TWI519961B - Temperature-controlled storage module - Google Patents
Temperature-controlled storage module Download PDFInfo
- Publication number
- TWI519961B TWI519961B TW103130295A TW103130295A TWI519961B TW I519961 B TWI519961 B TW I519961B TW 103130295 A TW103130295 A TW 103130295A TW 103130295 A TW103130295 A TW 103130295A TW I519961 B TWI519961 B TW I519961B
- Authority
- TW
- Taiwan
- Prior art keywords
- storage module
- memory
- temperature
- thermoelectric cooler
- target temperature
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
- F25B21/02—Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
- F25B21/04—Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect reversible
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1668—Details of memory controller
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/04—Arrangements for writing information into, or reading information out from, a digital store with means for avoiding disturbances due to temperature effects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/02—Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
- F25B2321/021—Control thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Description
諸如NAND快閃記憶體之記憶體之行為通常極大地取決於其操作及儲存溫度。在高溫中,持久性歸因於較佳退火得以改良,但資料保持力根據阿瑞尼士方程式(Arrhenius equation)而降級。在極低溫中,其他效應係突出的。記憶體設計者考量此相依性以產生可在較寬溫度範圍中操作之一記憶體,其在資料保持力、持久性與其他記憶體特性之間提供一折衷。然而,在較寬溫度範圍下操作係一折衷,此係因為某些特性更適用於針對其等特定操作調整之一較小溫度範圍。 The behavior of memory such as NAND flash memory is often greatly dependent on its operation and storage temperature. At high temperatures, persistence is attributed to improved annealing, but data retention is degraded according to the Arrhenius equation. At very low temperatures, other effects are prominent. Memory designers consider this dependency to produce a memory that can operate over a wide temperature range, providing a compromise between data retention, persistence, and other memory characteristics. However, operating a compromise over a wide range of temperatures is due to the fact that certain characteristics are more suitable for adjusting one of the smaller temperature ranges for their particular operation.
溫度相關問題亦以其他方式影響儲存模組。例如,增加讀取及寫入效能通常需要多個記憶體晶粒或平面平行度來達成所要效能。電流消耗及熱消散係可限制一儲存模組中平行度之量之兩個主要因素。即使不存在對電流消散之限制及主機可保證一所要外殼溫度,仍存在歸因於記憶體晶粒與外殼之間之被動熱阻之一散熱問題。此外,對儲存模組之典型主機存取通常具有對資料之短暫、強烈之需求,此稱為叢發。在一叢發之時間期間,更多需求被放置於記憶體中,此可使記憶體之溫度上升至最大操作額定溫度或超過最大操作額定溫度之位準。 Temperature related issues also affect the storage module in other ways. For example, increasing read and write performance typically requires multiple memory dies or plane parallelism to achieve desired performance. Current consumption and heat dissipation are two main factors that limit the amount of parallelism in a storage module. Even if there is no limitation on current dissipation and the host can guarantee a desired case temperature, there is still a problem of heat dissipation due to the passive thermal resistance between the memory die and the case. In addition, typical host access to storage modules typically has a short-lived, strong demand for data, which is called bursting. During a burst of time, more demand is placed in the memory, which can raise the temperature of the memory to a maximum operating nominal temperature or a level above the maximum operating nominal temperature.
由申請專利範圍界定本發明之實施例,且此章節不應被視為此等申請專利範圍之一限制。 The embodiments of the invention are defined by the scope of the patent application, and this section should not be construed as limiting the scope of the claims.
藉由介紹之方式,下文實施例係關於一溫度控制儲存模組。在一實施例中,提供包括一記憶體、一溫度感測器、一熱電冷卻器及一控制器之一儲存模組。該控制器將溫度感測器之一溫度讀數與一目標溫度比較。若溫度讀數不同於目標溫度,則控制器啟動熱電冷卻器。例如,若溫度讀數高於目標溫度,則可啟動熱電冷卻器以冷卻記憶體。此容許記憶體(例如,(若干)NAND晶粒)在一較窄溫度範圍內操作,從而提供記憶體(例如,NAND)特性之較佳系統折衷。 By way of introduction, the following embodiments relate to a temperature controlled storage module. In one embodiment, a memory module including a memory, a temperature sensor, a thermoelectric cooler, and a controller is provided. The controller compares a temperature reading of one of the temperature sensors to a target temperature. If the temperature reading is different from the target temperature, the controller activates the thermoelectric cooler. For example, if the temperature reading is above the target temperature, the thermoelectric cooler can be activated to cool the memory. This allows memory (eg, NAND die(s)) to operate over a narrower temperature range, thereby providing a better system tradeoff for memory (eg, NAND) characteristics.
其他實施例係可行的,且可單獨或組合一起使用該等實施例之各者。因此,現將參考附圖描述各種實施例。 Other embodiments are possible, and each of these embodiments can be used alone or in combination. Accordingly, various embodiments will now be described with reference to the drawings.
50‧‧‧積體電路封裝 50‧‧‧Integrated circuit package
100‧‧‧儲存模組 100‧‧‧ storage module
110‧‧‧控制器 110‧‧‧ Controller
111‧‧‧主機介面模組 111‧‧‧Host Interface Module
112‧‧‧快閃管理模組 112‧‧‧Flash Management Module
113‧‧‧快閃介面模組 113‧‧‧Flash interface module
115‧‧‧熱電冷卻器(TEC)控制器 115‧‧‧ Thermoelectric cooler (TEC) controller
117‧‧‧可選溫度感測器 117‧‧‧Optional temperature sensor
120‧‧‧記憶體晶粒/記憶體 120‧‧‧Memory grain/memory
125‧‧‧溫度感測器 125‧‧‧temperature sensor
130‧‧‧熱電冷卻器(TEC) 130‧‧‧Thermoelectric cooler (TEC)
150‧‧‧熱電冷卻器(TEC) 150‧‧‧Thermoelectric cooler (TEC)
210‧‧‧主機 210‧‧‧Host
220‧‧‧主機控制器 220‧‧‧Host controller
230‧‧‧功能性模組 230‧‧‧ functional modules
240‧‧‧主機 240‧‧‧Host
245‧‧‧主機控制器 245‧‧‧Host Controller
300‧‧‧流程圖 300‧‧‧ Flowchart
310‧‧‧動作 310‧‧‧ action
320‧‧‧動作 320‧‧‧ action
330‧‧‧動作 330‧‧‧ action
340‧‧‧動作 340‧‧‧ action
350‧‧‧動作 350‧‧‧ action
410‧‧‧運算放大器 410‧‧‧Operational Amplifier
420‧‧‧運算放大器 420‧‧‧Operational Amplifier
430‧‧‧第一組金屬氧化半導體場效電晶體(MOSFET) 430‧‧‧First Group of Metal Oxide Semiconductor Field Effect Transistors (MOSFETs)
440‧‧‧第一組金屬氧化半導體場效電晶體(MOSFET) 440‧‧‧First Group of Metal Oxide Semiconductor Field Effect Transistors (MOSFETs)
450‧‧‧第二組金屬氧化半導體場效電晶體(MOSFET) 450‧‧‧Second Group of Metal Oxide Semiconductor Field Effect Transistors (MOSFETs)
460‧‧‧第二組金屬氧化半導體場效電晶體(MOSFET) 460‧‧‧Second Group of Metal Oxide Semiconductor Field Effect Transistors (MOSFETs)
500‧‧‧基板 500‧‧‧Substrate
510‧‧‧印刷電路板 510‧‧‧Printed circuit board
520‧‧‧焊球 520‧‧‧ solder balls
700‧‧‧第二熱電冷卻器(TEC) 700‧‧‧Second Thermoelectric Cooler (TEC)
710‧‧‧熱傳導填充物 710‧‧‧Heat conductive filler
1025‧‧‧主機 1025‧‧‧Host
1040‧‧‧熱電冷卻器(TEC)控制器 1040‧‧‧ Thermoelectric cooler (TEC) controller
1050‧‧‧熱電冷卻器(TEC) 1050‧‧‧Thermoelectric cooler (TEC)
1100‧‧‧熱電冷卻器 1100‧‧‧Hot electric cooler
1110‧‧‧冷卻板 1110‧‧‧Cooling plate
1120‧‧‧散熱器 1120‧‧‧ radiator
1130‧‧‧半導體 1130‧‧‧ Semiconductor
1140‧‧‧半導體 1140‧‧‧ Semiconductor
1150‧‧‧導熱板 1150‧‧‧heat conducting plate
1160‧‧‧導熱板 1160‧‧‧heat conducting plate
1170‧‧‧絕緣體 1170‧‧‧Insulator
1180‧‧‧絕緣體 1180‧‧‧Insulator
圖1係一實施例之一例示性儲存模組之一方塊圖。 1 is a block diagram of an exemplary storage module of an embodiment.
