶體。 In an embodiment shown in FIG. 6A, the initial resistance range (for example, 610) is a high resistance range, the intermediate resistance range (for example, 620) is lower than the initial resistance range (for example, 610), and the first final resistance range (for example, 610) is 640) is lower than the intermediate resistance range (for example 620), and the second final resistance range (for example 650) is higher than the first final resistance range (for example 640). The programming pulse in this embodiment is called a set pulse. The set pulse has a voltage high enough to reconnect the conductive paths in the filaments in the programmable resistive memory element in the first subset of the set of memory cells, so the programmable memory element is in a low resistance state. The filaments are further described with reference to Figures 5A, 5B, and 5C. This embodiment is suitable for technologies in which the memory cell has an initial resistance in a high resistance range and then forms a lower intermediate range, such as a WO x- based programmable manufactured in an oxidation process that results in a high initial resistance. Resistive memory.

在如第6B圖所示的另一實施例中,初始電阻範圍(例如610b)是一低電阻範圍,中間電阻範圍(例如620b)高於初始電阻範圍(例如610b),第一最終電阻範圍(例如640b)高於中間電阻範圍,第二最終電阻範圍(例如650b)低於第一最終電阻範圍(例如640b)。這個實施例中的編程脈衝稱為重設脈衝。重設脈衝具有高到足以打斷在記憶胞之集合的第一子集的可編程電阻式記憶元件中的細絲中的導電路徑的電壓,所以可編程電阻式記憶元件在高電阻狀態。細絲係參照第5A、5B、和5C圖而有進一步的敘述。這個實施例適合用於其中記憶胞具有在一低電阻範圍中的初始電阻並接著形成到一較高的中間範圍的技術,例如以造成低初始電阻之不同的一氧化製程製造的基於WO x的可編程電阻式記憶體。 In another embodiment shown in FIG. 6B, the initial resistance range (for example, 610b) is a low resistance range, the intermediate resistance range (for example, 620b) is higher than the initial resistance range (for example, 610b), and the first final resistance range (for example, For example, 640b) is higher than the intermediate resistance range, and the second final resistance range (for example, 650b) is lower than the first final resistance range (for example, 640b). The programming pulse in this embodiment is called a reset pulse. The reset pulse has a voltage high enough to interrupt the conductive path in the filaments in the programmable resistive memory element in the first subset of the set of memory cells, so the programmable resistive memory element is in a high-resistance state. The filaments are further described with reference to Figures 5A, 5B, and 5C. This embodiment is suitable for a technique in which the memory cell has an initial resistance in a low resistance range and then forms to a higher intermediate range, such as a WO x- based based on a different oxidation process that results in a low initial resistance. Programmable resistive memory.

第7A、7B、和7C圖繪示記憶胞在如在此所述之一PUF處理程序的不同階段的電阻的機率圖。第7A圖繪示在具有一形成脈衝位準的一形成脈衝施加到可編程電阻式記憶胞的集合之前,該集合的所有成員在一初始電阻範圍,例如介於約2700 kohm與3000 kohm之間(例如範圍710)。Figures 7A, 7B, and 7C show probability plots of the resistance of memory cells at different stages of one of the PUF processing routines described herein. Figure 7A shows that before a forming pulse having a forming level is applied to a set of programmable resistive memory cells, all members of the set are in an initial resistance range, such as between about 2700 kohm and 3000 kohm (E.g. range 710).

第7B圖繪示在施加一形成脈衝到可編程電阻式記憶胞的集合的所有成員之後的結果。形成脈衝具有一形成脈衝位準,該形成脈衝位準的特色在於,在可編程電阻式記憶胞之集合的一第一子集中,引發從一初始電阻範圍到一中間電阻範圍的電阻變化,中間電阻範圍例如介於約100 kohm與400 kohm之間(例如範圍720),而在該形成脈衝之後,可編程電阻式記憶胞之集合的一第二子集具有落在該中間範圍之外的電阻(例如範圍730)。第一子集和第二子集中的成員隸屬,係由回應於跨越所述集合之該形成脈衝的物理性變化所決定。初始電阻範圍與中間電阻範圍由一讀取限度725分離。形成脈衝所使用的一形成脈衝位準、和用於決定該形成脈衝位準的一電阻閾值705,係參照第9~13圖作敘述。Figure 7B shows the results after applying a pulse forming pulse to all members of the set of programmable resistive memory cells. The forming pulse has a forming pulse level, which is characterized in that in a first subset of the set of programmable resistive memory cells, a resistance change is initiated from an initial resistance range to an intermediate resistance range. The resistance range is, for example, between about 100 kohm and 400 kohm (eg, range 720), and after the forming pulse, a second subset of the set of programmable resistive memory cells has a resistance that falls outside the intermediate range (E.g. range 730). Member membership in the first and second subsets is determined by the physical change in response to the forming pulse across the set. The initial resistance range and the intermediate resistance range are separated by a read limit 725. A formation pulse level used for forming a pulse and a resistance threshold 705 for determining the formation pulse level are described with reference to FIGS. 9 to 13.

第7C圖繪示在施加一編程脈衝到可編程電阻式記憶胞的第一子集和第二子集之後的結果。編程脈衝具有一編程脈衝位準,該編程脈衝位準的特色在於,引發第一子集從中間範圍到一第一最終電阻範圍的電阻變化,第一最終電阻範圍例如介於約0 kohm與100 kohm之間(例如範圍740)。編程脈衝能夠使得第一子集中的記憶胞與第二子集中的記憶胞之間的感測限度增加。在該編程脈衝之後,可編程電阻式記憶胞的第二子集中的記憶胞能夠維持在接近初始電阻範圍的電阻範圍,否則具有在一第二最終電阻範圍(例如範圍750)中的電阻,第二最終電阻範圍與第一最終電阻範圍不重疊。可編程記憶胞之集合的第一子集和第二子集,係由形成脈衝與編程脈衝的組合所建立,並將會根據由材料的自然性質和製造程序所自然造成的可編程電阻式記憶胞的變異而變化。第一最終電阻範圍與第二最終電阻範圍由一讀取限度745分離,其大於第7B圖所示的初始電阻範圍與中間電阻範圍之間的一限度725。這樣的讀取限度能夠寬到足以確保在PVT(製程、電壓、溫度)變化下儲存資料集的可編程電阻式記憶胞之第一子集和第二子集的可靠性。FIG. 7C illustrates the results after applying a programming pulse to the first and second subsets of the programmable resistive memory cell. The programming pulse has a programming pulse level, which is characterized in that it causes a change in the resistance of the first subset from the intermediate range to a first final resistance range, for example between about 0 kohm and 100 kohm (for example, range 740). The programming pulse can increase the sensing limit between the memory cells in the first subset and the memory cells in the second subset. After the programming pulse, the memory cells in the second subset of the programmable resistive memory cells can be maintained in a resistance range close to the initial resistance range, otherwise having a resistance in a second final resistance range (for example, the range 750), the first The two final resistance ranges do not overlap with the first final resistance range. The first and second subsets of the set of programmable memory cells are established by the combination of forming pulses and programming pulses, and will be based on the programmable resistive memory naturally created by the natural properties of the material and the manufacturing process Cell changes. The first final resistance range and the second final resistance range are separated by a read limit 745, which is larger than a limit 725 between the initial resistance range and the intermediate resistance range shown in FIG. 7B. Such a read limit can be wide enough to ensure the reliability of the first and second subsets of the programmable resistive memory cells storing the data set under PVT (process, voltage, temperature) changes.

第8圖繪示用於找出一形成脈衝位準的不同條件,接著形成脈衝位準能夠控制資料集的隨機性。該些條件能夠包含施加到用於生成資料集之可編程電阻式記憶胞的集合的電壓和/或電流脈衝的高度。資料集的隨機性與測試集合中具有在中間電阻範圍中的電阻的記憶胞之一比例相關。如第8圖的例子所示,條件1、2、3、4、和5分別使得對應中間電阻範圍的資料「0」具有測試集合中約10%、約30%、約50%、約80%、和約90%的記憶胞。形成脈衝位準能夠根據使用在此所述之技術的特定積體電路的設計規格進行調整。FIG. 8 shows different conditions for finding a pulse level, and then forming a pulse level can control the randomness of the data set. These conditions can include the height of the voltage and / or current pulses applied to the set of programmable resistive memory cells used to generate the data set. The randomness of the data set is related to the proportion of one of the memory cells in the test set with a resistance in the middle resistance range. As shown in the example in FIG. 8, conditions 1, 2, 3, 4, and 5 respectively make the data “0” corresponding to the intermediate resistance range have about 10%, about 30%, about 50%, and about 80% of the test set. , And about 90% of memory cells. The formation pulse level can be adjusted according to the design specifications of a specific integrated circuit using the techniques described herein.

第9~13圖繪示用於找出一形成脈衝位準的操作。為了找出該形成脈衝位準,能夠以迭代方式施加具有一測試脈衝位準的一測試脈衝到與要用在創造獨特資料集的該些記憶胞位在相同積體電路上、且較佳地具有相同結構的可編程電阻式記憶胞之一測試集合。對於每次迭代,能夠使用不同於先前使用之測試集合的可編程電阻式記憶胞之一測試集合。能夠決定在測試集合中具有在中間電阻範圍中的電阻的記憶胞的一比例。如果該比例低於一閾值,可接著更新測試脈衝位準,重複施加測試脈衝和決定比例的操作,直到所決定的比例達到該閾值並且,並且,能夠基於在達到該閾值之迭代中的測試脈衝位準設定所述形成脈衝位準。Figures 9 to 13 show operations for finding a pulse level. To find out the formation pulse level, a test pulse with a test pulse level can be applied iteratively to the same integrated circuit as the memory cells to be used to create a unique data set, and preferably One test set of programmable resistive memory cells with the same structure. For each iteration, one of the test sets can be used that is different from the previously used test set. It is possible to determine a proportion of the memory cells in the test set having a resistance in the intermediate resistance range. If the ratio is lower than a threshold value, the test pulse level can be updated, and the operation of applying test pulses and determining the ratio is repeated until the determined ratio reaches the threshold value, and can be based on the test pulses in the iterations that reach the threshold value. The level sets the formation pulse level.

以經驗決定的一電阻閾值905能夠用於決定一記憶胞是否具有低於電阻閾值並落在中間電阻範圍中的電阻。如第9~13圖的例子所示,電阻閾值905約700 kohm。因為第一最終電阻範圍與第二最終電阻範圍由一寬的讀取限度745(第7C圖)分離,電阻閾值905能夠落在該寬的限度中,並用於決定哪些記憶胞是在中間電阻範圍中的目的。舉例來說,取代700 kohm,電阻閾值能夠為800 kohm、900 kohm、和1000 kohm。具有寬的限度的一個優點是,任何記憶胞的電阻可能因為PVT(製程、電壓、溫度)條件發生跨越限度的漂移而結果導致可靠性問題的情況,較不容易發生。An empirically determined resistance threshold 905 can be used to determine whether a memory cell has a resistance that is below the resistance threshold and falls in the middle resistance range. As shown in the examples in Figures 9 to 13, the resistance threshold 905 is about 700 kohm. Because the first final resistance range is separated from the second final resistance range by a wide read limit 745 (Figure 7C), the resistance threshold 905 can fall within this wide limit and is used to determine which memory cells are in the middle resistance range In purpose. For example, instead of 700 kohm, the resistance threshold can be 800 kohm, 900 kohm, and 1000 kohm. An advantage of having a wide limit is that the resistance of any memory cell may cause reliability problems due to drift across the limits of PVT (process, voltage, temperature) conditions, which is less likely to occur.

第9圖繪示用於找出形成脈衝位準的一例示條件1。條件1包含施加5 V的一字元線(WL)電壓、5 V的一位元線(BL)電壓、和41 μA的一電流到可編程電阻式記憶胞的一測試集合。條件1使得測試集合中8%的記憶胞在設定狀態或具有資料「0」(例如範圍940),且測試集合中92%的記憶胞在初始電阻狀態或具有資料「1」(例如範圍950)。FIG. 9 shows an exemplary condition 1 for finding the pulse formation level. Condition 1 includes a test set of 5 V bit line (WL) voltage, 5 V bit line (BL) voltage, and a current of 41 μA to the programmable resistive memory cell. Condition 1 causes 8% of the memory cells in the test set to be in the set state or have data "0" (for example, range 940), and 92% of the memory cells in the test set are in the initial resistance state or have data "1" (for example, range 950) .

第10圖繪示用於找出形成脈衝位準的一例示條件2。條件2包含施加2.5 V的一字元線電壓、和4 V的一位元線電壓到可編程電阻式記憶胞的一測試集合。條件2使得測試集合中35%的記憶胞在設定狀態或具有資料「0」(例如範圍1040),且測試集合中65%的記憶胞在初始電阻狀態或具有資料「1」(例如範圍1050)。FIG. 10 shows an exemplary condition 2 for finding the pulse formation level. Condition 2 includes a test set of applying a word line voltage of 2.5 V and a bit line voltage of 4 V to a programmable resistive memory cell. Condition 2 makes 35% of the memory cells in the test set in the set state or have data "0" (for example, range 1040), and 65% of the memory cells in the test set are in the initial resistance state or have data "1" (for example, range 1050) .

第11圖繪示用於找出形成脈衝位準的一例示條件3。條件3包含施加4 V的一字元線電壓、和4 V的一位元線電壓到可編程電阻式記憶胞的一測試集合。條件3使得測試集合中53%的記憶胞在設定狀態或具有資料「0」(例如範圍1140),且測試集合中47%的記憶胞在初始電阻狀態或具有資料「1」(例如範圍1150)。FIG. 11 shows an example condition 3 for finding the pulse formation level. Condition 3 includes a test set of applying a word line voltage of 4 V and a bit line voltage of 4 V to a programmable resistive memory cell. Condition 3 makes 53% of the memory cells in the test set in the set state or have the data "0" (for example, range 1140), and 47% of the memory cells in the test set are in the initial resistance state or have the data "1" (for example, range 1150) .

第12圖繪示用於找出形成脈衝位準的一例示條件4。條件4包含施加2.5 V的一字元線電壓、和4.5 V的一位元線電壓到可編程電阻式記憶胞的一測試集合。條件4使得測試集合中80%的記憶胞在設定狀態或具有資料「0」(例如範圍1240),且測試集合中20%的記憶胞在初始電阻狀態或具有資料「1」(例如範圍1250)。FIG. 12 illustrates an exemplary condition 4 for finding the pulse formation level. Condition 4 includes a test set of applying a word line voltage of 2.5 V and a bit line voltage of 4.5 V to a programmable resistive memory cell. Condition 4 enables 80% of the memory cells in the test set to be in the set state or have data "0" (for example, range 1240), and 20% of the memory cells in the test set are in the initial resistance state or have data "1" (for example, range 1250) .

第13圖繪示用於找出形成脈衝位準的一例示條件5。條件5包含施加3.5 V的一字元線電壓、和4.5 V的一位元線電壓到可編程電阻式記憶胞的一測試集合。條件5使得測試集合中90%的記憶胞在設定狀態或具有資料「0」(例如範圍1340),且測試集合中10%的記憶胞在初始電阻狀態或具有資料「1」(例如範圍1350)。FIG. 13 shows an exemplary condition 5 for finding the pulse formation level. Condition 5 includes a test set of applying a word line voltage of 3.5 V and a bit line voltage of 4.5 V to a programmable resistive memory cell. Condition 5 enables 90% of the memory cells in the test set to be in the set state or have data "0" (for example, range 1340), and 10% of the memory cells in the test set are in the initial resistance state or have data "1" (for example, range 1350) .

舉例來說,如果對於測試集合中記憶胞之比例的期望閾值是約50%、或更佳地落在大約50%(例如40%到60%)的一特定範圍內,則能夠基於使用在達到該閾值、或落在該特定範圍內(例如第10圖中的條件3)之迭代中的測試脈衝位準,或更佳地基於使用在落在所述特定範圍內之迭代中的測試脈衝位準,設定形成脈衝位準。For example, if the desired threshold for the proportion of memory cells in the test set is about 50%, or better falls within a specific range of about 50% (e.g., 40% to 60%), it can be achieved based on use. The threshold, or the test pulse level in an iteration that falls within the specific range (e.g., condition 3 in Figure 10), or more preferably based on the use of the test pulse bit in the iterations that fall within the specific range Level, set the pulse formation level.

第14A、14B、和14C圖繪示使用參照第11圖所述的條件3在一測試集合中施加測試脈衝的例示結果。在第14A圖的例子中,測試集合中的記憶胞在大於3 Mohm(百萬歐姆)之一初始電阻範圍。在第14B圖的例子中,在施加對應條件3的測試脈衝之後,測試集合的一第一子集變化變化到一中間電阻範圍,或者在形成狀態。在第14C圖的例子中,在施加編程/設定脈衝之後,第一子集從中間電阻範圍變化到低於50 kohm的一第一最終電阻範圍。Figures 14A, 14B, and 14C show exemplary results of applying test pulses in a test set using condition 3 described with reference to Figure 11. In the example of Figure 14A, the memory cells in the test set are in an initial resistance range greater than one of 3 Mohm. In the example in FIG. 14B, after a test pulse corresponding to condition 3 is applied, a first subset of the test set changes to an intermediate resistance range, or is in a forming state. In the example of Figure 14C, after the programming / setting pulse is applied, the first subset changes from the intermediate resistance range to a first final resistance range below 50 kohm.

第15A和15B圖繪示在一第一PUF ID陣列中生成一第一資料集(PUF-ID1)和在一第二PUF ID陣列中生成一第二資料集(PUF-ID2)的結果。如第15A和15B圖所示,本技術在第一PUF ID陣列(例如陣列01)與第二PUF ID陣列(例如陣列02)之間展現高獨特性和不可預測的特性,其中各個PUF ID陣列包含1 kbits(千位元)。在這個例子中,第一PUF ID陣列和第二PUF ID陣列具有基於WO x(鎢氧化物)的可編程電阻式記憶胞,其具有在一高電阻範圍中的初始電阻。 15A and 15B illustrate the results of generating a first data set (PUF-ID1) in a first PUF ID array and generating a second data set (PUF-ID2) in a second PUF ID array. As shown in Figures 15A and 15B, the present technology exhibits high uniqueness and unpredictable characteristics between a first PUF ID array (such as array 01) and a second PUF ID array (such as array 02), where each PUF ID array Contains 1 kbits. In this example, the first PUF ID array and the second PUF ID array have WO x (tungsten oxide) -based programmable resistive memory cells that have an initial resistance in a high resistance range.

對於在各種不同條件(例如分別在烘烤之前、在250 oC烘烤0.25小時、和在250 oC烘烤65小時)下的由本技術生成之資料集已進行可靠性測試。所述可靠性測試使用在烘烤之前、在250 oC烘烤0.25小時之後、和在250 oC烘烤65小時之後的一PUF ID陣列中的1000個記憶胞。相比之下,PUF ID陣列中的該1000個記憶胞於在二種不同條件下的烘烤之後的電阻狀態,與PUF ID陣列中的該1000個記憶胞在烘烤之前的電阻狀態一致。於是,由本技術生成之資料集展現在高溫(250 oC)烘烤條件下無位元錯誤率(bit error rate, BER)的表現(BER=0.00 %),並且能夠應用於物聯網(Internet of Things, IoT)產品和安全晶片。 Reliability tests have been performed on data sets generated by this technology under various conditions (eg, before baking, baking at 250 o C for 0.25 hours, and baking at 250 o C for 65 hours). The reliability testing before use in baking, after baking at 250 o C 0.25 hours and ID memory cell array 1000 in a PUF after baking at 250 o C 65 h. In contrast, the resistance state of the 1000 memory cells in the PUF ID array after baking under two different conditions is consistent with the resistance state of the 1000 memory cells in the PUF ID array before baking. Therefore, the data set generated by this technology demonstrates the performance of no bit error rate (BER) under high temperature (250 o C) baking conditions (BER = 0.00%), and can be applied to the Internet of Things (Internet of Things, IoT) products and security chips.

第16圖繪示在高溫烘烤條件(例如250 oC)下於一第一最終電阻範圍(例如範圍1640)與一第二最終電阻範圍(例如範圍1650)之間的一讀取限度1660。在這個例子中,讀取限度1660介於400 kohm與1000 kohm之間,亦即,支持在700 kohm +/- 300 kohm的一感測電阻閾值。讀取限度1660寬到足以分離第一最終電阻範圍和第二最終電阻範圍,即使是在少數一些可能在高溫烘烤條件(例如250 oC)下引發的游曳(tail)位元(例如範圍1670)存在的情況下亦是如此。 FIG. 16 illustrates a reading limit 1660 between a first final resistance range (eg, a range of 1640) and a second final resistance range (eg, a range of 1650) under high temperature baking conditions (eg, 250 o C). In this example, the read limit of 1660 is between 400 kohm and 1000 kohm, that is, a sense resistance threshold of 700 kohm +/- 300 kohm is supported. The read limit of 1660 is wide enough to separate the first final resistance range and the second final resistance range, even in a few tail bits (e.g., range) that may be induced under high temperature baking conditions (e.g., 250 o C) 1670) The same is true where it exists.

本技術能夠實施在其中記憶胞具有在一高電阻範圍中的初始電阻並接著形成到一較低的中間範圍的裝置中,包含過渡金屬氧化物裝置(基於WO x的可編程電阻式記憶體、基於五氧化二鉭(Ta 2O 5)的可編程電阻式記憶體、基於二氧化鉿(HfO 2)的可編程電阻式記憶體、基於鈦氧氮化物(TiON)的可編程電阻式記憶體、基於TiO x的可編程電阻式記憶體)、導電細絲可編程電阻電阻式記憶體(基於銅、基於銀)、相變化記憶體、和反熔絲裝置(金屬氧化物半導體(MOS)或金屬-絕緣體-金屬(MIM)結構,伴隨著介電質崩潰,作為反熔絲記憶胞)。 This technology can be implemented in devices where the memory cell has an initial resistance in a high resistance range and then forms a lower intermediate range, including transition metal oxide devices (programmable resistive memory based on WO x , Programmable resistive memory based on tantalum pentoxide (Ta 2 O 5 ), programmable resistive memory based on hafnium dioxide (HfO 2 ), programmable resistive memory based on titanium oxynitride (TiON) , based on a programmable resistance memory TiO x), the programmable resistance conductive filament RRAM (based on copper, silver based), with the memory, and the anti-fuse device (metal oxide semiconductor (MOS variation) or Metal-Insulator-Metal (MIM) structure, with dielectric breakdown, acts as an anti-fuse memory cell).

本技術能夠實施在其中記憶胞具有在一低電阻範圍中的初始電阻並接著形成到一較高的中間範圍的記憶胞中,包含低初始電阻的金屬氧化物記憶體,例如WO x可編程電阻式記憶體,以及熔絲裝置如金屬熔絲、多晶矽熔絲、和接觸熔絲。 The technology can be implemented in a memory cell where the memory cell has an initial resistance in a low resistance range and then formed into a higher intermediate range memory cell, including a metal oxide memory with a low initial resistance, such as a WO x programmable resistor Memory, and fuse devices such as metal fuses, polycrystalline silicon fuses, and contact fuses.

雖然本技術藉由上述的較佳實施例和詳細例子來揭露,但可以理解這些例子是用於描述而非限制目的。可以預期的是,本發明所屬技術領域中具有通常知識者,在不脫離本技術的精神和以下請求項的範圍內,合理地進行調整和組合。Although the present technology is disclosed by the above-mentioned preferred embodiments and detailed examples, it can be understood that these examples are for description rather than limitation. It is expected that those with ordinary knowledge in the technical field to which the present invention pertains may reasonably make adjustments and combinations without departing from the spirit of the present technology and the scope of the following claims.

100、440:積體電路 110:任務函數電路 111、116、131、141:匯流排 115:存取控制塊 120:輸入/輸出介面 122:走線 125:安全邏輯 130:記憶陣列 140:控制器 210、220、230、310、320、330、340、350:步驟 410:系統 420:PUF邏輯和驅動器 430:裝置處置器/針測器 500:記憶胞 510:金屬氧化物記憶元件 610、610b、620、620b、630、630b、640、640b、650、650b、710、720、730、740、750、940、950、1040、1050、1140、1150、1240、1250、1340、1350、1640、1650、1670:範圍 705、905:電阻閾值 725:限度 745、1660:讀取限度100, 440: integrated circuit 110: task function circuit 111, 116, 131, 141: bus 115: access control block 120: input / output interface 122: wiring 125: safety logic 130: memory array 140: controller 210, 220, 230, 310, 320, 330, 340, 350: Step 410: System 420: PUF logic and driver 430: Device handler / probe 500: Memory cell 510: Metal oxide memory element 610, 610b, 620, 620b, 630, 630b, 640, 640b, 650, 650b, 710, 720, 730, 740, 750, 940, 950, 1040, 1050, 1140, 1150, 1240, 1250, 1340, 1350, 1640, 1650, 1670: range 705, 905: resistance threshold 725: limit 745, 1660: read limit

第1圖是一種裝置的簡化方塊圖,其包括具有使用PUF以創造和儲存一獨特資料集的記憶體的積體電路。 第2圖示出在包含可編程電阻式記憶胞的積體電路上生成一資料集的例示流程圖。 第3圖示出找出一形成脈衝位準的例示流程圖。 第4圖繪示用於在積體電路上執行一物理不可複製函數的一種例示系統。 第5A、5B、和5C圖繪示在一可編程電阻式記憶胞中的一導電細絲和一不導電細絲。 第6A和6B圖繪示在用以生成一資料集之操作中的複數個電阻範圍。 第7A、7B、和7C圖繪示記憶胞在如在此所述之一PUF處理程序的不同階段的電阻的機率圖。 第8圖繪示用於找出一形成脈衝位準的不同條件。 第9~13圖繪示用於找出一形成脈衝位準的操作。 第14A、14B、和14C圖繪示在一測試集合中施加測試脈衝的例示結果。 第15A和15B圖繪示在一第一PUF ID陣列中生成一第一資料集和在一第二PUF ID陣列中生成一第二資料集的結果。 第16圖繪示在高溫烘烤條件下於例示的第一最終電阻範圍與第二最終電阻範圍之間的一讀取限度。Figure 1 is a simplified block diagram of a device that includes an integrated circuit with memory that uses PUF to create and store a unique data set. FIG. 2 illustrates an exemplary flowchart of generating a data set on a integrated circuit including a programmable resistive memory cell. FIG. 3 shows an exemplary flowchart for finding a pulse formation level. FIG. 4 illustrates an exemplary system for performing a physically non-copyable function on an integrated circuit. Figures 5A, 5B, and 5C show a conductive filament and a non-conductive filament in a programmable resistive memory cell. Figures 6A and 6B illustrate a plurality of resistance ranges in an operation for generating a data set. Figures 7A, 7B, and 7C show probability plots of the resistance of memory cells at different stages of one of the PUF processing routines described herein. FIG. 8 illustrates different conditions for finding a pulse level. Figures 9 to 13 show operations for finding a pulse level. Figures 14A, 14B, and 14C show exemplary results of applying test pulses in a test set. 15A and 15B illustrate the results of generating a first data set in a first PUF ID array and generating a second data set in a second PUF ID array. FIG. 16 illustrates a read limit between the exemplified first final resistance range and the second final resistance range under high temperature baking conditions.

Claims (10)

一種在一積體電路上生成一資料集的方法,該積體電路包含複數個可編程電阻式記憶胞,該方法包括: 施加一形成脈衝到該些可編程電阻式記憶胞之一集合中的所有成員,該形成脈衝具有一形成脈衝位準,該形成脈衝位準的特色在於,在該些可編程電阻式記憶胞之該集合的一第一子集中,引發從一初始電阻範圍到一中間電阻範圍的電阻變化,而在該形成脈衝之後,該些可編程電阻式記憶胞之該集合的一第二子集具有落在該中間電阻範圍之外的電阻;以及 施加一編程脈衝到該些可編程電阻式記憶胞的該第一子集和該第二子集,該編程脈衝具有一編程脈衝位準,該編程脈衝位準的特色在於,引發該第一子集從該中間電阻範圍到一第一最終電阻範圍的電阻變化,而在該編程脈衝之後,該些可編程電阻式記憶胞的該第二子集具有在一第二最終電阻範圍中的電阻,該第二最終電阻範圍與該第一最終電阻範圍不重疊,該些可編程電阻式記憶胞之該集合的該第一子集和該第二子集藉此儲存所述資料集。A method for generating a data set on an integrated circuit. The integrated circuit includes a plurality of programmable resistive memory cells. The method includes: applying a forming pulse to a set of the programmable resistive memory cells. For all members, the forming pulse has a forming pulse level, which is characterized in that, in a first subset of the set of the programmable resistive memory cells, triggering from an initial resistance range to a middle A resistance change in a resistance range, and after the forming pulse, a second subset of the set of the programmable resistive memory cells has a resistance that falls outside the intermediate resistance range; and a programming pulse is applied to the The first and second subsets of the programmable resistive memory cell, the programming pulse has a programming pulse level, and the programming pulse level is characterized by triggering the first subset from the intermediate resistance range to A resistance change in a first final resistance range, and after the programming pulse, the second subset of the programmable resistive memory cells has a second final resistance range Resistance, the second final resistance ranges do not overlap with the first final resistance range, the plurality of programmable resistive memory cells of the first subset and the second subset of the set storing the data set thereby. 如申請專利範圍第1項所述之方法,包含在施加該形成脈衝之前,藉由測試該積體電路上之該些可編程電阻式記憶胞中的一些可編程電阻式記憶胞,找出該形成脈衝位準。The method according to item 1 of the scope of patent application, comprising, before applying the forming pulse, testing the programmable resistive memory cells of the programmable resistive memory cells on the integrated circuit to find the The pulse level is formed. 如申請專利範圍第1項所述之方法,包含在施加該形成脈衝之前,藉由包括下列步驟的一方法,找出該形成脈衝位準: 以迭代方式施加具有一測試脈衝位準的一測試脈衝到該些可編程電阻式記憶胞之一測試集合,以及決定在該測試集合中具有在該中間電阻範圍中的電阻的該些可編程電阻式記憶胞的一比例,並且,如果該比例低於一閾值,更新該測試脈衝位準,在不同的一測試集合上重複所述施加該測試脈衝的步驟和所述決定的步驟,直到所決定的比例達到該閾值,並且,基於在達到該閾值之一迭代中的該測試脈衝位準,設定該形成脈衝位準。The method according to item 1 of the scope of patent application, comprising, before applying the forming pulse, finding the forming pulse level by a method including the following steps: Iteratively applying a test with a test pulse level Pulse to one of the programmable resistive memory cells test set, and determine a proportion of the programmable resistive memory cells having a resistance in the intermediate resistance range in the test set, and if the ratio is low Update the test pulse level at a threshold, repeat the steps of applying the test pulse and the step of determining on different test sets until the determined ratio reaches the threshold, and based on the threshold being reached The test pulse level in one iteration sets the formation pulse level. 如申請專利範圍第1項所述之方法,包含使用一讀取電壓感測該資料集,該讀取電壓用在介於該第一最終電阻範圍與該第二最終電阻範圍之間的電阻,其中該第一最終電阻範圍和該第二最終電阻範圍由一讀取限度分離,該讀取限度大於該初始電阻範圍與該中間電阻範圍之間的限度。The method according to item 1 of the patent application scope, comprising sensing the data set using a read voltage, the read voltage being used for a resistance between the first final resistance range and the second final resistance range, The first final resistance range and the second final resistance range are separated by a read limit, and the read limit is greater than a limit between the initial resistance range and the intermediate resistance range. 如申請專利範圍第1項所述之方法,其中該些可編程電阻式記憶胞包括複數個可編程電阻式記憶元件,該些可編程電阻式記憶元件的特色在於,在一高電阻範圍中的一初始電阻,其中該中間電阻範圍低於該高電阻範圍,該第一最終電阻範圍低於該中間電阻範圍,該第二最終電阻範圍高於該第一最終電阻範圍。The method according to item 1 of the scope of patent application, wherein the programmable resistive memory cells include a plurality of programmable resistive memory elements, and the features of the programmable resistive memory elements are in a high resistance range. An initial resistance, wherein the intermediate resistance range is lower than the high resistance range, the first final resistance range is lower than the intermediate resistance range, and the second final resistance range is higher than the first final resistance range. 如申請專利範圍第1項所述之方法,其中該些可編程電阻式記憶胞包括複數個可編程電阻式記憶元件,該些可編程電阻式記憶元件的特色在於,在一低電阻範圍中的一初始電阻,其中該中間電阻範圍高於該低電阻範圍,該第一最終電阻範圍高於該中間電阻範圍,該第二最終電阻範圍低於該第一最終電阻範圍。The method according to item 1 of the patent application range, wherein the programmable resistive memory cells include a plurality of programmable resistive memory elements, and the features of the programmable resistive memory elements are in a low resistance range. An initial resistance, wherein the intermediate resistance range is higher than the low resistance range, the first final resistance range is higher than the intermediate resistance range, and the second final resistance range is lower than the first final resistance range. 如申請專利範圍第1項所述之方法,其中該些可編程電阻式記憶胞包括複數個可編程電阻式記憶元件,並且,所述施加該形成脈衝的步驟使得連接該第一子集中的該些可編程電阻式記憶胞的第一電極和第二電極的一導電細絲形成,且並未使得連接該第二子集中的該些可編程電阻式記憶胞的第一電極和第二電極的一導電細絲形成。The method according to item 1 of the scope of patent application, wherein the programmable resistive memory cells include a plurality of programmable resistive memory elements, and the step of applying the forming pulses connects the first subset of the A conductive filament of the first electrode and the second electrode of the programmable resistive memory cells is not formed to connect the first electrode and the second electrode of the programmable resistive memory cells in the second subset. A conductive filament is formed. 如申請專利範圍第7項所述之方法,其中該編程脈衝穩定並加強該第一子集中的該些可編程電阻式記憶胞的該導電細絲的導電性,且並未使得該第二子集中的該些可編程電阻式記憶胞的一導電細絲形成。The method according to item 7 of the scope of patent application, wherein the programming pulse stabilizes and strengthens the conductivity of the conductive filaments of the programmable resistive memory cells in the first subset without making the second sub A conductive filament of the concentrated resistive memory cells is formed. 一種製造一積體電路的方法,包括: 形成複數個可編程電阻式記憶胞在該積體電路上; 連接該積體電路到一系統,該系統係配置成用以施加一物理不可複製函數到該積體電路上的該些可編程電阻式記憶胞;以及 使用該系統,以在該些可編程電阻式記憶胞中的該些可編程電阻式記憶胞之一集合中,藉由下列步驟,生成一資料集: 施加一形成脈衝到該集合中的所有成員,該形成脈衝具有一形成脈衝位準,該形成脈衝位準的特色在於,在該些可編程電阻式記憶胞之該集合的一第一子集中,引發從一初始電阻範圍到一中間電阻範圍的電阻變化,而在該形成脈衝之後,該些可編程電阻式記憶胞之該集合的一第二子集具有落在該中間電阻範圍之外的電阻;及 施加一編程脈衝到該些可編程電阻式記憶胞的該第一子集和該第二子集,該編程脈衝具有一編程脈衝位準,該編程脈衝位準的特色在於,引發該第一子集從該中間電阻範圍到一第一最終電阻範圍的電阻變化,而在該編程脈衝之後,該些可編程電阻式記憶胞的該第二子集具有在一第二最終電阻範圍中的電阻,該第二最終電阻範圍與該第一最終電阻範圍不重疊,該些可編程電阻式記憶胞之該集合的該第一子集和該第二子集藉此儲存所述資料集。A method of manufacturing an integrated circuit, comprising: forming a plurality of programmable resistive memory cells on the integrated circuit; connecting the integrated circuit to a system configured to apply a physically non-copyable function to The programmable resistive memory cells on the integrated circuit; and using the system to collect one of the programmable resistive memory cells in the programmable resistive memory cells through the following steps, Generate a data set: A forming pulse is applied to all members in the set, the forming pulse has a forming pulse level, and the forming pulse level is characterized in that one of the sets of the programmable resistive memory cells The first subset causes a change in resistance from an initial resistance range to an intermediate resistance range, and after the forming pulse, a second subset of the set of the programmable resistive memory cells has the intermediate resistance Resistance outside the range; and applying a programming pulse to the first subset and the second subset of the programmable resistive memory cells, the programming pulse having a programming pulse The programming pulse level is characterized in that it causes a change in the resistance of the first subset from the intermediate resistance range to a first final resistance range, and after the programming pulse, the programmable resistive memory cells The second subset has a resistance in a second final resistance range, the second final resistance range does not overlap the first final resistance range, the first subset of the set of the programmable resistive memory cells and The second subset thereby stores the data set. 一種積體電路裝置,包括: 複數個可編程電阻式記憶胞;以及 一控制器,係配置成用以在該些可編程電阻式記憶胞中的該些可編程電阻式記憶胞之一集合中,藉由包含下列步驟的一程序,生成一資料集: 施加一形成脈衝到該集合中的所有成員,該形成脈衝具有一形成脈衝位準,該形成脈衝位準的特色在於,在該些可編程電阻式記憶胞之該集合的一第一子集中,引發從一初始電阻範圍到一中間電阻範圍的電阻變化,而在該形成脈衝之後,該些可編程電阻式記憶胞之該集合的一第二子集具有落在該中間電阻範圍之外的電阻;及 施加一編程脈衝到該些可編程電阻式記憶胞的該第一子集和該第二子集,該編程脈衝具有一編程脈衝位準,該編程脈衝位準的特色在於,引發該第一子集從該中間電阻範圍到一第一最終電阻範圍的電阻變化,而在該編程脈衝之後,該些可編程電阻式記憶胞的該第二子集具有在一第二最終電阻範圍中的電阻,該第二最終電阻範圍與該第一最終電阻範圍不重疊,該些可編程電阻式記憶胞之該集合的該第一子集和該第二子集藉此儲存所述資料集。An integrated circuit device includes: a plurality of programmable resistive memory cells; and a controller configured to be included in a set of the programmable resistive memory cells among the programmable resistive memory cells A data set is generated by a program including the following steps: A formation pulse is applied to all members in the set, the formation pulse has a formation pulse level, and the formation pulse level is characterized in that A first subset of the set of programmed resistive memory cells initiates a change in resistance from an initial resistance range to an intermediate resistance range, and after the formation pulse, a set of the programmable resistive memory cells A second subset having a resistance falling outside the intermediate resistance range; and applying a programming pulse to the first subset and the second subset of the programmable resistive memory cells, the programming pulse having a programming pulse Level, the programming pulse level is characterized by inducing a change in resistance of the first subset from the intermediate resistance range to a first final resistance range, and after the programming pulse The second subset of the programmable resistive memory cells has a resistance in a second final resistance range, the second final resistance range does not overlap the first final resistance range, the programmable resistive memories The first subset and the second subset of the set thereby store the data set.
TW106107885A 2016-12-27 2017-03-10 Method for generating a data set on an integrated circuit, method of manufacturing an integrated circuit, and integrated circuit device TWI640005B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/391,062 US9811689B1 (en) 2016-12-27 2016-12-27 Chip ID generation using physical unclonable function
US15/391,062 2016-12-27
US201762461800P 2017-02-22 2017-02-22
US62/461,800 2017-02-22

Publications (2)

Publication Number Publication Date
TW201835921A TW201835921A (en) 2018-10-01
TWI640005B true TWI640005B (en) 2018-11-01

Family

ID=62189264

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106107885A TWI640005B (en) 2016-12-27 2017-03-10 Method for generating a data set on an integrated circuit, method of manufacturing an integrated circuit, and integrated circuit device
TW106111978A TWI616885B (en) 2016-12-27 2017-04-11 Semiconductor memory device, chip id generation method thereof and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW106111978A TWI616885B (en) 2016-12-27 2017-04-11 Semiconductor memory device, chip id generation method thereof and manufacturing method thereof

Country Status (2)

Country Link
CN (2) CN108243003B (en)
TW (2) TWI640005B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112165384B (en) * 2020-10-15 2022-04-01 清华大学 Data encryption method and decryption method and data encryption device and decryption device
US20220385485A1 (en) * 2021-06-01 2022-12-01 Micron Technology, Inc. Identity theft protection with no password access
CN114242748A (en) * 2021-12-20 2022-03-25 厦门半导体工业技术研发有限公司 A storage unit group and its manufacturing method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7812404B2 (en) * 2005-05-09 2010-10-12 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
WO2011088074A2 (en) * 2010-01-12 2011-07-21 Stc. Unm System and methods for generating unclonable security keys in integrated circuits
US9106213B2 (en) * 2011-01-13 2015-08-11 Mitsubishi Electric Corporation Bit generation apparatus and bit generation method
DE102012102254B4 (en) * 2012-03-16 2020-09-24 Infineon Technologies Ag Device and method for reconstructing a bit sequence with pre-correction
US9001554B2 (en) * 2013-01-10 2015-04-07 Intermolecular, Inc. Resistive random access memory cell having three or more resistive states
US9336876B1 (en) * 2013-03-15 2016-05-10 Crossbar, Inc. Soak time programming for two-terminal memory
US8995169B1 (en) * 2013-09-12 2015-03-31 Sandisk 3D Llc Method of operating FET low current 3D Re-RAM
CN103558495B (en) * 2013-11-11 2016-03-23 成都曙创科技有限公司 A kind of multi-channel circuit on-off detection device
DE102014206943A1 (en) * 2014-04-10 2015-10-15 Siemens Aktiengesellschaft Key generation apparatus and method for generating a key
KR102140786B1 (en) * 2014-06-27 2020-08-03 삼성전자주식회사 Resistive Memory Device and Methods of Operating the Memory Device
KR101566949B1 (en) * 2014-06-30 2015-11-13 한국전자통신연구원 Reconfigurable physically unclonable function apparatus and operating method thereof
CN105632543B (en) * 2014-11-21 2018-03-30 松下知识产权经营株式会社 Nonvolatile memory devices and integrated circuit card with tamper-resistance properties
CN104699656B (en) * 2015-03-19 2017-10-03 东南大学 A kind of microprocessor PUF based on FPGA realizes system and method
CN105932996B (en) * 2016-04-18 2018-09-18 宁波大学 A kind of electric resistance partial pressure type DAC-PUF circuits

Also Published As

Publication number Publication date
CN108241807A (en) 2018-07-03
CN108243003B (en) 2020-10-20
CN108243003A (en) 2018-07-03
CN108241807B (en) 2020-05-12
TW201824282A (en) 2018-07-01
TWI616885B (en) 2018-03-01
TW201835921A (en) 2018-10-01

Similar Documents

Publication Publication Date Title
US9811689B1 (en) Chip ID generation using physical unclonable function
US11552810B2 (en) PUF with dissolvable conductive paths
TWI643090B (en) Anti-fuse physical non-reproducible circuit and related control method
TWI632552B (en) Rram circuit and method of rram row forming
US10103895B1 (en) Method for physically unclonable function-identification generation and apparatus of the same
US9997244B1 (en) RRAM-based authentication circuit
TWI682403B (en) Memory architecture and method of operating thereof
TW201921280A (en) Gate oxide breakdown in OTP memory cells for physical unclonable function (PUF) security
JP2016105278A (en) Nonvolatile memory device having tamper-resistance, and integrated circuit card
JP2016105344A (en) Nonvolatile memory device having tamper-resistance, and integrated circuit card
US9390791B2 (en) Resistance change non-volatile storage memory device and method
TWI640005B (en) Method for generating a data set on an integrated circuit, method of manufacturing an integrated circuit, and integrated circuit device
CN100538889C (en) Non-volatile memory cell, memory cell matrix and memory device
CN108733350B (en) Random number generation device and control method thereof
US9852791B1 (en) Semiconductor memory device, chip ID generation method thereof and manufacturing method thereof
CN106611615B (en) Operation method of resistance type memory cell and resistance type memory
CN111986720A (en) Random access memory cell and method of operating a resistive random access memory cell
CN110060722B (en) Power-on reset method of resistive memory storage device
TWI627555B (en) method for physically unclonable function-identification generation AND apparatus of THE SAME
US10783962B2 (en) Resistive memory storage apparatus and writing method thereof including disturbance voltage
TWI625733B (en) Device and method for generating inherent information of integrated circuits
US10490272B2 (en) Operating method of resistive memory element
US20230274780A1 (en) Methods for enlarging the memory window and improving data retention in restistive memory device
CN106448727A (en) Resistive memory device and reading method thereof
CN109753830B (en) Method and device for generating physically unclonable function codes