TWI516671B - Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications - Google Patents
Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications Download PDFInfo
- Publication number
- TWI516671B TWI516671B TW102106078A TW102106078A TWI516671B TW I516671 B TWI516671 B TW I516671B TW 102106078 A TW102106078 A TW 102106078A TW 102106078 A TW102106078 A TW 102106078A TW I516671 B TWI516671 B TW I516671B
- Authority
- TW
- Taiwan
- Prior art keywords
- turbine
- fuel
- operational
- adjustment
- controller
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/28—Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/32—Control of fuel supply characterised by throttling of fuel
- F02C9/34—Joint control of separate flows to main and auxiliary burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/70—Application in combination with
- F05D2220/72—Application in combination with a steam turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/08—Purpose of the control system to produce clean exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/20—Purpose of the control system to optimize the performance of a machine
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
本申請案係於2012年7月5日提出申請之第13/542,222號美國申請案之一部分接續案,第13/542,222號美國申請案係於2009年5月8日提出申請之第12/463,060號美國申請案之一部分接續案。本申請案亦主張於2012年2月22日提出申請之第61/601,876號美國申請案之權益。第12/463,060號美國申請案、第13/542,222號美國申請案及第61/601,876號美國申請案之內容皆以引用方式整體併入本文中。 This application is part of a continuation of US Application No. 13/542,222 filed on July 5, 2012, and the US application Serial No. 13/542,222 filed on May 8, 2009, filed on Serial No. 12/463,060 Part of the US application is a continuation case. This application also claims the benefit of US Application No. 61/601,876 filed on Feb. 22, 2012. The contents of U.S. Application Serial No. 12/463, 060, U.S. Application Serial No. 13/542,222, and U.S. Application Serial No. 61/601, 876
本發明係關於一種用以感測一燃燒系統之操作條件並做出預設定調節以在一最佳化負載範圍中達成輪機之所期望操作之自動系統。 The present invention relates to an automated system for sensing the operating conditions of a combustion system and making pre-set adjustments to achieve the desired operation of the turbine in an optimized load range.
貧油預混燃燒系統已部署於路基燃氣輪機引擎上以減少排放,諸如NOx及CO。此等系統已成功且在某些情形中,產生在量測能力之下限處之排放位準,約百萬分之1至百萬分之3之NOx及CO。儘管自排放生產之立場來看,此等系統係一大益處,但當與較多習用燃燒系統相比時,該等系統之操作包絡實質上減少。作為一結果,對燃料條件、分配及注入至燃燒區帶中之控制已變為一臨界操作參數且當周 圍大氣條件(諸如溫度、濕度及壓力)改變時,需要頻繁調節。對燃燒燃料條件、分配及注入之重新調節稱作調整。 Lean oil premixed combustion systems have been deployed on subgrade gas turbine engines to reduce emissions such as NOx and CO. These systems have been successful and in some cases have produced emission levels at the lower end of the measurement capability, from about 1 part per million to 3 parts per million of NOx and CO. Although such systems are a significant benefit from the standpoint of emissions production, the operational envelopes of such systems are substantially reduced when compared to more conventional combustion systems. As a result, control of fuel conditions, distribution, and injection into the combustion zone has become a critical operating parameter and is the week Frequent adjustments are required when atmospheric conditions (such as temperature, humidity, and pressure) change. The readjustment of combustion fuel conditions, distribution, and injection is referred to as adjustment.
一燃燒系統之受控操作通常採用一燃燒器之操作控制元素之一手動設定以產生一平均操作條件。此等設定可透過一控制器來輸入,如本文中所使用之控制器應指代用於控制一系統之操作之任何裝置。實例包含一分散式控制系統(DCS)、一燃料輪機控制器、一可程式化邏輯控制器(PLC)、與另一控制器通信及/或直接通信至一系統之一獨立電腦。 The controlled operation of a combustion system is typically manually set using one of the burner's operational control elements to produce an average operating condition. Such settings may be entered through a controller, as used herein, to refer to any device used to control the operation of a system. Examples include a decentralized control system (DCS), a fuel turbine controller, a programmable logic controller (PLC), communication with another controller, and/or direct communication to a standalone computer of a system.
此等設定在設置時係令人滿意的,但在幾小時或幾天中,條件可改變且導致不可接受操作。調整問題係藉此一系統之任何操作參數超過可接受極限之任何情況。實例包含可允許極限外之排放偏差、可允許極限外之燃燒器動力學特性偏差或需要調節一輪機之操作控制元素之任何其他調整事件。其他方法基於燃氣輪機之操作設定而使用一公式來預測排放且在不修改其他控制元素(諸如燃料燃氣溫度)之情況下針對燃料分配及/或總體機器燃料/空氣比選擇一設定點。仍其他方法採用藉由將週期性重新調節調整之調整專家之自遠端位置至位點之一遠端連接。此等方法不允許連續及時變化、不全面利用實際動力學特性及排放資料或不修改燃料分配、燃料溫度及/或其他輪機控制元素。 These settings are satisfactory at setup, but within hours or days, conditions can change and result in unacceptable operation. The adjustment problem is any situation where any of the operating parameters of the system exceeds the acceptable limit. Examples include emissions deviations outside of the allowable limits, deviations in combustor dynamics outside the allowable limits, or any other adjustment event that requires adjustment of the operational control elements of a turbine. Other methods use a formula to predict emissions based on operational settings of the gas turbine and select a set point for fuel distribution and/or overall machine fuel/air ratio without modifying other control elements, such as fuel gas temperature. Still other methods employ a remote connection from one of the remote locations to one of the sites by adjusting the periodic re-adjustment adjustment. These methods do not allow continuous and timely changes, do not fully utilize actual kinetic characteristics and emissions data, or modify fuel distribution, fuel temperature, and/or other turbine control elements.
影響貧油預混燃燒系統之另一變量係燃料組合物。燃料組合物之充分變化將導致貧油預混燃燒系統之廢熱釋放中之一改變。此改變可導致排放偏差、不穩定燃燒程序或甚至燃燒系統之熄火。 Another variable that affects lean oil premixed combustion systems is the fuel composition. Adequate changes in the fuel composition will result in a change in one of the waste heat releases of the lean premixed combustion system. This change can result in emissions deviations, unstable combustion procedures, or even flameout of the combustion system.
近年來,發電超負荷(甚至使用F級點火溫度燃氣輪機之發電)已導致所裝設燃氣輪機群中之許多燃氣輪機以一循環模式對基本負載操作運行。此意指當電力價格如此低以致運行整夜所招致之損失遠超過每天早晨開啟裝備之成本時,諸多燃氣輪機操作者受迫將其裝備關閉 整夜。此操作程序對裝備之維護具有一影響,此乃因每一停止/開啟循環導致裝備上之一所得負載循環。 In recent years, power generation overload (even using F-class ignition temperature gas turbines) has resulted in many gas turbines in the installed gas turbine fleet operating in a cyclic mode to base load operation. This means that when the price of electricity is so low that the losses incurred during the night of operation far exceed the cost of opening the equipment every morning, many gas turbine operators are forced to shut down their equipment. All night. This procedure has an effect on the maintenance of the equipment, as each of the stop/open cycles results in a load cycle of one of the equipment.
為對抗此情況,燃氣輪機操作者正研究整夜運行其裝備同時招致可能之最小經濟損失之方式。一種可行解決方案係降低一燃氣輪機可達成之最小負載同時仍維持可接受排放位準。此操作方法通常稱為「調節比(Turndown)」。 To counter this situation, gas turbine operators are investigating ways to run their equipment overnight while incurring the smallest possible economic loss. One possible solution is to reduce the minimum load that a gas turbine can achieve while still maintaining an acceptable level of emissions. This method of operation is often referred to as "Turndown."
在發電工業內已使用「調節比」多年。因此,沒有直接與此操作模式相關之任何事物經包含作為此專利之部分。新穎之內容係由ECOMAXTM調整控制器使用以在處於調節比中時調整燃燒系統之方法以及併入ECOMAXTM內以減輕由低蒸汽流量及高燃氣輪機排氣溫度導致之經組合循環廢熱回收蒸汽產生器(HRSG)上之有害效應之方法。該系統亦適用於簡單循環操作;然而,大部分簡單循環系統應用於峰值發電且在操作計劃中具有一期望關閉程序。 The "regulation ratio" has been used for many years in the power generation industry. Therefore, nothing directly related to this mode of operation is included as part of this patent. The novelty of the content used by the system controller to adjust the ECOMAX TM adjustment method in regulation when the ratio of the combustion system and incorporated into ECOMAX TM recirculating waste heat to reduce the combined lead of the low vapor flow and high temperature gas turbine exhaust gas recovery to generate steam Method of harmful effects on the HRSG. The system is also suitable for simple cycle operation; however, most simple cycle systems are applied to peak power generation and have a desired shutdown procedure in the operational plan.
通常,當減少燃氣輪機負載時,HRSG蒸汽流量減少而燃氣輪機排氣溫度上升。此組合連同不足級內調溫流量容量一起通常產生過高HRSG出口蒸汽溫度(蒸汽輪機入口蒸汽溫度)。在諸多情形中,此等蒸汽溫度接近材料極限且可導致早期組件故障。在另一極端,具有充足冷凝液流量之蒸汽調節比/調溫系統可提供足夠冷凝液以在進入至一蒸汽輪機中之點處使過熱出口溫度保持在規格內;然而,可發生局部過調溫。此過調溫通常導致對調溫器之下游之蒸汽管道之直接冷凝液衝擊,從而在緊接在減熱器/調溫器之下游之管道區段中導致過多熱疲勞。 Typically, when the gas turbine load is reduced, the HRSG steam flow is reduced and the gas turbine exhaust temperature is increased. This combination, together with the in-stage temperature-regulating flow capacity, typically produces an excessively high HRSG outlet steam temperature (steam turbine inlet steam temperature). In many cases, these vapor temperatures are close to material limits and can cause early component failure. At the other extreme, a steam conditioning/tempering system with sufficient condensate flow provides sufficient condensate to keep the superheated outlet temperature within specifications at the point of entry into a steam turbine; however, local overshoot can occur temperature. This over-temperature regulation typically results in direct condensate impact on the steam line downstream of the thermostat, resulting in excessive thermal fatigue in the pipe section immediately downstream of the heat exchanger/temperature regulator.
目前為止,努力主要集中於手動(若真會發生的話)修改一燃氣輪機之燃料與空氣(f/a)比上以保持所滿足之HRSG設計約束。然而,因素(諸如周圍溫度改變、輪機組件降級等)可在低負載下使燃氣輪機之f/a比之週期性操縱成為必需以確保可接受HRSG入口條件。利用即時 HRSG操作資訊之一燃氣輪機之f/a比之自動操縱以及即時燃氣輪機操作資訊提供用以使HRSG組件壽命最大化之一高效手段。 So far, efforts have focused primarily on manual (if it does happen) to modify the fuel-to-air (f/a) ratio of a gas turbine to maintain the HRSG design constraints that are met. However, factors such as ambient temperature changes, turbine component degradation, etc., may negate the f/a ratio of the gas turbine at low loads to ensure acceptable HRSG inlet conditions. Use instant One of the HRSG operational information is that the gas turbine's f/a provides an efficient means of maximizing the life of the HRSG component over automatic maneuvering and immediate gas turbine operational information.
應理解,操縱一燃氣輪機之燃料-空氣比將直接影響引擎之「調整」,且因此,用以達成此之任何方法必須伴隨有另一自動輪機控制方案以根據需要「重新調整」輪機。 It will be appreciated that manipulating the fuel-to-air ratio of a gas turbine will directly affect the "adjustment" of the engine, and therefore, any method used to accomplish this must be accompanied by another automated turbine control scheme to "re-adjust" the turbine as needed.
燃燒系統之誤操作自身表現為擴增之壓力脈動或燃燒動力學特性之增加。脈動可具有足以破壞燃燒系統之力且顯著減少燃燒硬體之壽命。另外,燃燒系統之不適當調整可導致排放偏差且違反排放許可。因此,用以在一規律或週期性基礎上將貧油預混燃燒系統之穩定性維持在適當操作包絡內之一手段具有巨大價值且為工業所關注。另外,藉由利用自輪機及HRSG感測器所獲得之接近即時資料而操作之一系統對於協調燃料組合物之調變、燃料分配、燃料燃氣入口溫度及/或總體機器f/a比(HRSG入口溫度及氣流)將具有顯著價值。 The erroneous operation of the combustion system manifests itself as an increase in pressure pulsation or combustion dynamics of the amplification. The pulsation can have sufficient force to damage the combustion system and significantly reduce the life of the combustion hardware. In addition, improper adjustment of the combustion system can result in emissions deviations and violation of emission permits. Therefore, one of the means for maintaining the stability of a lean premixed combustion system within an appropriate operational envelope on a regular or periodic basis is of great value and of industrial interest. In addition, one system operates to coordinate fuel composition modulation, fuel distribution, fuel gas inlet temperature, and/or overall machine f/a ratio by utilizing near real-time data obtained from the turbine and HRSG sensors ( HRSG inlet temperature and airflow) will be of significant value.
本文中提供一種用於調整一輪機之操作及使一廢熱回收蒸汽產生器之機械壽命最佳化之系統及方法。隨之提供一輪機控制器、用於感測操作參數之感測器構件、用於調節操作控制元素之控制構件。該控制器經調適以回應於由一使用者選擇之操作優先級而根據預程式化步驟來調整燃氣輪機之操作。該等操作優先級較佳包括最佳廢熱回收蒸汽產生器壽命。 A system and method for optimizing the operation of a turbine and optimizing the mechanical life of a waste heat recovery steam generator is provided herein. A turbine controller, a sensor component for sensing operational parameters, and a control member for adjusting the operational control elements are provided. The controller is adapted to adjust the operation of the gas turbine in accordance with a pre-programming step in response to an operational priority selected by a user. These operational priorities preferably include the optimum waste heat recovery steam generator life.
本發明提供一種用於使一燃氣輪機燃燒器之燃料-空氣比朝向減輕輪機之排氣條件對一廢熱回收蒸汽產生器(HRSG)系統之所預期壽命之有害效應最佳化(尤其在低負載條件期間)之控制器及方法。該燃氣輪機消耗系統係為具有用於量測該輪機之操作參數之感測器構件及用於控制該輪機之各種操作元素之控制構件之類型。由該控制器所接收之該輪機之該等操作參數包含燃燒器動力學特性、輪機排氣溫度 (總體燃料/空氣比)、輪機廢氣排放及各種廢熱回收蒸汽產生器(HRSG)蒸汽條件。該等操作控制元素可包含燃料燃氣摻合比(非管線品質燃料燃氣與管線品質燃料燃氣之比)、該燃燒系統內之燃料分配、燃料溫度及輪機排氣溫度。輪機/發電廠系統亦可包含與該等感測器構件及該等控制構件通信之一分散式控制系統(DCS)。調整控制器通常透過該DCS連接至該輪機系統(但該調整控制器可直接連接至該燃氣輪機控制器)。 The present invention provides a method for optimizing the fuel-to-air ratio of a gas turbine combustor toward mitigating the exhaustive conditions of the turbine to the expected life of a waste heat recovery steam generator (HRSG) system (especially at low load conditions) Controller and method of the period). The gas turbine consumption system is of the type having a sensor member for measuring operational parameters of the turbine and a control member for controlling various operational elements of the turbine. The operational parameters of the turbine received by the controller include combustor dynamics, turbine exhaust temperature (Total fuel/air ratio), turbine exhaust emissions, and various waste heat recovery steam generator (HRSG) steam conditions. The operational control elements may include a fuel gas blend ratio (ratio of non-line quality fuel gas to pipeline quality fuel gas), fuel distribution within the combustion system, fuel temperature, and turbine exhaust temperature. The turbine/power plant system can also include a distributed control system (DCS) in communication with the sensor components and the control components. The adjustment controller is typically connected to the turbine system through the DCS (but the adjustment controller can be directly connected to the gas turbine controller).