圖2A係一實施例之一主機之一方塊圖,其中圖1之例示性模組係嵌入於該主機中。 2A is a block diagram of a host of an embodiment in which the exemplary module of FIG. 1 is embedded in the host.
圖2B係可卸除地連接至一主機之圖1之例示性儲存模組之一方塊圖,其中該儲存模組及主機係可分離、可卸除裝置。 2B is a block diagram of an exemplary storage module of FIG. 1 removably coupled to a host, wherein the storage module and the host are separable and detachable.
圖3係用於控制一儲存模組之溫度之一實施例之一方法之一流程圖。 3 is a flow chart of one of the methods for controlling one of the temperatures of a storage module.
圖4係用於控制一儲存模組之溫度之一實施例之一電路之一圖。 4 is a diagram of one of the circuits of one embodiment for controlling the temperature of a storage module.
圖5係具有一單個熱電冷卻器之一實施例之一儲存模組之一圖。 Figure 5 is a diagram of one of the storage modules of one embodiment of a single thermoelectric cooler.
圖6係繪示自圖5之儲存模組之熱轉移之一圖。 FIG. 6 is a diagram showing heat transfer from the storage module of FIG. 5.
圖7係具有兩個熱電冷卻器之一實施例之一儲存模組之一圖。 Figure 7 is a diagram of one of the storage modules of one of the embodiments of two thermoelectric coolers.
圖8係繪示來自圖7之儲存模組之熱轉移之一圖。 FIG. 8 is a diagram showing a heat transfer from the storage module of FIG. 7.
圖9A及圖9B係在一叢發週期之前冷卻記憶體晶粒之一實施例之圖解。 9A and 9B are diagrams of one embodiment of cooling a memory die prior to a burst period.
圖10係另一實施例之一儲存模組之一圖解。 Figure 10 is an illustration of one of the storage modules of another embodiment.
圖11係一先前技術熱電冷卻器之一圖解。 Figure 11 is an illustration of one of the prior art thermoelectric coolers.
轉至圖式,圖1係一實施例之一儲存模組100之一圖。如圖1中所繪示,儲存模組100包括與其中或其上具有一溫度感測器125之一或多個記憶體晶粒120通信之一控制器110。如本文中所使用,措辭「與...通信」可意指「與...直接通信」或透過一或多個組件而「與...間接通信」,其可或可不展示或描述於本文中。圖1展示作為NAND記憶體晶粒之記憶體晶粒120;然而,可使用其他記憶體技術。另外,記憶體120可為一次可程式化、少次可程式化或多次可程式化。記憶體120亦可使用單階胞(single-level cell,SLC)、多階胞(multiple-level cell,MLC)、三階胞(triple-level cell,TLC)或現已知或隨後開發之其他記憶體技術。另外,記憶體120可為二維或三維(例如,位元成本記憶體(BiCS))且可為一多晶片封裝或一單晶片封裝。 Turning to the drawings, FIG. 1 is a diagram of one of the storage modules 100 of one embodiment. As shown in FIG. 1 , the storage module 100 includes a controller 110 in communication with one or more of the temperature sensors 125 or one of the plurality of memory dies 120 therein. As used herein, the phrase "communicate with" may mean "directly communicate with" or "indirectly communicate with" through one or more components, which may or may not be displayed or described in In this article. Figure 1 shows memory die 120 as a NAND memory die; however, other memory technologies can be used. In addition, the memory 120 can be one-time programmable, less programmable, or multiple-programmable. The memory 120 can also use a single-level cell (SLC), a multiple-level cell (MLC), a triple-level cell (TLC), or other known or subsequently developed. Memory technology. In addition, the memory 120 can be two-dimensional or three-dimensional (eg, Bit Cost Memory (BiCS)) and can be a multi-chip package or a single-chip package.
圖1中之儲存模組100亦包括一溫度轉移裝置,諸如一熱電冷卻器(TEC)130。(在一實施例中,控制器110、(若干)記憶體晶粒120及TEC 130全部堆疊於一基板上,且該等組件之全部係容置於一積體電路封裝50中)。一熱電冷卻器係使用帕爾貼效應(Peltier effect)以在兩種不同類型之材料的接面之間產生一熱通量之一固態裝置。一般而言,熱電冷卻器藉由帕爾貼效應操作。如圖11中所展示,一種類型之先前技術熱電冷卻器1100(亦可使用其他類型)具有兩側,且當DC電流流過冷卻器1100時,其將熱量自冷卻器1100之一側帶至另一側。此導致一側變冷同時另一側變熱。變冷之該側係附接至一冷卻板1110,且變熱之該側係附接至一散熱器1120。熱電冷卻器1100可由具有不同電子密度之兩個獨有半導體(一p型1130及一n型1140)製成。半導體1130、1140經放置在熱方面彼此平行及在電方面彼此串聯,且接著在各側上與導熱板1150、1160接合(其中絕緣體1170、1180緊鄰該等導熱板)。當施加一電壓至兩個半導體1130、1140之自由端時,跨半導 體1130、1140之接面存在一DC電流流動,從而引起一溫度差。具有冷卻板1110之側吸收熱,接著該熱被移動至具有散熱器1120之另一側。 The storage module 100 of FIG. 1 also includes a temperature transfer device, such as a thermoelectric cooler (TEC) 130. (In one embodiment, the controller 110, the memory die 120 and the TEC 130 are all stacked on a substrate, and all of the components are housed in an integrated circuit package 50). A thermoelectric cooler uses a Peltier effect to create a solid state device of heat flux between the junctions of two different types of materials. In general, thermoelectric coolers operate by the Peltier effect. As shown in FIG. 11, one type of prior art thermoelectric cooler 1100 (other types may also be used) has two sides, and when DC current flows through the cooler 1100, it brings heat from one side of the cooler 1100 to The other side. This causes one side to cool while the other side gets hot. The side that is cooled is attached to a cooling plate 1110, and the side that is heated is attached to a heat sink 1120. The thermoelectric cooler 1100 can be made of two unique semiconductors (a p-type 1130 and an n-type 1140) having different electron densities. The semiconductors 1130, 1140 are placed in thermal parallel with each other and electrically connected in series with one another, and then joined to the thermally conductive plates 1150, 1160 on each side (with the insulators 1170, 1180 in close proximity to the thermally conductive plates). When a voltage is applied to the free ends of the two semiconductors 1130, 1140, the transconductance There is a DC current flow at the junction of the bodies 1130, 1140, causing a temperature difference. The side having the cooling plate 1110 absorbs heat, which is then moved to the other side with the heat sink 1120.
由於一熱電冷卻器係以電能消耗將熱量自裝置之一側轉移至另一側之一熱泵,所以一熱電冷卻器取決於電流之方向可用於冷卻(製冷)或加熱。如下文將討論,在此等實施例中,熱電冷卻器係用於冷卻或加熱記憶體晶粒120以保持一所要溫度。由於冷卻及加熱需要來自一電源供應器之額外電流,所以在設計與儲存模組100一起使用之一系統時應考量此等電力需求以確保適當電力被供應至儲存模組100。歸因於該等電力需求,儲存模組100可尋求其中不存在電力缺乏之一特定使用,諸如在一固態硬碟(solid-state drive)中或在具有嵌入式記憶體之一主機裝置(例如,一機上盒)中。然而,此等實施例亦可與可卸除之儲存裝置一起使用。例如,儲存模組100可自一外側源接收電力以對控制器110及記憶體120供應電力或可具有其自身電源(例如,一電池)。此外,如下文將描述,儲存模組100之內部或外部可存在額外TEC(諸如(TEC 2)150)。下文將詳細討論熱電冷卻器130之使用。 Since a thermoelectric cooler transfers heat from one side of the device to one of the heat pumps on the other side with electrical energy consumption, a thermoelectric cooler can be used for cooling (cooling) or heating depending on the direction of the current. As will be discussed below, in these embodiments, a thermoelectric cooler is used to cool or heat the memory die 120 to maintain a desired temperature. Since cooling and heating require additional current from a power supply, such power requirements should be considered when designing a system for use with the storage module 100 to ensure that appropriate power is supplied to the storage module 100. Due to such power requirements, the storage module 100 can seek for a particular use in which there is no lack of power, such as in a solid-state drive or in a host device with embedded memory (eg, , on a set of boxes). However, these embodiments can also be used with removable storage devices. For example, the storage module 100 can receive power from an external source to supply power to the controller 110 and the memory 120 or can have its own power source (eg, a battery). Additionally, as will be described below, additional TEC (such as (TEC 2) 150) may be present inside or outside of the storage module 100. The use of thermoelectric cooler 130 will be discussed in detail below.
如圖2A中所展示,儲存模組100可嵌入於具有一主機控制器220之一主機210中。即,主機210包含主機控制器220及儲存模組100,使得主機控制器220與嵌入式儲存模組100介接以管理其操作。例如,儲存模組100可採用SanDisk Corporation之一iNANDTM eSD/eMMC嵌入式快閃驅動器的形式。主機控制器220或主機210中之另一組件將供應電力給儲存模組100。主機控制器220可使用諸如(例如)eMMC、UFS、USB、SATA、SAS、SCSI、光纖通道或PCIe之一儲存介面來與嵌入式儲存模組100介接。主機210可採用任何形式,諸如(但不限於)一固態硬碟(SSD)、一混合儲存裝置(具有一硬碟機及一固態硬碟兩 者)、一記憶體快取系統、一行動電話、一平板電腦、一數位媒體播放器、一遊戲裝置、一個人數位助理(PDA)、一行動(例如,筆記型、膝上型)個人電腦(PC)或一電子書閱讀器。如圖2A中所展示,主機210可包含選用之其他功能性模組230。例如,若主機210係一行動電話,則其他功能性模組230可包含硬體及/或軟體組件以進行及撥打電話呼叫。如另一實例,若主機210具有網路連通能力,則其他功能性模組230可包含一網路介面。當然,此等僅係一些實例,且可使用其他實施方案。此外,主機210可包含圖2A中未展示以簡化圖式的其他組件,例如一音訊輸出、輸入-輸出埠等等。 As shown in FIG. 2A, the storage module 100 can be embedded in a host 210 having a host controller 220. That is, the host 210 includes the host controller 220 and the storage module 100 such that the host controller 220 interfaces with the embedded storage module 100 to manage its operations. For example, storage module 100 may take the form of one of SanDisk Corporation iNAND TM eSD / eMMC embedded flash drive. The host controller 220 or another component of the host 210 will supply power to the storage module 100. The host controller 220 can interface with the embedded storage module 100 using a storage interface such as, for example, eMMC, UFS, USB, SATA, SAS, SCSI, Fibre Channel, or PCIe. The host 210 can take any form such as, but not limited to, a solid state drive (SSD), a hybrid storage device (having both a hard disk drive and a solid state drive), a memory cache system, and a mobile phone. , a tablet computer, a digital media player, a gaming device, a number of personal assistants (PDAs), an action (eg, a notebook, a laptop) personal computer (PC) or an e-book reader. As shown in FIG. 2A, host 210 can include other functional modules 230 that are optional. For example, if host 210 is a mobile phone, other functional modules 230 may include hardware and/or software components to make and make phone calls. As another example, if the host 210 has network connectivity, the other functional modules 230 can include a network interface. Of course, these are just a few examples and other embodiments may be used. In addition, host 210 may include other components not shown in FIG. 2A to simplify the drawing, such as an audio output, input-output, and the like.
如圖2B中所展示,取代為一主機中之一嵌入式裝置,儲存模組100可具有容許儲存模組100經由配接的連接器可卸除地連接至一主機240(具有一主機控制器245)之實體及電連接器。主機控制器245或主機240中之另一組件可供應電力給儲存模組100,或電力可自另一裝置提供至儲存模組100。在此實施例中,儲存模組100係與主機240分離(且未嵌入於主機240中)之一裝置。儲存模組100可為(例如)一可卸除記憶體裝置,諸如一安全數位(SD)記憶卡、一microSD記憶卡、一Compact Flash(CF)記憶卡或一通用串列匯流排(USB)裝置(具有至主機之一USB介面),且主機240係一分離裝置,諸如(例如)一行動電話、一平板電腦、一數位媒體播放器、一遊戲裝置、一個人數位助理(PDA)、一行動(例如,筆記型、膝上型)個人電腦(PC)或一電子書閱讀器。 As shown in FIG. 2B, instead of being an embedded device in a host, the storage module 100 can have the storage module 100 detachably connected to a host 240 via a mated connector (having a host controller) 245) Physical and electrical connectors. Another component of the host controller 245 or the host 240 can supply power to the storage module 100, or power can be provided to the storage module 100 from another device. In this embodiment, the storage module 100 is a device that is separate from (and not embedded in) the host 240. The storage module 100 can be, for example, a removable memory device such as a secure digital (SD) memory card, a microSD memory card, a Compact Flash (CF) memory card, or a universal serial bus (USB). a device (having a USB interface to one of the hosts), and the host 240 is a separate device such as, for example, a mobile phone, a tablet, a digital media player, a gaming device, a PDA, an action (eg, notebook, laptop) personal computer (PC) or an e-book reader.
在圖2A及圖2B中,儲存模組100經由儲存介面與一主機控制器220或主機240通信。例如,儲存介面可採用任何適當形式,諸如(但不限於)eMMC、UFS、USB、SATA、SAS、SCSI、光纖通道或PCIe。儲存模組100中之介面自主機控制器220(圖2A)或主機240(圖2B)傳送管理命令至控制器110,且亦自控制器110傳送記憶體回應至 主機控制器220(圖2A)或主機240(圖2B)。此外,應注意:當儲存模組100嵌入於主機210中時,本文中所描述之由儲存模組100中之控制器110執行之一些或全部功能可由主機控制器220代替執行。 In FIGS. 2A and 2B, the storage module 100 communicates with a host controller 220 or host 240 via a storage interface. For example, the storage interface can take any suitable form such as, but not limited to, eMMC, UFS, USB, SATA, SAS, SCSI, Fibre Channel, or PCIe. The interface in the storage module 100 transmits a management command from the host controller 220 (FIG. 2A) or the host 240 (FIG. 2B) to the controller 110, and also transmits a memory response from the controller 110 to Host controller 220 (Fig. 2A) or host 240 (Fig. 2B). In addition, it should be noted that some or all of the functions described herein performed by the controller 110 in the storage module 100 may be performed by the host controller 220 when the storage module 100 is embedded in the host 210.
返回至圖1,控制器110包括一主機介面模組111、一快閃管理模組112、一快閃介面模組113、一TEC控制器115及一可選溫度感測器117。可依任何適當方式來實施控制器110且控制器110可為來自SanDisk或來自另一廠商之一控制器。例如,控制器110可採用一微處理器或處理器及儲存電腦可讀程式碼(例如,軟體或韌體)之一電腦可讀媒體之形式,該電腦可讀程式碼可由例如(微)處理器、邏輯閘、開關、特定應用積體電路(ASIC)、一可程式化邏輯控制器及一嵌入式微控制器執行。TEC控制器115之一或多者及各種模組111、112、113、117可以硬體實施或可藉由由控制器110之一中央處理單元(CPU)執行之電腦可讀程式碼(儲存於記憶體120或另一位置中)來實施。 Returning to FIG. 1 , the controller 110 includes a host interface module 111 , a flash management module 112 , a flash interface module 113 , a TEC controller 115 , and an optional temperature sensor 117 . Controller 110 can be implemented in any suitable manner and controller 110 can be from SanDisk or from one of the other vendors' controllers. For example, controller 110 can take the form of a microprocessor or processor and a computer readable medium storing computer readable code (eg, software or firmware) that can be processed, for example, by (micro) , logic gates, switches, application-specific integrated circuits (ASICs), a programmable logic controller, and an embedded microcontroller. One or more of the TEC controllers 115 and the various modules 111, 112, 113, 117 may be implemented by hardware or may be executed by a central processing unit (CPU) of the controller 110 (stored in The memory 120 or another location is implemented.
主機介面模組111透過一儲存介面接收主機命令(例如,讀取及寫入命令),儲存介面諸如(例如)eMMC或上文列舉之其他介面之任一者。快閃管理模組112係由控制器110執行之韌體以處理主機請求且轉譯該等請求為NAND快閃操作,及快閃介面模組113根據快閃管理模組112提供之指令執行記憶體操作。 The host interface module 111 receives host commands (eg, read and write commands) through a storage interface, such as, for example, eMMC or any of the other interfaces listed above. The flash management module 112 is configured by the controller 110 to process the host request and translate the requests into NAND flash operations, and the flash interface module 113 executes the memory according to the instructions provided by the flash management module 112. operating.
TEC控制器115與TEC 130結合使用以提供電力至TEC 130,從而酌情加熱或冷卻NAND記憶體晶粒120。如上文所討論,諸如NAND快閃記憶體之記憶體之行為通常極大地取決於溫度。在高溫中,持久性歸因於較佳退火得以改良,但資料保持力被降級。在極低溫中,其他效應係突出的。記憶體設計者考量此相依性以產生可在較寬溫度範圍中操作之一記憶體,但使用較寬溫度範圍通常並非最佳,此係因為某些特性更適用於針對其等特定操作調整之一較小溫度範圍。 The TEC controller 115 is used in conjunction with the TEC 130 to provide power to the TEC 130 to heat or cool the NAND memory die 120 as appropriate. As discussed above, the behavior of a memory such as a NAND flash memory typically depends greatly on temperature. At high temperatures, persistence is attributed to improved annealing, but data retention is degraded. At very low temperatures, other effects are prominent. Memory designers consider this dependency to produce a memory that can operate over a wide temperature range, but using a wider temperature range is often not optimal, as some features are more suitable for adjusting for specific operations. A smaller temperature range.
此實施例可用於將儲存模組100之溫度設定在最適用於其特定操 作之一溫度處。此外,使用此實施例,可給予儲存模組100之終端使用者能力來控制儲存模組之溫度以強調一所要系統或記憶體(例如,NAND)特性,諸如持久性或資料保持力。例如,使用一些記憶體技術,0℃至40℃之一溫度範圍對高資料保持力為較佳,而55℃至85℃之一溫度範圍對高持久性為較佳。 This embodiment can be used to set the temperature of the storage module 100 to be suitable for its specific operation. Make one of the temperatures. Moreover, with this embodiment, the end user capabilities of the storage module 100 can be given to control the temperature of the storage module to emphasize a desired system or memory (e.g., NAND) characteristics, such as persistence or data retention. For example, using some memory technology, a temperature range of 0 ° C to 40 ° C is preferred for high data retention, while a temperature range of 55 ° C to 85 ° C is preferred for high durability.
在操作中,TEC控制器115將溫度感測器125之一溫度讀數與一目標溫度進行比較。目標溫度可由快閃管理模組112提供至TEC控制器115,及TEC控制器115可透過一NAND命令獲得溫度感測器125之溫度讀數。若溫度感測器125之溫度讀數與目標溫度不同,則TEC控制器115可啟動TEC 130以酌情冷卻或加熱記憶體120。圖3中之流程圖300中展示此操作。 In operation, TEC controller 115 compares a temperature reading of one of temperature sensors 125 to a target temperature. The target temperature can be provided by the flash management module 112 to the TEC controller 115, and the TEC controller 115 can obtain the temperature reading of the temperature sensor 125 via a NAND command. If the temperature reading of temperature sensor 125 is different from the target temperature, TEC controller 115 may activate TEC 130 to cool or heat memory 120 as appropriate. This operation is shown in flowchart 300 of FIG.
如圖3中所展示,TEC控制器115將溫度感測器125之溫度讀數與一目標溫度進行比較(動作310)。該目標溫度可由儲存模組100之一使用者預定(固定)或調整。例如,使用者可透過一儲存協定命令來改變溫度以達成一所要記憶體特性。此外,目標溫度可為一單一溫度(例如,55℃)或一溫度範圍(例如,55℃至85℃)。若溫度感測器125之溫度讀數高於目標溫度,則TEC控制器115設定TEC 130之電力,使得其冷卻記憶體晶粒120(動作320)。若溫度感測器125之溫度讀數低於目標溫度,則TEC控制器115設定TEC 130之電力,使得其加熱記憶體晶粒120(動作330)。若溫度感測器125之溫度讀數等於目標溫度,則TEC控制器115關閉TEC 130之電力,使得其既不加熱亦不冷卻記憶體晶粒120(動作340)。在等待一時間週期(動作350)之後,該方法可再次重新開始。 As shown in FIG. 3, TEC controller 115 compares the temperature reading of temperature sensor 125 to a target temperature (act 310). The target temperature may be predetermined (fixed) or adjusted by a user of the storage module 100. For example, the user can change the temperature through a storage protocol command to achieve a desired memory characteristic. Further, the target temperature may be a single temperature (eg, 55 ° C) or a temperature range (eg, 55 ° C to 85 ° C). If the temperature reading of temperature sensor 125 is above the target temperature, TEC controller 115 sets the power of TEC 130 such that it cools memory die 120 (act 320). If the temperature reading of temperature sensor 125 is below the target temperature, TEC controller 115 sets the power of TEC 130 such that it heats memory die 120 (act 330). If the temperature reading of temperature sensor 125 is equal to the target temperature, TEC controller 115 turns off the power of TEC 130 such that it neither heats nor cools memory die 120 (act 340). After waiting for a period of time (act 350), the method can be restarted again.
圖4係用於控制溫度之一實施例之一電路之一圖。在此實例中,目標溫度係介於Ref 1(例如,55℃)與Ref 2(例如,85℃)之間之一範圍。如圖4中所展示,此電路包括兩個運算放大器410、420、在TEC 130之一側上之一第一組MOSFET 430、440及在TEC 130之另一側上之一第二組MOSFET 450、460。在各對中,一次僅一MOSFET傳導。在操作中,第一運算放大器410比較溫度感測器125之溫度讀數與第一參考溫度。若該溫度讀數高於該參考溫度,則施加電壓至第一組MOSFET 430、440(430傳導)以推動電流通過TEC 130來啟動一冷卻操作。第二運算放大器420比較溫度感測器125之溫度讀數與第二參考溫度。若該溫度讀數低於該參考溫度,則施加電壓至第二組MOSFET 450、460以拉取電流通過TEC 130來啟動一加熱操作。依此方式,TEC 130可維持記憶體晶粒120上之一固定溫度或溫度範圍。 Figure 4 is a diagram of one of the circuits used to control one of the temperatures. In this example, the target temperature is in a range between Ref 1 (eg, 55 ° C) and Ref 2 (eg, 85 ° C). As shown in Figure 4, this circuit includes two operational amplifiers 410, 420, at TEC One of the first set of MOSFETs 430, 440 on one side of 130 and one of the second set of MOSFETs 450, 460 on the other side of TEC 130. In each pair, only one MOSFET is conducted at a time. In operation, the first operational amplifier 410 compares the temperature reading of the temperature sensor 125 with the first reference temperature. If the temperature reading is above the reference temperature, a voltage is applied to the first set of MOSFETs 430, 440 (430 conduction) to drive current through the TEC 130 to initiate a cooling operation. The second operational amplifier 420 compares the temperature reading of the temperature sensor 125 with a second reference temperature. If the temperature reading is below the reference temperature, a voltage is applied to the second set of MOSFETs 450, 460 to pull current through the TEC 130 to initiate a heating operation. In this manner, TEC 130 can maintain a fixed temperature or temperature range on memory die 120.
對於此等實施例,存在許多組態及替代。例如,在上文之實施例中,溫度感測器125係記憶體晶粒120之部分。然而,取代或補充記憶體晶粒120中之溫度感測器125,儲存模組100可具有在控制器110之ASIC中或在儲存模組100中之另一位置中之一溫度感測器117(參閱圖1)。若使用多個溫度感測器,則TEC控制器115可單獨使用個別讀數(取最高/最低讀數),或以某一方式一起使用該等讀數(例如,對讀數求平均、將不同權重施加至該等讀數等等)。 There are many configurations and alternatives for these embodiments. For example, in the above embodiments, temperature sensor 125 is part of memory die 120. However, instead of or in addition to the temperature sensor 125 in the memory die 120, the memory module 100 can have one of the temperature sensors 117 in the ASIC of the controller 110 or in another location in the memory module 100. (See Figure 1). If multiple temperature sensors are used, the TEC controller 115 can use individual readings alone (take the highest/lowest readings) or use them together in some way (eg, average the readings, apply different weights to These readings, etc.).
TEC 130可位於儲存模組100中之任何適當位置中,且圖5至圖8繪示一些例示性組態。在圖5中,控制器110、記憶體晶粒120及TEC 130全部堆疊於一基板500上,其中TEC 130位於基板500與記憶體晶粒120之堆疊中之第一記憶體晶粒之間。基板500經由複數個焊球520熱耦合及電耦合至一印刷電路板510。基板500及焊球520可為諸如來自Intel之HL-PBGA封裝之球狀柵格陣列(BGA)封裝的部分。圖6展示來自圖5之儲存模組100的熱轉移。如圖6中可見,儘管存在一些熱流來自記憶體晶粒120之側部及頂部,但大部分熱量係自記憶體晶粒120透過TEC 130轉移,且經由基板500及焊球520透過印刷電路板510消散。 The TEC 130 can be located in any suitable location in the storage module 100, and Figures 5-8 illustrate some exemplary configurations. In FIG. 5, the controller 110, the memory die 120, and the TEC 130 are all stacked on a substrate 500, wherein the TEC 130 is located between the substrate 500 and the first memory die in the stack of memory die 120. The substrate 500 is thermally coupled and electrically coupled to a printed circuit board 510 via a plurality of solder balls 520. Substrate 500 and solder balls 520 may be part of a ball grid array (BGA) package such as from HL-PBGA packages from Intel. FIG. 6 shows the thermal transfer from the storage module 100 of FIG. As can be seen in Figure 6, although some of the heat flow is from the sides and top of the memory die 120, most of the heat is transferred from the memory die 120 through the TEC 130 and through the printed circuit board via the substrate 500 and solder balls 520. 510 dissipated.
若離TEC 130最近與最遠之晶粒之間存在一顯著溫度梯度,則可能需要額外加熱/冷卻,且可添加一或多個額外TEC至儲存模組100。例如,在圖7中,添加一第二TEC 700至堆疊之頂部,使得記憶體晶粒120夾置於兩個TEC 130與700之間,以便使內部晶粒120與外側溫度隔離。如相較於圖5及圖6中所展示之組態,將控制器110自記憶體晶粒120之頂部移至底部,及添加一熱傳導填充物710以填充空隙。圖8展示此組態之熱轉移,其中兩個TEC 130、700自儲存模組100之頂部及底部消散熱量。 If there is a significant temperature gradient between the nearest and farthest dies of TEC 130, additional heating/cooling may be required and one or more additional TECs may be added to storage module 100. For example, in Figure 7, a second TEC 700 is added to the top of the stack such that the memory die 120 is sandwiched between the two TECs 130 and 700 to isolate the inner die 120 from the outside temperature. As compared to the configuration shown in Figures 5 and 6, controller 110 is moved from the top to the bottom of memory die 120 and a thermally conductive filler 710 is added to fill the void. Figure 8 shows the thermal transfer of this configuration in which the two TECs 130, 700 dissipate heat from the top and bottom of the storage module 100.
應注意:在上文之實例中,當TEC在儲存模組100之封裝50(外殼)之內部時,可使用在封裝50外部之一TEC(參閱圖1)取代或補充在封裝50內部之TEC。此替代例在其中儲存模組100在一異常暖和或寒冷的環境中操作之情形中可為較佳。由於外部TEC 150位於儲存模組100之外側且不受空間及其他約束,所以可使用用於冷卻或加熱(例如,標準製冷技術)之較大裝置。 It should be noted that in the above example, when the TEC is inside the package 50 (housing) of the storage module 100, one of the TECs outside the package 50 (see FIG. 1) may be used instead of or in addition to the TEC inside the package 50. . This alternative may be preferred in situations where the storage module 100 is operated in an unusually warm or cold environment. Since the outer TEC 150 is located on the outside of the storage module 100 and is not subject to space and other constraints, larger devices for cooling or heating (eg, standard refrigeration techniques) can be used.
在上文之實例中,假定整個記憶體晶粒120需要一目標溫度以最佳化一NAND特性。然而,可存在需要不同目標溫度之一個以上NAND特性。例如,可期望設計一儲存模組,其具有針對使用者內容之極長資料保持力及針對一單階胞(SLC)快取之極高持久性,此兩者不能在相同溫度下達到最佳。為解決此情形,一記憶體晶粒可分成複數個區域,其中各區域與一不同的目標溫度相關聯。TEC亦可被分成由TEC控制器獨立控制之一對應複數個區域。所以,針對上文之實例,可善用TEC及記憶體之平面性之優點以將記憶體及TEC分成兩個分離獨立單元。第一TEC區域可加熱快取區塊及保證高持久性,同時第二TEC區域可冷卻使用者內容區塊(完整區塊)且保證高資料保持力。依此方式,跨TEC之一非均勻溫度輪廓係用於達成不同記憶體使用(此處,快取及完整區塊之儲存)之不同溫度條件。 In the above examples, it is assumed that the entire memory die 120 requires a target temperature to optimize a NAND characteristic. However, there may be more than one NAND characteristic that requires different target temperatures. For example, it may be desirable to design a memory module that has extremely long data retention for user content and extremely high persistence for a single cell (SLC) cache, which cannot be optimal at the same temperature. . To address this situation, a memory die can be divided into a plurality of regions, each region being associated with a different target temperature. The TEC can also be divided into one of a plurality of areas independently controlled by the TEC controller. Therefore, for the above examples, the advantages of the planarity of the TEC and the memory can be utilized to separate the memory and the TEC into two separate independent units. The first TEC zone heats the cache block and ensures high durability while the second TEC zone cools the user content block (complete block) and ensures high data retention. In this manner, one of the non-uniform temperature profiles across the TEC is used to achieve different temperature conditions for different memory usage (here, cache and full block storage).
在另一實施例中,一儲存模組之溫度控制係用於防止記憶體之溫度上升至當一主機發送一資料叢發時之一最大操作額定溫度或超出該最大操作額定溫度之位準。如本文中所使用,一「資料叢發」係指主機之一相對高負載週期(即,其中主機寫入一相對高數量之資料及/或發出一相對高數目之寫入命令之週期)。即,叢發係當需要儲存模組100之一高於平均之效能以滿足主機之寫入活動之時間週期。在許多情形中,主機大部分時間以一接近閒置模式操作且當存在對資料之一高需求時(例如,當一使用者啟動一主機裝置(諸如一相機或行動電話)或當具有一大附件之電子郵件到達時)偶爾發送一資料叢發。一資料叢發之典型持續時間為數秒,且所需效能高於在其他模式時之效能。此對資料之短暫及強烈之需求可使記憶體之溫度增加至危險位準且可負面地影響系統之回應性,尤其在使用多個晶粒平行度來滿足增加的讀取及寫入效能需求時。 In another embodiment, the temperature control of a storage module is used to prevent the temperature of the memory from rising to a level at which one of the maximum operating rated temperatures or a maximum operating rated temperature is exceeded when a host transmits a data burst. As used herein, a "data burst" refers to a relatively high duty cycle of a host (i.e., a period in which a host writes a relatively high amount of data and/or issues a relatively high number of write commands). That is, the bursting system requires a time period in which one of the storage modules 100 is above average to satisfy the write activity of the host. In many cases, the host operates most of the time in a near idle mode and when there is a high demand for one of the data (eg, when a user activates a host device (such as a camera or mobile phone) or when there is a large attachment When the email arrives, it occasionally sends a bundle of information. The typical duration of a data burst is a few seconds, and the required performance is higher than in other modes. This short and strong demand for data can increase the temperature of the memory to a dangerous level and can negatively impact the responsiveness of the system, especially when multiple grain parallelism is used to meet increased read and write performance requirements. Time.
為解決此問題,在另一實施例(其可與上文所討論之實施例一起或獨立於上文所討論之實施例使用)中,TEC控制器115判定主機將發送一資料叢發且接著在該資料叢發之接收之前啟動TEC 130來冷卻記憶體120。 To address this issue, in another embodiment (which may be used with or independently of the embodiments discussed above), the TEC controller 115 determines that the host will send a burst of data and then The TEC 130 is activated to cool the memory 120 prior to receipt of the data burst.
TEC控制器115可判定主機將依任何適當方式發送一資料叢發。例如,TEC控制器115可接收一通知(例如,經由一儲存協定命令):主機將發送一資料叢發。此通知可明確指示一資料叢發即將到來或可含有指示一即將到來之叢發之一些其他訊息(例如,主機緩衝器係滿的)。如另一實例,儲存模組100可具有用於基於主機活動而推斷何時將發生叢發之一內部偵測機構。例如,儲存模組100可判定主機在一時間週期內的寫入活動是否超出一臨限值。該寫入活動可為(例如)自主機接收之待寫入於儲存模組100中之資料之一數量及/或自主機接收之寫入命令之一數目(每秒輸入/輸出操作之數目(「IOPS」))。較佳 地,儲存模組100評估是否存在一資料叢發之時間週期為足夠小以使得能夠快速偵測資料叢發但足夠大以消除偵測中之雜訊(例如,100至200微秒)。另外,量測寫入活動之臨限值可為靜態(一絕對數字)(例如,自主機以每秒40MB之一速率接收資料及/或自主機在100微秒至200微秒之窗內接收200至2000之寫入命令)或動態(一相對數字)(例如,依一加權或未加權之方式作為基於主機之先前寫入活動(在相同或不同時間週期內)之一百分比)。若儲存模組100經設計以自主機接受一通知及具有一內部偵測機構兩者,則可設定規則以在存在一衝突時判定遵循哪一指示(例如,來自主機之通知將觸發冷卻操作且隨後來自內部偵測機構之指示將被忽略)。 The TEC controller 115 can determine that the host will send a burst of data in any suitable manner. For example, the TEC controller 115 can receive a notification (eg, via a storage agreement command): the host will send a burst of data. This notification may explicitly indicate that a data burst is coming or may contain some other message indicating an upcoming burst (eg, the host buffer is full). As another example, the storage module 100 can have an internal detection mechanism for inferring when a burst will occur based on host activity. For example, the storage module 100 can determine whether the write activity of the host exceeds a threshold within a time period. The write activity can be, for example, the number of data received from the host to be written in the storage module 100 and/or the number of write commands received from the host (the number of input/output operations per second ( "IOPS"))). Better The storage module 100 evaluates whether there is a data burst for a period of time small enough to enable rapid detection of data bursts but large enough to eliminate detected noise (eg, 100 to 200 microseconds). In addition, the threshold for the measurement write activity can be static (an absolute number) (eg, receiving data from the host at a rate of 40 MB per second and/or receiving from the host within a window of 100 microseconds to 200 microseconds) 200 to 2000 write commands) or dynamic (a relative number) (eg, as a percentage of a host-based write activity (within the same or different time periods) in a weighted or unweighted manner). If the storage module 100 is designed to accept a notification from the host and has an internal detection mechanism, a rule can be set to determine which indication to follow when there is a conflict (eg, a notification from the host will trigger a cooling operation and Subsequent instructions from the internal detection mechanism will be ignored).
不論所使用之方法為何,當TEC控制器115判定主機將發送叢發時,TEC控制器115在主機發送叢發前啟動TEC 130來冷卻記憶體120。可設定一目標低溫,或TEC 130可僅運行直至關閉。此「預冷卻」記憶體120以考量當主機發送叢發時所產生之熱量。TEC控制器115可回應於來自主機之一通知或藉由自主機之寫入活動作出一推斷而判定何時停止冷卻記憶體120。 Regardless of the method used, when the TEC controller 115 determines that the host will send a burst, the TEC controller 115 activates the TEC 130 to cool the memory 120 before the host sends the burst. A target low temperature can be set, or the TEC 130 can be operated only until it is turned off. This "pre-cooling" memory 120 takes into account the amount of heat generated when the host sends a burst. The TEC controller 115 can determine when to stop cooling the memory 120 in response to a notification from one of the hosts or by making an inference from the write activity of the host.
圖9A及圖9B繪示此實施例。如圖9A中所展示,在資料叢發之前及之後,主機係處於一閒置模式。如圖9A及圖9B中所展示,在主機發送資料叢發之前,記憶體120以低於最大操作溫度之一恆定溫度操作。在其中使用4個晶粒平行度之情形中,記憶體120之溫度在主機發送一資料叢發時上升且在超出正常操作條件之溫度之一△T之一溫度處達到峰值。如圖9B中所展示,此峰值溫度低於最大操作溫度但仍相對高。然而,當使用8個晶粒平行度時,在叢發期間遇到2X △T之一溫度上升,此使記憶體120之溫度上升超出最大操作溫度且可導致對儲存模組100之損壞。 9A and 9B illustrate this embodiment. As shown in Figure 9A, the host is in an idle mode before and after the burst of data. As shown in Figures 9A and 9B, the memory 120 operates at a constant temperature below one of the maximum operating temperatures before the host sends the data burst. In the case where four grain parallelisms are used, the temperature of the memory 120 rises when the host transmits a data burst and peaks at a temperature one of the temperatures ΔT beyond the normal operating conditions. As shown in Figure 9B, this peak temperature is below the maximum operating temperature but still relatively high. However, when 8 grain parallelisms are used, a temperature rise of 2X ΔT is encountered during bursts, which causes the temperature of the memory 120 to rise above the maximum operating temperature and can cause damage to the memory module 100.
使用此實施例之方法,當儲存模組100自主機接收一叢發通知 時,其在接收叢發之前開始冷卻記憶體120。此降低記憶體120之溫度下限,使得即使具有2X △T之一溫度上升,溫度亦低於最大操作溫度。 Using the method of this embodiment, when the storage module 100 receives a burst notification from the host At the time, it begins to cool the memory 120 before receiving the burst. This lowers the lower temperature limit of the memory 120 so that even if one of the temperatures of 2X ΔT rises, the temperature is lower than the maximum operating temperature.
存在許多可與此實施例一起使用之替代例。例如,取代在叢發結束時停止冷卻記憶體,TEC控制器115可在叢發結束之後提供進一步冷卻以準備下一個叢發,尤其當下一個叢發將在隨後之短時間(例如,15秒)內發生時或當內部由儲存裝置100偵測到叢發之開始時(由於內部偵測可引起在叢發已開始之後開始冷卻)。在另一替代實施例(圖10中所展示)中,取代或補充儲存模組100中控制一或多個TEC之TEC控制器115,主機1025可含有其自身之TEC控制器1040及在儲存模組封裝50之外部(但較佳地接近儲存模組封裝)之其自身之TEC 1050之一或多者。如另一替代例,主機1025中之控制器1030可發送指令至儲存模組100中之TEC控制器115(例如,經由儲存協定命令)以操作儲存模組100中及圍繞儲存模組100之TEC 130、150。相反地,儲存模組100中之TEC控制器115可指示主機1025中之TEC控制器1040以操作其TEC 1050。 There are many alternatives that can be used with this embodiment. For example, instead of stopping the cooling of the memory at the end of the burst, the TEC controller 115 may provide further cooling after the end of the burst to prepare for the next burst, especially if the next burst will be in a short time thereafter (eg, 15 seconds) When it occurs internally or when the internal storage device 100 detects the beginning of the burst (because internal detection can cause cooling to start after the burst has started). In another alternate embodiment (shown in FIG. 10), instead of or in addition to the TEC controller 115 in the storage module 100 that controls one or more TECs, the host 1025 can include its own TEC controller 1040 and the storage module. One or more of its own TEC 1050 external to the package 50 (but preferably close to the storage module package). As another alternative, the controller 1030 in the host 1025 can send commands to the TEC controller 115 in the storage module 100 (eg, via a storage protocol command) to operate the TEC in the storage module 100 and around the storage module 100. 130, 150. Conversely, the TEC controller 115 in the storage module 100 can instruct the TEC controller 1040 in the host 1025 to operate its TEC 1050.
意欲將前述詳細描述理解為本發明可採用之選定形式之一說明且非為本發明之一界定。僅以下申請專利範圍及其全部等效物意欲界定本發明之範疇。最後,應注意,可單獨或相互組合使用本文中所描述之較佳實施例之任何者之任何態樣。 The foregoing detailed description is to be understood as illustrative of the invention Only the scope of the following claims and all equivalents thereof are intended to define the scope of the invention. Finally, it should be noted that any aspect of any of the preferred embodiments described herein may be used alone or in combination with one another.
50‧‧‧積體電路封裝 50‧‧‧Integrated circuit package
100‧‧‧儲存模組 100‧‧‧ storage module
110‧‧‧控制器 110‧‧‧ Controller
111‧‧‧主機介面模組 111‧‧‧Host Interface Module
112‧‧‧快閃管理模組 112‧‧‧Flash Management Module
113‧‧‧快閃介面模組 113‧‧‧Flash interface module
115‧‧‧熱電冷卻器(TEC)控制器 115‧‧‧ Thermoelectric cooler (TEC) controller
117‧‧‧可選溫度感測器 117‧‧‧Optional temperature sensor
120‧‧‧記憶體晶粒/記憶體 120‧‧‧Memory grain/memory
125‧‧‧溫度感測器 125‧‧‧temperature sensor
130‧‧‧熱電冷卻器(TEC)/記憶體晶粒 130‧‧‧Thermoelectric cooler (TEC)/memory grain
150‧‧‧熱電冷卻器(TEC) 150‧‧‧Thermoelectric cooler (TEC)
Claims (48)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/041,821 US20150089961A1 (en) | 2013-09-30 | 2013-09-30 | Temperature-Controlled Storage Module |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201527980A TW201527980A (en) | 2015-07-16 |
TWI519961B true TWI519961B (en) | 2016-02-01 |
Family
ID=51422195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103130295A TWI519961B (en) | 2013-09-30 | 2014-09-02 | Temperature-controlled storage module |
Country Status (3)
Country | Link |
---|---|
US (1) | US20150089961A1 (en) |
TW (1) | TWI519961B (en) |
WO (1) | WO2015047592A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015135875A (en) * | 2014-01-16 | 2015-07-27 | 株式会社東芝 | Semiconductor package, and electronic apparatus |
US20160093553A1 (en) * | 2014-09-25 | 2016-03-31 | Mani Prakash | On demand cooling of an nvm using a peltier device |
CN112368415B (en) | 2018-07-05 | 2024-03-22 | 朗姆研究公司 | Dynamic temperature control of substrate support in substrate processing system |
US11169583B2 (en) * | 2018-08-07 | 2021-11-09 | Western Digital Technologies, Inc. | Methods and apparatus for mitigating temperature increases in a solid state device (SSD) |
US11183400B2 (en) * | 2018-08-08 | 2021-11-23 | Lam Research Corporation | Progressive heating of components of substrate processing systems using TCR element-based heaters |
US11127451B2 (en) * | 2018-11-30 | 2021-09-21 | SK Hynix Inc. | Memory system with minimized heat generation which includes memory that operates at cryogenic temperature |
US10831396B2 (en) | 2018-12-18 | 2020-11-10 | Micron Technology, Inc. | Data storage organization based on one or more stresses |
US11416048B2 (en) * | 2019-07-22 | 2022-08-16 | Micron Technology, Inc. | Using a thermoelectric component to improve memory sub-system performance |
JP7500263B2 (en) * | 2020-04-27 | 2024-06-17 | キオクシア株式会社 | MEMORY DEVICE AND METHOD FOR CALIBRATING TEMPERATURE SENSOR - Patent application |
KR20210136651A (en) | 2020-05-08 | 2021-11-17 | 삼성전자주식회사 | Semiconductor package and electronic device including same |
KR20220116632A (en) | 2021-02-15 | 2022-08-23 | 삼성전자주식회사 | Method of operating storage device and storage device performing the same |
US12068041B2 (en) | 2021-03-12 | 2024-08-20 | SanDisk Technologies, Inc. | Power reallocation for memory device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4152348B2 (en) * | 2004-06-03 | 2008-09-17 | 株式会社ソニー・コンピュータエンタテインメント | Electronic device cooling apparatus, electronic device system, and electronic device cooling method |
US8046559B2 (en) * | 2008-03-27 | 2011-10-25 | Intel Corporation | Memory rank burst scheduling |
US20090251960A1 (en) * | 2008-04-07 | 2009-10-08 | Halliburton Energy Services, Inc. | High temperature memory device |
KR101559549B1 (en) * | 2008-12-08 | 2015-10-13 | 삼성전자주식회사 | Mobile SoCSystem On Chip and Mobile terminal using the mobile SoC |
JP2013050818A (en) * | 2011-08-30 | 2013-03-14 | Toshiba Corp | Memory system |
CN104115227B (en) * | 2011-12-23 | 2017-02-15 | 英特尔公司 | Memory operation using system thermal sensor data |
-
2013
- 2013-09-30 US US14/041,821 patent/US20150089961A1/en not_active Abandoned
-
2014
- 2014-08-18 WO PCT/US2014/051480 patent/WO2015047592A1/en active Application Filing
- 2014-09-02 TW TW103130295A patent/TWI519961B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
WO2015047592A1 (en) | 2015-04-02 |
TW201527980A (en) | 2015-07-16 |
US20150089961A1 (en) | 2015-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI547864B (en) | Temperature-controlled storage module that cools memory prior to a data burst | |
TWI519961B (en) | Temperature-controlled storage module | |
US11016545B2 (en) | Thermal throttling for memory devices | |
US9668377B2 (en) | Storage device | |
US9317083B2 (en) | Thermal regulation for solid state memory | |
US12013734B2 (en) | Using a thermoelectric component to improve memory sub-system performance | |
US9678490B2 (en) | Systems and methods for temperature-based performance optimization of memory devices | |
US10210912B2 (en) | Integrated thermoelectric cooler for three-dimensional stacked DRAM and temperature-inverted cores | |
US9761290B1 (en) | Overheat prevention for annealing non-volatile memory | |
US10467134B2 (en) | Dynamic anneal characteristics for annealing non-volatile memory | |
US20210391319A1 (en) | Thermal chamber for a thermal control component | |
US20200194650A1 (en) | Dual thermoelectric component apparatus with thermal transfer component | |
TWI659311B (en) | Data storage system and operating method for non-volatile memory | |
US20150114946A1 (en) | Thermal treatment of flash memories | |
US20160161998A1 (en) | Actively Cooled Liquid Cooling System | |
CN113434029A (en) | System and method for thermal control of electronic devices | |
CN113396373A (en) | Method and apparatus for controlling temperature of semiconductor die in computer system | |
US20130329358A1 (en) | Transient thermal management systems for semiconductor devices | |
CN105913867B (en) | A kind of adjustment device and electronic equipment | |
US20230376087A1 (en) | Storage Device Energy Recycling and Cooling | |
US20220011836A1 (en) | Flow enhancement structure to increase bandwidth of a memory module | |
US20240196569A1 (en) | Thermal isolation for memory systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |