TWI521683B - Erasable programmable single-poly nonvolatile memory - Google Patents
Erasable programmable single-poly nonvolatile memory Download PDFInfo
- Publication number
- TWI521683B TWI521683B TW102145910A TW102145910A TWI521683B TW I521683 B TWI521683 B TW I521683B TW 102145910 A TW102145910 A TW 102145910A TW 102145910 A TW102145910 A TW 102145910A TW I521683 B TWI521683 B TW I521683B
- Authority
- TW
- Taiwan
- Prior art keywords
- type
- region
- source
- doping amount
- substrate
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims description 66
- 229910052732 germanium Inorganic materials 0.000 claims description 35
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 35
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims 2
- 229910052763 palladium Inorganic materials 0.000 claims 1
- 230000000694 effects Effects 0.000 description 15
- 230000004888 barrier function Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 230000008901 benefit Effects 0.000 description 11
- 238000002955 isolation Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 230000015556 catabolic process Effects 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 229920005591 polysilicon Polymers 0.000 description 6
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical group [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 4
- 229910052805 deuterium Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Description
本發明是有關於一種非揮發性記憶體(nonvolatile memory),且特別是有關於一種具可程式可抹除的單一多晶矽層非揮發性記憶體。 The present invention relates to a nonvolatile memory, and more particularly to a single polycrystalline germanium layer non-volatile memory with programmable erasability.
請參照第1圖,其所繪示為習知具可程式的雙多晶矽層非揮發性記憶體(programmable dual-poly nonvolatile memory)示意圖。此具可程式的雙多晶矽層的非揮發性記憶體又稱為浮動閘極電晶體(floating-gate transistor)。此非揮發性記憶體包括堆疊且不相接觸的二個閘極,上方為控制閘極(control gate)12連接至控制線(C)、下方為浮動閘極(floating gate)14。而在p型基板(P-substrate)中包括一n型源極摻雜區域(n type source doped region)連接至源極線(S)以及一n型汲極摻雜區域(n type drain doped region)連接至汲極線(D)。 Please refer to FIG. 1 , which is a schematic diagram of a programmable dual-poly nonvolatile memory. The non-volatile memory of the programmable dual polysilicon layer is also referred to as a floating-gate transistor. The non-volatile memory includes two gates that are stacked and not in contact, with a control gate 12 connected to the control line (C) and a floating gate 14 below. In the p-substrate, an n-type source doped region is connected to the source line (S) and an n-type drain doped region (n type drain doped region) ) Connect to the bungee line (D).
舉例來說,於程式狀態(programmed state)時,汲極線(D)提供一高電壓(例如+16V)、源極線(S)提供一接地電壓(Ground)、控制線(C)提供一控制電壓(例如+25V)。因此,當電子由源極線(S)經過n通道(n-channel)至汲極線(D)的過程,熱載子(hot carrier),例如熱電子(hot electron),會被控制閘極12上的控制電壓所吸引並且注入(inject)浮動閘極14中。此時,浮動閘極14累積許多載子(carrier),因此可視為第一儲存狀態(例如“0”)。 For example, in the programmed state, the drain line (D) provides a high voltage (eg, +16V), the source line (S) provides a ground voltage (Ground), and the control line (C) provides a Control voltage (eg +25V). Therefore, when electrons pass through the n-channel to the drain line (D) from the source line (S), hot carriers, such as hot electrons, are controlled by the gate. The control voltage on 12 is attracted to and injected into the floating gate 14. At this time, the floating gate 14 accumulates a lot of carriers, and thus can be regarded as the first storage state (for example, "0").
於未程式狀態(not-programmed state)時,浮動閘極14中沒有任何載子(carrier),因此可視為第二儲存狀態(例如“1”)。 In the not-programmed state, there is no carrier in the floating gate 14, so it can be regarded as a second storage state (for example, "1").
換句話說,於第一儲存狀態以及第二儲存狀態將造成浮動閘極電晶體的汲極電流(id)與閘極源電壓(Vgs)的特性(id-Vgs characteristic)變化。因此,根據汲極電流(id)與閘極源電壓(Vgs)的特性(id-Vgs characteristic)變化即可得知浮動閘極電晶體的儲存狀態。 In other words, the first storage state and the second storage state will cause a change in the drain current (id) of the floating gate transistor and the characteristic (id-Vgs characteristic) of the gate source voltage (Vgs). Therefore, the storage state of the floating gate transistor can be known from the variation of the drain current (id) and the gate source voltage (Vgs) characteristic (id-Vgs characteristic).
然而,雙多晶矽層的非揮發性記憶體由於需要分開製作浮動閘極14以及控制閘極12,因此需要較多的製作步驟才可完成,並且不相容於傳統標準CMOS電晶體的製程。 However, the non-volatile memory of the double poly germanium layer requires a large number of fabrication steps to be completed due to the need to separately fabricate the floating gate 14 and the control gate 12, and is incompatible with the process of a conventional standard CMOS transistor.
美國專利US6678190揭露一種具可程式的單一多晶矽層非揮發性記憶體。請參照第2A圖,其所繪示為習知具可程式的單一多晶矽層非揮發性記憶體示意圖;第2B圖所繪示為習知具可程式的單一多晶矽層非揮發性記憶體的上視圖;第2C圖所繪示為習知具可程式的單一多晶矽層非揮發性記憶體的電路圖。 U.S. Patent 6,678,190 discloses a programmable single polycrystalline germanium layer non-volatile memory. Please refer to FIG. 2A, which is a schematic diagram of a conventional programmable polycrystalline germanium layer non-volatile memory; FIG. 2B is a diagram of a conventional programmable polycrystalline germanium layer non-volatile memory. View; Figure 2C is a circuit diagram of a conventional single polycrystalline germanium non-volatile memory.
如第2A圖至第2C圖所示,習知具可程式的單一多晶矽層非揮發性記憶體係包括二個串接(serially connected)的p型電晶體。第一p型電晶體係作為選擇電晶體(select transistor),其選擇閘極(select gate)24連接至一選擇閘極電壓(select gate voltage,VSG),第一p型源/汲區域(p type source/drain region)21連接至源極線電壓(source line voltage,VSL)。再者,第二p型源/汲區域22可視為第一p型電晶體的p型汲極區域(p type drain region)與第二p型電晶體的p型源極區域(p type source region)相互連接。第二p型電晶體上方包括一浮動閘極26,其第三p型源/汲區域23連接至位元線電壓(bit line voltage,VBL)。再者,該二p型電晶體係製作於一N型井區(N-well region,NW)其連接至一N型井區電壓(N-well voltage,VNW)。 As shown in Figures 2A through 2C, conventional single crystal polycrystalline germanium non-volatile memory systems include two serially connected p-type transistors. The first p-type electro-crystal system is used as a select transistor, and a select gate 24 is connected to a select gate voltage (V SG ), the first p-type source/汲 region ( p type source/drain region 21 is connected to a source line voltage (V SL ). Furthermore, the second p-type source/germanium region 22 can be regarded as a p-type drain region of the first p-type transistor and a p-type source region of the second p-type transistor (p type source region) ) Connected to each other. The second p-type transistor includes a floating gate 26 above it, and the third p-type source/german region 23 is connected to a bit line voltage ( VBL ). Furthermore, the two p-type electro-crystal system is fabricated in an N-well region (NW) connected to an N-well voltage (V NW ).
再者,經由適當地控制選擇閘極電壓(VSG)、源極線電壓(VSL)、位元線電壓(VBL)、以及N型井區電壓(VNW)即可以使習知具可程式的單一多晶矽層非揮發性記憶體進入程式狀態、或 者讀取狀態。 Furthermore, by appropriately controlling the selection gate voltage (V SG ), the source line voltage (V SL ), the bit line voltage (V BL ), and the N-type well voltage (V NW ), it is possible to make the conventional device The programmable single polysilicon layer non-volatile memory enters the program state or the read state.
由於習知具可程式的單一多晶矽層非揮發性記憶體中,2個p型電晶體各僅有一個閘極24、26,因此可完全相容於標準CMOS電晶體的製程。 Since the conventional p-type transistor has only one gate 24, 26 in the programmable single polycrystalline germanium non-volatile memory, it is completely compatible with the standard CMOS transistor process.
然而,第1圖與第2A~2C圖的非揮發性記憶體僅具備可程式的功能,其僅可利用電氣特性將熱載子注入於浮動閘極中,並無法利用電氣的特性來將浮動閘極中的儲存載子移除,僅可利用紫外光(ultraviolet light)照射方式來清除於浮動閘極中的儲存載子,進而達成資料抹除的功能。因此,這類非揮發性記憶體係被稱為具一次程式的記憶體(one time programming memory,簡稱OTP memory)。 However, the non-volatile memory of Figure 1 and Figures 2A to 2C only has a programmable function. It can only inject the hot carrier into the floating gate using electrical characteristics, and cannot use the electrical characteristics to float. The storage carrier in the gate is removed, and only the ultraviolet light (ultraviolet light) illumination method can be used to remove the storage carrier in the floating gate, thereby achieving the function of data erasing. Therefore, such a non-volatile memory system is called a one-time programming memory (OTP memory).
因此,如何改進上述具可程式的單一多晶矽層非揮發性記憶體,並且達成具可程式可抹除的單一多晶矽層非揮發性記憶體,也就是達成具多次程式的記憶體(multi-times programming memory,簡稱MTP memory)即是本發明所欲達成的目的。 Therefore, how to improve the above-mentioned programmable polycrystalline germanium layer non-volatile memory, and achieve a single polycrystalline germanium layer non-volatile memory with programmable erasability, that is, to achieve a multi-time memory (multi-times) Programming memory (MTP memory for short) is the object of the present invention.
本發明的目的係提出一種具可程式可抹除的單一多晶矽層非揮發性記憶體。係針對習知非揮發性記憶體進行改進達成具可程式可抹除的單一多晶矽層非揮發性記憶體。 SUMMARY OF THE INVENTION The object of the present invention is to provide a single polycrystalline germanium layer non-volatile memory with programmable erasability. The conventional non-volatile memory is modified to achieve a single polycrystalline germanium layer non-volatile memory with programmable erasability.
本發明係有關於一種具可程式可抹除的單一多晶矽非揮發性記憶體,包括:一基板結構;一第一p型電晶體,包括一選擇閘極連接至一選擇閘極電壓,一第一p型源/汲區域連接至一源極線電壓以及一第二p型源/汲區域;一第二p型電晶體,包括該第二p型源/汲區域,一第三p型源/汲區域連接至一位元線電壓,以及一浮動閘極,其中該第一p型源/汲區域、該第二p型源/汲區域、與該第三p型源/汲區域形成於一N型井區內;以及一抹除閘區域,相鄰於該浮動閘極,且該抹除閘區域包括一P型 井區以及一n型源/汲區域,該n型源/汲區域連接至一抹除線電壓;其中,該P型井區與該N型井區形成於該基板結構內。 The invention relates to a single polycrystalline germanium non-volatile memory with programmable erasability, comprising: a substrate structure; a first p-type transistor comprising a selective gate connected to a selective gate voltage, a first a p-type source/german region is connected to a source line voltage and a second p-type source/german region; a second p-type transistor includes the second p-type source/turn region, and a third p-type source The /汲 region is connected to a one-bit line voltage, and a floating gate, wherein the first p-type source/turn region, the second p-type source/turn region, and the third p-type source/turn region are formed An N-type well region; and a wipe-off region adjacent to the floating gate, and the erase gate region includes a P-type The well region and an n-type source/german region are connected to a erase line voltage; wherein the P-type well region and the N-type well region are formed in the substrate structure.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:
12‧‧‧控制閘極 12‧‧‧Control gate
14‧‧‧浮動閘極 14‧‧‧Floating gate
21‧‧‧第一p型源/汲區域 21‧‧‧First p-type source/汲 area
22‧‧‧第二p型源/汲區域 22‧‧‧Second p-type source/汲 area
23‧‧‧第三p型源/汲區域 23‧‧‧ Third p-type source/汲 area
24‧‧‧選擇閘極 24‧‧‧Select gate
26‧‧‧浮動閘極 26‧‧‧Floating gate
31‧‧‧第一p型源/汲區域 31‧‧‧First p-type source/汲 area
32‧‧‧第二p型源/汲區域 32‧‧‧Second p-type source/汲 area
33‧‧‧第三p型源/汲區域 33‧‧‧ Third p-type source/汲 area
34‧‧‧選擇閘極 34‧‧‧Select gate
35、95‧‧‧抹除閘區域 35, 95‧‧‧ erasing gate area
36‧‧‧浮動閘極 36‧‧‧Floating gate
38‧‧‧n型源/汲區域 38‧‧‧n type source/汲 area
39‧‧‧隔離結構 39‧‧‧Isolation structure
48‧‧‧p型摻雜區域 48‧‧‧p-doped region
92‧‧‧n型源/汲區域 92‧‧‧n type source/汲 area
94‧‧‧雙擴散汲極摻雜區 94‧‧‧Double diffusion doped region
第1圖所繪示為習知具可程式的雙多晶矽層非揮發性記憶體示意圖。 Figure 1 is a schematic diagram of a conventional programmable polycrystalline germanium layer non-volatile memory.
第2A圖~第2C圖所繪示為習知具可程式的單一多晶矽層非揮發性記憶體示意圖。 2A to 2C are schematic diagrams showing a conventional programmable polycrystalline germanium layer non-volatile memory.
第3A圖~第3D圖所繪示為本發明具可程式可抹除的單一多晶矽層非揮發性記憶體的第一實施例。 3A to 3D illustrate a first embodiment of a single polycrystalline germanium layer non-volatile memory having a programmable erasable in the present invention.
第4圖所示之基板結構係為一P型基板。 The substrate structure shown in Fig. 4 is a P-type substrate.
第5圖所示之基板結構包括一P型基板與一深N型井區(DNW)。 The substrate structure shown in Fig. 5 includes a P-type substrate and a deep N-type well region (DNW).
第6圖所示之基板結構包括一第四p型區域(p4)、一n型位障層(NBL)與一P型基板。 The substrate structure shown in FIG. 6 includes a fourth p-type region (p4), an n-type barrier layer (NBL), and a P-type substrate.
第7A圖~第7C圖所繪示為本發明具可程式可抹除的單一多晶矽層非揮發性記憶體的第二實施例。 7A to 7C are diagrams showing a second embodiment of a single polycrystalline germanium layer non-volatile memory with programmable erasable in the present invention.
第8圖所示之基板結構包括一P型基板與一深N型井區(DNW)。 The substrate structure shown in Fig. 8 includes a P-type substrate and a deep N-type well region (DNW).
第9圖所示之基板結構包括一第四p型區域(p4)、一n型位障層(NBL)與一P型基板。 The substrate structure shown in FIG. 9 includes a fourth p-type region (p4), an n-type barrier layer (NBL), and a P-type substrate.
第10圖所繪示抹除狀態時的二種偏壓方法。 Figure 10 shows two biasing methods in the erased state.
請參照第3A圖~第3D圖,其所繪示為本發明具可程式可抹除的單一多晶矽層非揮發性記憶體的第一實施例。其 中,第3A圖為第一實施例的上視圖;第3B圖為第一實施例的第一方向(a1 a2方向)剖面圖;第3C圖為第一實施例的第二方向(b1 b2方向)剖面圖;以及,第3D圖為第一實施例的等效電路圖。 Please refer to FIG. 3A to FIG. 3D, which illustrate a first embodiment of a single polycrystalline germanium layer non-volatile memory with programmable erasable in the present invention. its 3A is a top view of the first embodiment; FIG. 3B is a first direction (a1 a2 direction) cross-sectional view of the first embodiment; and FIG. 3C is a second direction (b1 b2 direction of the first embodiment) A cross-sectional view; and, a 3D view is an equivalent circuit diagram of the first embodiment.
由第3A圖與第3B圖可知,本發明第一實施例中包括二個串接的p型電晶體製作於一N型井區(NW)。在N型井區NW中包括三個p型源/汲區域31、32、33,在三個p型源/汲區域31、32、33之間的表面上方包括二個由多晶矽(polysilicon)所組成的閘極34、36。 As can be seen from FIGS. 3A and 3B, the first embodiment of the present invention includes two series-connected p-type transistors fabricated in an N-type well region (NW). Three p-type source/deuterium regions 31, 32, 33 are included in the N-well region NW, and two polysilicon layers are included above the surface between the three p-type source/deuterium regions 31, 32, 33. The gates 34, 36 are formed.
第一p型電晶體係作為選擇電晶體,其選擇閘極34連接至一選擇閘極電壓(VSG),第一p型源/汲區域31連接至源極線電壓(VSL)。再者,第二p型源/汲區域32可視為第一p型電晶體的p型汲極區域與第二p型電晶體的p型源極區域相互連接。第二p型電晶體上方包括一浮動閘極36,其第三p型源/汲區域33連接至位元線電壓(VBL)。而N型井區(NW)係連接至一N型井區電壓(VNW)。 The first p-type electro-emissive system is used as the selection transistor, the selection gate 34 is connected to a selection gate voltage (V SG ), and the first p-type source/german region 31 is connected to the source line voltage (V SL ). Furthermore, the second p-type source/german region 32 can be considered to be interconnected with the p-type drain region of the first p-type transistor and the p-type source region of the second p-type transistor. The second p-type transistor includes a floating gate 36 above it, and a third p-type source/german region 33 is connected to the bit line voltage (V BL ). The N-type well region (NW) is connected to an N-type well region voltage (V NW ).
一般來說,在形成三個p型源/汲區域31、32、33的離子佈值製程時,浮動閘極36以及選擇閘極34可作為遮罩層(mask),因此在N型井區(NW)上方的浮動閘極36以及選擇閘極34係屬於p型閘極。 In general, the floating gate 36 and the select gate 34 can serve as a mask during the ion-distribution process of forming the three p-type source/german regions 31, 32, 33, thus in the N-well region. The floating gate 36 and the selection gate 34 above (NW) belong to the p-type gate.
由第3A圖與第3C圖可知,本發明第一實施例中更包括一個n型電晶體,或者可說包括一浮動閘極36以及一個抹除閘區域(erase gate region)35所組合而成的元件。n型電晶體製作於一P型井區(PW)。在P型井區(PW)中包括一個n型源/汲區域38。換言之,抹除閘區域35係包括P型井區(PW)以及n型源/汲區域38。 3A and 3C, the first embodiment of the present invention further includes an n-type transistor, or a combination of a floating gate 36 and an erase gate region 35. Components. The n-type transistor is fabricated in a P-type well region (PW). An n-type source/turn region 38 is included in the P-well region (PW). In other words, the erase gate region 35 includes a P-type well region (PW) and an n-type source/turn region 38.
如第3A圖所示,浮動閘極36係向外延伸並相鄰於抹除閘區域35。因此,浮動閘極36可視為n型電晶體的閘極,而n型源/汲區域38可視為n型源極區域與n型汲極區域相互連接。再者,n型源/汲區域38連接至抹除線電壓(erase line voltage, VEL)。而P型井區(PW)係連接至一P型井區電壓(VPW)。再者,由第3C圖可知,隔離結構(isolating structure)39形成於抹除閘區域35與N型井區(NW)之間,此隔離結構39例如為淺溝槽隔離(shallow trench isolation,STI)。 As shown in FIG. 3A, the floating gate 36 extends outwardly and adjacent to the erase gate region 35. Thus, floating gate 36 can be considered a gate of an n-type transistor, while n-type source/german region 38 can be considered to be interconnected with an n-type source region and an n-type drain region. Furthermore, the n-type source/german region 38 is connected to an erase line voltage (V EL ). The P-type well region (PW) is connected to a P-type well region voltage (V PW ). Furthermore, it can be seen from FIG. 3C that an isolating structure 39 is formed between the erase gate region 35 and the N-type well region (NW). The isolation structure 39 is, for example, shallow trench isolation (STI). ).
在形成n型源/汲區域38的離子佈植製程時,浮動閘極36可作為遮罩層,因此在抹除閘區域35上方的浮動閘極36係屬於n型閘極。 In the ion implantation process of forming the n-type source/german region 38, the floating gate 36 can serve as a mask layer, and thus the floating gate 36 above the erase gate region 35 belongs to the n-type gate.
再者,以下將詳細的介紹運用於第一實施例的各種不同的基板結構以及P型井區(PW)。如第4圖所示,基板結構係為一P型基板。 Further, various different substrate structures and P-type well regions (PW) applied to the first embodiment will be described in detail below. As shown in Fig. 4, the substrate structure is a P-type substrate.
如第4圖所示,第一實施例的N型井區(NW)與P型井區(PW)形成於P型基板內。再者,P型井區(PW)個包括一個第一p型區域(p1)、二個第二p型區域(p2)、與一個第三p型區域(p3)。其中,第二p型區域(p2)的摻雜量(dosage)大於等於第一p型區域(p1)的摻雜量;且第三p型區域(p3)的摻雜量大於等於第一p型區域(p1)的摻雜量。 As shown in Fig. 4, the N-type well region (NW) and the P-type well region (PW) of the first embodiment are formed in a P-type substrate. Furthermore, the P-type well regions (PW) include a first p-type region (p1), two second p-type regions (p2), and a third p-type region (p3). Wherein, the doping amount of the second p-type region (p2) is greater than or equal to the doping amount of the first p-type region (p1); and the doping amount of the third p-type region (p3) is greater than or equal to the first p Doping amount of the type region (p1).
再者,第一p型區域(p1)係形成於P形基板的表面下方並且接觸於n型源/汲區域38。第三p型區域(p3)形成於第一p型區域(p1)的下方。而第一p型區域(p1)與第三p型區域(p3)被第二p型區域(p2)圍繞住,且此第二p型區域(p2)形成於隔離結構39下方。 Furthermore, the first p-type region (p1) is formed below the surface of the P-shaped substrate and is in contact with the n-type source/german region 38. The third p-type region (p3) is formed below the first p-type region (p1). The first p-type region (p1) and the third p-type region (p3) are surrounded by the second p-type region (p2), and the second p-type region (p2) is formed under the isolation structure 39.
本發明的第4圖結構之優點在於,第一p型區域(p1)與n型源/汲區域38之間的接面崩潰電壓(junction breakdown voltage)可以提高,使得本發明具可程式可抹除的單一多晶矽層非揮發性記憶體之抹除效率將有效地被提升。 An advantage of the structure of the fourth embodiment of the present invention is that the junction breakdown voltage between the first p-type region (p1) and the n-type source/german region 38 can be increased, so that the present invention can be programmed The erase efficiency of the single polycrystalline germanium layer non-volatile memory will be effectively improved.
請參照第5圖,基板結構包括一P型基板與一深N型井區(DNW)。其中,深N型井區(DNW)形成於P型基板中,並且深N型井區(DNW)連接於深N型井區電壓(VDNW)。 Referring to FIG. 5, the substrate structure includes a P-type substrate and a deep N-type well region (DNW). Among them, the deep N-type well region (DNW) is formed in the P-type substrate, and the deep N-type well region (DNW) is connected to the deep N-type well region voltage (V DNW ).
如第5圖所示,第一實施例的N型井區(NW)與P 型井區(PW)形成於基板結構中的深N型井區(DNW)內。再者,P型井區(PW)個包括一個第一p型區域(p1)、二個第二p型區域(p2)、與一個第三p型區域(p3)。其中,第二p型區域(p2)的摻雜量大於等於第一p型區域(p1)的摻雜量;且第三p型區域(p3)的摻雜量大於等於第一p型區域(p1)的摻雜量。 As shown in Fig. 5, the N-type well region (NW) and P of the first embodiment The well zone (PW) is formed in a deep N-well zone (DNW) in the substrate structure. Furthermore, the P-type well regions (PW) include a first p-type region (p1), two second p-type regions (p2), and a third p-type region (p3). Wherein, the doping amount of the second p-type region (p2) is greater than or equal to the doping amount of the first p-type region (p1); and the doping amount of the third p-type region (p3) is greater than or equal to the first p-type region ( The doping amount of p1).
再者,第一p型區域(p1)係形成於基板結構的表面下方並且接觸於n型源/汲區域38。第三p型區域(p3)形成於第一p型區域(p1)的下方。而第一p型區域(p1)與第三p型區域(p3)被第二p型區域(p2)圍繞住,且此第二p型區域(p2)形成於隔離結構39下方。 Furthermore, the first p-type region (p1) is formed below the surface of the substrate structure and is in contact with the n-type source/german region 38. The third p-type region (p3) is formed below the first p-type region (p1). The first p-type region (p1) and the third p-type region (p3) are surrounded by the second p-type region (p2), and the second p-type region (p2) is formed under the isolation structure 39.
本發明的第5圖結構之第一優點在於,第一p型區域(p1)與n型源/汲區域38之間的接面崩潰電壓可以提高,使得本發明具可程式可抹除的單一多晶矽層非揮發性記憶體之抹除效率將有效地被提升。另外,第二優點在於,第二p型區域(p2)能夠改善高溫環境下n型源/汲區域38與N型井區(NW)之間的側面擊穿效應(lateral punch through effect);第三p型區域(p3)能夠改善高溫環境下n型源/汲區域38與深N型井區(DNW)之間的垂直擊穿效應(vertical punch through effect)。 A first advantage of the structure of the fifth embodiment of the present invention is that the junction breakdown voltage between the first p-type region (p1) and the n-type source/german region 38 can be increased, so that the present invention has a programmable erasable single The erasing efficiency of the polycrystalline germanium layer non-volatile memory will be effectively improved. In addition, the second advantage is that the second p-type region (p2) can improve the lateral punch through effect between the n-type source/german region 38 and the N-type well region (NW) in the high temperature environment; The triple p-type region (p3) can improve the vertical punch through effect between the n-type source/german region 38 and the deep N-well region (DNW) in a high temperature environment.
請參照第6圖,基板結構包括一第四p型區域(p4)、一n型位障層(n-type barrier layer,NBL)與一P型基板。而n型位障層即為一n型區域。其中,n型位障層(NBL)形成於P型基板中,並且第四p型區域(p4)位於n型位障層(NBL)上方並且接觸於n型位障層(NBL)。 Referring to FIG. 6, the substrate structure includes a fourth p-type region (p4), an n-type barrier layer (NBL), and a P-type substrate. The n-type barrier layer is an n-type region. Wherein, an n-type barrier layer (NBL) is formed in the P-type substrate, and the fourth p-type region (p4) is located above the n-type barrier layer (NBL) and is in contact with the n-type barrier layer (NBL).
如第6圖所示,第一實施例的N型井區(NW)與P型井區(PW)形成於基板結構中的第四p型區域(p4)內。再者,P型井區(PW)個包括一個第一p型區域(p1)、二個第二p型區域(p2)、與一個第三p型區域(p3)。其中,第二p型區域(p2)的摻雜量大於等於第一p型區域(p1)的摻雜量;且第三p型區域(p3)的摻雜量大於等於第一p型區域(p1)的摻雜量。另外,第四p型區域 (p4)的摻雜量等於P型基板的摻雜量。或者,第四p型區域(p4)的摻雜量大於或等於第三p型區域(p3)的摻雜量;或者第四p型區域(p4)的摻雜量小於等於第二p型區域(p2)的摻雜量。 As shown in Fig. 6, the N-type well region (NW) and the P-type well region (PW) of the first embodiment are formed in the fourth p-type region (p4) in the substrate structure. Furthermore, the P-type well regions (PW) include a first p-type region (p1), two second p-type regions (p2), and a third p-type region (p3). Wherein, the doping amount of the second p-type region (p2) is greater than or equal to the doping amount of the first p-type region (p1); and the doping amount of the third p-type region (p3) is greater than or equal to the first p-type region ( The doping amount of p1). In addition, the fourth p-type region The doping amount of (p4) is equal to the doping amount of the P-type substrate. Alternatively, the doping amount of the fourth p-type region (p4) is greater than or equal to the doping amount of the third p-type region (p3); or the doping amount of the fourth p-type region (p4) is less than or equal to the second p-type region The doping amount of (p2).
再者,第一p型區域(p1)係形成於基板結構的表面下方並且接觸於n型源/汲區域38。第三p型區域(p3)形成於第一p型區域(p1)的下方。而第一p型區域(p1)與第三p型區域(p3)被第二p型區域(p2)圍繞住,且此第二p型區域(p2)形成於隔離結構39下方。 Furthermore, the first p-type region (p1) is formed below the surface of the substrate structure and is in contact with the n-type source/german region 38. The third p-type region (p3) is formed below the first p-type region (p1). The first p-type region (p1) and the third p-type region (p3) are surrounded by the second p-type region (p2), and the second p-type region (p2) is formed under the isolation structure 39.
本發明的第6圖結構之第一優點在於,第一p型區域(p1)與n型源/汲區域38之間的接面崩潰電壓可以提高,使得本發明具可程式可抹除的單一多晶矽層非揮發性記憶體之抹除效率將有效地被提升。另外,第二優點在於,第二p型區域(p2)能夠改善高溫環境下n型源/汲區域38與N型井區(NW)之間的側面擊穿效應(lateral punch through effect);第三p型區域(p3)能夠改善高溫環境下n型源/汲區域38與n型位障層(NBL)之間的垂直擊穿效應(vertical punch through effect)。而第三優點在於,利用第四p型區域(p4)與P型井區(PW)將N型井區(NW)隔離,使得N型井區(NW)使用獨立的偏壓操作,進而可以降低浮動閘極36與N型井區(NW)之間的電壓應力(voltage stress)。 A first advantage of the structure of Fig. 6 of the present invention is that the junction breakdown voltage between the first p-type region (p1) and the n-type source/german region 38 can be increased, so that the present invention has a programmable erasable single The erasing efficiency of the polycrystalline germanium layer non-volatile memory will be effectively improved. In addition, the second advantage is that the second p-type region (p2) can improve the lateral punch through effect between the n-type source/german region 38 and the N-type well region (NW) in the high temperature environment; The triple p-type region (p3) can improve the vertical punch through effect between the n-type source/german region 38 and the n-type barrier layer (NBL) in a high temperature environment. The third advantage is that the fourth p-type region (p4) and the P-type well region (PW) are used to isolate the N-type well region (NW), so that the N-type well region (NW) uses independent bias operation, and thus The voltage stress between the floating gate 36 and the N-type well region (NW) is reduced.
請參照第7A圖~第7C圖,其所繪示為本發明具可程式可抹除的單一多晶矽層非揮發性記憶體的第二實施例。其中,第7A圖為第二實施例的上視圖;第7B圖為第二實施例的第二方向(b1 b2方向)剖面圖;以及,第7C為第二實施例的等效電路圖。由於第一方向(a1 a2方向)剖面圖與第一實施例相同,因此不再贅述。 Please refer to FIG. 7A to FIG. 7C, which illustrate a second embodiment of a single polycrystalline germanium layer non-volatile memory with programmable erasable in the present invention. Here, FIG. 7A is a top view of the second embodiment; FIG. 7B is a second direction (b1 b2 direction) cross-sectional view of the second embodiment; and, FIG. 7C is an equivalent circuit diagram of the second embodiment. Since the cross-sectional view of the first direction (a1 a2 direction) is the same as that of the first embodiment, it will not be described again.
如第7A圖所示,本發明第二實施例中包括二個串接的p型電晶體製作於一N型井區(NW)。在N型井區NW中包括三個p型源/汲區域31、32、33,在三個p型源/汲區域31、32、33之間的表面上方包括二個由多晶矽(polysilicon)所組成的閘極 34、36。 As shown in Fig. 7A, a second embodiment of the present invention includes two series-connected p-type transistors fabricated in an N-type well region (NW). Three p-type source/deuterium regions 31, 32, 33 are included in the N-well region NW, and two polysilicon layers are included above the surface between the three p-type source/deuterium regions 31, 32, 33. Gate 34, 36.
第一p型電晶體係作為選擇電晶體,其選擇閘極34連接至一選擇閘極電壓(VSG),第一p型源/汲區域31連接至源極線電壓(VSL)。再者,第二p型源/汲區域32可視為第一p型電晶體的p型汲極區域與第二p型電晶體的p型源極區域相互連接。第二p型電晶體上方包括一浮動閘極36,其第三p型源/汲區域33連接至位元線電壓(VBL)。而N型井區(NW)係連接至一N型井區電壓(VNW)。 The first p-type electro-emissive system is used as the selection transistor, the selection gate 34 is connected to a selection gate voltage (V SG ), and the first p-type source/german region 31 is connected to the source line voltage (V SL ). Furthermore, the second p-type source/german region 32 can be considered to be interconnected with the p-type drain region of the first p-type transistor and the p-type source region of the second p-type transistor. The second p-type transistor includes a floating gate 36 above it, and a third p-type source/german region 33 is connected to the bit line voltage (V BL ). The N-type well region (NW) is connected to an N-type well region voltage (V NW ).
由第7A圖與第7B圖可知,本發明第二實施例中更包括一個n型電晶體製作於一P型井區(PW)。n型電晶體也可視為包括一浮動閘極36以及一個抹除閘區域95所組合而成的元件。換言之,抹除閘區域95係包括P型井區(PW),n型源/汲區域92以及雙擴散汲極(double diffused drain,DDD)摻雜區94。當然,而雙擴散汲極(DDD)摻雜區94即為一n型區域。再者,n型源/汲區域92以及雙擴散汲極(DDD)摻雜區94形成於P型井區(PW)中,n型源/汲區域92形成於雙擴散汲極(DDD)摻雜區94中。除此之外,於製作雙擴散汲極(DDD)摻雜區94所使用的光罩,在完成雙擴散汲極(DDD)摻雜區94後也可以再次使用於蝕刻抹除閘區域95上方的閘極氧化層。因此,抹除閘區域95上方的閘極氧化層厚度會小於浮動閘極36下方的閘極氧化層。如此,在抹除狀態時可使用較低的抹除線電壓(VEL)。 As can be seen from FIGS. 7A and 7B, the second embodiment of the present invention further includes an n-type transistor fabricated in a P-type well region (PW). The n-type transistor can also be considered as an element comprising a combination of a floating gate 36 and an erase gate region 95. In other words, the erase gate region 95 includes a P-type well region (PW), an n-type source/german region 92, and a double diffused drain (DDD) doped region 94. Of course, the double diffusion drain (DDD) doped region 94 is an n-type region. Furthermore, an n-type source/germanium region 92 and a double-diffused-drain (DDD) doped region 94 are formed in the P-type well region (PW), and the n-type source/german region 92 is formed in the double-diffused drain (DDD) doping. In the miscellaneous area 94. In addition, the reticle used in fabricating the double diffused drain (DDD) doped region 94 can be reused over the etch erase gate region 95 after completing the double diffused drain (DDD) doped region 94. The gate oxide layer. Therefore, the thickness of the gate oxide layer above the erase gate region 95 will be smaller than the gate oxide layer under the floating gate 36. Thus, a lower erase line voltage (V EL ) can be used in the erase state.
如第7A圖所示,浮動閘極36係向外延伸並相鄰於抹除閘區域95。再者,雙擴散汲極(DDD)摻雜區94與n型源/汲區域92可視為n型源極區域與n型汲極區域相互連接。P型井區(PW)係連接至一P型井區電壓(VPW)。再者,由第7B圖可知,隔離結構39形成於P型井區(PW)與N型井區(NW)之間。 As shown in FIG. 7A, the floating gate 36 extends outwardly and adjacent to the erase gate region 95. Furthermore, the double diffused drain (DDD) doped region 94 and the n-type source/german region 92 can be considered to be interconnected with the n-type source region and the n-type drain region. The P-type well zone (PW) is connected to a P-type well zone voltage (V PW ). Furthermore, as can be seen from Fig. 7B, the isolation structure 39 is formed between the P-type well region (PW) and the N-type well region (NW).
再者,以下將詳細的介紹運用於第二實施例的各種不同的基板結構以及P型井區(PW)。如第8圖所示,基板結構包括一P型基板與一深N型井區(DNW)。其中,深N型井區(DNW) 形成於P型基板中,並且深N型井區(DNW)連接於深N型井區電壓(VDNW)。 Further, various different substrate structures and P-type well regions (PW) applied to the second embodiment will be described in detail below. As shown in FIG. 8, the substrate structure includes a P-type substrate and a deep N-type well region (DNW). Among them, the deep N-type well region (DNW) is formed in the P-type substrate, and the deep N-type well region (DNW) is connected to the deep N-type well region voltage (V DNW ).
如第8圖所示,第二實施例的N型井區(NW)與P型井區(PW)形成於基板結構中的深N型井區(DNW)內。再者,P型井區(PW)個包括一個第一p型區域(p1)、二個第二p型區域(p2)、與一個第三p型區域(p3)。其中,第二p型區域(p2)的摻雜量大於等於第一p型區域(p1)的摻雜量;且第三p型區域(p3)的摻雜量大於等於第一p型區域(p1)的摻雜量。N型井區(NW)的摻雜量大於等於雙擴散汲極(DDD)摻雜區94的摻雜量;且第一p型區域(p1)的摻雜量大於等於雙擴散汲極(DDD)摻雜區94的摻雜量。 As shown in Fig. 8, the N-type well region (NW) and the P-type well region (PW) of the second embodiment are formed in a deep N-type well region (DNW) in the substrate structure. Furthermore, the P-type well regions (PW) include a first p-type region (p1), two second p-type regions (p2), and a third p-type region (p3). Wherein, the doping amount of the second p-type region (p2) is greater than or equal to the doping amount of the first p-type region (p1); and the doping amount of the third p-type region (p3) is greater than or equal to the first p-type region ( The doping amount of p1). The doping amount of the N-type well region (NW) is greater than or equal to the doping amount of the double diffusion drain (DDD) doping region 94; and the doping amount of the first p-type region (p1) is greater than or equal to the double diffusion dipole (DDD) The doping amount of the doping region 94.
再者,第一p型區域(p1)係形成於基板結構的表面下方並且接觸於雙擴散汲極(DDD)摻雜區94。第三p型區域(p3)形成於第一p型區域(p1)的下方。而第一p型區域(p1)與第三p型區域(p3)被第二p型區域(p2)圍繞住,且此第二p型區域(p2)形成於隔離結構39下方。 Furthermore, the first p-type region (p1) is formed below the surface of the substrate structure and is in contact with the double diffusion drain (DDD) doped region 94. The third p-type region (p3) is formed below the first p-type region (p1). The first p-type region (p1) and the third p-type region (p3) are surrounded by the second p-type region (p2), and the second p-type region (p2) is formed under the isolation structure 39.
本發明的第8圖結構之第一優點在於,第一p型區域(p1)與雙擴散汲極(DDD)摻雜區94之間的接面崩潰電壓可以提高,使得本發明具可程式可抹除的單一多晶矽層非揮發性記憶體之抹除效率將有效地被提升。另外,第二優點在於,第二p型區域(p2)能夠改善高溫環境下雙擴散汲極(DDD)摻雜區94與N型井區(NW)之間的側面擊穿效應;第三p型區域(p3)能夠改善高溫環境下雙擴散汲極(DDD)摻雜區94與深N型井區(DNW)之間的垂直擊穿效應。 A first advantage of the structure of Figure 8 of the present invention is that the junction breakdown voltage between the first p-type region (p1) and the double-diffused drain (DDD) doped region 94 can be increased, so that the present invention is programmable The erase efficiency of the erased single polysilicon layer non-volatile memory will be effectively improved. In addition, a second advantage is that the second p-type region (p2) can improve the side breakdown effect between the double diffusion drain (DDD) doped region 94 and the N-type well region (NW) in a high temperature environment; The type region (p3) can improve the vertical breakdown effect between the double diffused drain (DDD) doped region 94 and the deep N type well region (DNW) in a high temperature environment.
請參照第9圖,基板結構包括一第四p型區域(p4)、一n型位障層(NBL)與一P型基板。而n型位障層即為一n型區域。其中,n型位障層(NBL)形成於P型基板中,並且第四p型區域(p4)位於n型位障層(NBL)上方並且接觸於n型位障層(NBL)。 Referring to FIG. 9, the substrate structure includes a fourth p-type region (p4), an n-type barrier layer (NBL), and a P-type substrate. The n-type barrier layer is an n-type region. Wherein, an n-type barrier layer (NBL) is formed in the P-type substrate, and the fourth p-type region (p4) is located above the n-type barrier layer (NBL) and is in contact with the n-type barrier layer (NBL).
如第9圖所示,第二實施例的N型井區(NW)與P型井區(PW)形成於基板結構中的第四p型區域(p4)內。再者,P 型井區(PW)個包括一個第一p型區域(p1)、二個第二p型區域(p2)、與一個第三p型區域(p3)。其中,第二p型區域(p2)的摻雜量大於等於第一p型區域(p1)的摻雜量;且第三p型區域(p3)的摻雜量大於等於第一p型區域(p1)的摻雜量。另外,第四p型區域(p4)的摻雜量等於P型基板的摻雜量。或者,第四p型區域(p4)的摻雜量大於或等於第三p型區域(p3)的摻雜量;或者第四p型區域(p4)的摻雜量小於等於第二p型區域(p2)的摻雜量。 As shown in Fig. 9, the N-type well region (NW) and the P-type well region (PW) of the second embodiment are formed in the fourth p-type region (p4) in the substrate structure. Furthermore, P The well zones (PW) include a first p-type region (p1), two second p-type regions (p2), and a third p-type region (p3). Wherein, the doping amount of the second p-type region (p2) is greater than or equal to the doping amount of the first p-type region (p1); and the doping amount of the third p-type region (p3) is greater than or equal to the first p-type region ( The doping amount of p1). In addition, the doping amount of the fourth p-type region (p4) is equal to the doping amount of the P-type substrate. Alternatively, the doping amount of the fourth p-type region (p4) is greater than or equal to the doping amount of the third p-type region (p3); or the doping amount of the fourth p-type region (p4) is less than or equal to the second p-type region The doping amount of (p2).
再者,第一p型區域(p1)係形成於基板結構的表面下方並且接觸於雙擴散汲極(DDD)摻雜區94。第三p型區域(p3)形成於第一p型區域(p1)的下方。而第一p型區域(p1)與第三p型區域(p3)被第二p型區域(p2)圍繞住,且此第二p型區域(p2)形成於隔離結構39下方。 Furthermore, the first p-type region (p1) is formed below the surface of the substrate structure and is in contact with the double diffusion drain (DDD) doped region 94. The third p-type region (p3) is formed below the first p-type region (p1). The first p-type region (p1) and the third p-type region (p3) are surrounded by the second p-type region (p2), and the second p-type region (p2) is formed under the isolation structure 39.
本發明的第9圖結構之第一優點在於,第一p型區域(p1)與雙擴散汲極(DDD)摻雜區94之間的接面崩潰電壓可以提高,使得本發明具可程式可抹除的單一多晶矽層非揮發性記憶體之抹除效率將有效地被提升。另外,第二優點在於,二個第二p型區域(p2)能夠改善高溫環境下雙擴散汲極(DDD)摻雜區94與N型井區(NW)之間的側面擊穿效應(lateral punch through effect);第三p型區域(p3)能夠改善高溫環境下雙擴散汲極(DDD)摻雜區94與深N型井區(DNW)之間的垂直擊穿效應(vertical punch through effect)。而第三優點在於,利用第四p型區域(p4)與P型井區(PW)將N型井區(NW)隔離,使得N型井區(NW)具有獨立的偏壓操作,進而可以降低浮動閘極36與N型井區(NW)之間的電壓應力。 A first advantage of the structure of the ninth embodiment of the present invention is that the junction breakdown voltage between the first p-type region (p1) and the double-diffused-drain (DDD) doped region 94 can be increased, so that the present invention is programmable. The erase efficiency of the erased single polysilicon layer non-volatile memory will be effectively improved. In addition, the second advantage is that the two second p-type regions (p2) can improve the side breakdown effect between the double diffused drain (DDD) doped region 94 and the N-type well region (NW) in a high temperature environment (lateral Punch through effect); the third p-type region (p3) can improve the vertical punch through effect between the double diffused drain (DDD) doped region 94 and the deep N-type well region (DNW) in a high temperature environment. ). The third advantage is that the fourth p-type region (p4) and the P-type well region (PW) are used to isolate the N-type well region (NW), so that the N-type well region (NW) has independent bias operation, and thus The voltage stress between the floating gate 36 and the N-type well region (NW) is reduced.
再者,當本發明的第一實施例與第二實施例建構於第5圖與第8圖中基板結構的深N型井區(DNW)之中時,可以有多種的偏壓方法用於抹除狀態。如第10圖所示,為其中二種偏壓方法。當第一方法運用於抹除狀態時,源極線電壓(VSL)與位元線電壓(VBL)為0V~VEE,N型井區電壓(VNW)與字元線電壓(VWL)與深N型井區電壓(VDNW)為VEE,抹除線電壓(VEL)P型井區電壓 (VPW)為-Vee。其中,VEE為介於+6.5V~+20V之間的正電壓,-Vee為介於-6.5V~-20V之間的負電壓。並且,第一方法係以Fowler-Nordhiem(FN)效應來退出熱載子。 Furthermore, when the first embodiment and the second embodiment of the present invention are constructed in the deep N-type well region (DNW) of the substrate structure in FIGS. 5 and 8, a plurality of bias methods can be used for Erase the status. As shown in Fig. 10, there are two kinds of biasing methods. When the first method is applied to the erase state, the source line voltage (V SL ) and the bit line voltage (V BL ) are 0V to V EE , the N type well voltage (V NW ) and the word line voltage (V) WL ) and deep N-type well voltage (V DNW ) is V EE , erase line voltage (V EL ) P-type well voltage (V PW ) is -V ee . Among them, V EE is a positive voltage between +6.5V~+20V, and -V ee is a negative voltage between -6.5V~-20V. Also, the first method exits the hot carrier with the Fowler-Nordhiem (FN) effect.
當第二方法運用於抹除狀態時,源極線電壓(VSL)為浮接(floating),位元線電壓(VBL)為0V,N型井區電壓(VNW)與字元線電壓(VWL)與深N型井區電壓(VDNW)為VEE,抹除線電壓(VEL)P型井區電壓(VPW)為-Vee。其中,VEE為介於+6.5V~+18V之間的正電壓,-Vee為介於-6.5V~-18V之間的負電壓。並且,第二方法係以熱電洞(Hot Hole,簡稱HH)效應來退出熱載子。而HH效應可為帶間熱電洞(band-to-band hoe hole,簡稱BBHH)效應,基板熱電洞(Substrate hoe hole,簡稱SHH)效應,以及汲極崩潰熱電洞(drain avalanche hoe hole,簡稱DAHH)效應。 When the second method is applied to the erase state, the source line voltage (V SL ) is floating, the bit line voltage (V BL ) is 0V, the N-type well voltage (V NW ) and the word line The voltage (V WL ) and the deep N-type well region voltage (V DNW ) are V EE , and the erase line voltage (V EL ) P-type well region voltage (V PW ) is -V ee . Among them, V EE is a positive voltage between +6.5V~+18V, and -V ee is a negative voltage between -6.5V~-18V. Moreover, the second method exits the hot carrier with the effect of Hot Hole (HH). The HH effect may be a band-to-band hoe hole (BBHH) effect, a Substrate hoe hole (SHH) effect, and a drain avalanche hoe hole (DAHH). )effect.
由以上的說明可知,本發明的單一多晶矽層非揮發性記憶體可以改進先前技術僅能利用紫外光來移除儲存載子的缺點。也就是說,本發明可以提供抹除線電壓(VEL)並且改變非揮發性記憶體的儲存狀態。 As can be seen from the above description, the single polycrystalline germanium layer non-volatile memory of the present invention can improve the disadvantages of the prior art that only ultraviolet light can be used to remove the storage carrier. That is, the present invention can provide a line voltage (VEL) to be erased and change the storage state of the non-volatile memory.
綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
36‧‧‧浮動閘極 36‧‧‧Floating gate
38‧‧‧n型源/汲區域 38‧‧‧n type source/汲 area
39‧‧‧隔離結構 39‧‧‧Isolation structure
Claims (14)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/892,564 US9147690B2 (en) | 2012-03-08 | 2013-05-13 | Erasable programmable single-ploy nonvolatile memory |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201444060A TW201444060A (en) | 2014-11-16 |
TWI521683B true TWI521683B (en) | 2016-02-11 |
Family
ID=51883113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102145910A TWI521683B (en) | 2013-05-13 | 2013-12-12 | Erasable programmable single-poly nonvolatile memory |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104157651B (en) |
TW (1) | TWI521683B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI630623B (en) * | 2017-04-07 | 2018-07-21 | 力旺電子股份有限公司 | Erasable programmable non-volatile memory |
US11282844B2 (en) * | 2018-06-27 | 2022-03-22 | Ememory Technology Inc. | Erasable programmable non-volatile memory including two floating gate transistors with the same floating gate |
US11980029B2 (en) * | 2021-11-15 | 2024-05-07 | Ememory Technology Inc. | Erasable programmable single-ploy non-volatile memory cell and associated array structure |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69431181D1 (en) * | 1994-05-19 | 2002-09-19 | Cons Ric Microelettronica | Power integrated circuit ("PIC") and method of making the same |
US6127700A (en) * | 1995-09-12 | 2000-10-03 | National Semiconductor Corporation | Field-effect transistor having local threshold-adjust doping |
KR100190020B1 (en) * | 1996-02-21 | 1999-06-01 | 윤종용 | High voltage transistor and method of manufacturing thereof |
US7145191B1 (en) * | 2000-03-31 | 2006-12-05 | National Semiconductor Corporation | P-channel field-effect transistor with reduced junction capacitance |
US7515478B2 (en) * | 2007-08-20 | 2009-04-07 | Nantronics Semiconductor, Inc. | CMOS logic compatible non-volatile memory cell structure, operation, and array configuration |
US8334579B2 (en) * | 2010-10-07 | 2012-12-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Schottky diode |
KR101710599B1 (en) * | 2011-01-12 | 2017-02-27 | 삼성전자 주식회사 | Semiconductor device and fabricating method thereof |
-
2013
- 2013-12-12 TW TW102145910A patent/TWI521683B/en active
-
2014
- 2014-01-10 CN CN201410011269.XA patent/CN104157651B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN104157651B (en) | 2017-12-22 |
TW201444060A (en) | 2014-11-16 |
CN104157651A (en) | 2014-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI501357B (en) | Method of manufacturing erasable programmable single-ploy nonvolatile memory | |
TWI496248B (en) | Erasable programmable single-ploy nonvolatile memory | |
TWI613795B (en) | Non-volatile memory cell structure, non-volatile memory array structure and method of fabricating non-volatile memory cell structure | |
JP2008004913A (en) | Operating method of non-volatile memory device | |
US8658495B2 (en) | Method of fabricating erasable programmable single-poly nonvolatile memory | |
US20150054043A1 (en) | Simple and cost-free mtp structure | |
TWI630623B (en) | Erasable programmable non-volatile memory | |
CN110649102B (en) | Programmable erasable nonvolatile memory | |
TWI514590B (en) | Erasable programmable single-ploy nonvolatile memory | |
TWI521683B (en) | Erasable programmable single-poly nonvolatile memory | |
US8779520B2 (en) | Erasable programmable single-ploy nonvolatile memory | |
US9147690B2 (en) | Erasable programmable single-ploy nonvolatile memory | |
TWI469328B (en) | Erasable programmable single-poly nonvolatile memory | |
EP2811530B1 (en) | Single-poly floating-gate transistor comprising an erase gate formed in the substrate | |
EP2811531B1 (en) | EPROM single-poly memory | |
JP5690872B2 (en) | Erasable programmable single poly non-volatile memory | |
US7888272B2 (en) | Methods for manufacturing memory and logic devices using the same process without the need for additional masks | |
JP5690873B2 (en) | Erasable programmable single poly non-volatile memory | |
KR20110077175A (en) | Non-volatile memory device and method for fabricating the same |