該調整控制器藉由自該等感測器構件接收資料而操作。該輪機之操作優先級在該控制器內進行設定且通常自最佳NOx排放、最佳功率輸出、最佳燃燒器動力學特性、最佳燃料燃氣摻合比及/或最佳HRSG壽命進行選擇。比較自該等輪機感測器所接收之該資料與該控制器內之所儲存操作標準。該選定操作標準係基於該所設定操作優先級。做出關於該輪機操作是否符合該等操作標準之一判定。另外,在該資料不具有符合性之情況中,再次基於該等預設定操作優先級對支配性調整準則做出一判定。一旦做出該邏輯判定,該調整控制器便透過該DCS與該等操作控制構件通信以在該輪機之一操作參數中執行一選定調節。該選定操作調節係基於該支配性調整準則且具有一預設定固定遞增值及經定義值範圍。在足以使該輪機獲得操作穩定性之一所設定時間週期內輸入每一遞增改變。一旦經過該時間週期,便再次自該等輪機感測器構件接收操作資料以判定是否期望一額外遞增改變。一般而言,在完成該經定義範圍內之該等調節後,旋即再次基於該支配性調整準則選擇一進一步操作參數調節,且在一經定義範圍內及在一所設定時間週期內做出一進一步固定遞增調節。調整程序由接收操作資料之該控制器繼續以判定該操作是否符合該等操作標準或是否需要一額外遞增調節。由該調整控制器調節之該等操作參數較佳為該燃氣輪機內之該燃料/空氣比、該燃燒器之該等噴嘴內之該燃燒器燃料 分配分股、該燃料燃氣入口溫度及/或該燃料燃氣摻合比。 The adjustment controller operates by receiving material from the sensor components. The operational priority of the turbine is set within the controller and is typically performed from optimum NOx emissions, optimal power output, optimum combustor dynamics, optimum fuel gas blend ratio, and/or optimal HRSG lifetime. select. The data received from the turbine sensors is compared to the stored operating standards within the controller. The selected operational criteria are based on the set operational priority. A determination is made as to whether the turbine operation meets one of the operational criteria. In addition, in the case where the material does not have compliance, a determination is made again on the dominant adjustment criterion based on the pre-set operation priorities. Once the logic determination is made, the adjustment controller communicates with the operational control members via the DCS to perform a selected adjustment in one of the turbine operating parameters. The selected operational adjustment is based on the dominant adjustment criterion and has a predetermined fixed incremental value and a defined range of values. Each incremental change is entered during a time period set for one of the operational stability of the turbine to achieve operational stability. Once the time period has elapsed, operational data is again received from the turbine sensor components to determine if an additional incremental change is desired. In general, upon completion of the adjustments within the defined range, a further operational parameter adjustment is again selected based on the dominant adjustment criteria, and a further determination is made within a defined time period and within a set time period. Fixed incremental adjustment. The adjustment procedure is continued by the controller receiving the operational data to determine if the operation meets the operational criteria or if an additional incremental adjustment is required. The operating parameters adjusted by the adjustment controller are preferably the fuel/air ratio in the gas turbine, the burner fuel in the nozzles of the combustor The split stock, the fuel gas inlet temperature, and/or the fuel gas blend ratio.
應理解,當由電廠操作者選擇最佳HRSG壽命時,該調整控制器將首先評估為減輕可能HRSG機械關注點將需要對該燃氣輪機f/a比做出什麼改變(若有)並做出此等所需改變。在此最佳化程序之後,若需要,該調整控制器將使用燃料分股之該等標準參數、燃料燃氣溫度及/或燃料燃氣組合物(注意:燃氣輪機f/a比不係一選項)來調整該燃氣輪機。 It will be appreciated that when the plant operator selects the optimum HRSG life, the adjustment controller will first evaluate to mitigate the possible HRSG mechanical concerns and what changes, if any, will be made to the gas turbine f/a ratio and make such The changes needed. After this optimization procedure, the adjustment controller will use the standard parameters of the fuel split, fuel gas temperature and/or fuel gas composition, if desired (note: gas turbine f/a ratio is not an option) ) to adjust the gas turbine.
在本發明之一進一步態樣中,該系統執行用於透過使用布林(Boolean)階層式邏輯及多個位準之控制設定來判定該支配性燃氣輪機燃燒系統調整情景之一方法。 In a further aspect of the invention, the system performs one of the methods for determining the governing gas turbine combustion system adjustment scenario by using Boolean hierarchical logic and a plurality of levels of control settings.
在本發明之另一態樣中,所執行之該方法係關於透過自動修改一分散式控制系統(DCS)內之該燃料燃氣溫度控制設定點來自動控制該燃氣輪機入口燃料溫度。 In another aspect of the invention, the method is performed to automatically control the gas turbine inlet fuel temperature by automatically modifying the fuel gas temperature control set point within a distributed control system (DCS).
在本發明之又一態樣中,藉由在該燃料燃氣溫度控制器內自動修改該燃料燃氣溫度控制設定點來定義用於自動控制一燃氣輪機入口燃料溫度之一方法。 In yet another aspect of the invention, a method for automatically controlling a gas turbine inlet fuel temperature is defined by automatically modifying the fuel gas temperature control set point within the fuel gas temperature controller.
在本發明之另一態樣中,透過使用具有一外部控制裝置(諸如,舉例而言,存在於該輪機控制器上以用於與該分散式控制系統(DCS)通信之一MODBUS串列或乙太網路通信協定埠)之一現有燃氣輪機通信鏈路來達成用於將輪機控制信號傳遞至一燃氣輪機控制器之一方法。 In another aspect of the invention, by using an external control device (such as, for example, present on the turbine controller for communication with the distributed control system (DCS), one of the MODBUS series or One of the Ethernet communication protocols (现有) is an existing gas turbine communication link to achieve a method for transmitting turbine control signals to a gas turbine controller.
在本發明之又一態樣中,由一系列自動調整設定經由一使用者介面顯示器來定義用於修改一燃氣輪機燃燒系統之一方法,該使用者介面顯示器利用布林邏輯雙態切換開關來選擇使用者所期望最佳化準則。該方法較佳由基於最佳燃燒動力學特性、最佳NOx排放、最佳功率、最佳廢熱率、最佳CO排放、最佳廢熱回收蒸汽產生器(HRSG)壽 命、最佳燃氣輪機燃料摻合比或最佳燃氣輪機調節比能力之最佳化準則來定義,藉此此開關之雙態切換改變該(等)燃燒器動力學特性控制設定之量值。 In yet another aspect of the invention, a method for modifying a gas turbine combustion system is defined by a series of automatic adjustment settings via a user interface display, the user interface display utilizing a Boolean logic two state toggle switch to select The optimization criteria expected by the user. The method is preferably based on optimal combustion kinetics, optimum NOx emissions, optimum power, optimum heat recovery rate, optimum CO emissions, and optimal waste heat recovery steam generator (HRSG) life. The optimum gas turbine fuel blend ratio or the optimal gas turbine turndown ratio optimization criterion is defined whereby the two-state switching of the switch changes the magnitude of the burner dynamics control setting.
10‧‧‧調整控制器/輪機控制器/控制器 10‧‧‧Adjust controller/engine controller/controller
12‧‧‧主使用者介面/介面顯示器/最佳NOx排放開關/主使用者介面顯示器/使用者介面/調整介面 12‧‧‧Main user interface/interface display/optimal NOx emission switch/main user interface display/user interface/tuning interface
14‧‧‧最佳NOx排放/最佳功率開關/開關/使用者介面雙態切換開關/對應雙態切換開關/競爭性雙態切換開關/最佳NOx/雙態切換開關 14‧‧‧Optimal NOx Emission/Optimal Power Switch/Switch/User Interface Two-State Switch/Corresponding Two-State Switch/Competitive Two-State Switch/Optimum NOx/Two-State Switch
16‧‧‧最佳功率/開關/使用者介面雙態切換開關/對應雙態切換開關/競爭性雙態切換開關/雙態切換開關 16‧‧‧Optimal power/switch/user interface two-state switch/corresponding two-state switch/competitive two-state switch/two-state switch
17‧‧‧最佳燃燒器動力學特性/最佳動力學特性/開關/使用者介 面雙態切換開關/對應雙態切換開關/競爭性雙態切換開關/雙態切換開關/最佳動力學特性雙態切換 17‧‧‧Optimal burner dynamics / optimal dynamics / switch / user interface Surface two-state switching switch / corresponding two-state switching switch / competitive two-state switching switch / two-state switching switch / optimal dynamic characteristics two-state switching
18‧‧‧最佳燃料摻合比/開關 18‧‧‧Optimal fuel blend ratio/switch
19‧‧‧最佳廢熱回收蒸汽產生器壽命/開關 19‧‧‧Best waste heat recovery steam generator life/switch
20‧‧‧分散式控制系統 20‧‧‧Distributed control system
30‧‧‧燃氣輪機控制器/輪機控制器/調整控制器/相關輪機操作參數/輪機系統 30‧‧‧Gas Turbine Controller/Engine Control/Adjustment Controller/Related Turbine Operating Parameters/Engine System
40‧‧‧連續排放監視系統/輪機廢氣排放 40‧‧‧Continuous Emission Monitoring System / Turbine Exhaust Emissions
50‧‧‧連續動力學特性監視系統/燃燒器動力學特性 50‧‧‧Continuous dynamics monitoring system/burner dynamics
60‧‧‧燃料加熱控制器/燃料加熱單元/燃料燃氣溫度控制器/相關聯控制器 60‧‧‧Fuel heating controller/fuel heating unit/fuel gas temperature controller/associated controller
70‧‧‧燃料摻合比控制器/燃料燃氣比控制器/相關聯控制器 70‧‧‧fuel blend ratio controller/fuel gas ratio controller/associated controller
80‧‧‧廢熱回收蒸汽產生器/廢熱回收蒸汽產生器操作參數/相關廢熱回收蒸汽產生器操作參數 80‧‧‧Waste heat recovery steam generator/waste heat recovery steam generator operating parameters/related waste heat recovery steam generator operating parameters
90‧‧‧操作元件/輪機操作資料/輪機系統 90‧‧‧Operating components/engine operating data/turbine systems
100‧‧‧排放是否合規 100‧‧‧Is emissions compliance?
102‧‧‧燃燒器動力學特性是否在可接受位準下 102‧‧‧Whether the burner dynamics is at an acceptable level
104‧‧‧步驟 104‧‧‧Steps
106‧‧‧支配性調整關注點/支配性調整準則/「真」支配性調整關注點/調整關注點 106‧‧‧ Dominant adjustment focus/dominance adjustment criteria/“true” dominance adjustment focus/adjustment focus
108‧‧‧輪機燃燒器燃料分股 108‧‧‧Engine burner fuel split
110‧‧‧調整問題 110‧‧‧Adjustment issues
112‧‧‧總體燃料/空氣比 112‧‧‧Overall fuel/air ratio
114‧‧‧調整問題 114‧‧‧Adjustment issues
116‧‧‧燃料摻合比 116‧‧‧fuel blend ratio
118‧‧‧擁有充分操作邊限(對照警報條件) 118‧‧‧ has sufficient operating margins (in contrast to alarm conditions)
120‧‧‧相關排放參數/操作資料/所感測操作資料 120‧‧‧Related emission parameters/operational data/sensing operation data
122‧‧‧輪機控制器之燃料與空氣比/燃燒器動力學特性/所感測操作資料/操作資料 122‧‧‧Fuel-to-air ratio/burner dynamics of the turbine controller/sensing operation data/operational data
124‧‧‧可允許調整極限/調整極限/可允許極限 124‧‧‧ Allowable adjustment of limits / adjustment limits / allowable limits
126‧‧‧「真」警報/「真」邏輯警報 126‧‧‧ "True" Alert / "True" Logic Alert
130‧‧‧步驟/經分級「真」警報/「真」警報/「真」調整警報 130‧‧‧Steps/Classified "True" Alert / "True" Alert / "True" Adjustment Alert
134‧‧‧最佳NOx之預設定極限之一集合/最佳NOx/調整極限 134‧‧‧One of the best NOx preset limits / optimal NOx / adjustment limit
136‧‧‧最佳功率之預設定極限之一集合/調整極限/最佳功率 136‧‧‧One of the preset limits for optimal power/adjustment limit/optimal power
138‧‧‧最佳動力學特性之預設定極限之一集合/最佳動力學特性/調整極限/高2級δP's 138‧‧‧One of the set limits of the best dynamic characteristics/optimal dynamics/adjustment limit/high level 2 δP's
140‧‧‧預設極限/預設調整極限/調整極限/無最佳設定 140‧‧‧Preset limit/preset adjustment limit/adjustment limit/no optimal setting
142‧‧‧可能支配性調整問題 142‧‧‧ Possible dominance adjustment issues
144‧‧‧重要性/最重要支配性調整關注點/支配性調整關注點/使用者所定義階層/支配性調整問題 144‧‧‧Importance/Most important dominance adjustment focus/dominant adjustment focus/user defined level/dominance adjustment problem
148‧‧‧特定布林邏輯階層/布林邏輯階層/硬編碼布林邏輯階層 148‧‧‧Special Bolling Logic/Brin Logic/Hard-coded Bolling Logic
150‧‧‧步驟 150‧‧‧ steps
152‧‧‧方塊/最佳NOx/高高NOx 152‧‧‧Box/Best NOx/High NOx
154‧‧‧方塊/最佳功率 154‧‧‧Box / Best Power
156‧‧‧方塊/最佳動力學特性/高2級δP's 156‧‧‧Box/Best Dynamics/High Grade 2 δP's
158‧‧‧方塊 158‧‧‧ square
160‧‧‧方塊 160‧‧‧ square
162‧‧‧高2級δP's 162‧‧‧High Grade 2 δP's
164‧‧‧高-高2級δP's 164‧‧‧High-High Grade 2 δP's
166‧‧‧高-高-高2級δP's 166‧‧‧High-High-High Level 2 δP's
168‧‧‧NOx 168‧‧‧NOx
170‧‧‧1級δP's 170‧‧1 level δP's
172‧‧‧支配性調整關注點 172‧‧‧ Dominant adjustment focus
200‧‧‧實際燃燒器動力學特性資料/燃燒器動力學特性 200‧‧‧ Actual burner dynamics data/burner dynamics
202‧‧‧燃燒器動力學特性之移動平均值/平均燃燒器動力學特性 202‧‧‧Moving average of burner dynamics/average burner dynamics
204‧‧‧動力學特性警報極限值/動力學特性警報極限/動力學特性極限 204‧‧‧ Dynamic characteristics alarm limit value / dynamic characteristic alarm limit / dynamic characteristic limit
206‧‧‧燃燒器燃料分股調整參數 206‧‧‧ Burner fuel split adjustment parameters
210‧‧‧NOx排放資料/NOx排放/NOx排放位準 210‧‧‧NOx emissions data/NOx emissions/NOx emission levels
212‧‧‧調整極限/預設定調整極限/預設定極限/極限 212‧‧‧Adjustment limit/preset adjustment limit/preset limit/limit
214‧‧‧燃料分股/燃料分股值 214‧‧‧fuel share/fuel share value
220‧‧‧NOx調整極限/預設定警報位準/警報位準/預設定極限 220‧‧‧NOx adjustment limit/pre-set alarm level/alarm level/pre-set limit
222‧‧‧NOx位準資料/NOx排放資料/NOx資料/NOx排放 222‧‧‧NOx level data/NOx emission data/NOx data/NOx emissions
224‧‧‧燃料分股位準/燃料分股值/燃料分股 224‧‧‧fuel share level/fuel share value/fuel share
230‧‧‧NOx排放資料/NOx排放 230‧‧‧NOx emissions data/NOx emissions
232‧‧‧較低排放極限/較低極限/極限/最小值 232‧‧‧low emission limit/lower limit/limit/minimum
234‧‧‧燃料分股值 234‧‧‧ fuel share value
236‧‧‧負載控制曲線/負載控制曲線值 236‧‧‧Load control curve/load control curve value
E1‧‧‧燃燒器燃料分股/事件/第一事件/第一調整事件 E1‧‧‧ burner fuel split/event/first event/first adjustment event
E2‧‧‧第二事件/事件/第二調整事件 E2‧‧‧Second event/event/second adjustment event
E3‧‧‧進一步事件/事件 E3‧‧‧ Further events/incidents
TA‧‧‧所設定時間週期/時間 Cycle time / set time T A ‧‧‧
TB‧‧‧時間週期/時間 T B ‧‧‧ time period/time
TC‧‧‧時間 T C ‧‧‧Time
出於圖解說明本文中所揭示之本發明之目的,圖式展示當前較佳之形式。應理解,本發明不限於本發明之圖式中所展示之確切配置及工具。 The drawings illustrate the presently preferred forms for purposes of illustrating the invention as disclosed herein. It should be understood that the invention is not limited to the exact arrangements and instrumentalities shown in the drawings.
圖1展示囊括燃氣輪機引擎系統、併入有一燃氣輪機調整控制器以及經由電廠DCS與HRSG之各種元件通信之一操作電廠通信系統之一示意性表示之一例示性實施例。 1 shows an illustrative embodiment of a schematic representation of a power plant communication system incorporating a gas turbine engine system, incorporating a gas turbine adjustment controller, and communicating with one of various components of the power plant DCS and the HRSG.
圖2展示根據本發明之一調整控制器之操作之一功能性流程圖之一例示性實施例。 2 shows an exemplary embodiment of a functional flow diagram of one of the operations of adjusting a controller in accordance with the present invention.
圖3展示用於選擇本發明內之最佳化模式之一使用者介面顯示器之一例示性實施例。 3 shows an illustrative embodiment of a user interface display for selecting one of the optimized modes within the present invention.
圖4展示各種最佳化模式設定之相互聯繫之一例示性示意圖。 Figure 4 shows an exemplary schematic diagram of the interconnection of various optimization mode settings.
圖5展示根據本發明之用於判定所觸發之警報信號之程序步驟之一例示性概述示意圖。 Figure 5 shows an illustrative overview of one of the procedural steps for determining an triggered alert signal in accordance with the present invention.
圖6展示用以判定可允許輪機調整參數之步驟之一例示性程序概述。 Figure 6 shows an overview of an exemplary procedure for determining the allowable turbine adjustment parameters.
圖7展示根據圖6中所展示之步驟之一進一步詳細例示性程序。 Figure 7 shows a further detailed exemplary procedure in accordance with one of the steps shown in Figure 6.
圖8提供本發明用於判定支配性調整關注點之步驟之一進一步詳細例示性示意圖。 Figure 8 provides a further detailed illustrative diagram of one of the steps of the present invention for determining a dominant adjustment focus.
圖9在給出至本發明中之各種警報輸入之情形下展示系統之支配性調整關注點之判定之一第一實例性示意圖。 Figure 9 is a first exemplary schematic diagram showing the determination of the dominant adjustment focus of the system in the context of various alarm inputs to the present invention.
圖10在給出至本發明中之各種警報輸入之情形下展示系統之支配性調整關注點之判定之一第二實例性示意圖。 Figure 10 is a second exemplary schematic diagram showing one of the determinations of the dominant adjustment focus of the system in the context of various alarm inputs to the present invention.
圖11在給出至本發明中之各種警報輸入之情形下展示系統之支配性調整關注點之判定之一第三實例性示意圖。 Figure 11 is a third exemplary schematic diagram showing one of the determinations of the dominant adjustment focus of the system in the context of various alarm inputs to the present invention.
圖12在給出至本發明中之各種警報輸入之情形下展示系統之支配性調整關注點之判定之一第四實例性示意圖。 Figure 12 is a fourth exemplary schematic diagram showing the determination of the dominant adjustment focus of the system in the context of various alarm inputs to the present invention.
圖13展示如本發明所涵蓋之一燃氣輪機引擎系統之操作調整之一第一操作實例。 Figure 13 shows a first operational example of operational adjustment of a gas turbine engine system as contemplated by the present invention.
圖14展示如本發明所涵蓋之一燃氣輪機引擎系統之操作調整之一第二操作實例。 Figure 14 shows a second operational example of operational adjustment of a gas turbine engine system as contemplated by the present invention.
圖15展示如本發明所涵蓋之一燃氣輪機引擎系統之操作調整之一第三操作實例。 Figure 15 shows a third operational example of operational adjustment of a gas turbine engine system as contemplated by the present invention.
圖16展示如本發明所涵蓋之一燃氣輪機引擎系統之操作調整之一第四操作實例。 16 shows a fourth operational example of operational adjustment of a gas turbine engine system as contemplated by the present invention.
本發明一般而言係關於用於調整燃燒輪機之操作之系統及方法。在所繪示實施例中,該等系統及方法係關於燃燒輪機(諸如用於發電之彼等燃燒輪機)之自動調整。熟習此項技術者將瞭解,本文中之教示可易於適於其他類型之燃燒輪機。因此,本文中所使用之術語並非意欲限制本發明之實施例。而是,將理解,本發明之實施例一般而言係關於燃燒輪機之領域,且特定而言,係針對用於調整燃燒輪機之系統、方法及電腦可讀媒體。 The present invention relates generally to systems and methods for adjusting the operation of a combustion turbine. In the illustrated embodiment, the systems and methods relate to automatic adjustment of combustion turbines, such as their combustion turbines for power generation. Those skilled in the art will appreciate that the teachings herein can be readily adapted to other types of combustion turbines. Therefore, the terms used herein are not intended to limit the embodiments of the invention. Rather, it will be understood that embodiments of the present invention are generally directed to the field of combustion turbines and, in particular, to systems, methods, and computer readable media for adjusting a combustion turbine.
圖1係本發明之一調整控制器10在其內操作之一燃氣輪機引擎(未展示)之一通信圖。一分散式控制系統(DCS)20充當主通信集線器。作為一替代方案,使用燃氣輪機控制器作為一DCS之一電廠亦可使調整控制器10直接通信至燃氣輪機控制器30。作為一進一步替代方案,不論燃氣輪機控制器30是否充當一DCS,調整控制器10皆可直接與燃氣輪機控制器30通信。大部分輪機控制透過DCS 20來執行。一輪機控 制器30直接與燃氣輪機及與DCS 20通信。在本發明中,將與輪機操作相關之資訊(例如,輪機動力學特性、輪機廢氣排放等)透過DCS 20引導至調整控制器10。調整控制器10係涵蓋為用於作為一可程式化邏輯控制器(PLC)運行之一獨立PC。調整控制器10較佳係遠離輪機控制器30之一單獨電腦且除透過DCS 20之外,通常不直接與輪機控制器30通信。然而;如上文所提及,調整控制器10可經組態以直接與燃氣輪機控制器30通信。 1 is a communication diagram of one of the gas turbine engines (not shown) in which the adjustment controller 10 operates. A decentralized control system (DCS) 20 acts as a primary communication hub. As an alternative, the use of the gas turbine controller as one of the DCS power plants may also cause the adjustment controller 10 to communicate directly to the gas turbine controller 30. As a further alternative, the adjustment controller 10 can communicate directly with the gas turbine controller 30 regardless of whether the gas turbine controller 30 acts as a DCS. Most of the turbine control is performed through the DCS 20. One turbine control The controller 30 is in direct communication with the gas turbine and with the DCS 20. In the present invention, information related to turbine operation (e.g., turbine dynamics characteristics, turbine exhaust emissions, etc.) is directed to the adjustment controller 10 via the DCS 20. The adjustment controller 10 is comprised as a stand-alone PC for operation as a programmable logic controller (PLC). The adjustment controller 10 is preferably remote from a separate computer of the turbine controller 30 and typically does not communicate directly with the turbine controller 30 other than through the DCS 20. However, as mentioned above, the adjustment controller 10 can be configured to communicate directly with the gas turbine controller 30.
現參考圖1及圖2,調整控制器10係涵蓋為用於作為一可程式化邏輯控制器(PLC)運行之一獨立PC。調整控制器10較佳係不斷與輪機控制器30通信之遠離輪機控制器30之一單獨電腦。亦可藉由使用一外部控制裝置(諸如存在於系統上或添加至系統之一MODBUS串列或乙太網路通信協定埠)而將來自調整控制器10之信號傳送至輪機控制器30或系統內之其他控制件。 Referring now to Figures 1 and 2, the adjustment controller 10 is comprised as a stand-alone PC for operation as a programmable logic controller (PLC). The adjustment controller 10 is preferably in communication with the turbine controller 30 that is remote from a separate computer of the turbine controller 30. Signals from the adjustment controller 10 may also be communicated to the turbine controller 30 or system by using an external control device such as MODBUS serial or Ethernet protocol 存在 present on the system or added to the system. Other controls within.
自與輪機相關聯之感測器構件接收相關操作資料。舉例而言,藉由連接至DCS之一連續排放監視系統(CEMS)40而自煙囪排放獲得輪機廢氣排放讀數。使用位於輪機燃燒器之燃燒區域內之一動力學特性壓力感測探針來感測燃燒動力學特性。如所展示,一連續動力學特性監視系統(CDMS)50經提供且與DCS通信。CDMS 50較佳使用經直接安裝或經波導連接壓力或光感測探針來量測燃燒動力學特性。另一相關操作參數係燃料燃氣溫度。再次,將此溫度資訊透過DCS 20自燃料加熱控制器60引導至調整控制器10。由於調整操作之部分可包含調節燃料溫度,因此在調整控制器10與燃料加熱單元60之間可存在一雙向通信。DCS 20與一燃料摻合比控制器70通信以調節管線品質燃氣與非管線品質燃氣之比(供用於燃氣輪機內之後續消耗)。燃料摻合比控制器70與調整控制器10之間存在經由DCS 20之間接通信。最後,作為本發明之部分,經由DCS 20將HRSG 80之某些關鍵操作參數 發送至調整控制器30。若調整控制器10判定HRSG 80之各種參數在可允許範圍外,則將對燃氣輪機f/a比之改變透過DCS 20自調整控制器10發送至燃氣輪機控制器30。 The sensor components associated with the turbine receive relevant operational data. For example, turbine exhaust emissions readings are obtained from chimney emissions by being connected to one of the DCS Continuous Emissions Monitoring Systems (CEMS) 40. The kinetic characteristic pressure sensing probe located in the combustion zone of the turbine combustor is used to sense combustion dynamics. As shown, a continuous dynamics characteristic monitoring system (CDMS) 50 is provided and in communication with the DCS. The CDMS 50 preferably measures combustion dynamics using a directly mounted or waveguide connected pressure or light sensing probe. Another related operating parameter is the fuel gas temperature. Again, this temperature information is directed from the fuel heating controller 60 to the adjustment controller 10 via the DCS 20. Since portions of the adjustment operation may include adjusting the fuel temperature, there may be a two-way communication between the adjustment controller 10 and the fuel heating unit 60. The DCS 20 communicates with a fuel blending ratio controller 70 to adjust the ratio of pipeline quality gas to non-line quality gas (for subsequent consumption within the gas turbine). There is an inter-connect communication between the fuel blend ratio controller 70 and the adjustment controller 10 via the DCS 20. Finally, as part of the present invention, certain key operating parameters of the HRSG 80 are via the DCS 20. Send to the adjustment controller 30. If the adjustment controller 10 determines that the various parameters of the HRSG 80 are outside the allowable range, then the change in the gas turbine f/a ratio is transmitted through the DCS 20 from the trim controller 10 to the gas turbine controller 30.
每分鐘數次地收集來自輪機及HRSG之相關操作資料。此資料收集允許接近即時系統調整。大部分相關輪機及HRSG操作資料由調整控制器10接近即時地收集。然而,輪機廢氣排放感測器構件通常由調整控制器10接收,其中距當前操作條件具有一2至8分鐘時滯。此時滯使調整控制器10在做出操作調整調節之前接收並緩衝相關資訊達一類似時滯之需要成為必需。調整調節時滯之此調整控制器10確保所有操作(包含廢氣排放)資料表示在已做出任何調節之前及之後的一穩定輪機操作。一旦資料被認為穩定,調整控制器10便判定是否存在調節調整參數之一需要。若不需要調節,則調整控制器10維持當前調整且等待接收下一資料集。若期望改變,則調整開始。首先,比較HRSG操作資料與HRSG組件機械極限。若違反任何HRSG機械極限(或對照此等極限之邊限),則調整控制器10將透過DCS 20更改對輪機控制器30之燃氣輪機f/a比。隨後,若燃氣輪機之關鍵操作特性(即廢氣排放及燃燒器動力學特性)中存在充分邊限,則調整控制器10可將一命令(若適用)發送至燃料燃氣比控制器70(透過DCS 20)以增加非管線品質燃氣與管線品質燃氣之比。 Relevant operational data from the turbine and HRSG are collected several times per minute. This data collection allows for near real-time system adjustments. Most of the associated turbine and HRSG operational data are collected by the adjustment controller 10 in near real time. However, the turbine exhaust emission sensor components are typically received by the adjustment controller 10 with a 2 to 8 minute time lag from the current operating conditions. This delay is necessary for the adjustment controller 10 to receive and buffer relevant information for a similar time lag before making operational adjustment adjustments. This adjustment controller 10, which adjusts the adjustment time lag, ensures that all operations (including exhaust emissions) data represent a stable turbine operation before and after any adjustments have been made. Once the data is deemed stable, the adjustment controller 10 determines if there is a need to adjust one of the adjustment parameters. If no adjustment is needed, the adjustment controller 10 maintains the current adjustment and waits to receive the next data set. If a change is desired, the adjustment begins. First, compare the HRSG operational data with the mechanical limits of the HRSG components. If any of the HRSG mechanical limits are violated (or against the limits of such limits), the adjustment controller 10 will change the gas turbine f/a ratio to the turbine controller 30 via the DCS 20. Subsequently, if there are sufficient margins in the critical operating characteristics of the gas turbine (ie, exhaust emissions and combustor dynamics), the adjustment controller 10 can send a command (if applicable) to the fuel to gas ratio controller 70 (through the DCS) 20) To increase the ratio of non-pipeline quality gas to pipeline quality gas.
在調整控制器10內執行輪機調整所需之所有判定。調整操作基於藉由接收預設定操作準則外之操作資料而形成之一「警報」而開始。為使調整操作被起始,警報-且因此資料異常-必須持續達一預定時間週期。 All decisions required to perform turbine adjustments within the adjustment controller 10 are performed. The adjustment operation begins by forming an "alarm" by receiving operational data other than the preset operational criteria. In order for the adjustment operation to be initiated, the alarm - and therefore the data anomaly - must last for a predetermined period of time.
一調整調節之一項實例係變化燃料噴嘴壓力比以調節燃燒動力學特性。在要求較高點火溫度以達成較大火焰溫度及效率之情況下,輪機燃燒器在一既定燃燒器體積中必須釋放較多能量。較佳廢氣排放 通常藉由增加燃燒反應區帶之上游之燃料與空氣之混合速率而達成。該經增加混合速率通常藉由增加燃料噴嘴排出處之壓降而達成。當在燃燒器中增加混合速率時,由燃燒產生之湍流通常導致燃燒器內之噪音且可導致聲波之產生。通常,在燃燒火焰之音波與燃燒器體積或燃料系統自身之聲響特性相耦合時導致聲波。 An example of an adjustment adjustment is to vary the fuel nozzle pressure ratio to adjust combustion dynamics. In the case of higher ignition temperatures required to achieve greater flame temperatures and efficiencies, turbine combustors must release more energy in a given burner volume. Better exhaust emissions This is usually achieved by increasing the mixing rate of fuel and air upstream of the combustion reaction zone. This increased mixing rate is typically achieved by increasing the pressure drop at the discharge of the fuel nozzle. When the mixing rate is increased in the combustor, the turbulence generated by the combustion typically causes noise within the combustor and can result in the generation of sound waves. Typically, sound waves are generated when the sound waves of the combustion flame are coupled to the burner volume or the acoustic characteristics of the fuel system itself.
聲波可影響室中之內部壓力。在接近一燃料噴嘴之壓力上升之情況下,燃料流動穿過噴嘴之速率及隨附壓降降低。另一選擇為,接近噴嘴之壓力之一降低將導致燃料流量之一增加。在其中一低燃料噴嘴壓降允許燃料流量振盪之情形中,一燃燒器可經歷經放大壓力振盪。為對抗燃燒器內之壓力振盪,監視燃燒動力學特性且可修改燃料空氣比及燃料噴嘴壓力比以減小或消除燃燒器壓力之不期望變化,藉此糾正一警報情況或使燃燒系統返回至燃燒動力學特性之一可接受位準。 Sound waves can affect the internal pressure in the chamber. The rate at which fuel flows through the nozzle and the accompanying pressure drop decreases as the pressure near a fuel nozzle rises. Alternatively, a decrease in pressure near the nozzle will result in an increase in one of the fuel flows. In the event that one of the low fuel nozzle pressure drops allows the fuel flow to oscillate, a combustor can undergo an amplified pressure oscillation. To counter the pressure oscillations within the combustor, monitor combustion dynamics and modify the fuel to air ratio and fuel nozzle pressure ratio to reduce or eliminate undesirable changes in combustor pressure, thereby correcting an alarm condition or returning the combustion system to One of the combustion dynamics characteristics is acceptable.
如圖2中所展示,將自感測構件所接收的針對HRSG操作參數(80)、燃燒器動力學特性(50)、輪機廢氣排放(40)及其他相關輪機操作參數(30)之資料透過DCS(20)引導至調整控制器(10)。然後,比較此等輸入值與輪機之標準或目標操作資料。所儲存操作標準至少部分基於輪機之操作優先級設定。此等優先級設定定義於調整控制器10之主使用者介面12上且以圖表方式展示於圖3中。基於優先級設定,由透過DCS 20所連接之輪機控制器10對輪機之操作做出一系列調節。該等調節被引導至控制構件,包含燃料加熱單元60(圖1)、燃料摻合比控制器70及輪機之各種其他操作元件90(圖2)。 As shown in FIG. 2, information received by the self-sensing member for HRSG operating parameters (80), combustor dynamics (50), turbine exhaust emissions (40), and other related turbine operating parameters (30) is transmitted through The DCS (20) leads to the adjustment controller (10). Then, compare these input values with the turbine's standard or target operating data. The stored operating criteria are based, at least in part, on the operational priority setting of the turbine. These priority settings are defined on the primary user interface 12 of the adjustment controller 10 and are graphically shown in FIG. Based on the priority setting, a series of adjustments are made to the operation of the turbine by the turbine controller 10 connected through the DCS 20. These adjustments are directed to the control member, including fuel heating unit 60 (Fig. 1), fuel blend ratio controller 70, and various other operating elements 90 of the turbine (Fig. 2).
圖3中所展示之介面顯示器12由開關(每一開關具有一接通/關斷指示)構成。此等開關允許使用者規定輪機之操作之所期望調整優先級。所切換操作優先級包含最佳NOx排放14、最佳功率16、最佳燃燒器動力學特性17、最佳燃料摻合比18及最佳HRSG壽命19。此等開關 中之每一者由使用者設定以調節輪機之較佳操作。調整控制器內具有在由開關設定之優先級內進行操作之功能。較佳,若最佳NOx排放開關12及最佳功率開關14兩者皆設定為「接通」,則控制器10將以最佳NOx模式而非最佳功率運行。因此,為以最佳功率模式運行,最佳NOx排放開關12必須為「關斷」。可在任何時間選擇最佳動力學特性17。明確地注意到,可使用其他使用者介面雙態切換開關(未展示),包含諸如最佳廢熱率、最佳CO排放、最佳廢熱回收蒸汽產生器(HRSG)壽命、最佳燃氣輪機燃料摻合比、最佳燃氣輪機調節比能力等參數。 The interface display 12 shown in Figure 3 is comprised of switches (each switch having an on/off indication). These switches allow the user to specify the desired adjustment priorities for the operation of the turbine. The switching operation priority includes optimal NOx emissions 14, optimum power 16, optimum combustor dynamics characteristics 17, optimum fuel blend ratio 18, and optimum HRSG lifetime 19. These switches Each of these is set by the user to adjust the preferred operation of the turbine. The adjustment controller has a function to operate within the priority set by the switch. Preferably, if both the optimal NOx vent switch 12 and the optimal power switch 14 are set to "on", the controller 10 will operate in an optimal NOx mode rather than an optimum power. Therefore, in order to operate in the optimum power mode, the optimum NOx drain switch 12 must be "off". The best kinetics 17 can be selected at any time. It is explicitly noted that other user interface two-state toggle switches (not shown) may be used, including, for example, optimal waste heat rate, optimal CO emissions, optimal waste heat recovery steam generator (HRSG) life, and optimum gas turbine fuel blending. Ratio, optimal gas turbine adjustment ratio capability and other parameters.
圖4展示介面顯示器開關之相互聯繫之一圖表表示。如所展示,切換一個參數「接通」將更改對與其「關斷」位準不同之一位準之警報極限。在圖4中所展示之實例中,警報極限展示為在「接通」位置中及在「關斷」位置中具有最佳NOx及最佳功率兩者。然後,藉由選擇「接通」或「關斷」位置中之最佳動力學特性(通篇由符號δ表示)來修改圖表上之此等點。圖4之圖表上所展示之點表示基於使用者之選定操作優先級之動力學特性之極限之一例示性設定。 Figure 4 shows a graphical representation of the interconnection of interface display switches. As shown, switching one parameter "on" will change the alarm limit that is one level different from its "off" level. In the example shown in Figure 4, the alarm limit is shown to have both optimal NOx and optimum power in the "on" position and in the "off" position. Then, modify these points on the chart by selecting the best dynamics in the "on" or "off" position (indicated by the symbol δ throughout). The points shown on the graph of Figure 4 represent one exemplary setting based on the limits of the dynamics of the user's selected operational priority.
返回至圖2,展示調整控制器10內做出之判定及計算之邏輯流程之一表示。調整控制器10透過輪機控制器30接收輪機之實際操作參數、透過CDMS 50接收燃燒器動力學特性、透過CEMS 40接收輪機廢氣排放及接收相關HRSG操作參數80。此感測器資料透過DCS 20引導至調整控制器10。比較所接收感測器資料與所儲存操作標準以判定輪機操作是否符合所期望設定。該等操作標準係基於由調整控制器10之主使用者介面顯示器12上之開關14、16、17、18及19(圖3)定義之輪機之預設定操作優先級。 Returning to Figure 2, one representation of the logic flow of the decisions and calculations made within the adjustment controller 10 is shown. The adjustment controller 10 receives actual operating parameters of the turbine through the turbine controller 30, receives combustor dynamics through the CDMS 50, receives turbine exhaust emissions through the CEMS 40, and receives associated HRSG operating parameters 80. This sensor data is directed to the adjustment controller 10 via the DCS 20. The received sensor data is compared to the stored operating criteria to determine if the turbine operation meets the desired settings. The operational criteria are based on the pre-set operational priorities of the turbines defined by switches 14, 16, 17, 18, and 19 (FIG. 3) on the primary user interface display 12 of the adjustment controller 10.
基於預設定操作優先級,一硬編碼階層式布林邏輯方法判定基於操作優先級之支配性調整準則。依據此邏輯選擇,調整控制器10實 施一固定遞增調節值以用於在一最大調節範圍(例如,高值及低值)內改變輪機之一操作參數。該等調整改變在一預定時間增量內沿一個一致預定方向做出且取決於當前之支配性調整準則。預期,不做出用以判定調整調節之量值之公式化或功能性計算;而是,將遞增調節、調節之方向、調節之間的時間跨度及針對每一參數及針對每一調整準則之調節之最大範圍儲存於調整控制器10中。 Based on the pre-set operation priority, a hard-coded hierarchical Boolean logic method determines the dominant adjustment criterion based on the operational priority. According to this logic selection, the adjustment controller 10 is A fixed incremental adjustment value is applied for varying one of the operating parameters of the turbine within a maximum adjustment range (eg, high and low values). The adjustment changes are made in a consistent predetermined direction within a predetermined time increment and depend on the current dominance adjustment criteria. It is expected that no formulation or functional calculations will be made to determine the magnitude of the adjustment adjustment; rather, the adjustments will be incrementally adjusted, the direction of adjustment, the time span between adjustments, and adjustments for each parameter and for each adjustment criterion. The maximum range is stored in the adjustment controller 10.
如圖2中所展示,當操作者未選擇最佳HRSG壽命19時,調整控制器10判定排放是否合規100及燃燒器動力學特性是否在可接受位準下102。若兩者皆合規所設定操作標準,則調整控制器10等待來自CEMS 40或CDMS 50之下一資料集且等待其他輪機操作資料90。若兩者皆合規所設定操作標準且擁有充分操作邊限,並選擇最佳燃料摻合比18,則調整控制器10將使一命令發送至燃料摻合比控制器70以增加非管線品質燃氣與管線品質燃氣之比。若所接收資料不符合操作標準,亦即,高於或低於警報位準,如圖2之步驟104之情形,則調整操作移動至首先判定支配性調整關注點106之下一調整步驟。輪機操作之邏輯調節由支配性調整準則106來定義,此至少部分基於使用者介面12內設定之預設定操作優先級,如下文關於圖8將論述。 As shown in FIG. 2, when the operator has not selected the optimal HRSG lifetime 19, the adjustment controller 10 determines if the emissions are compliant 100 and if the burner dynamics are at an acceptable level 102. If both are compliant with the set operating criteria, the adjustment controller 10 waits for a data set from the CEMS 40 or CDMS 50 and waits for other turbine operating data 90. If both are compliant with the set operating criteria and have sufficient operating margins and the optimum fuel blend ratio 18 is selected, the trim controller 10 will send a command to the fuel blend ratio controller 70 to increase non-pipeline quality. The ratio of gas to pipeline quality gas. If the received data does not meet the operating criteria, that is, above or below the alarm level, as in the case of step 104 of FIG. 2, the adjustment operation moves to first determine an adjustment step below the dominant adjustment focus 106. The logic adjustment of the turbine operation is defined by the governing adjustment criteria 106, based at least in part on the pre-set operational priorities set within the user interface 12, as will be discussed below with respect to FIG.
若操作者選擇最佳HRSG壽命19,則調整控制器做出之第一決策為對照設計極限對相關HRSG參數之邊限之一評估(包含但不限於高壓過熱出口蒸汽溫度、熱再熱出口蒸汽溫度、對照飽和度之高壓過熱蒸汽減熱器邊限(與飽和溫度相比,緊接在調溫器下游之華氏度溫度)、對照飽和度之熱再熱蒸汽減熱器邊限)。比較此等溫度邊限與如由使用者所定義之可允許邊限。若實際溫度邊限小於可允許邊限,則調整控制器10將自動調節輪機控制器之f/a比122。在此特定情形中,出於一外部原因(HRSG組件壽命),調整控制器10已首先調節燃氣輪機之f/a比。此改變可不利地影響燃氣輪機之當前調整狀態。因此,由調整 控制器10執行正常燃氣輪機調整方案;然而,不允許對輪機之f/a比之改變。下文定義其餘燃氣輪機調整方案。 If the operator selects the optimal HRSG lifetime of 19, the first decision made by the adjustment controller is to evaluate one of the margins of the relevant HRSG parameters against the design limit (including but not limited to high pressure superheated outlet steam temperature, hot reheat outlet steam) The temperature, the saturation of the high pressure superheated steam reducer threshold (compared to the saturation temperature, the Fahrenheit temperature immediately downstream of the thermostat), the thermal reheat steam desuperheater threshold of the control saturation). These temperature margins are compared to the allowable margins as defined by the user. If the actual temperature margin is less than the allowable margin, the adjustment controller 10 will automatically adjust the f/a ratio 122 of the turbine controller. In this particular case, for an external reason (HRSG component life), the adjustment controller 10 has first adjusted the f/a ratio of the gas turbine. This change can adversely affect the current adjustment state of the gas turbine. Therefore, by adjustment The controller 10 performs a normal gas turbine adjustment scheme; however, the f/a ratio change to the turbine is not allowed. The remaining gas turbine adjustment schemes are defined below.
在一較佳操作中,調整控制器10將首先試圖改變輪機燃燒器燃料分股108。燃料分股判定至每一燃燒器中之燃料噴嘴之燃料流量之分配。應注意,雖然當前實施例指示存在兩個可調節燃料迴路,但此方法可用於一個、兩個或兩個以上燃料迴路。若此等調節未解決調整問題且未將操作資料置回而符合操作標準,則執行一進一步調節。在某些情況中或若燃料分股改變在解決高燃燒器動力學特性方面之效力低,則下一遞增調節為燃料燃氣溫度設定點之一改變。在此調節步驟中,調整控制器10將一經修改燃料燃氣入口溫度信號發送至經引導至燃料加熱單元60之DCS 20。 In a preferred operation, the adjustment controller 10 will first attempt to change the turbine combustor fuel split 108. The fuel split determines the distribution of fuel flow to the fuel nozzles in each combustor. It should be noted that although the current embodiment indicates the presence of two adjustable fuel circuits, this method can be used for one, two or more fuel circuits. If these adjustments do not resolve the adjustment problem and the operational data is not returned to meet the operational criteria, then a further adjustment is performed. In some cases or if the fuel split change is less effective in addressing high burner dynamics, the next incremental adjustment is one of the fuel gas temperature set points. In this adjustment step, the adjustment controller 10 sends a modified fuel gas inlet temperature signal to the DCS 20 that is directed to the fuel heating unit 60.
再次參考圖2,若修改燃燒器燃料分股及/或燃料燃氣入口溫度未解決調整問題110,則調整控制器10然後將更改總體燃料/空氣比112。此方法在預定時間量內利用固定遞增改變對輪機熱循環做出改變。該步驟意欲根據輪機操作之預定標準控制曲線藉由調節空氣與燃料比來調節(調高或調低)排氣溫度,該等預定標準控制曲線維持於調整控制器10之記憶體內。若對燃氣輪機之總體燃料/空氣比做出之改變未解決調整問題114或若達成最佳HRSG壽命19且存在HRSG機械關注點,則調整控制器10將調節燃料摻合比116。 Referring again to FIG. 2, if the modified burner fuel split and/or fuel gas inlet temperature is not resolved, the adjustment controller 10 will then change the overall fuel/air ratio 112. This method makes changes to the turbine thermal cycle with a fixed incremental change over a predetermined amount of time. This step is intended to adjust (turn up or down) the exhaust gas temperature by adjusting the air to fuel ratio according to a predetermined standard control curve for turbine operation, which is maintained in the memory of the trim controller 10. If the change to the overall fuel/air ratio of the gas turbine does not resolve the adjustment problem 114 or if the optimal HRSG lifetime 19 is reached and there is an HRSG mechanical focus, the adjustment controller 10 will adjust the fuel blend ratio 116.
在本發明中,預期,由調整控制器10引導之所有控制改變透過DCS 20回饋至輪機系統(30、90)、燃料燃氣溫度控制器60及燃料摻合比控制器70。然而,調整控制器10可經組態以直接與輪機控制器30通信。此等改變直接實施於系統內之各種控制器構件內或透過輪機控制器30而實施。當操作資料返回至所期望操作標準時,調整設定由調整控制器保持在適當位置直至因透過DCS自感測器構件所接收之不符合資料而產生一警報。 In the present invention, it is contemplated that all control changes directed by the adjustment controller 10 are fed back to the turbine system (30, 90), the fuel gas temperature controller 60, and the fuel blend ratio controller 70 via the DCS 20. However, the adjustment controller 10 can be configured to communicate directly with the turbine controller 30. These changes are implemented directly within or through the various controller components within the system. When the operational data is returned to the desired operational criteria, the adjustment settings are maintained by the adjustment controller in an appropriate position until an alarm is generated due to non-compliance data received through the DCS self-sensor component.
自調整控制器10發送至輪機控制器30或相關聯控制器(60、70)構件之調節之量值較佳係固定的。因此,該等調節不用新資料來重新計算或最佳化至一目標。該等調節係一「開環」之部分。一旦開始,該等調節便遞增地移動至預設定最大量或一所規定範圍內之最大量,除非一中間調節使操作資料符合操作標準。在大部分情況下,當完成一個操作參數之全遞增範圍時,調整控制器繼續移動至由預設定操作優先級所定義之下一操作參數。操作控制元素之特定次序不固定且可藉由操作優先級來判定。調整控制器之邏輯基於儲存於調整控制器之記憶體內之一「查找」表及預設定操作優先級來驅動操作控制元素調節。 The magnitude of the adjustments that the self-adjusting controller 10 sends to the turbine controller 30 or associated controller (60, 70) components is preferably fixed. Therefore, such adjustments are not recalculated or optimized to a target without new information. These adjustments are part of an "open loop". Once initiated, the adjustments are incrementally moved to a preset maximum amount or a maximum amount within a specified range unless an intermediate adjustment causes the operational data to meet operational criteria. In most cases, when the full incremental range of an operational parameter is completed, the adjustment controller continues to move to the next operational parameter defined by the pre-set operational priority. The particular order of operational control elements is not fixed and can be determined by operational priority. The logic of the adjustment controller drives the operational control element adjustment based on a "find" table stored in the memory of the adjustment controller and a pre-set operation priority.
該調整控制器較佳一次處理一個操作參數。舉例而言,支配性調整準則決定欲做出之第一調節。在上文所論述之較佳實例中,首先調節燃料分配/分股參數。如圖2中所指示,首先處理燃料迴路1之燃料分股,後續接著燃料迴路2之分股。再次,此方法可適用於具有一或多個可調節燃料迴路之任何燃燒系統。當需要時,燃料燃氣入口溫度調節通常緊接在燃料分股調節後。在每一步驟內,存在一遞增調節,後續接著一時滯以准許經調節輪機操作穩定化。在時滯之後,若由調整控制器所分析之當前操作資料指示輪機操作仍保持在操作標準外,則做出步驟內之下一遞增調節。針對每一步驟重複此型樣。在大部分情況下,僅當完成一個調節步驟時,調整控制器才繼續移動至下一操作參數。應注意,若關鍵輪機操作特性擁有充分操作邊限(對照警報條件)118,則存在一更動控制環路,藉此調整控制器10將直接增加非管線品質燃氣摻合比(透過燃料摻合比控制器70)。此更動控制環路之控制方法等同於上文針對燃料分股及輪機f/a比所提及之方法-在一預定義時間量中以一預定義方向、一預定義量做出一改變。 The adjustment controller preferably processes one operational parameter at a time. For example, the dominant adjustment criteria determine the first adjustment to be made. In the preferred embodiment discussed above, the fuel distribution/dividing parameters are first adjusted. As indicated in Figure 2, the fuel split of the fuel circuit 1 is first processed, followed by the splitting of the fuel circuit 2. Again, this method can be applied to any combustion system having one or more adjustable fuel circuits. When required, the fuel gas inlet temperature adjustment is typically followed by fuel split adjustment. Within each step, there is an incremental adjustment followed by a time lag to permit stabilization of the regulated turbine operation. After the time lag, if the current operational data analyzed by the adjustment controller indicates that the turbine operation remains outside the operational criteria, then an incremental adjustment is made within the step. Repeat this pattern for each step. In most cases, the adjustment controller continues to move to the next operating parameter only when one adjustment step is completed. It should be noted that if the critical turbine operating characteristics have sufficient operating margins (in contrast to the alarm condition) 118, then there is a more dynamic control loop whereby the adjustment controller 10 will directly increase the non-line quality gas blend ratio (through fuel blending) Ratio controller 70). The control method of this change control loop is equivalent to the method mentioned above for fuel split and turbine f/a ratio - a change is made in a predefined direction, a predefined amount in a predefined amount of time.
調整控制器較佳控制燃燒操作以維持周圍溫度、濕度及壓力之 可變條件中之適當調整,所有可變條件隨時間而變化且對輪機操作具有一顯著影響。調整控制器在燃料組合物之變化期間亦可維持輪機之調整。燃料組合物之變化可導致廢熱釋放之一改變,此可導致不可接受排放、不穩定燃燒或甚至熄火。調整控制器將間接透過燃料摻合比116之改變而調節進入輪機之燃料組合物。 The adjustment controller preferably controls the combustion operation to maintain ambient temperature, humidity and pressure With appropriate adjustments in variable conditions, all variable conditions vary over time and have a significant impact on turbine operation. The adjustment controller can also maintain turbine adjustments during changes in the fuel composition. A change in the fuel composition can result in a change in the release of waste heat, which can result in unacceptable emissions, unstable combustion, or even flameout. The adjustment controller will adjust the fuel composition entering the turbine indirectly through a change in fuel blend ratio 116.
關於燃燒器內之燃料分股之另一態樣直接涉及具有一系列外噴嘴(為相同類型,由影響外燃料噴嘴內之燃料之圓周分配之一外燃料分股來控制)結合一中心噴嘴(為與外噴嘴相比之相同或不同類型,由一內/中心燃料分股來控制)之燃燒系統。在此框架內,與外燃料噴嘴之f/a相比,中心噴嘴可在一「富」或「貧」燃料與空氣比之情況下操作。大部分燃燒調整使燃燒系統保持處於一「貧中心噴嘴」或一「富中心噴嘴」操作模式。在某些情況中,當與一「貧中心噴嘴」相比時,可在一「富中心噴嘴」燃料分股量變曲線之情況下達成較佳火焰穩定性;然而,此通常導致較高NOx排放。因此,特別關注一混合燃料排程,藉此燃燒系統在較高負載條件(其中火焰穩定性低於一關注點但NOx排放高於一關注點)下利用一「貧中心噴嘴」燃料分股排程,在較低負載及調節比條件(其中火焰穩定性高於一關注點且NOx低於一關注點)下轉變為一「富中心噴嘴」燃料分股排程。本發明之系統判定在每一操作點(允許使用一混合燃料分股排程)處採用哪一燃料分股排程(富或貧中心噴嘴),且沿適當方向調節該燃料分股排程(燃料迴路1分股及燃料迴路2分股)。再次,所做出之改變在固定時間間隔中具有固定量值。 Another aspect of the fuel splitting within the combustor is directly related to having a series of outer nozzles (for the same type, controlled by an outer fuel split that affects the circumferential distribution of fuel within the outer fuel nozzle) in combination with a central nozzle ( A combustion system controlled by an internal/central fuel split for the same or a different type than the outer nozzle. Within this framework, the center nozzle can operate in a "rich" or "lean" fuel to air ratio compared to the f/a of the outer fuel nozzle. Most of the combustion adjustments keep the combustion system in a "poor center nozzle" or a "rich center nozzle" mode of operation. In some cases, better flame stability can be achieved with a "rich center nozzle" fuel split curve when compared to a "poor center nozzle"; however, this usually results in higher NOx emissions. . Therefore, particular attention is paid to a mixed fuel schedule whereby the combustion system utilizes a "poor center nozzle" fuel splitter row under higher load conditions (where flame stability is below a point of interest but NOx emissions are above a point of interest) The process is converted to a "rich center nozzle" fuel split schedule at lower load and ratio conditions (where flame stability is above a point of interest and NOx is below a point of interest). The system of the present invention determines which fuel split schedule (rich or lean center nozzle) is employed at each operating point (allowing the use of a mixed fuel split schedule) and adjusts the fuel split schedule in the appropriate direction ( Fuel circuit 1 split and fuel circuit 2 shares). Again, the changes made have a fixed magnitude in a fixed time interval.
在不具有中心噴嘴之情況下,關於燃料分股之另一點直接涉及具有一系列外噴嘴(為相同或不同類型,由影響外燃料噴嘴內之燃料之圓周分配之一外燃料分股來控制)之燃燒系統。在此框架內,與其餘外燃料噴嘴(稱為主要迴路1)之f/a相比,此等外噴嘴(通常稱為次要 迴路1)之一子組可在一「富」或「貧」燃料與空氣比之情況下操作。大部分燃燒調整使燃燒系統保持處於一「貧次要迴路1」或一「富次要迴路1」圓周燃料分股操作模式。在某些情況中,當與一「富次要迴路1」燃料分股量變曲線相比時,可在一「貧次要迴路1」燃料分股量變曲線之情況下達成較佳火焰穩定性;然而,此可導致較高NOx排放。因此,特別關注一混合燃料排程,藉此燃燒系統可在較高負載條件(其中火焰穩定性低於一關注點但NOx排放高於一關注點)下利用一「富次要迴路1」燃料分股排程,在較低負載及調節比條件(其中火焰穩定性/CO高於一關注點且NOx低於一關注點)下轉變為一「貧次要迴路1」燃料分股排程。本發明之系統判定在每一操作點(允許使用一混合燃料分股排程)處採用哪一燃料分股排程(富或貧次要迴路1),且沿適當方向調節該燃料分股排程(若適用,燃料迴路1分股及燃料迴路2分股)。再次,所做出之改變在固定時間間隔中具有固定量值。 In the absence of a central nozzle, another point regarding fuel splitting is directly related to having a series of outer nozzles (for the same or different types, controlled by an external fuel split that affects the circumferential distribution of fuel within the outer fuel nozzle) The combustion system. Within this framework, compared to the f/a of the remaining external fuel nozzles (referred to as primary circuit 1), these external nozzles (often referred to as secondary A subset of loop 1) can be operated in a "rich" or "lean" fuel to air ratio. Most of the combustion adjustments keep the combustion system in a "lean secondary circuit 1" or a "rich secondary circuit 1" circumferential fuel split mode of operation. In some cases, when compared with a "rich secondary circuit 1" fuel split curve, a better flame stability can be achieved with a "lean secondary circuit 1" fuel split curve; However, this can result in higher NOx emissions. Therefore, particular attention is paid to a mixed fuel schedule whereby a combustion system can utilize a "rich secondary circuit 1" fuel under higher load conditions (where flame stability is below a point of interest but NOx emissions are above a point of interest) The split schedule is converted to a "lean secondary loop 1" fuel split schedule at lower load and ratio conditions (where flame stability / CO is above a point of interest and NOx is below a point of interest). The system of the present invention determines which fuel splitting schedule (rich or lean secondary loop 1) is employed at each operating point (allowing the use of a mixed fuel split schedule) and adjusts the fuel splitter row in the appropriate direction Cheng (if applicable, fuel circuit 1 share and fuel circuit 2 shares). Again, the changes made have a fixed magnitude in a fixed time interval.
關於燃料分股之一項進一步態樣直接涉及具有一或多個環形圈燃料噴嘴(為相同或不同類型,由影響每一圈燃料噴嘴內之燃料之圓周分配之一圓周燃料分股來控制)之燃燒系統,藉此可利用一第二類之燃料分股(若存在一個以上環形圈燃料噴嘴),此調節至徑向同心燃料圈(圈1、圈2等)中之每一者之相對(徑向)燃料量。在此框架內,與其餘圈之燃料噴嘴(稱為主要迴路圈1、主要迴路圈2等)之f/a相比,每一圈之燃料噴嘴(稱為次要迴路圈1、次要迴路圈2等)之一子組可在一「富」或「貧」燃料與空氣比之情況下操作。大部分燃燒調整使燃燒系統保持處於一「貧次要迴路圈1」或一「富次要迴路圈1」(且對於圈2、圈3等,使用類似方法)圓周燃料分股操作模式。在某些情況中,當與一「富次要迴路圈1」燃料分股量變曲線相比時,可在(使用圈1作為一實例)一「貧次要迴路圈1」燃料分股量變曲線之情況下達成較佳火焰穩定性;然而,此可導致較高NOx排放。因此,特別關注 一混合燃料排程,藉此燃燒系統可在較高負載條件(其中火焰穩定性低於一關注點但NOx排放高於一關注點)下利用一「富次要迴路圈1」燃料分股排程,在較低負載及調節比條件(其中火焰穩定性/CO高於一關注點且NOx低於一關注點)下轉變為一「貧次要迴路圈1」燃料分股排程。本發明之系統判定在每一操作點(允許使用一混合燃料分股排程)處針對每一圈採用哪一燃料分股排程(若適用)(富或貧次要迴路圈1、富或貧次要迴路圈2等),且沿適當方向調節該燃料分股排程(若適用,燃料迴路1分股及燃料迴路2分股)。再次,所做出之改變在固定時間間隔中具有固定量值。 A further aspect of the fuel split is directed to fuel nozzles having one or more annular rings (for the same or different types, controlled by a circumferential fuel split that affects the circumferential distribution of fuel within each fuel nozzle) a combustion system whereby a second type of fuel split (if more than one annular fuel nozzle is present) is utilized, which is adjusted to the relative of each of the radially concentric fuel rings (circle 1, circle 2, etc.) (radial) amount of fuel. In this frame, compared to the f/a of the remaining ring of fuel nozzles (called main loop 1, main loop 2, etc.), each lap of the fuel nozzle (called the secondary loop 1, the secondary loop A subgroup of Circles 2, etc. can operate in a "rich" or "lean" fuel to air ratio. Most of the combustion adjustments keep the combustion system in a "lean secondary loop 1" or a "rich secondary loop 1" (and similar methods for loop 2, loop 3, etc.) circular fuel split mode of operation. In some cases, when compared with a "rich secondary loop 1" fuel split curve, you can use (circle 1 as an example) a "lean secondary loop 1" fuel split curve Better flame stability is achieved in this case; however, this can result in higher NOx emissions. Therefore, pay special attention A mixed fuel schedule whereby the combustion system can utilize a "rich secondary loop 1" fuel split strand under higher load conditions (where flame stability is below a point of interest but NOx emissions are above a point of interest) The process is converted to a "lean secondary loop 1" fuel split schedule at lower load and ratio conditions (where flame stability / CO is above a point of interest and NOx is below a point of interest). The system of the present invention determines which fuel split schedule (if applicable) is used for each revolution at each operating point (allowing the use of a mixed fuel split schedule) (rich or poor secondary loop 1, rich or Lean secondary loop 2, etc., and adjust the fuel split schedule in the appropriate direction (if applicable, fuel circuit 1 split and fuel loop 2 split). Again, the changes made have a fixed magnitude in a fixed time interval.
圖5提供詳述用於判定支配性調整關注點106(如圖2中所包含)之框架之一示意圖。下文關於圖8將闡述未來步驟。首先,由調整控制器10自CEMS 40及CDMS 50接收相關排放參數120及燃燒器動力學特性122,如上文所詳述。然後比較相關排放參數120及燃燒器動力學特性122與亦提供至調整控制器10之可允許調整極限124。該等可允許調整極限呈可使用圖3之調整介面12來調節且根據下文關於圖6及圖7所陳述之邏輯來判定之預設定範圍之形式。此比較之輸出係各種調整關注點之一系列「真」警報126,其中若所感測操作資料120、122高於或低於調整極限124中所陳述之一既定警報範圍,則指示一警報條件。 Figure 5 provides a schematic diagram detailing the framework for determining the dominant adjustment focus 106 (as contained in Figure 2). Future steps will be explained below with respect to Figure 8. First, the associated emissions parameter 120 and combustor dynamics 122 are received by the adjustment controller 10 from the CEMS 40 and CDMS 50, as detailed above. The associated emissions parameter 120 and combustor dynamics 122 are then compared to an allowable adjustment limit 124 that is also provided to the adjustment controller 10. The allowable adjustment limits are in the form of a preset range that can be adjusted using the adjustment interface 12 of FIG. 3 and determined according to the logic set forth below with respect to FIGS. 6 and 7. The output of this comparison is a series of "true" alarms 126 of various adjustment concerns, wherein an alarm condition is indicated if the sensed operational data 120, 122 is above or below one of the established alarm ranges as stated in the adjustment limit 124.
警報條件可具有一個以上位準或等級。舉例而言,可存在一警報之變化嚴重性程度,諸如:高「H」;高-高「HH」;高-高-高「HHH」及低「L」;低-低「L」;低-低-低「LLL」。在步驟130中,隨後根據其重要性位準(例如,高-高「HH」警報比高「H」警報重要等)來將「真」邏輯警報126分級。若一個以上調整關注點共用相同位準,則然後將根據使用者偏好來將調整關注點分級,如下文關於圖8所陳述。若出現僅一個「真」警報,則將選擇此警報並將其作為支配 性調整關注點106以起始圖2中所陳述之調整程序。然而,將透過使用者所判定準則來處理圖5之程序之結果(即經分級「真」警報130),如圖8中所展示,之後確認一支配性調整關注點106。 The alarm condition can have more than one level or level. For example, there may be a severity of change in the alert, such as: high "H"; high-high "HH"; high-high-high "HHH" and low "L"; low-low "L"; low - Low-low "LLL". In step 130, the "true" logic alert 126 is then ranked according to its importance level (eg, high-high "HH" alert is higher than high "H" alert, etc.). If more than one adjustment focus share the same level, then the adjustment focus will be ranked according to user preferences, as set forth below with respect to FIG. If only one "true" alert appears, this alert will be selected and used as the dominator The focus point 106 is adjusted to initiate the adjustment procedure set forth in FIG. However, the results of the procedure of FIG. 5 (ie, the ranked "true" alert 130) will be processed by the criteria determined by the user, as shown in FIG. 8, after which a fit adjustment focus 106 is confirmed.
在圖6中,一流程圖經提供以闡釋如何判定可允許調整極限124。一旦經判定,便比較調整極限124與操作資料120、122,如上文所陳述及圖5中所展示。首先,利用一內部階層來彼此比較對應於圖3之介面顯示器12中之彼等使用者介面雙態切換開關之使用者介面雙態切換開關14、16、17以允許通過關於大部分顯著雙態切換開關之警報約束。因此,取決於哪些開關在「接通」位置中,可允許調整極限124中將包含不同調整極限。取決於對應雙態切換開關14、16、17是在「接通」還是「關斷」位置中,最佳NOx、最佳功率及最佳動力學特性中之每一者具有預設定極限之一集合(由圖6中之編號134、136及138所表示)。當雙態切換開關皆不在「接通」位置中時,亦存在欲使用之預設極限140之一內部設定。 In FIG. 6, a flow chart is provided to illustrate how to determine the allowable adjustment limit 124. Once determined, the adjustment limit 124 and the operational data 120, 122 are compared, as set forth above and shown in FIG. First, an internal hierarchy is used to compare user interface toggle switches 14, 16, 17 corresponding to their user interface toggle switches in the interface display 12 of FIG. 3 to allow passage of most significant binary states. The alarm constraint of the toggle switch. Therefore, depending on which switches are in the "on" position, different adjustment limits may be included in the adjustment limit 124. Depending on whether the corresponding two-state changeover switches 14, 16, 17 are in the "on" or "off" position, each of the optimal NOx, optimum power, and optimal dynamics has one of the preset limits. Set (represented by numbers 134, 136, and 138 in Figure 6). When the two-state toggle switch is not in the "on" position, there is also an internal setting of one of the preset limits 140 to be used.
內部階層將判定在競爭性雙態切換開關14、16或17在「接通」位置中之情況中哪些調整極限應獲得優先性。在本實例中,階層將最佳NOx 14分級在最佳功率16之上。最佳動力學特性17可在任何時間被選擇且將僅更改給出之其他選擇之調整極限,諸如圖4中所展示。若最佳NOx 14及最佳功率16兩者皆在「接通」位置中,則將使用最佳NOx 134之調整極限。另外,若啟動此雙態切換開關17,則利用最佳動力學特性138之調整極限。若使用者介面雙態切換開關14、16、17皆不作用,則預設調整極限140經提供為可允許調整極限124。可用於構造調整控制器10之可允許調整極限之所有調整極限134、136、138及140可由終端使用者及程式員來開發且然後較佳針對一既定應用硬編碼至調整控制器10中。圖6中所概述之方法意欲提供用於併入若干不同使用者介面雙態切換開關(諸如上文關於圖3所陳述的包含最佳 HRSG壽命19之彼等選項)之一例示性框架,藉此在本發明中僅特定概述一子組。 The internal hierarchy will determine which of the adjustment limits should be prioritized in the event that the competitive toggle switch 14, 16 or 17 is in the "on" position. In this example, the hierarchy ranks the optimal NOx 14 above the optimal power 16. The optimal dynamics 17 can be selected at any time and will only change the adjustment limits of the other choices given, such as shown in FIG. If both the best NOx 14 and the best power 16 are in the "on" position, the optimum NOx 134 adjustment limit will be used. In addition, if the two-state changeover switch 17 is activated, the adjustment limit of the optimum dynamics characteristic 138 is utilized. If the user interface toggle switches 14, 16, 17 are inactive, the preset adjustment limit 140 is provided to allow the adjustment limit 124. All of the adjustment limits 134, 136, 138, and 140 that can be used to construct the allowable adjustment limits of the adjustment controller 10 can be developed by the end user and programmer and then preferably hard coded into the adjustment controller 10 for a given application. The method outlined in Figure 6 is intended to provide for the incorporation of several different user interface two-state toggle switches (such as the best described above with respect to Figure 3) One of the options for the HRSG Lifetime 19 option, whereby only a subset of the components are specifically outlined in the present invention.
圖7展示既定用於判定系統之可允許調整極限之一子組之圖6之流程圖之一特定實例。在此實例中,將基於預設定調整極限及使用者之偏好來判定針對高NOx、高高NOx、高1級δP's、高2級δP's之調整極限。針對最佳NOx 134、最佳功率136、最佳動力學特性138及無最佳設定140而提供之各種例示性調整極限被賦予對應數值(方塊152、154、156及158中分別所展示)。變化既定用於每一準則之對應數值,以使得取決於選擇哪些雙態切換開關14、16或17,可允許極限124將不同。以實例方式,最佳NOx 134、152及最佳功率136、154給出NOx之極限,但亦在未選擇最佳動力學特性138、156之情況中提供欲使用之動力學特性之極限。然而,在選擇最佳動力學特性雙態切換17之情況中,應代替相對於最佳NOx 134、152及最佳功率136、154所列出之值而使用因此所提供之1級δP's及2級δP's值156。 Figure 7 shows a specific example of the flow chart of Figure 6 that is intended to determine a subset of the allowable adjustment limits of the system. In this example, the adjustment limits for high NOx, high NOx, high level 1 δP's, and high level 2 δP's will be determined based on the preset adjustment limits and the user's preferences. Various exemplary adjustment limits provided for optimal NOx 134, optimum power 136, optimal dynamics 138, and no optimal settings 140 are assigned corresponding values (shown in blocks 152, 154, 156, and 158, respectively). The change is intended to be a corresponding value for each criterion such that depending on which two-state toggle switches 14, 16 or 17, are selected, the limit 124 may be allowed to be different. By way of example, optimal NOx 134, 152 and optimum power 136, 154 give the limits of NOx, but also provide the limits of the kinetic characteristics to be used without the selection of optimal kinetics 138, 156. However, in the case of selecting the optimum dynamics characteristic two-state switching 17, the first-order δP's and 2 thus provided should be used instead of the values listed with respect to the optimum NOx 134, 152 and optimum powers 136, 154. The level δP's value is 156.
在此特定實例中,選擇針對最佳NOx 14及最佳動力學特性17之雙態切換開關,其中針對最佳功率16之開關處於「關斷」位置中。因此,提供針對高NOx及高高NOx 152之最佳NOx之值。此外,由於亦選擇最佳動力學特性17,因此高1級δP's及高2級δP's 138、156之動力學特性值替換相對於最佳NOx 134、152所提供之彼等δP's值。因此,提供可允許調整極限124,如方塊160中所展示。此等可允許調整極限124對應於圖5中所使用之彼等可允許調整極限(如上文所闡述),以判定來自CEMS 40及CDMS 50之資訊是處於一警報狀態還是正常操作。 In this particular example, a two-state switch for the best NOx 14 and best dynamics 17 is selected, with the switch for the best power 16 in the "off" position. Therefore, the value of the optimum NOx for high NOx and high NOx 152 is provided. In addition, since the optimum kinetic characteristics 17 are also selected, the kinetic characteristic values of the high level δP's and the higher level δP's 138, 156 replace those δP's values provided with respect to the optimum NOx 134, 152. Accordingly, an allowable adjustment limit 124 is provided, as shown in block 160. These allowable adjustment limits 124 correspond to their allowable adjustment limits (as set forth above) used in Figure 5 to determine if the information from CEMS 40 and CDMS 50 is in an alarm state or normal operation.
圖8展示併入一使用者之優先級及經接收以用於判定支配性調整關注點106之「真」警報條件之程序之一進一步示意圖。此調整關注點106決定輪機控制器10執行之輪機操作改變,如圖2中所展示。 8 shows a further schematic diagram of one of the procedures for incorporating a user's priority and receiving a "true" alert condition for determining the dominant adjustment focus 106. This adjustment focus 106 determines the turbine operation changes performed by the turbine controller 10, as shown in FIG.
首先,對所有可能支配性調整問題142做出一判定。此等可能支 配性調整問題包含但不限於:燃燒器熄火、CO排放、NOx排放、1級燃燒器動力學特性(1級δP's)、2級燃燒器動力學特性(2級δP's)及HRSG機械壽命。可能支配性調整問題142之清單由使用者及程式員來判定且可基於若干因素或操作準則。以實例方式,1級及2級燃燒器動力學特性δP's指代在特定聲頻範圍內發生之燃燒動力學特性,藉此該頻率範圍在1級與2級之間係不同的。實際上,諸多燃燒系統可擁有對應於1級及2級之不同聲學諧振頻率,且可利用針對每一不同輪機及/或燃燒器配置之不同輪機操作參數改變來減輕此等2個動力學特性級中之變化。亦應注意,某些燃燒系統可不具有可調整之燃燒器動力學特性之「級」(頻率範圍)、具有1個、2個或大於2個不同「級」(頻率範圍)。本發明利用藉此提及2個不同燃燒器動力學特性級之一系統。然而,本發明完全意欲可廣泛應用於任何數目個相異動力學特性頻率級(自0至大於2個)。 First, a determination is made for all possible dominance adjustment questions 142. Such possible support The coordination adjustment issues include, but are not limited to, burner flameout, CO emissions, NOx emissions, Class 1 burner dynamics (Grade 1 δP's), Class 2 burner dynamics (Level 2 δP's), and HRSG mechanical life. The list of possible dominance adjustment questions 142 is determined by the user and the programmer and may be based on a number of factors or operational criteria. By way of example, Class 1 and Class 2 combustor dynamics δP's refer to combustion dynamics that occur over a particular range of frequencies, whereby the range of frequencies is different between Level 1 and Level 2. In fact, many combustion systems can have different acoustic resonant frequencies corresponding to levels 1 and 2, and these two dynamics can be mitigated with different turbine operating parameter changes for each different turbine and/or combustor configuration. Changes in the level. It should also be noted that some combustion systems may have "levels" (frequency ranges) with adjustable burner dynamics, with 1, 2 or more than 2 different "levels" (frequency ranges). The invention utilizes a system whereby one of the two different burner dynamics levels is mentioned. However, the invention is intended to be broadly applicable to any number of different kinetic characteristic frequency levels (from 0 to more than 2).
在判定可能支配性調整問題142之後,根據終端使用者之需要以及每一調整關注點對環境及/或輪機性能可具有之有害效應將此等問題按重要性144之次序分級。每一可能支配性調整關注點之相對重要性可不同於每一終端使用者,且針對每一燃燒器配置而不同。舉例而言,某些燃燒系統將演示對燃燒器動力學特性之一極端敏感度,以使得正常日常操作參數變化可致使一正常良性動力學特性調整關注點在一極短時間量中變為惡性。在此情形中,支配性動力學特性調整關注點中之一者或兩者(1級及2級)可提升至優先級1(最重要)。以圖7之實例之方式,燃燒器熄火被列為最重要支配性調整關注點144。此分級用於在存在具有相等位準之嚴重性之多個警報之情況中判定支配性調整關注點。支配性調整關注點144之此分級(自最重要至最不重要)提供其中形成特定布林邏輯階層148之總體框架。舉例而言,假定1級及2級δP's相對於系統操作參數中之微擾通常遵從單調行為,一高-高 「HH」2級δP's警報可比高「H」1級δP's警報重要。另外,在圖8中針對布林邏輯階層148給出之實例中,高「H」NOx排放比高「H」2級動力學特性重要。此意指若高「H」NOx及高「H」2級動力學特性兩者皆「在警報中」(邏輯=真),則在不存在為「真」之其他警報之情況下,自動調整系統將針對高「H」NOx進行調整,此乃因高「H」NOx係支配性調整關注點。最後,可瞭解,熄火分級在NOx排放之上且熄火及NOx排放兩者皆分級在1級δP's之上。因此,若存在針對所有三種類別而返回之高「H」警報,則熄火將為支配性調整關注點,後續接著NOx排放且然後1級δP's。此布林邏輯階層148將係與藉由比較可允許調整極限124與操作資料120、122而返回之「真」警報130(如上文關於圖5所陳述)進行比較之內容。 After determining the possible dominance adjustment problem 142, the questions are ranked in order of importance 144 according to the needs of the end user and the detrimental effects that each adjustment focus can have on the environment and/or turbine performance. The relative importance of each possible dominant adjustment focus can be different from each end user and will be different for each burner configuration. For example, some combustion systems will demonstrate extreme sensitivity to one of the burner dynamics characteristics such that normal daily operating parameter changes can cause a normal benign dynamics adjustment focus to become malignant in a very short amount of time. . In this case, one or both of the dominant dynamics adjustment points of interest (levels 1 and 2) can be promoted to priority 1 (most important). In the manner of the example of Figure 7, burner stalling is listed as the most important dominant adjustment point of interest 144. This rating is used to determine the dominant adjustment focus in the presence of multiple alerts with equal levels of severity. This ranking of dominant adjustment concerns 144 (from most important to least important) provides an overall framework in which a particular Boolean logic hierarchy 148 is formed. For example, assume that Level 1 and Level 2 δP's generally follow monotonic behavior with respect to perturbations in system operating parameters, a high-high The "HH" level 2 δP's alarm can be more important than the high "H" level 1 δP's alarm. In addition, in the example given for the Boolean logic level 148 in FIG. 8, high "H" NOx emissions are more important than high "H" level 2 kinetics. This means that if both the high "H" NOx and the high "H" level 2 kinetics are "in the alarm" (logic = true), then automatically adjust if there are no other alarms that are "true". The system will adjust for high "H" NOx, which is due to the high "H" NOx system dominance adjustment focus. Finally, it can be seen that the flameout classification is above the NOx emissions and both the flameout and NOx emissions are graded above the level 1 δP's. Therefore, if there is a high "H" alarm returned for all three categories, the flameout will be the dominant adjustment focus, followed by NOx emissions and then 1 level δP's. This Boolean logic level 148 will be compared to the "true" alarm 130 (as stated above with respect to Figure 5) that allows the adjustment limit 124 to be returned with the operational data 120, 122.
所有「真」調整警報130經提供為按嚴重性分級(例如,HHH高於HH等)。然後,在步驟150中,比較「真」調整警報130與硬編碼布林邏輯階層148,以判定哪一調整將成為「真」支配性調整關注點106。當此一個「真」支配性調整關注點106藉由操作改變而減輕時,支配性調整關注點106現成為自動調整演算法之其餘部分,如圖2中所詳述。 All "true" adjustment alerts 130 are provided to be ranked by severity (eg, HHH is higher than HH, etc.). Then, in step 150, the "true" adjustment alert 130 and the hardcoded Boolean logic hierarchy 148 are compared to determine which adjustment will become the "true" dominant adjustment focus 106. When this "true" dominant adjustment focus 106 is mitigated by operational changes, the dominant adjustment focus 106 is now the remainder of the automatic adjustment algorithm, as detailed in FIG.
因此,當關鍵HRSG操作特性指示對照過溫(在蒸汽出口條件處)及/或過調溫(在級內減熱器處)之不足設計邊限時,調整控制器10可經組態以透過操縱燃氣輪機排氣溫度(輪機燃料空氣(f/a)比)而使一廢熱回收蒸汽產生器(HRSG)之機械壽命最佳化。該HRSG將具有用於量測鍋爐之操作參數之感測器且輪機具有用於量測輪機之操作參數之感測器構件,如上文所論述。該等HRSG操作參數包含高壓及/或熱再熱蒸汽出口溫度及/或高壓及/或熱再熱級內減熱器出口溫度與壓力。該等輪機操作參數包含燃燒器動力學特性及輪機廢氣排放。使用上文關於警報位準所應用之邏輯,輪機控制器將根據需要調節各種操作控制元 素,諸如燃料分配及/或燃料與空氣(f/a)比。 Thus, when the critical HRSG operating characteristics indicate insufficient design margins for over-temperature (at steam outlet conditions) and/or over-temperature (at-stage heat reducers), the adjustment controller 10 can be configured to operate through The gas turbine exhaust temperature (turbine fuel air (f/a) ratio) optimizes the mechanical life of a waste heat recovery steam generator (HRSG). The HRSG will have a sensor for measuring the operating parameters of the boiler and the turbine has sensor components for measuring the operating parameters of the turbine, as discussed above. The HRSG operating parameters include high pressure and/or hot reheat steam outlet temperature and/or high pressure and/or heat reheat stage in the heat exchanger outlet temperature and pressure. These turbine operating parameters include combustor dynamics and turbine exhaust emissions. Using the logic applied above for the alarm level, the turbine controller will adjust various operational control elements as needed Factors such as fuel distribution and/or fuel to air (f/a) ratio.
上文圖1中陳述用於使HRSG壽命最佳化之控制系統且該控制系統(視情況)依賴於透過DCS 20與上文所列出之感測器構件及控制構件通信以控制輪機之操作控制元素之輪機控制器10。為根據其他可能操作優先級使HRSG壽命最大化,一使用者將選擇針對HRSG及/或其他輪機操作的選自包括以下各項之群組之操作優先級:最佳NOx排放、最佳功率輸出、最佳燃燒器動力學特性、最佳HRSG壽命及/或最佳燃料摻合比(非管線品質燃氣與管線品質燃氣之比)。舉例而言,將提供以下實例,其中在圖3中所展示之控制面板中選擇最佳HRSG壽命19,以使得最佳HRSG壽命為除其他選定優先級之外的可能之一操作優先級。 A control system for optimizing the life of the HRSG is set forth above in Figure 1 and the control system (as appropriate) relies on communicating with the sensor components and control components listed above via the DCS 20 to control the operation of the turbine The turbine controller 10 of the control element. To maximize HRSG life based on other possible operational priorities, a user will select an operational priority for the HRSG and/or other turbine operations selected from the group consisting of: optimal NOx emissions, optimal power output , optimum burner dynamics, optimum HRSG life and/or optimum fuel blend ratio (ratio of non-line quality gas to pipeline quality gas). For example, an example will be provided in which the optimal HRSG lifetime 19 is selected in the control panel shown in Figure 3 such that the optimal HRSG lifetime is one of the possible operational priorities, among other selected priorities.
在操作期間,輪機控制器將自燃氣輪機感測器構件及HRSG感測器構件接收操作資料。將基於選定操作優先級來比較該操作資料與所儲存操作標準。使用此比較,輪機控制器將判定HRSG及燃氣輪機操作兩者是否符合操作標準。 During operation, the turbine controller will receive operational data from the gas turbine sensor component and the HRSG sensor component. The operational data and stored operational criteria will be compared based on the selected operational priority. Using this comparison, the turbine controller will determine if both HRSG and gas turbine operation meets operational criteria.
在HRSG或燃氣輪機操作參數不在可允許極限內之條件下,調整控制器10將基於預設定操作優先級來判定HRSG及/或燃氣輪機之不符合操作之支配性調整準則。在判定支配性調整準則之情況下,輪機控制器10將與選定操作控制元素通信以在燃氣輪機之操作控制元素中執行一選定調節。操作控制元素可係燃燒器之噴嘴內之燃燒器燃料分配分股、燃料燃氣入口溫度、輪機內之燃料/空氣比及/或燃氣燃料摻合比(燃料組合物)。對操作控制元素之調節將基於支配性調整準則且具有一固定遞增值及經定義範圍,每一遞增改變在足以使輪機獲得操作穩定性之一所設定時間週期內輸入。 Under conditions where the HRSG or gas turbine operating parameters are not within the allowable limits, the adjustment controller 10 will determine the dominance adjustment criteria for the HRSG and/or gas turbine non-compliance based on the pre-set operational priorities. In the event that the dominant adjustment criteria are determined, the turbine controller 10 will communicate with the selected operational control element to perform a selected adjustment in the operational control elements of the gas turbine. The operational control element can be a burner fuel distribution split within the nozzle of the combustor, a fuel gas inlet temperature, a fuel/air ratio within the turbine, and/or a gas fuel blend ratio (fuel composition). The adjustment of the operational control elements will be based on the dominance adjustment criteria and have a fixed increment value and a defined range, each incremental change being input for a time period set for one of the operational stability of the turbine.
將以開環方式重複感測程序,以使得輪機控制器在經過一所設定時間週期後將旋即自HRSG及燃氣輪機感測器構件隨後接收關於操 作參數之進一步資料以判定是否期望一額外遞增改變。若需要額外調整,則將在一經定義範圍內對操作控制元素做出進一步遞增調節。在窮盡對一特定控制元素之可用調節範圍之條件下,調整控制器10將基於支配性調整準則來選擇一進一步操作控制元素調節,該進一步選定調節具有一固定遞增值及經定義範圍,其中在足以使輪機獲得操作穩定性之一所設定時間週期內做出每一遞增調節。在輪機及HRSG之操作期間將繼續該感測及調節(若需要)程序。 The sensing procedure will be repeated in an open loop manner such that the turbine controller will immediately receive feedback from the HRSG and gas turbine sensor components after a set period of time has elapsed. Further information on the parameters is made to determine if an additional incremental change is desired. If additional adjustments are required, further incremental adjustments to the operational control elements will be made within a defined range. Under the condition that the available adjustment range for a particular control element is exhausted, the adjustment controller 10 will select a further operational control element adjustment based on the dominant adjustment criteria, the further selected adjustment having a fixed increment value and a defined range, wherein Each incremental adjustment is made within a set period of time sufficient for the turbine to achieve operational stability. This sensing and adjustment (if needed) procedure will continue during the operation of the turbine and HRSG.
在一項實施例中,可用所儲存操作資料來程式化系統,以使得藉由以下各項而在調整程序中使一HRSG之機械壽命最佳化:首先按增量調節燃氣輪機之燃料與空氣比以改變HRSG熱燃氣入口條件以提供關鍵HRSG操作參數(亦即,降低或升高熱燃氣入口之溫度)中之充分設計邊限。然後,該調整可如可作為對輪機之f/a比做出之此等改變之一結果所需而繼續。舉例而言,HRSG可具備用於量測相關聯鍋爐之操作參數之感測器構件,包含高壓及/或熱再熱出口蒸汽溫度以及高壓及/或熱再熱級內減熱器出口溫度與壓力。燃氣輪機亦將具有用於量測輪機之操作參數(包含輪機之煙囪排放及燃燒動力學特性)之感測器構件,及輪機之各種操作元素(包含燃料分配及/或燃料溫度及/或燃料摻合比及/或燃料與空氣比)之控制構件。視情況,調整控制器10、各種感測器構件及控制構件可直接連接或經由一分散式控制系統(DCS)連接。控制系統亦可具備用於設定針對輪機操作的選自包括以下各項之群組(諸如上文所論述之圖3中所展示之群組)之操作優先級之構件:最佳NOx排放、最佳功率輸出、最佳燃燒器動力學特性、最佳燃料摻合比及/或最佳HRSG壽命。使用此調整系統,使用本文中關於使HRSG壽命及輪機操作最佳化而論述之方法來選擇操作優先級、感測操作參數且發生調整,條件係在此例項中,f/a比係欲調節以使HRSG壽命最佳化之預定第一操作控制元素,同時可調節其他操作控 制元素以便使燃燒輪機保持在每一操作參數之可允許極限內。 In one embodiment, the stored operational data can be used to program the system such that the mechanical life of an HRSG is optimized in an adjustment procedure by first adjusting the fuel to air ratio of the gas turbine in increments. The HRSG hot gas inlet conditions are varied to provide a sufficient design margin in key HRSG operating parameters (ie, to reduce or increase the temperature of the hot gas inlet). This adjustment can then be continued as needed to produce one of these changes to the f/a ratio of the turbine. For example, the HRSG may be provided with sensor components for measuring operational parameters of the associated boiler, including high pressure and/or hot reheat outlet steam temperatures and high pressure and/or thermal reheat stage internal heat exchanger outlet temperatures and pressure. The gas turbine will also have sensor components for measuring the operating parameters of the turbine (including the chimney emissions and combustion dynamics of the turbine), as well as various operational elements of the turbine (including fuel distribution and/or fuel temperature and/or fuel blending). Control components for combination and/or fuel to air ratio. Optionally, the adjustment controller 10, various sensor components, and control components can be directly connected or connected via a distributed control system (DCS). The control system may also be provided with means for setting operational priorities selected from the group consisting of: (such as the group shown in Figure 3 discussed above) for turbine operation: optimal NOx emissions, most Good power output, optimum burner dynamics, optimum fuel blend ratio and/or optimum HRSG life. Using this adjustment system, use the methods discussed herein to optimize HRSG life and turbine operation to select operational priorities, sense operational parameters, and make adjustments, in this case, f/a ratio Adjusting the predetermined first operational control element to optimize the HRSG life while adjusting other operational controls The elements are designed to maintain the combustion turbine within the permissible limits of each operating parameter.
現使用本文中所闡述之系統揭示透過調整一燃氣輪機之操作而使一HRSG之機械壽命最佳化之一方法。該方法首先包含在輪機控制器10與(視情況)DCS 20之間建立一通信鏈路及自HRSG及/或燃氣輪機感測器構件接收關於HRSG及輪機之各種操作參數之狀態之資料。然後,比較操作參數值與標準資料集以判定是否需要對操作控制元素之調節以便使輪機或HRSG之操作在可允許極限中。若需要調整,則調整控制器將與選定操作控制元素通信以執行選定控制元素之一經定義遞增調節。然後,系統在調整控制器處經由感測器構件及DCS接收來自感測器構件之關於HRSG及輪機兩者之操作之操作參數資料且判定該調節是否使輪機操作符合一設定標準或是否需要一進一步遞增調節。 The use of the system described herein now reveals one way to optimize the mechanical life of an HRSG by adjusting the operation of a gas turbine. The method first includes establishing a communication link between the turbine controller 10 and the (as appropriate) DCS 20 and receiving information regarding the status of various operational parameters of the HRSG and the turbine from the HRSG and/or gas turbine sensor components. The operating parameter values are then compared to a standard data set to determine if adjustments to the operational control elements are required to operate the turbine or HRSG in the allowable limits. If an adjustment is required, the adjustment controller will communicate with the selected operational control element to perform a defined incremental adjustment of one of the selected control elements. The system then receives operational parameter data from the sensor component regarding the operation of both the HRSG and the turbine at the adjustment controller via the sensor component and determines whether the adjustment conforms the turbine operation to a set standard or whether a need is required Further incremental adjustments.
來自HRSG之所感測資料可包含蒸汽出口溫度及/或蒸汽過熱器級內調溫器過飽和度條件。經調節以修改此等所感測參數之值之操作控制元素可係輪機之燃料與空氣比。一旦HRSG值在可允許極限內,便需要進一步調整以使輪機之操作在其可允許極限內。此將較佳在不具有對f/a比之進一步修改之情況下根據上文所闡述之調整方法而完成,以使得燃料燃氣溫度、燃料分股或燃料摻合比之操作控制元素。 Sensing data from the HRSG may include steam outlet temperature and/or steam superheater level over-temperature regulator supersaturation conditions. The operational control element adjusted to modify the values of these sensed parameters can be the fuel to air ratio of the turbine. Once the HRSG value is within the allowable limits, further adjustments are needed to operate the turbine within its allowable limits. This will preferably be accomplished in accordance with the adjustment methods set forth above without further modification of the f/a ratio such that the fuel gas temperature, fuel split or fuel blend ratio is an operational control element.
系統之調整可適合於用於調整其中存在兩種相異操作模式之一預混燃燒系統之方法。經調整之輪機(未展示)可具有一外圈相同燃料噴嘴,其利用一外噴嘴燃料分股來調變此等外噴嘴內之圓周燃料分配;一內燃料噴嘴,其利用一內噴嘴燃料分股來調節內噴嘴與外噴嘴之燃料與空氣比。本文中所論述之外及內噴嘴為熟習此項技術者所熟知且在本文中未具體重新計數。兩種相異操作模式包括一「貧」內噴嘴模式,藉此內噴嘴之f/a比小於外燃料噴嘴之f/a比,及一「富」內噴嘴,藉此內噴嘴之f/a比大於外燃料噴嘴之f/a比。用於調整具有此 等相異模式之一系統之方法包括基於輪機負載而在調整控制器10處選擇用於變化模式之一混合燃料分股排程。「貧」中心噴嘴燃料分股排程將在較高負載條件下且「富」燃料分股排程將在較低負載及調節比條件下使用,其中在可能之最低位準下操作輪機以便維持HRSG之操作。 The adjustment of the system can be adapted to a method for adjusting a premixed combustion system in which there are two distinct modes of operation. The conditioned turbine (not shown) may have an outer ring of the same fuel nozzle that utilizes an outer nozzle fuel split to modulate the circumferential fuel distribution within the outer nozzles; an inner fuel nozzle that utilizes an inner nozzle fuel split The strands adjust the fuel to air ratio of the inner nozzle to the outer nozzle. The outer and inner nozzles discussed herein are well known to those skilled in the art and are not specifically recounted herein. The two different modes of operation include a "lean" inner nozzle mode whereby the f/a ratio of the inner nozzle is less than the f/a ratio of the outer fuel nozzle and a "rich" inner nozzle whereby the inner nozzle f/a The ratio is greater than the f/a ratio of the outer fuel nozzle. Used to adjust with this The method of one of the isophase modes includes selecting one of the mixed fuel split schedules for the change mode at the adjustment controller 10 based on the turbine load. The “poor” center nozzle fuel split schedule will be used under higher load conditions and the “rich” fuel split schedule will be used at lower load and turndown conditions, where the turbine is operated at the lowest possible level to maintain The operation of the HRSG.
該方法可包含上文所揭示之步驟連同在調整控制器10處做出當前操作模式正利用一「貧」還是「富」內噴嘴操作模式之一判定,及取決於在當前操作條件及儲存於輪機控制器內之預設定操作參數下正利用哪一操作模式,當存在一調整問題時,選擇燃料迴路分股1及/或燃料迴路分股2之調節方向。 The method can include the steps disclosed above along with determining whether the current mode of operation at the adjustment controller 10 is utilizing one of the "lean" or "rich" inner nozzle operating modes, and depending on the current operating conditions and stored in Which operating mode is being utilized under the pre-set operating parameters within the turbine controller, and when there is an adjustment problem, the direction of adjustment of the fuel circuit split 1 and/or the fuel circuit split 2 is selected.
可使用布林邏輯雙態切換開關(諸如圖3中所展示之彼等布林邏輯雙態切換開關)進行上文所提供之所有方法以選擇使用者所期望最佳化準則。最佳化準則中之一者係最佳HRSG壽命,藉此將此開關雙態切換至一「1」(「真」)允許調整控制器透過經由對燃氣輪機燃料與空氣比之修改之HRSG入口條件之改變來改良HRSG機械操作邊限,諸如蒸汽出口溫度及/或蒸汽過熱器級內調溫器飽和溫度邊限。可使用上文所揭示之方法及系統做出此等改變。 All of the methods provided above can be performed using a Boolean logic two-state toggle switch (such as the Boolean logic two-state toggle switch shown in Figure 3) to select the optimization criteria desired by the user. One of the optimization criteria is the best HRSG lifetime, whereby switching the switch to a "1" ("true") allows the controller to adjust the HRSG entry conditions through the modified fuel-to-air ratio of the gas turbine. The change is to improve the HRSG mechanical operating margin, such as the steam outlet temperature and/or the steamer saturation temperature threshold within the steam superheater stage. These changes can be made using the methods and systems disclosed above.
亦提供用於調整一預混燃燒系統之一方法,藉此存在一外圈燃料噴嘴,其利用一外噴嘴燃料分股以利用以下兩種操作模式調變此等外噴嘴內之圓周燃料分配:外噴嘴之一「貧次要迴路1」子組,藉此此外燃料噴嘴子組之f/a比小於其餘外燃料噴嘴之f/a比;及一「富次要迴路1」內噴嘴,藉此此外燃料噴嘴子組之f/a比大於其餘外燃料噴嘴之f/a比。該方法包含使用一混合燃料分股排程,其中在較高負載條件下具有一「富次要迴路1」燃料分股排程,且在較低負載及調節比條件下使用一「貧次要迴路1」燃料分股排程。該方法亦可包含變化其他操作控制元素(如本文中所闡述),以便使輪機或HRSG之操作在 可允許極限中。 A method for adjusting a premixed combustion system is also provided whereby there is an outer ring fuel nozzle that utilizes an outer nozzle fuel split to modulate the circumferential fuel distribution within the outer nozzles using two modes of operation: One of the outer nozzles is a sub-group of "lean secondary circuit 1", whereby the f/a ratio of the fuel nozzle subgroup is smaller than the f/a ratio of the remaining outer fuel nozzles; and the nozzle in the "rich secondary circuit 1" In addition, the f/a ratio of the fuel nozzle subgroup is greater than the f/a ratio of the remaining outer fuel nozzles. The method includes using a mixed fuel split schedule with a "rich secondary loop 1" fuel split schedule under higher load conditions and a "lean secondary" at lower load and turndown conditions Loop 1" fuel split scheduling. The method may also include changing other operational control elements (as set forth herein) to enable operation of the turbine or HRSG Allowable in the limit.
該方法亦可包含使用一混合燃料分股排程,其中在較高負載條件下具有一「貧次要迴路1」燃料分股排程,且在較低負載及調節比條件下使用一「富次要迴路1」燃料分股排程。此外,該方法可包含在調整控制器10處做出當前操作模式是利用一「貧次要迴路1」還是「富次要迴路1」操作模式之一判定,且取決於在當前操作條件下正利用哪一操作模式,當存在一調整問題時,使用燃料分股之操作控制元素沿適當方向調節燃料迴路分股1及/或燃料迴路分股2。 The method may also include using a mixed fuel split schedule in which a "lean secondary loop 1" fuel split schedule is performed under higher load conditions, and a "rich" is used at lower load and ratio ratio conditions. Secondary circuit 1" fuel split scheduling. Additionally, the method can include determining whether the current mode of operation at the adjustment controller 10 is determined using one of the "lean secondary circuit 1" or "rich secondary circuit 1" modes of operation, and depending on the current operating conditions. Which operating mode is utilized, when there is an adjustment problem, the fuel circuit split 1 and/or the fuel loop split 2 are adjusted in the appropriate direction using the operational control elements of the fuel split.
亦提供用於使用如上文所闡述之類似系統及步驟來調整一預混燃燒系統之一方法,藉此存在一或多個環形圈燃料噴嘴(為相同或不同類型,由影響每一燃料噴嘴圈內之燃料之圓周分配之一圓周燃料分股來控制)。在當前系統中,預期,可利用一第二類之燃料分股(若存在一個以上環形圈之燃料噴嘴),此利用以下兩種操作模式來調節至徑向同心燃料噴嘴圈中之每一者(圈1、圈2等)之相對(徑向)燃料量:圈1燃料噴嘴之一「貧次要迴路圈1」子組,藉此此圈1燃料噴嘴子組之f/a比小於圈1之其餘燃料噴嘴之f/a比;及圈1燃料噴嘴之一「富次要迴路圈1」子組,藉此此外燃料噴嘴子組之f/a比大於圈1之其餘燃料噴嘴之f/a比。該調整方法包括使用一混合燃料分股排程,其中在較高負載條件下具有一「貧次要迴路圈1」燃料分股排程,在較低負載及調節比條件下使用一「富次要迴路圈1」燃料分股排程,及「富」及「貧」燃料分股排程之類似使用,對於燃燒系統之其餘燃料噴嘴圈中之每一者,在高負載下為一者且在較低負載/調節比條件下為另一者。燃料排程中之每一者可預程式化至調整控制器10中且基於系統之所感測操作參數而選擇。 A method for adjusting a premixed combustion system using similar systems and steps as set forth above is also provided whereby there are one or more annular ring fuel nozzles (for the same or different types, affecting each fuel nozzle ring One of the circumferences of the fuel is distributed by a circular fuel split to control). In the current system, it is contemplated that a second type of fuel split (if there are more than one annular ring of fuel nozzles) may be utilized, which is adjusted to each of the radially concentric fuel nozzle rings using two modes of operation Relative (radial) fuel amount (circle 1, circle 2, etc.): one of the "depleted secondary circuit ring 1" subgroups of the ring 1 fuel nozzle, whereby the f/a ratio of the fuel nozzle subgroup of the ring 1 is less than the circle a f/a ratio of the remaining fuel nozzles; and a sub-group of one of the fuel nozzles of the coil 1 "rich secondary loop 1", whereby the f/a ratio of the fuel nozzle subgroup is greater than the remaining fuel nozzles of the coil 1 /a ratio. The adjustment method includes using a mixed fuel splitting schedule in which a "lean secondary loop 1" fuel split schedule is performed under higher load conditions, and a "rich" is used under lower load and ratio ratio conditions. For the loop 1" fuel split schedule, and the similar use of the "rich" and "lean" fuel split schedules, for each of the remaining fuel nozzle rings of the combustion system, under high load and The other is under the lower load/regulation ratio conditions. Each of the fuel schedules can be pre-programmed into the adjustment controller 10 and selected based on the sensed operating parameters of the system.
取決於操作優先級及至調整控制器10之使用者輸入,亦可修改該方法以包含使用一混合燃料分股排程,其中在較高負載條件下具有 一「富次要迴路圈1」燃料分股排程、在較低負載及調節比條件下使用一「貧次要迴路圈1」燃料分股排程及「富」及「貧」燃料分股排程之類似使用,對於燃燒系統之其餘燃料噴嘴圈中之每一者,在高負載下為一者且在較低負載/調節比條件下為另一者。 Depending on the operational priority and user input to the adjustment controller 10, the method can also be modified to include the use of a hybrid fuel split schedule, with higher load conditions A "rich secondary loop 1" fuel split schedule, using a "lean secondary loop 1" fuel split schedule and "rich" and "lean" fuel splits under lower load and regulation ratio conditions A similar use of scheduling is for each of the remaining fuel nozzle rings of the combustion system, one under high load and the other under lower load/regulation conditions.
亦提供用於調整一預混燃燒系統之一方法(諸如上文所揭示之方法),藉此存在一或多個環形圈燃料噴嘴(為相同或不同類型,由影響每一燃料噴嘴圈內之燃料之圓周分配之一圓周燃料分股來控制),藉此可利用一第二類之燃料分股(若存在一個以上環形圈燃料噴嘴),此利用以下兩種操作模式來調節至徑向同心燃料噴嘴圈中之每一者(圈1、圈2等)之相對(徑向)燃料量:圈1燃料噴嘴之一「貧次要迴路圈1」子組,藉此此圈1燃料噴嘴子組之f/a比小於圈1之其餘燃料噴嘴之f/a比;及圈1燃料噴嘴之一「富次要迴路圈1」子組,藉此此外燃料噴嘴子組之f/a比大於圈1之其餘燃料噴嘴之f/a比。該方法首先包括以下步驟:判定當前操作模式是利用一「貧次要迴路圈1」還是「富次要迴路圈1」操作模式,針對燃燒系統之其餘燃料噴嘴圈中之每一者做出當前操作模式(「富」或「貧」次要燃料迴路操作)之一類似判定。一旦做出此等判定,該方法便包括以下步驟:當存在一調整問題時,經由調整控制器10及選定操作控制元素沿適當方向調節燃料迴路分股1及/或燃料迴路分股2。基於在當前操作條件下正利用哪一操作模式來判定調節方向。 Also provided is a method for adjusting a premixed combustion system, such as the method disclosed above, whereby one or more annular ring fuel nozzles are present (for the same or different types, by affecting each fuel nozzle ring One of the circumferential distributions of fuel is controlled by a circumferential fuel split) whereby a second type of fuel split can be utilized (if more than one annular fuel nozzle is present), which is adjusted to radial concentricity using the following two modes of operation The relative (radial) fuel amount of each of the fuel nozzle rings (circle 1, ring 2, etc.): one of the "depleted secondary loop 1" subgroups of the coil 1 fuel nozzle, whereby the coil 1 fuel nozzle The ratio of f/a of the group is less than the ratio of the f/a of the remaining fuel nozzles of the circle 1; and the sub-group of the "rich secondary loop 1" of the coil 1 fuel nozzle, whereby the f/a ratio of the fuel nozzle subgroup is greater than The f/a ratio of the remaining fuel nozzles of circle 1. The method first includes the step of determining whether the current mode of operation utilizes a "lean secondary loop 1" or "rich secondary loop 1" mode of operation, for each of the remaining fuel nozzle rings of the combustion system One of the operational modes ("rich" or "lean" secondary fuel circuit operation) is similarly determined. Once such a determination is made, the method includes the steps of adjusting fuel circuit split 1 and/or fuel circuit split 2 in an appropriate direction via adjustment controller 10 and selected operational control elements when there is an adjustment problem. The direction of adjustment is determined based on which operating mode is being utilized under the current operating conditions.
圖9至圖12提供繪示布林邏輯階層在實務上如何工作之自動調整系統介面之例示性視覺表示。圖9展示連同上文關於圖8所陳述之實例一起返回之警報。即,警報針對處於H 162、HH 164及HHH 166之位準之2級δP's而返回。另外,針對NOx 168及1級δP's 170之警報在H位準下返回。由於較極端位準勝過處於相同位準之不同警報之衝突,因此HHH 2級δP's為優先級且因此為支配性調整關注點172。 Figures 9 through 12 provide an illustrative visual representation of an automatic adjustment system interface that illustrates how the logic logic of the Bollinger works in practice. FIG. 9 shows an alert returned along with the examples set forth above with respect to FIG. That is, the alarm returns for the level 2 δP's at the levels of H 162, HH 164, and HHH 166. In addition, the alarm for NOx 168 and Class 1 δP's 170 returns at the H level. Since the more extreme levels outweigh the conflicts of different alarms at the same level, the HHH level 2 δP's is prioritized and thus the dominant point of interest 172 is adjusted.
圖10至圖12展示在圖8之使用者所定義階層144下之不同「真」警報位準之支配性調整關注點之各種其他實例。圖10展示在沒有其他警報作用之情況下在最大操作溫度下之高壓蒸汽及在飽和度條件(將水放入至蒸汽管中)下之高壓蒸汽減熱器。因此,HRSG機械壽命最佳化為支配性調整關注點。圖11展示處於H位準之一2級δP's,其中具有處於一H及HH條件兩者之NOx,因此使得高NOx為支配性調整關注點。最後,圖12展示處於H位準之1級δP's及2級δP's。參考圖8中之支配性調整問題144之使用者分級,1級δP's經分級為在2級δP's之上之一優先級,且因此,儘管警報之嚴重性相等,但1級δP's變為支配性調整關注點。 Figures 10 through 12 illustrate various other examples of dominant adjustment focus points for different "true" alarm levels under the hierarchy 144 defined by the user of Figure 8. Figure 10 shows the high pressure steam at maximum operating temperature without any other alarms and the high pressure steam desuperheater under saturation conditions (putting water into the steam line). Therefore, the HRSG mechanical life optimization is the dominant adjustment focus. Figure 11 shows a level 2 δP's at the H level with NOx in both H and HH conditions, thus making high NOx a dominant adjustment concern. Finally, Figure 12 shows the level δP's and the level 2 δP's at the H level. Referring to the user ranking of the dominant adjustment question 144 in FIG. 8, the level 1 δP's is ranked as one of the priorities above the level 2 δP's, and therefore, although the severity of the alarm is equal, the level 1 δP's becomes dominant. Adjust the focus.
在圖13至圖16中,展示基於來自一運行輪機系統之操作資料之本發明之一調整控制器之一調整操作之操作結果之各種實例。在圖13中,支配性調整關注點為高2級δP's,且當燃燒器動力學特性移動至最佳動力學特性之所設定操作優先級外時,應對於所產生之一高2級δP's警報而做出燃燒器燃料分股E1之一改變。由輪機控制器10自(舉例而言)CDMS 50所接收之實際燃燒器動力學特性資料在圖表中指定為200。燃燒器動力學特性之移動平均值在圖表中識別為202。當燃燒器動力學特性超過動力學特性警報極限值204達一所設定時間週期TA時,一警報自調整控制器內發出。此警報導致第一事件E1及燃燒器燃料分股調整參數206之一所得遞增調節。如所圖解說明,燃料分股中之遞增增加導致燃燒器動力學特性200中之一對應降低,其中平均燃燒器動力學特性202降低低於動力學特性警報極限204。隨時間繼續,該調整由調整控制器保持且平均燃燒器動力學特性202使其操作位置維持低於動力學特性極限204。因此,不需要進一步調節或發出警報。 In Figures 13 through 16, various examples of operational results of one of the adjustment controllers of the present invention based on operational data from a running turbine system are shown. In Fig. 13, the dominant adjustment focus is the high level 2 δP's, and when the burner dynamics is moved outside the set operational priority of the optimal dynamics, one of the high level 2 δP's alarms should be generated. And make a change in the burner fuel split E1. The actual burner dynamics data received by the turbine controller 10 from, for example, the CDMS 50 is designated 200 in the chart. The moving average of the burner dynamics is identified as 202 in the chart. An alarm is issued from the adjustment controller when the burner dynamics exceeds the dynamics alarm limit value 204 for a set time period TA. This alarm results in an incremental adjustment of the first event E1 and one of the burner fuel split adjustment parameters 206. As illustrated, the incremental increase in fuel splitting results in a corresponding decrease in one of the combustor dynamics characteristics 200, wherein the average combustor dynamics characteristic 202 decreases below the kinetic characteristic alert limit 204. Over time, the adjustment is maintained by the adjustment controller and the average burner dynamics 202 maintains its operating position below the dynamics limit 204. Therefore, no further adjustments or alarms are required.
在圖14中,調整準則為高NOx排放。當自調整控制器接收NOx排 放資料210時,在經過時間TA之後產生一警報。該警報由NOx排放210超過操作標準或調整極限212而導致。該警報啟動導致燃料分股214中之一遞增增加之一第一事件E1。在自第一事件E1起之一時間週期TB之後,NOx警報仍由於NOx排放210超過預設定調整極限212而啟動。時間TB之後的此持續警報導致一第二事件E2及燃料分股值214中之一第二遞增增加。此第二增加在量值上等於第一遞增增加。第二事件E2致使NOx排放位準210在審查時間週期內降低低於預設定極限212且停止警報。當NOx排放210保持低於極限212時,保持燃料分股214調整且輪機之操作藉助經定義操作參數而繼續。 In Figure 14, the adjustment criterion is high NOx emissions. When the self-regulating controller receives the NOx exhaust When the data 210 is placed, an alarm is generated after the elapse of time TA. This alarm is caused by the NOx emissions 210 exceeding the operational criteria or adjustment limits 212. The alarm is initiated causing one of the fuel splits 214 to incrementally increase by one of the first events E1. After one of the time periods TB from the first event E1, the NOx alarm is still initiated due to the NOx emissions 210 exceeding the pre-set adjustment limit 212. This continuous alert after time TB results in a second incremental increase in one of the second event E2 and the fuel split value 214. This second increase is equal to the first incremental increase in magnitude. The second event E2 causes the NOx emission level 210 to decrease below the preset limit 212 and stop the alarm during the review time period. When the NOx emissions 210 remain below the limit 212, the fuel split 214 is maintained and the operation of the turbine continues with the defined operating parameters.
在圖15中,調整準則在警報由調整控制器所接收之一低NOx讀數而形成之情況下為熄火。如所展示,定義NOx調整極限220。在自接收NOx位準資料222起經過所設定時間週期TA後,旋即產生警報且發生一第一事件E1。在第一事件E1處,向下遞增調節燃料分股位準224。在自事件E1起設定經過時間TB之後,額外NOx排放資料222被接收且與預設定警報位準220進行比較。由於NOx仍低於警報位準220,因此發生一第二事件E2,導致燃料分股值224之一進一步遞增減少。發生自事件E2起進一步經過時間TC且接收額外資料。再次,NOx資料222為低,從而維持警報並導致一進一步事件E3。在事件E3處,再次按相同遞增量減少燃料分股值224。此第三遞增調節導致上升高於預設定極限220之NOx排放222且導致警報之移除。事件E3之後設定之燃料分股224調整值由調整控制器10保持在適當位置。 In Figure 15, the adjustment criteria are extinguished if the alarm is formed by a low NOx reading received by the adjustment controller. As shown, the NOx adjustment limit 220 is defined. Immediately after the set time period TA has elapsed since the reception of the NOx level data 222, an alarm is generated and a first event E1 occurs. At the first event E1, the fuel split level 224 is incrementally adjusted downward. After setting the elapsed time TB from event E1, the additional NOx emissions profile 222 is received and compared to the pre-set alarm level 220. Since NOx is still below alarm level 220, a second event E2 occurs, resulting in a further incremental decrease in one of the fuel split values 224. A further time TC has elapsed since event E2 and additional data has been received. Again, the NOx data 222 is low, thereby maintaining an alarm and causing a further event E3. At event E3, the fuel split value 224 is again reduced by the same incremental amount. This third incremental adjustment results in a rise in NOx emissions 222 that is above the preset limit 220 and results in the removal of an alarm. The fuel split 224 adjustment value set after event E3 is held in place by adjustment controller 10.
在圖16中,調整準則再次為熄火,藉此由調整控制器10所接收之NOx排放資料230再次沿較低排放極限232追蹤。在第一調整事件E1處,遞增地降低燃料分股值234以導致在較低極限232內之NOx排放230之一對應增加。在此第一遞增調節之後,在一時間週期內之NOx排放保持高於極限232且然後再次開始下降。在第二調整事件E2處, 再次藉由所指定固定遞增值來調節燃料分股值234。然後,此第二調節將燃料分股值234放置在可允許值(經判定為調整控制器10內之一硬編碼極限)之預設定範圍內之其所定義最小值處。由於達到此極限,因此調整操作移動至通常為第二燃料迴路調節之下一操作參數。在所提供之實例中,此第二迴路值(未展示)已在其所設定最大值/最小值處且因此未調節。因此,調整操作繼續移動至下一操作參數,即負載控制曲線236。如所展示,在事件E2處,在負載控制曲線值236中做出一遞增調節。負載控制曲線值236之增加導致至高於最小值232之一值之NOx排放230之一對應增加且移除警報。在移除警報後,旋即保持調整設定且不做出進一步調節。然後,調整控制器10繼續進行至透過DCS自感測器構件接收資料且繼續與所設定操作標準(包含最小NOx排放極限EL)做出比較。 In FIG. 16, the adjustment criterion is again stalled, whereby the NOx emissions profile 230 received by the adjustment controller 10 is again tracked along the lower emission limit 232. At the first adjustment event E1, the fuel split value 234 is incrementally decreased to cause a corresponding increase in one of the NOx emissions 230 within the lower limit 232. After this first incremental adjustment, the NOx emissions remain above the limit 232 for a period of time and then begin to fall again. At the second adjustment event E2, The fuel split value 234 is again adjusted by the specified fixed increment value. This second adjustment then places the fuel split value 234 at its defined minimum within a pre-set range of allowable values (determined to be one of the hard-coded limits within the controller 10). As this limit is reached, the adjustment operation moves to an operating parameter that is typically adjusted for the second fuel circuit. In the example provided, this second loop value (not shown) is already at its set maximum/minimum value and is therefore unregulated. Therefore, the adjustment operation continues to move to the next operational parameter, load control curve 236. As shown, at event E2, an incremental adjustment is made in load control curve value 236. An increase in the load control curve value 236 results in a corresponding increase in one of the NOx emissions 230 to a value above the minimum value 232 and the alarm is removed. Immediately after the alarm is removed, the adjustment settings are maintained and no further adjustments are made. The adjustment controller 10 then proceeds to receive data through the DCS self-sensor component and continues to compare with the set operating criteria (including the minimum NOx emission limit EL).
已關於若干本發明之例示性實施例闡述及圖解說明本發明。熟習此項技術者自前述內容應理解,在不背離本發明之精神及範疇之情況下,其中可做出各種其他改變、省略及添加,其中下述申請專利範圍闡述本發明之範疇。 The invention has been illustrated and described with respect to several exemplary embodiments of the invention. It will be understood by those skilled in the art that various changes, omissions and additions may be made therein without departing from the spirit and scope of the invention.
10‧‧‧調整控制器/輪機控制器/控制器 10‧‧‧Adjust controller/engine controller/controller
20‧‧‧分散式控制系統 20‧‧‧Distributed control system
30‧‧‧燃氣輪機控制器/輪機控制器/調整控制器/相關輪機操作參數/輪機系統 30‧‧‧Gas Turbine Controller/Engine Control/Adjustment Controller/Related Turbine Operating Parameters/Engine System
40‧‧‧連續排放監視系統/輪機廢氣排放 40‧‧‧Continuous Emission Monitoring System / Turbine Exhaust Emissions
50‧‧‧連續動力學特性監視系統/燃燒器動力學特性 50‧‧‧Continuous dynamics monitoring system/burner dynamics
60‧‧‧燃料加熱控制器/燃料加熱單元/燃料燃氣溫度控制器/相關聯控制器 60‧‧‧Fuel heating controller/fuel heating unit/fuel gas temperature controller/associated controller
70‧‧‧燃料摻合比控制器/燃料燃氣比控制器/相關聯控制器 70‧‧‧fuel blend ratio controller/fuel gas ratio controller/associated controller
80‧‧‧廢熱回收蒸汽產生器/廢熱回收蒸汽產生器操作參數/相關廢熱回收蒸汽產生器操作參數 80‧‧‧Waste heat recovery steam generator/waste heat recovery steam generator operating parameters/related waste heat recovery steam generator operating parameters
Claims (24)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261601876P | 2012-02-22 | 2012-02-22 | |
US13/542,222 US9267443B2 (en) | 2009-05-08 | 2012-07-05 | Automated tuning of gas turbine combustion systems |
US13/767,933 US9671797B2 (en) | 2009-05-08 | 2013-02-15 | Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201344039A TW201344039A (en) | 2013-11-01 |
TWI516671B true TWI516671B (en) | 2016-01-11 |
Family
ID=47827439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102106078A TWI516671B (en) | 2012-02-22 | 2013-02-21 | Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI516671B (en) |
WO (1) | WO2013126279A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10352299B2 (en) * | 2016-08-05 | 2019-07-16 | General Electric Company | System and method for automatically updating wind turbine data based on component self-identification |
US10830443B2 (en) | 2016-11-30 | 2020-11-10 | General Electric Company | Model-less combustion dynamics autotune |
US11898502B2 (en) | 2020-12-21 | 2024-02-13 | General Electric Company | System and methods for improving combustion turbine turndown capability |
CN113982701B (en) * | 2021-09-23 | 2024-08-30 | 哈尔滨汽轮机厂有限责任公司 | Novel 1000 MW-level secondary reheating 630 ℃ steam turbine and matched double-engine regenerative system |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4333310A (en) * | 1975-04-02 | 1982-06-08 | Westinghouse Electric Corp. | Combined cycle electric power plant with feedforward afterburner temperature setpoint control |
JPH0579631A (en) * | 1991-09-19 | 1993-03-30 | Hitachi Ltd | Combustion device facility |
DE102004015187A1 (en) * | 2004-03-29 | 2005-10-20 | Alstom Technology Ltd Baden | Combustion chamber for a gas turbine and associated operating method |
DE102004036911A1 (en) * | 2004-07-29 | 2006-03-23 | Alstom Technology Ltd | Operating procedure for a combustion plant |
US20080083224A1 (en) * | 2006-10-05 | 2008-04-10 | Balachandar Varatharajan | Method and apparatus for reducing gas turbine engine emissions |
US8459034B2 (en) * | 2007-05-22 | 2013-06-11 | General Electric Company | Methods and apparatus for operating gas turbine engines |
US7950215B2 (en) * | 2007-11-20 | 2011-05-31 | Siemens Energy, Inc. | Sequential combustion firing system for a fuel system of a gas turbine engine |
US8127557B2 (en) * | 2008-04-07 | 2012-03-06 | General Electric Company | Control systems and method for controlling a load point of a gas turbine engine |
US8904972B2 (en) * | 2008-09-29 | 2014-12-09 | General Electric Company | Inter-stage attemperation system and method |
US8437941B2 (en) * | 2009-05-08 | 2013-05-07 | Gas Turbine Efficiency Sweden Ab | Automated tuning of gas turbine combustion systems |
US8417433B2 (en) * | 2010-04-30 | 2013-04-09 | Alstom Technology Ltd. | Dynamically auto-tuning a gas turbine engine |
-
2013
- 2013-02-15 WO PCT/US2013/026295 patent/WO2013126279A1/en active Application Filing
- 2013-02-21 TW TW102106078A patent/TWI516671B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
WO2013126279A8 (en) | 2015-08-27 |
WO2013126279A1 (en) | 2013-08-29 |
TW201344039A (en) | 2013-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9671797B2 (en) | Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications | |
US11199818B2 (en) | Automated tuning of multiple fuel gas turbine combustion systems | |
US11028783B2 (en) | Automated tuning of gas turbine combustion systems | |
JP5244851B2 (en) | Automatic tuning of gas turbine combustion systems | |
US8826670B2 (en) | Method for controlling a gas turbine in a power station, and a power station for carrying out the method | |
TWI516671B (en) | Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications | |
JP5540141B2 (en) | Automatic adjustment of gas turbine combustion system | |
EP2959139B1 (en) | Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications | |
TWI516672B (en) | Automated tuning of multiple fuel gas turbine combustion systems | |
CA2901080C (en) | Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications | |
EP2959138B1 (en) | Automated tuning of multiple fuel gas turbine combustion systems | |
CA2901077A1 (en) | Automated tuning of multiple fuel gas turbine combustion systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |