TWI536595B - Solar cell, method of manufacturing the same and module comprising the same - Google Patents
Solar cell, method of manufacturing the same and module comprising the same Download PDFInfo
- Publication number
- TWI536595B TWI536595B TW103117675A TW103117675A TWI536595B TW I536595 B TWI536595 B TW I536595B TW 103117675 A TW103117675 A TW 103117675A TW 103117675 A TW103117675 A TW 103117675A TW I536595 B TWI536595 B TW I536595B
- Authority
- TW
- Taiwan
- Prior art keywords
- back surface
- layer
- region
- electric field
- passivation layer
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Description
本發明是有關於一種太陽能電池、其製造方法及其模組,特別是指一種背接觸太陽能電池、其製造方法及其模組。 The invention relates to a solar cell, a manufacturing method thereof and a module thereof, in particular to a back contact solar cell, a manufacturing method thereof and a module thereof.
參閱圖1,為習知的指叉狀背接觸太陽能電池(Interdigitated Back Contact Solar Cell,簡稱IBC)9,包含:一n型的基板91、一鈍化層92,以及一第一電極93與一第二電極94。該基板91包括一受光面911、一與該受光面911相反且供該鈍化層92配置的背面912,以及分別位於該背面912側的一射極區913、一間隔區915與一背表面電場區(Back Surface Field)914。該射極區913為p型,該背表面電場區914為n+型,而該間隔區915將該射極區913與該背表面電場區914隔開。該第一電極93位於該鈍化層92上並穿過該鈍化層92而連接該射極層,該第二電極94位於該鈍化層92上並可穿過該鈍化層92而連接該背表面電場區914。 Referring to FIG. 1 , a conventional interdigitated back contact solar cell (IBC) 9 includes an n-type substrate 91 , a passivation layer 92 , and a first electrode 93 and a first Two electrodes 94. The substrate 91 includes a light receiving surface 911, a back surface 912 opposite to the light receiving surface 911 and disposed on the passivation layer 92, and an emitter region 913, a spacer region 915 and a back surface electric field respectively located on the back surface 912 side. Back Surface Field 914. The emitter region 913 is p-type, the back surface electric field region 914 is of the n + type, and the spacer region 915 separates the emitter region 913 from the back surface electric field region 914. The first electrode 93 is located on the passivation layer 92 and passes through the passivation layer 92 to connect the emitter layer. The second electrode 94 is located on the passivation layer 92 and can pass through the passivation layer 92 to connect the back surface electric field. District 914.
該背接觸太陽能電池9的主要特色在於:該第 一電極93與該第二電極94都位於該基板91的背面912,而該受光面911側未設置電極,所以可增加該受光面911可受光的面積而提升入光量,藉此增進該背接觸太陽能電池9的光電轉換效率。 The main feature of the back contact solar cell 9 is that the first An electrode 93 and the second electrode 94 are both located on the back surface 912 of the substrate 91, and no electrode is disposed on the light-receiving surface 911 side. Therefore, the light-receiving area of the light-receiving surface 911 can be increased to increase the amount of light, thereby enhancing the back contact. Photoelectric conversion efficiency of the solar cell 9.
在實施上,通常透過該鈍化層92的設置來鈍化、修補該基板91的表面以減少表面之懸鍵(Dangling Bond)與缺陷,從而可減少載子陷阱(Trap)及降低載子的表面複合速率,以提升該太陽能電池9的光電轉換效率。 In practice, the surface of the substrate 91 is usually passivated and repaired through the setting of the passivation layer 92 to reduce Dangling Bond and defects on the surface, thereby reducing carrier traps and reducing surface recombination of carriers. The rate is to increase the photoelectric conversion efficiency of the solar cell 9.
就該鈍化層92的材料而言,有些太陽能電池9會使用帶負固定電荷(Negative Fixed Charge)之材料(例如Al2O3)作為該鈍化層92的材料,此時,雖然帶負電荷的該鈍化層92對於p型的該射極區913有極佳的鈍化保護效果,但帶負固定電荷的該鈍化層92對於n型的該背表面電場區914的鈍化效果差,帶負電荷的該鈍化層92會吸引正電荷累積在該間隔區915,使該間隔區915形成具有固定電荷的反轉層(Inversion Layer,亦可稱為浮動接面(Floating Junction)),進而形成寄生分流(Parasitic Shunting)現象而產生漏電流(Leakage Current),造成元件短路,如此將影響該太陽能電池9的光電轉換效率。有些太陽能電池9會使用帶正固定電荷(Positive Fixed Charge)之材料(例如SiNX)作為該鈍化層92的材料,雖然帶正電荷的該鈍化層92對於n型的該背表面電場區914有極佳的鈍化保護效果,但相對地帶正電荷的該鈍化層92對於p型的該射極區913的鈍化效果卻較差。 As far as the material of the passivation layer 92 is concerned, some solar cells 9 use a material with a negative fixed charge (for example, Al 2 O 3 ) as the material of the passivation layer 92, in this case, although negatively charged. The passivation layer 92 has an excellent passivation protection effect for the p-type emitter region 913, but the passivation layer 92 with a negative fixed charge has a poor passivation effect on the n-type back surface electric field region 914, and is negatively charged. The passivation layer 92 attracts positive charges to accumulate in the spacer 915, and the spacer 915 forms an inversion layer (also referred to as a floating junction), which forms a fixed charge, thereby forming a parasitic shunt ( Parasitic Shunting) causes leakage current (Leakage Current), causing a short circuit of the component, which will affect the photoelectric conversion efficiency of the solar cell 9. Some solar cells 9 will use a material with a positive fixed charge (e.g., SiN X ) as the material of the passivation layer 92, although the positively charged passivation layer 92 has a back surface electric field region 914 for the n-type. An excellent passivation protection effect, but the relatively positively charged passivation layer 92 has a poor passivation effect on the p-type emitter region 913.
除此之外,還有些太陽能電池9會使用固定電荷密度(Fixed Charge Density)較低之材料(例如SiOX)作為該鈍化層92的材料,該鈍化層92因為固定電荷密度低而不會吸引電荷累積在該間隔區915,進而避免寄生分流的產生,故不論對於n型的該射極區913或p型的該背表面電場區914皆能提供較佳的鈍化保護。 In addition, some solar cells 9 use a material having a lower fixed charge density (for example, SiO X ) as a material of the passivation layer 92, which is not attracted because of a low fixed charge density. Charge builds up in the spacer 915, thereby avoiding the generation of parasitic shunts, so that the passivation protection is provided for both the n-type emitter region 913 or the p-type back surface electric field region 914.
然而,此種鈍化層92在實施上,主要是藉由高溫熱氧化製程而形成,具體是於一加熱腔體中使該基板91升溫至數百度C以上的高溫,再通入水氣與氧氣使該基板91的背面912氧化。前述高溫熱氧化製程的高溫環境不僅會降低該基板91的使用壽命、劣化該基板91的材料品質而容易於該基板91內形成缺陷,導致載子於該基板91中的複合機率增加。 However, such a passivation layer 92 is mainly formed by a high-temperature thermal oxidation process, specifically, heating the substrate 91 to a high temperature of several hundred degrees C or more in a heating chamber, and then introducing moisture and oxygen. The back surface 912 of the substrate 91 is oxidized. The high-temperature environment of the high-temperature thermal oxidation process not only lowers the service life of the substrate 91 but also degrades the material quality of the substrate 91, thereby facilitating the formation of defects in the substrate 91, resulting in an increase in the composite probability of the carrier in the substrate 91.
此外,由於該鈍化層92的製造順序通常在該射極區913與該背表面電場區914之後,因此,前述高溫環境還會影響該射極區913與該背表面電場區914的摻雜元素擴散摻雜於該基板91內的範圍,導致該間隔區915的縮小,如此又會使該太陽能電池9容易產生漏電流與元件短路問題,從而影響其光電轉換效率。 In addition, since the manufacturing sequence of the passivation layer 92 is generally after the emitter region 913 and the back surface electric field region 914, the aforementioned high temperature environment also affects the doping elements of the emitter region 913 and the back surface electric field region 914. Diffusion of the range doped in the substrate 91 causes the spacer 915 to shrink, which in turn makes the solar cell 9 susceptible to leakage current and component short-circuit problems, thereby affecting its photoelectric conversion efficiency.
因此,本發明之目的,即在提供一種鈍化效果優異而可避免產生漏電流與元件短路問題,進而能提升光電轉換效率的太陽能電池、其製造方法及其模組。 Therefore, an object of the present invention is to provide a solar cell, a method for manufacturing the same, and a module thereof which are excellent in passivation effect and can avoid generation of leakage current and component short-circuit problem, thereby improving photoelectric conversion efficiency.
於是,本發明太陽能電池,包含:一基板、一 鈍化層,以及一電極層。該基板包括一受光面與一背面,以及分別位於該背面的一背表面電場區、一間隔區與一射極區,該間隔區將該射極區與該背表面電場區間隔開。該鈍化層位於該背面上。該電極層位於該鈍化層上,該電極層經過該鈍化層的一第一穿孔與一第二穿孔而分別連接該射極區與該背表面電場區。該鈍化層包括一本質非晶矽層,該本質非晶矽層直接覆蓋該射極區、該間隔區與該背表面電場區。 Therefore, the solar cell of the present invention comprises: a substrate, a a passivation layer, and an electrode layer. The substrate includes a light receiving surface and a back surface, and a back surface electric field region, a spacing region and an emitter region respectively located on the back surface, the spacing region separating the emitter region from the back surface electric field interval. The passivation layer is on the back side. The electrode layer is disposed on the passivation layer, and the electrode layer is connected to the emitter region and the back surface electric field region through a first through hole and a second through hole of the passivation layer. The passivation layer includes an intrinsic amorphous germanium layer that directly covers the emitter region, the spacer region, and the back surface electric field region.
本發明太陽能電池模組,包含:相對設置的一第一板材與一第二板材、數個如前所述且排列於該第一板材與該第二板材之間的太陽能電池,以及一位於該第一板材與該第二板材之間並包覆在該數個太陽能電池的周圍的封裝材。 The solar cell module of the present invention comprises: a first plate and a second plate disposed oppositely, a plurality of solar cells arranged as described above between the first plate and the second plate, and a An encapsulating material between the first plate and the second plate and surrounding the plurality of solar cells.
本發明太陽能電池的製造方法,包含:準備一基板,該基板包括一受光面與一背面;在該基板的背面形成一射極區、一間隔區與一背表面電場區,並且使該間隔區將該射極區與該背表面電場區間隔開;在該背面上形成一鈍化層,該鈍化層包括一本質非晶矽層,並使該本質非晶矽層直接覆蓋該射極區、該間隔區與該背表面電場區;及在該鈍化層上形成一電極層,並使該電極層經過該鈍化層的一第一穿孔與一第二穿孔而分別連接該射極區與該背表面電場區。 The method for manufacturing a solar cell of the present invention comprises: preparing a substrate, the substrate comprising a light receiving surface and a back surface; forming an emitter region, a spacer region and a back surface electric field region on the back surface of the substrate, and making the spacer region Separating the emitter region from the back surface electric field; forming a passivation layer on the back surface, the passivation layer comprising an intrinsic amorphous germanium layer, and the intrinsic amorphous germanium layer directly covering the emitter region, a spacer region and the back surface electric field region; and forming an electrode layer on the passivation layer, and connecting the electrode layer through the first through hole and the second through hole of the passivation layer to respectively connect the emitter region and the back surface Electric field area.
本發明之功效在於:透過該鈍化層的本質非晶矽層直接覆蓋該射極區、該間隔區與該背表面電場區,可提升該基板的鈍化效果及載子收集率,並能避免間隔區產生寄生分流現象,從而避免產生漏電流及元件短路之問題。因此整體而言,本發明之太陽能電池可提升電流收集效能,並提高光電轉換效率。 The effect of the invention is that the intrinsic amorphous germanium layer of the passivation layer directly covers the emitter region, the spacer region and the back surface electric field region, thereby improving the passivation effect and the carrier collection rate of the substrate, and avoiding the interval The region generates parasitic shunts to avoid leakage currents and component short circuits. Therefore, in general, the solar cell of the present invention can improve current collection efficiency and improve photoelectric conversion efficiency.
11‧‧‧第一板材 11‧‧‧ first plate
12‧‧‧第二板材 12‧‧‧Second plate
13‧‧‧太陽能電池 13‧‧‧Solar battery
14‧‧‧封裝材 14‧‧‧Package
15‧‧‧焊帶導線 15‧‧‧welding wire
2‧‧‧基板 2‧‧‧Substrate
21‧‧‧受光面 21‧‧‧Stained surface
22‧‧‧背面 22‧‧‧ Back
23‧‧‧前表面電場區 23‧‧‧ front surface electric field
24‧‧‧射極區 24‧‧‧The polar zone
25‧‧‧背表面電場區 25‧‧‧Back surface electric field
26‧‧‧間隔區 26‧‧‧ interval zone
3‧‧‧抗反射層 3‧‧‧Anti-reflective layer
4‧‧‧鈍化層 4‧‧‧ Passivation layer
41‧‧‧本質非晶矽層 41‧‧‧ Essential amorphous layer
42‧‧‧無摻雜介電層 42‧‧‧Undoped dielectric layer
43‧‧‧第一穿孔 43‧‧‧First perforation
44‧‧‧第二穿孔 44‧‧‧Second perforation
5‧‧‧電極層 5‧‧‧electrode layer
51‧‧‧第一電極 51‧‧‧First electrode
52‧‧‧第二電極 52‧‧‧second electrode
7‧‧‧遮罩層 7‧‧‧mask layer
81~87‧‧‧步驟 81~87‧‧‧Steps
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一種已知背接觸太陽能電池的剖視示意圖;圖2是本發明太陽能電池模組之一較佳實施例之一局部剖視示意圖;圖3是該較佳實施例之一太陽能電池之一剖視示意圖;圖4是本發明太陽能電池的製造方法之一較佳實施例之一步驟流程方塊圖;及圖5是該製造方法之一步驟流程示意圖。 Other features and effects of the present invention will be apparent from the following description of the drawings, wherein: FIG. 1 is a schematic cross-sectional view of a known back contact solar cell; FIG. 2 is one of the solar cell modules of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 3 is a schematic cross-sectional view showing a solar cell of a preferred embodiment; FIG. 4 is a flow chart of a preferred embodiment of a solar cell manufacturing method of the present invention. Figure 5 and Figure 5 are schematic flow diagrams of one of the steps of the manufacturing method.
在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。 Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same reference numerals.
參閱圖2,本發明太陽能電池模組之一較佳實施例,包含:上下相對間隔設置的一第一板材11與一第二板材12、數個陣列式地排列於該第一板材11與該第二板材12之間的太陽能電池13,以及一位於該第一板材11與該 第二板材12之間且包覆在該數個太陽能電池13的周圍的封裝材14。 Referring to FIG. 2, a preferred embodiment of the solar cell module of the present invention comprises: a first plate 11 and a second plate 12 disposed at an upper and lower interval, and a plurality of arrays arranged on the first plate 11 and a solar cell 13 between the second sheets 12, and a first sheet 11 and the same The package material 14 between the second sheets 12 and surrounding the plurality of solar cells 13.
在本實施例中,該第一板材11與該第二板材12的材料沒有特殊限制,可使用玻璃或塑膠板材,而且位於該數個太陽能電池13之受光側的板材必須可透光。該封裝材14的材質例如可透光的乙烯醋酸乙烯共聚物(EVA),或其他可用於太陽能電池模組封裝的相關材料,並不限於本實施例的舉例。此外,該數個太陽能電池13彼此之間可透過數個焊帶導線(Ribbon)15電連接。由於該數個太陽能電池13的結構都相同,以下僅以其中一個為例進行說明。當然,在一模組中的該數個太陽能電池13的結構不以相同為絕對之必要。 In the present embodiment, the material of the first plate 11 and the second plate 12 is not particularly limited, and a glass or plastic plate may be used, and the plates on the light receiving side of the plurality of solar cells 13 must be transparent. The material of the encapsulant 14 is, for example, a light transmissive ethylene vinyl acetate copolymer (EVA), or other related materials usable for the solar cell module package, and is not limited to the examples of the embodiment. Further, the plurality of solar cells 13 are electrically connected to each other through a plurality of ribbon wires 15. Since the structures of the plurality of solar cells 13 are the same, only one of them will be described below as an example. Of course, the structure of the plurality of solar cells 13 in a module is not absolutely necessary.
參閱圖3,本實施例的太陽能電池13包含:一基板2、一抗反射層3、一鈍化層4,以及一電極層5。 Referring to FIG. 3, the solar cell 13 of the present embodiment includes a substrate 2, an anti-reflection layer 3, a passivation layer 4, and an electrode layer 5.
本實施例的基板2可為n型的單晶矽基板或多晶矽基板,並包括彼此相反的一受光面21與一背面22、一配置於該受光面21側的前表面電場區23,以及分別配置於該背面22側的一射極區24、一背表面電場區25與一間隔區26。 The substrate 2 of the present embodiment may be an n-type single crystal germanium substrate or a polycrystalline germanium substrate, and includes a light receiving surface 21 and a back surface 22 opposite to each other, a front surface electric field region 23 disposed on the light receiving surface 21 side, and respectively An emitter region 24, a back surface electric field region 25 and a spacer region 26 are disposed on the back surface 22 side.
該受光面21具有粗糙化結構,藉此提高入光量。該前表面電場區23位於該受光面21之內側,並且沿著該受光面21之凹凸起伏而延伸配置。該前表面電場區23為n+型半導體,且其摻雜濃度大於該基板2之摻雜濃度,藉此形成前表面電場(Front-Side Field,簡稱FSF)以 提升載子收集效率及光電轉換效率。在實施上,可利用擴散製程(例如磷擴散)或其他的摻雜方式,使該受光面21處的摻雜濃度高於該基板2內部,進而形成n+型半導體。 The light receiving surface 21 has a roughened structure, thereby increasing the amount of light incident. The front surface electric field region 23 is located inside the light receiving surface 21, and is arranged to extend along the unevenness of the light receiving surface 21. The front surface electric field region 23 is an n + -type semiconductor, and its doping concentration is greater than the doping concentration of the substrate 2, thereby forming a front surface electric field (Front-Side Field, FSF for short) to improve carrier collection efficiency and photoelectric conversion. effectiveness. In practice, a diffusion process (eg, phosphorus diffusion) or other doping method may be utilized to make the doping concentration at the light receiving surface 21 higher than the inside of the substrate 2, thereby forming an n + -type semiconductor.
該射極區24位於該背面22之內側,並且為p+型半導體,其摻雜電性與該基板2不同,藉以形成p-n接面,為光電效應的來源。在實施上,該射極區24是藉由擴散製程(例如硼擴散)或其他的摻雜方式使該基板2的內部局部形成重摻雜的p+型半導體。 The emitter region 24 is located inside the back surface 22 and is a p + -type semiconductor having different doping properties than the substrate 2, thereby forming a pn junction, which is a source of photoelectric effect. In practice, the emitter region 24 partially forms a heavily doped p + -type semiconductor inside the substrate 2 by a diffusion process (eg, boron diffusion) or other doping.
該背表面電場區25位於該背面22之內側,並且為n++型半導體。在實施上,該背表面電場區25是藉由擴散製程(例如磷擴散)或其他的摻雜方式使該基板22的內部局部形成重摻雜的n++型半導體,且其摻雜濃度大於該基板2的摻雜濃度,藉此形成背表面電場(Back-Side Field,簡稱BSF)以提升載子收集效率及光電轉換效率。 The back surface electric field region 25 is located inside the back surface 22 and is an n ++ type semiconductor. In practice, the back surface electric field region 25 is partially formed into a heavily doped n ++ type semiconductor by a diffusion process (eg, phosphorus diffusion) or other doping manner, and the doping concentration thereof is greater than The doping concentration of the substrate 2, thereby forming a Back-Side Field (BSF) to improve carrier collection efficiency and photoelectric conversion efficiency.
需要注意的是,若該基板2為一p型半導體基板,該前表面電場區23就會製作成摻雜濃度大於該p型基板2的p+型半導體,而該背表面電場區25會製作成摻雜濃度大於前述前表面電場區23之p++型半導體,且該射極區24則製作成n型半導體。 It should be noted that if the substrate 2 is a p-type semiconductor substrate, the front surface electric field region 23 is formed as a p + -type semiconductor having a doping concentration greater than that of the p-type substrate 2, and the back surface electric field region 25 is fabricated. The p ++ type semiconductor having a doping concentration greater than the front surface electric field region 23 is formed, and the emitter region 24 is formed as an n-type semiconductor.
該間隔區26位於該背面22之內側,並將該射極區24與該背表面電場區25間隔開而使兩者互不相連。實際上,利用擴散製程製作該射極區24與該背表面電場區25時,可透過適當的製程控制,使該射極區24與該背表面電場區25間隔,則該射極區24與該背表面電場區25之 間未額外進行擴散製程的區域就成為該間隔區26。該間隔區26的表面可如圖3所示地與該射極區24及該背表面電場區25的表面等高,但依製程需求之不同,該間隔區26的表面亦可與該射極區24及該背表面電場區25的表面不等高。 The spacer 26 is located inside the back surface 22 and spaces the emitter region 24 from the back surface electric field region 25 so that the two are not connected to each other. In fact, when the emitter region 24 and the back surface electric field region 25 are formed by a diffusion process, the emitter region 24 and the back surface electric field region 25 are separated by appropriate process control, and the emitter region 24 is The back surface electric field region 25 The region where no diffusion process is additionally performed becomes the spacer 26. The surface of the spacer 26 may be as high as the surface of the emitter region 24 and the back surface electric field region 25 as shown in FIG. 3, but the surface of the spacer region 26 may also be opposite to the emitter according to process requirements. The surface 24 and the surface of the back surface electric field region 25 are not equal in height.
本實施例的抗反射層3沿著該受光面21之凹凸起伏而延伸配置於該受光面21上,並覆蓋於該前表面電場區23上,其材料例如氮化矽(SiNX)等,用於提升光線入射量以及降低載子表面複合速率(Surface Recombination Velocity,簡稱SRV)。 The anti-reflection layer 3 of the present embodiment is disposed on the light-receiving surface 21 along the undulations of the light-receiving surface 21, and covers the front surface electric field region 23, such as tantalum nitride (SiN X ). It is used to increase the amount of light incident and reduce the surface recombination Velocity (SRV).
本實施例的鈍化層4配置於該背面22上,並包括一直接覆蓋於該射極區24、該間隔區26與該背表面電場區25上的本質非晶矽層(Intrinsic Amorphous Silicon Layer)41、一個直接覆蓋於該本質非晶矽層41上且材質異於非晶矽的無摻雜介電層42(Undoped Dielectric Layer)、一貫穿該本質非晶矽層41與該無摻雜介電層42而露出該射極區24的第一穿孔43,以及一貫穿該本質非晶矽層41與該無摻雜介電層42而露出該背表面電場區25的第二穿孔44。該鈍化層4主要用於鈍化、修補該基板2的表面以減少表面之懸鍵(Dangling Bond)與缺陷,從而可減少載子陷阱(Trap)及降低載子的表面複合速率,藉此提升該太陽能電池13的光電轉換效率。 The passivation layer 4 of the present embodiment is disposed on the back surface 22 and includes an Intrinsic Amorphous Silicon Layer directly covering the emitter region 24, the spacer region 26, and the back surface electric field region 25. 41. An undoped dielectric layer 42 (Undoped Dielectric Layer) directly covering the intrinsic amorphous germanium layer 41 and having a material different from the amorphous germanium layer, a through-essential amorphous germanium layer 41 and the undoped dielectric layer The electrical layer 42 exposes the first via 43 of the emitter region 24, and a second via 44 extending through the intrinsic amorphous germanium layer 41 and the undoped dielectric layer 42 to expose the back surface electric field region 25. The passivation layer 4 is mainly used for passivating and repairing the surface of the substrate 2 to reduce the Dangling Bond and defects of the surface, thereby reducing carrier trap and reducing the surface recombination rate of the carrier, thereby improving the The photoelectric conversion efficiency of the solar cell 13.
在實施上,該本質非晶矽層41的材料可為本質非晶矽(Intrinsic Silicon)或本質氫化非晶矽(Intrinsic Hydrogernated Silicon);而該無摻雜介電層42的材料可為氧化物、氮化物或上述材料的組合。在本實施例中,該本質非晶矽層41的材料具體是使用本質氫化非晶矽,對於材料為矽的該基板2而言,本質氫化非晶矽的氫鍵能提供更好的鈍化與修補效果;而該無摻雜介電層42具體則是使用氮化矽(SiNX)。 In practice, the material of the intrinsic amorphous germanium layer 41 may be Intrinsic Silicon or Intrinsic Hydrogenated Silicon; and the material of the undoped dielectric layer 42 may be an oxide. , nitride or a combination of the above materials. In the present embodiment, the material of the intrinsic amorphous germanium layer 41 is specifically an essentially hydrogenated amorphous germanium. For the substrate 2 having a germanium material, the hydrogen bond of the substantially hydrogenated amorphous germanium can provide better passivation and The repair effect; and the undoped dielectric layer 42 specifically uses tantalum nitride (SiN X ).
本實施例的電極層5位於該鈍化層4上,該電極層5具有一經過該鈍化層4的第一穿孔43而連接該射極區24的第一電極51,以及一經過該鈍化層4的第二穿孔44而連接該背表面電場區25的第二電極52。 The electrode layer 5 of this embodiment is located on the passivation layer 4, the electrode layer 5 has a first via 51 connected to the emitter region 24 through the first via 43 of the passivation layer 4, and a passivation layer 4 The second via 44 is connected to the second electrode 52 of the back surface electric field region 25.
需要說明的是,本實施例雖然以一個射極區24、一個間隔區26及一個背表面電場區25為例進行說明,但實際上在一太陽能電池13中,射極區24、間隔區26及背表面電場區25的數量可以為更多個,並以p-n-p-n之交錯方式重複排列配置,任一組相鄰的射極區24與背表面電場區25之間即形成一個間隔區26,此時,第一電極51與第一穿孔43對應射極區24的數量與位置,而第二電極52與第二穿孔44則對應背表面電場區25的數量與位置。 It should be noted that, in this embodiment, an emitter region 24, a spacer region 26, and a back surface electric field region 25 are taken as an example. However, in a solar cell 13, the emitter region 24 and the spacer region 26 are actually included. The number of the back surface electric field regions 25 may be more and arranged in a staggered manner in a pnpn manner, and a spacer 26 is formed between any adjacent set of the emitter regions 24 and the back surface electric field region 25. The first electrode 51 and the first through hole 43 correspond to the number and position of the emitter regions 24, and the second electrode 52 and the second through hole 44 correspond to the number and position of the back surface electric field regions 25.
參閱圖3、4、5,本發明製造方法之一較佳實施例,包含: Referring to Figures 3, 4 and 5, a preferred embodiment of the manufacturing method of the present invention comprises:
步驟81:準備該基板2,並且對該基板2的受光面21進行粗糙化處理以及對該基板2的背面22進行拋光處理。其中,將該受光面21製作成粗糙化結構可提高入 光量,但實施上不以進行粗糙化處理為絕對之必要。 Step 81: Prepare the substrate 2, roughen the light-receiving surface 21 of the substrate 2, and polish the back surface 22 of the substrate 2. Wherein, the light-receiving surface 21 is formed into a roughened structure to improve the entrance. The amount of light, but the implementation is not necessary for roughening.
步驟82:在該基板2之背面22的內側分別形成該射極區24、該間隔區26與該背表面電場區25,並且使該間隔區26將該射極區24與該背表面電場區25間隔開。之後,於該背面22上配置一遮罩層7。 Step 82: forming the emitter region 24, the spacer region 26 and the back surface electric field region 25 on the inner side of the back surface 22 of the substrate 2, and causing the spacer region 26 to combine the emitter region 24 and the back surface electric field region. 25 spaced apart. Thereafter, a mask layer 7 is disposed on the back surface 22.
具體來說,該射極區24是在該背面22之內側的局部區域進行硼擴散的摻雜方式所製得的重摻雜的p+型半導體。而該背表面電場區25則是在該背面22之內側的局部區域進行磷擴散的摻雜方式所製得的摻雜濃度大於該基板2的n++型半導體。在此同時,可透過適當的製程控制,例如設置阻擋層或遮罩等方式,使該射極區24與該背表面電場區25間隔,以避免寄生分流(Parasitic Shunting)現象而產生漏電流(Leakage Current)。此時,該射極區24與該背表面電場區25之間未額外進行擴散製程之區域就成為該間隔區26。 Specifically, the emitter region 24 is doped with boron diffused manner in the local region of the back surface 22 of the inner prepared heavily doped p + -type semiconductor. The back surface electric field region 25 is a doping concentration of phosphorus diffusion in a local region on the inner side of the back surface 22 to produce a doping concentration greater than that of the substrate 2 of the n ++ type semiconductor. At the same time, the emitter region 24 can be spaced from the back surface electric field region 25 by appropriate process control, such as providing a barrier layer or a mask, to avoid parasitic shunting and leakage current ( Leakage Current). At this time, the region between the emitter region 24 and the back surface electric field region 25 without additional diffusion process becomes the spacer region 26.
接著,可使用例如PECVD之真空鍍膜方式形成連續的該遮罩層7,使該遮罩層7覆蓋於該射極區24、該間隔區26與該背表面電場區25上。所述的真空鍍膜方式可包含物理氣相沉積(PVD)、化學氣相沉積(CVD)等方式,而所述遮罩層7的材料具體例如氧化矽。 Next, the mask layer 7 may be formed by vacuum coating using, for example, PECVD, so that the mask layer 7 covers the emitter region 24, the spacer region 26, and the back surface electric field region 25. The vacuum coating method may include physical vapor deposition (PVD), chemical vapor deposition (CVD), and the like, and the material of the mask layer 7 is specifically, for example, ruthenium oxide.
在本實施例中,該射極區24、該背表面電場區25與該遮照層7均是在大於700℃的環境下進行製造。 In this embodiment, the emitter region 24, the back surface electric field region 25, and the mask layer 7 are both fabricated in an environment greater than 700 °C.
步驟83:在該基板2之受光面21的內側形成該前表面電場區23。在實施上,可利用擴散製程或摻雜膠 (Doping Paste),使該受光面21之內側的局部區域的摻雜濃度高於該基板2內部,進而形成局部摻雜的n+型半導體,如此便可得到該前表面電場區23。在本實施例中,該前表面電場區23是在大於700℃的環境下進行製造。 Step 83: The front surface electric field region 23 is formed inside the light receiving surface 21 of the substrate 2. In practice, a diffusion process or a doping paste may be used to make a local region of the light-receiving surface 21 have a higher doping concentration than the inside of the substrate 2, thereby forming a partially doped n + -type semiconductor. The front surface electric field region 23 is obtained. In the present embodiment, the front surface electric field region 23 is fabricated in an environment of more than 700 °C.
進一步說明的是,在實施上,步驟82、83的順序也可對調,也就是先在該受光面21形成該前表面電場區23之後,再於該背面22形成該射極層區、該間隔區26與該背表面電場區25,而不限於本實施例之舉例。 Further, in practice, the order of steps 82 and 83 may be reversed, that is, after the front surface electric field region 23 is formed on the light receiving surface 21, the emitter layer region is formed on the back surface 22, and the interval is formed. The region 26 and the back surface electric field region 25 are not limited to the examples of the embodiment.
步驟84:在該基板2之受光面21上形成該抗反射層3,並且該抗反射層3覆蓋於該前表面電場區23上。之後,移除該遮罩層7。 Step 84: forming the anti-reflection layer 3 on the light-receiving surface 21 of the substrate 2, and the anti-reflection layer 3 covers the front surface electric field region 23. Thereafter, the mask layer 7 is removed.
在實施上,可利用例如PECVD之真空鍍膜方式在該前表面電場區23上形成該抗反射層3,而該抗反射層3的材料可為氮化矽(SiNX)等。此外,本實施例是使用濕蝕刻的方式移除該遮罩層7。在本實施例中,該抗反射層3是在大於350℃的環境下進行製造。 In practice, the anti-reflective layer 3 may be formed on the front surface electric field region 23 by a vacuum coating method such as PECVD, and the anti-reflective layer 3 may be made of tantalum nitride (SiN X ) or the like. Further, this embodiment removes the mask layer 7 by wet etching. In the present embodiment, the anti-reflection layer 3 is manufactured in an environment of more than 350 °C.
步驟85:在該基板2之背面22上形成該鈍化層4,使該鈍化層4的本質非晶矽層41直接覆蓋於該射極區24、該間隔區26與該背表面電場區25上,而該鈍化層4的無摻雜介電層42直接覆蓋於該本質非晶矽層41上。 Step 85: forming the passivation layer 4 on the back surface 22 of the substrate 2 such that the intrinsic amorphous germanium layer 41 of the passivation layer 4 directly covers the emitter region 24, the spacer region 26 and the back surface electric field region 25. The undoped dielectric layer 42 of the passivation layer 4 directly covers the intrinsic amorphous germanium layer 41.
在實施上,先利用PECVD之真空鍍膜方式,在溫度為200~250℃的環境下,於該背面22上形成該本質非晶矽層41,並且該本質非晶矽層41的材料為本質氫化非晶矽。接著,同樣利用PECVD之真空鍍膜方式,在溫度 低於200℃的環境下,於該本質非晶矽層41上形成該無摻雜介電層42,並且該無摻雜介電層42的材料為氮化矽。 In practice, the intrinsic amorphous germanium layer 41 is formed on the back surface 22 by a vacuum coating method of PECVD under the environment of a temperature of 200 to 250 ° C, and the material of the intrinsic amorphous germanium layer 41 is substantially hydrogenated. Amorphous germanium. Then, using the vacuum coating method of PECVD, at the temperature The undoped dielectric layer 42 is formed on the intrinsic amorphous germanium layer 41 in an environment below 200 ° C, and the material of the undoped dielectric layer 42 is tantalum nitride.
步驟86:在該鈍化層4上且對應該射極區24之處形成該第一穿孔43以露出該射極區24,並在該鈍化層4上且對應該背表面電場區25之處形成該第二穿孔44以露出該背表面電場區25。具體可透過光微影技術(Photolithography)、乾蝕刻例如雷射蝕刻、溼蝕刻或以蝕刻膠(Etching Paste)等方式,以分別形成貫穿該本質非晶矽層41與該無摻雜介電層42的該第一穿孔43與該第二穿孔44。 Step 86: forming the first via 43 on the passivation layer 4 and corresponding to the emitter region 24 to expose the emitter region 24, and forming on the passivation layer 4 and corresponding to the back surface electric field region 25. The second via 44 exposes the back surface electric field region 25. Specifically, through photolithography, dry etching, such as laser etching, wet etching, or etching (Etching Paste), etc., respectively, through the intrinsic amorphous germanium layer 41 and the undoped dielectric layer. The first through hole 43 of the 42 and the second through hole 44.
步驟87:在該鈍化層4上形成該電極層5,並使該電極層5的第一電極51與第二電極52分別經過該鈍化層4的第一穿孔43與第二穿孔44,而分別連接該射極區24與該背表面電場區25。具體可以利用網印、噴印或真空鍍膜等方式,配置該第一電極51與該第二電極52。 Step 87: forming the electrode layer 5 on the passivation layer 4, and passing the first electrode 51 and the second electrode 52 of the electrode layer 5 through the first through hole 43 and the second through hole 44 of the passivation layer 4, respectively. The emitter region 24 is connected to the back surface electric field region 25. Specifically, the first electrode 51 and the second electrode 52 may be disposed by screen printing, printing, or vacuum coating.
需要說明的是,本實施例的無摻雜介電層42之形成溫度低於該本質非晶矽層41的形成溫度,透過該無摻雜介電層42之設置,可保護該本質非晶矽層41。具體來說,由於該無摻雜介電層42的材料屬於陶瓷,因而具有較佳的硬度及化學抵抗性,從而可避免該本質非晶矽層41被破壞或因環境因素,例如濕氣或被氧化,導致該本質非晶矽層41的鈍化能力降低之問題。 It should be noted that the formation temperature of the undoped dielectric layer 42 of the present embodiment is lower than the formation temperature of the intrinsic amorphous germanium layer 41, and the amorphous semiconductor layer 42 is disposed to protect the amorphous矽 layer 41. Specifically, since the material of the undoped dielectric layer 42 is ceramic, it has better hardness and chemical resistance, so that the amorphous layer 41 can be prevented from being destroyed or due to environmental factors such as moisture or Oxidation causes a problem that the passivation ability of the intrinsic amorphous germanium layer 41 is lowered.
此外,雖然該本質非晶矽層41的鈍化效果較佳,但基於上述該本質非晶矽層41較易受外界環境影響之 特性,本實施例對於該無摻雜介電層42的材料設計上選用非晶矽以外且保護能力較佳之材質,以保護並避免該本質非晶矽層41受外界環境影響而降低應有鈍化品質。 In addition, although the passivation effect of the intrinsic amorphous germanium layer 41 is better, the amorphous germanium layer 41 is more susceptible to the external environment based on the above-described nature. In this embodiment, the material of the undoped dielectric layer 42 is designed to have a material other than amorphous germanium and has better protection ability to protect and avoid the intrinsic amorphous germanium layer 41 from being affected by the external environment and reducing the passivation. quality.
當然在實施上,該太陽能電池13的鈍化層4也可不包括該無摻雜介電層42,此時在製造上,於步驟85中,在該基板2之背面22上僅形成該本質非晶矽層41;於步驟86中,使該第一穿孔43與該第二穿孔44僅貫穿該本質非晶矽層41。 Of course, in practice, the passivation layer 4 of the solar cell 13 may not include the undoped dielectric layer 42 . In this case, in the manufacturing process, only the essential amorphous is formed on the back surface 22 of the substrate 2 in step 85 . The germanium layer 41; in step 86, the first via 43 and the second via 44 are only penetrated through the intrinsic amorphous germanium layer 41.
本實施例在使用上,由於該本質非晶矽層41的固定電荷密度(Fixed Charge Density)較低,透過該本質非晶矽層41直接覆蓋於該射極區24、該間隔區26與該背表面電場區25上的設計,使電荷不會被吸引而累積在該間隔區26,進而能避免寄生分流現象而產生漏電流並造成元件短路等問題,故不論對於p型的該射極區24或n型的該背表面電場區25皆能提供較佳的鈍化保護。於是,本實施例透過該本質非晶矽層41接觸該基板2的背面22,以修補、鈍化該背面22上的懸鍵與缺陷,藉此減少載子陷阱及降低載子的表面複合速率,從而能提升該太陽能電池13的光電轉換效率。 In this embodiment, since the intrinsic amorphous germanium layer 41 has a low fixed charge density (Fixed Charge Density), the intrinsic amorphous germanium layer 41 directly covers the emitter region 24, the spacer region 26 and the The design of the back surface electric field region 25 allows the charge to be accumulated without being attracted to the spacer region 26, thereby avoiding the problem of parasitic shunting, leakage current, and short-circuiting of components, so that the emitter region of the p-type is used. The back surface electric field region 25 of the 24 or n type provides better passivation protection. Thus, the present embodiment contacts the back surface 22 of the substrate 2 through the intrinsic amorphous germanium layer 41 to repair and passivate the dangling bonds and defects on the back surface 22, thereby reducing carrier traps and reducing the surface recombination rate of the carriers. Thereby, the photoelectric conversion efficiency of the solar cell 13 can be improved.
進一步地,在步驟85中,該本質非晶矽層41的形成溫度為200~250℃,而該無摻雜介電層42之形成溫度低於200℃並低於該本質非晶矽層41的形成溫度,前述使用相對較低製程溫度的實施手段,能減少缺陷形成於該基板2內的機會,因而使該基板2能保有應有的材料品 質,進而降低載子在基板2內的傳輸過程中被複合的機率,同時該基板2也能保有應有的使用壽命。此外,使用較低製程溫度還可避免影響該射極區24與該背表面電場區25的摻雜元素擴散摻雜於該基板2內的範圍,從而也能避免產生漏電流與元件短路等問題。 Further, in step 85, the formation temperature of the intrinsic amorphous germanium layer 41 is 200 to 250 ° C, and the formation temperature of the undoped dielectric layer 42 is lower than 200 ° C and lower than the intrinsic amorphous germanium layer 41. The formation temperature, the aforementioned means for using a relatively low process temperature, can reduce the chance of defects being formed in the substrate 2, thereby enabling the substrate 2 to retain the desired material The quality, in turn, reduces the probability of the carrier being recombined during transport in the substrate 2, while the substrate 2 can retain its useful life. In addition, the use of a lower process temperature can also avoid affecting the range in which the dopant elements of the emitter region 24 and the back surface electric field region 25 are diffused and doped into the substrate 2, thereby avoiding problems such as leakage current and component short-circuit. .
除此之外,由於本實施例的射極區24與背表面電場區25皆是透過擴散製程而形成於該基板2的背面22之內側,前述作法使該基板2與該射極區24之間的接面以及該基板2與該背表面電場之間的接面皆為同質接面(Homojunction)。換句話說,本實施例採用同質接面而非異質接面(Heterojunction)的結構,對於硼擴散的摻雜方式所製得的該射極區24會具有較佳的接面效果。 In addition, since the emitter region 24 and the back surface electric field region 25 of the present embodiment are formed on the inner side of the back surface 22 of the substrate 2 through a diffusion process, the substrate 2 and the emitter region 24 are formed by the foregoing method. The junction between the substrate and the junction between the substrate 2 and the back surface electric field is a homojunction. In other words, in this embodiment, the homojunction is used instead of the heterojunction structure, and the emitter region 24 obtained by the boron diffusion doping method has a better junction effect.
綜上所述,透過該鈍化層4的本質非晶矽層41直接覆蓋該射極區24、該間隔區26與該背表面電場區25,可提升該基板2的鈍化效果及載子收集率,並能避免間隔區26產生寄生分流現象,從而能有效避免產生漏電流及元件短路之問題。因此就整體而言,本發明之太陽能電池13可提升電流收集效能,並提高光電轉換效率,故確實能達成本發明之目的。 In summary, the intrinsic amorphous germanium layer 41 of the passivation layer 4 directly covers the emitter region 24, the spacer region 26 and the back surface electric field region 25, thereby improving the passivation effect and carrier collection rate of the substrate 2. Moreover, the parasitic shunt phenomenon of the spacer 26 can be avoided, so that the problem of leakage current and short circuit of the component can be effectively avoided. Therefore, as a whole, the solar cell 13 of the present invention can improve the current collecting efficiency and improve the photoelectric conversion efficiency, so that the object of the present invention can be achieved.
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the patent application scope and patent specification content of the present invention, All remain within the scope of the invention patent.
13‧‧‧太陽能電池 13‧‧‧Solar battery
2‧‧‧基板 2‧‧‧Substrate
21‧‧‧受光面 21‧‧‧Stained surface
22‧‧‧背面 22‧‧‧ Back
23‧‧‧前表面電場區 23‧‧‧ front surface electric field
24‧‧‧射極區 24‧‧‧The polar zone
25‧‧‧背表面電場區 25‧‧‧Back surface electric field
26‧‧‧間隔區 26‧‧‧ interval zone
3‧‧‧抗反射層 3‧‧‧Anti-reflective layer
4‧‧‧鈍化層 4‧‧‧ Passivation layer
41‧‧‧本質非晶矽層 41‧‧‧ Essential amorphous layer
42‧‧‧無摻雜介電層 42‧‧‧Undoped dielectric layer
43‧‧‧第一穿孔 43‧‧‧First perforation
44‧‧‧第二穿孔 44‧‧‧Second perforation
5‧‧‧電極層 5‧‧‧electrode layer
51‧‧‧第一電極 51‧‧‧First electrode
52‧‧‧第二電極 52‧‧‧second electrode
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103117675A TWI536595B (en) | 2014-05-20 | 2014-05-20 | Solar cell, method of manufacturing the same and module comprising the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103117675A TWI536595B (en) | 2014-05-20 | 2014-05-20 | Solar cell, method of manufacturing the same and module comprising the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201545367A TW201545367A (en) | 2015-12-01 |
TWI536595B true TWI536595B (en) | 2016-06-01 |
Family
ID=55407203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103117675A TWI536595B (en) | 2014-05-20 | 2014-05-20 | Solar cell, method of manufacturing the same and module comprising the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI536595B (en) |
-
2014
- 2014-05-20 TW TW103117675A patent/TWI536595B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW201545367A (en) | 2015-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8603851B2 (en) | Solar cell and method of manufacturing the same by simultaneously forming first and second doping regions | |
US10991834B1 (en) | Photovoltaic module, solar cell, and method for producing solar cell | |
JP3205613U (en) | Heterojunction solar cell structure | |
KR20140126872A (en) | Solar cell and method for manufacturing the same | |
JP2013513964A (en) | Back contact / heterojunction solar cell | |
JP7023976B2 (en) | Manufacturing method of P-type PERC double-sided solar cell | |
TWI424582B (en) | Method of fabricating solar cell | |
KR101886818B1 (en) | Method for manufacturing of heterojunction silicon solar cell | |
TW201725746A (en) | Tandem solar cell and method for manufacturing thereof, and solar panel | |
TWI524544B (en) | Solar cell and solar cell module | |
JP6114029B2 (en) | Photovoltaic element and manufacturing method thereof | |
US20120103387A1 (en) | Photovoltaic component | |
JP2010080578A (en) | Photoelectric conversion element and manufacturing method therefor | |
TWI484647B (en) | Solar cell and module comprising the same | |
TWI536595B (en) | Solar cell, method of manufacturing the same and module comprising the same | |
JP2015159198A (en) | Photovoltaic element, manufacturing method therefor and manufacturing apparatus therefor | |
TWI573284B (en) | Solar cell, module comprising the same, and method of manufacturing the same | |
CN210073868U (en) | PERC solar cell with selectively enhanced front passivation | |
WO2016140309A1 (en) | Photoelectric conversion element and method for manufacturing same | |
KR20180127597A (en) | Back contact silicon solar cell and method for manufacturing the same | |
TW202310440A (en) | Solar cell | |
KR20110071374A (en) | Back contact type hetero-junction solar cell and method of fabricating the same | |
TW201533922A (en) | Back contact solar cell, method of manufacturing the same and module comprising the same | |
TWI527252B (en) | Solar cell and module comprising the same | |
JP2016178280A (en) | Solar cell element and solar cell module using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |