TWI503581B - Lens, light source device and direct type light source module - Google Patents
Lens, light source device and direct type light source module Download PDFInfo
- Publication number
- TWI503581B TWI503581B TW102133049A TW102133049A TWI503581B TW I503581 B TWI503581 B TW I503581B TW 102133049 A TW102133049 A TW 102133049A TW 102133049 A TW102133049 A TW 102133049A TW I503581 B TWI503581 B TW I503581B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- sub
- lens
- total reflection
- light source
- Prior art date
Links
Landscapes
- Planar Illumination Modules (AREA)
- Led Device Packages (AREA)
Description
本發明是有關於一種光學元件、光學裝置以及光學模組,且特別是有關於一種透鏡、光源裝置以及直下式光源模組。The present invention relates to an optical component, an optical device, and an optical module, and more particularly to a lens, a light source device, and a direct type light source module.
隨著光學技術的進步,越來越多光源裝置所能提供的照明光形被開發出來。對於光源裝置中的發光元件(例如發光晶片或燈芯)而言,其本身所能提供的照明光形的變化較小。為了提供更多光形的可能性,將各種適當形狀的透鏡配置在發光元件的發光路徑上以提供適當的光形之技術,便成為照明領域的研發重點。With the advancement of optical technology, more and more illumination patterns that can be provided by light source devices have been developed. For a light-emitting element (such as a light-emitting wafer or a wick) in a light source device, the change in the illumination light shape itself can be provided. In order to provide more possibilities for light shape, a technique of arranging various appropriately shaped lenses on the light-emitting path of the light-emitting element to provide an appropriate light shape has become a research and development focus in the field of illumination.
近年來,隨著發光二極體(Light Emitting Diode,LED)的發光效率與壽命提升,加上具備低耗能、低污染、高效率、高反應速度、體積小、重量輕與可在各種表面設置等元件特色與優勢,發光二極體目前亦已被積極應用於各光學領域中。一般而言,發光二極體可應用於日常生活中的各式照明裝置以及各種平面顯示器例如液晶顯示器(Liquid Crystal Display,LCD)的光源上。In recent years, with the improvement of the luminous efficiency and life of the Light Emitting Diode (LED), coupled with low energy consumption, low pollution, high efficiency, high reaction speed, small size, light weight and various surfaces With the features and advantages of components, LEDs have also been actively used in various optical fields. In general, the light-emitting diode can be applied to various types of lighting devices in daily life as well as light sources of various flat-panel displays such as liquid crystal displays (LCDs).
以發光二極體在液晶顯示器領域的應用方面為例,液晶顯示器的背光模組即屬於一種面光源。詳細而言,背光模組可包括光源(Light source)、導光板(Light guide plate)、擴散片(Diffuser)、擴散板、稜鏡片(prism sheet)、反射板(reflector)等至少其中幾種光學元件,其基本原理是把採用的線光源或點光源的有效光轉化成高亮度且均勻度良好的面光源。一般而言,以光源位置作為區別,光源模組更可分為側入式(side incident type)與直下式(direct type)兩種,其中因為直下式背光模組的結構簡易,且可採用多組光源,而可提供較高的亮度及輝度,因此常應用於大尺寸液晶顯示器的電子產品中。由於發光二極體具有上述體積小、壽命長與低耗能等特性下,因此將發光二極體應用於背光模組之中,可有效提升背光模組的系統效能。Taking the application of the light-emitting diode in the field of liquid crystal display as an example, the backlight module of the liquid crystal display belongs to a surface light source. In detail, the backlight module may include at least some of opticals such as a light source, a light guide plate, a diffuser, a diffuser, a prism sheet, a reflector, and the like. The basic principle of the component is to convert the effective light of the line source or point source used into a high-brightness and uniform surface light source. Generally speaking, depending on the position of the light source, the light source module can be further divided into a side incident type and a direct type, wherein the direct type backlight module has a simple structure and can be used in many cases. The light source is set to provide high brightness and brightness, so it is often used in electronic products of large-size liquid crystal displays. Since the light-emitting diode has the characteristics of small volume, long life and low energy consumption, the application of the light-emitting diode to the backlight module can effectively improve the system performance of the backlight module.
然而,由於發光二極體是一種具有指向性的光源,所以位於發光二極體光源前方的光直射區通常具有較高的亮度,而非光直射區域的亮度便較低於光直射區域的亮度。因此當發光二極體光源應用於背光模組之中時,將可能會影響有效照明區域內的亮度均勻,進而影響顯示器的畫面品質。However, since the light emitting diode is a light source having directivity, the direct light area in front of the light emitting diode light source generally has a higher brightness, and the brightness of the non-light direct area is lower than the light direct light area. . Therefore, when the light-emitting diode light source is applied to the backlight module, it may affect the uniform brightness in the effective illumination area, thereby affecting the picture quality of the display.
本發明提供一種透鏡,其可增大光源的發散角度。The present invention provides a lens that increases the divergence angle of the light source.
本發明提供一種光源裝置,其具有大的光線發散角度。The present invention provides a light source device having a large light divergence angle.
本發明提供一種直下式光源模組,其可提供一均勻的面 光源。The invention provides a direct type light source module, which can provide a uniform surface light source.
本發明的一實施例的透鏡包括一入光面、一全反射曲面以及一出光凸面。入光面包括一子彎曲凸面,全反射曲面相對於入光面,且出光凸面連接入光面與全反射曲面。A lens according to an embodiment of the invention includes a light incident surface, a total reflection curved surface, and a light convex surface. The light incident surface includes a sub-curved convex surface, the total reflection curved surface is opposite to the light incident surface, and the light convex surface is connected to the light surface and the total reflection curved surface.
本發明的一實施例的光源裝置包括上述的透鏡以及一發光元件。發光元件發出一光束,其中光束經由入光面進入透鏡中。A light source device according to an embodiment of the present invention includes the above lens and a light emitting element. The illuminating element emits a light beam, wherein the light beam enters the lens via the light incident surface.
本發明的一實施例的直下式光源模組包括多個上述的光源裝置以及一擴散板。擴散板配置於來自光源裝置的光束的傳遞路徑上,其中這些光源裝置分佈於擴散板的一側。A direct type light source module according to an embodiment of the present invention includes a plurality of the above-described light source devices and a diffusion plate. The diffusion plate is disposed on a transmission path of a light beam from the light source device, wherein the light source devices are distributed on one side of the diffusion plate.
在本發明的一實施例中,上述的入光面更包括一子環狀凹面,環繞子彎曲凸面。In an embodiment of the invention, the light incident surface further includes a sub-annular concave surface surrounding the sub-curved convex surface.
在本發明的一實施例中,上述的入光面更包括一子凹面,子彎曲凸面呈環狀且環繞子凹面,且子彎曲凸面連接子凹面與子環狀凹面。In an embodiment of the invention, the light incident surface further includes a sub-concave surface, the sub-curved convex surface is annular and surrounds the sub-concave surface, and the sub-curved convex surface connects the sub-concave surface and the sub-annular concave surface.
在本發明的一實施例中,上述的子環狀凹面包括一外環部以及一內環部。外環部背對出光凸面。內環部背對全反射曲面,且連接外環部與子彎曲凸面。In an embodiment of the invention, the sub-annular concave surface includes an outer ring portion and an inner ring portion. The outer ring portion faces away from the light convex surface. The inner ring portion faces away from the total reflection curved surface and connects the outer ring portion and the sub-bend convex surface.
在本發明的一實施例中,上述的入光面的邊緣至透鏡的光軸的距離與子環狀凹面的底部至透鏡的光軸的距離之比值是落在1.1至1.5的範圍內。In an embodiment of the invention, the ratio of the distance from the edge of the light incident surface to the optical axis of the lens to the distance from the bottom of the subannular concave surface to the optical axis of the lens falls within the range of 1.1 to 1.5.
在本發明的一實施例中,上述的透鏡更包括一光軸,其中透鏡相對於光軸為軸對稱。In an embodiment of the invention, the lens further includes an optical axis, wherein the lens is axisymmetric with respect to the optical axis.
在本發明的一實施例中,上述的全反射曲面形成一凹陷,且全反射曲面相對於光軸的傾斜角從靠近光軸處往遠離光軸處遞增。In an embodiment of the invention, the total reflection curved surface forms a depression, and the inclination angle of the total reflection curved surface with respect to the optical axis increases from near the optical axis to away from the optical axis.
在本發明的一實施例中,上述的光束的一第一子光束依序穿透入光面、被全反射曲面全反射及穿透出光凸面,且光束的一第二子光束依序穿透入光面、被出光凸面反射及穿透全反射曲面,且第一子光束從出光凸面出射的光通量大於第二子光束從全反射曲面出射的光通量。In an embodiment of the invention, a first sub-beam of the light beam sequentially penetrates into the light surface, is totally reflected by the total reflection surface, and penetrates the light convex surface, and a second sub-beam of the light beam sequentially penetrates The light incident surface is reflected by the light convex surface and penetrates the total reflection curved surface, and the light flux of the first sub beam from the light exiting convex surface is greater than the light flux of the second sub beam emitted from the total reflection curved surface.
在本發明的一實施例中,上述的子彎曲凸面光束的一第三子光束依序穿透子彎曲凸面、被全反射曲面全反射、被出光凸面反射、被內環部反射及穿透全反射曲面,且來自發光元件的第二子光束依序穿透外環部、被出光凸面反射及穿透全反射曲面。In an embodiment of the present invention, a third sub-beam of the sub-curved convex beam sequentially penetrates the sub-curved convex surface, is totally reflected by the total reflection surface, is reflected by the light-emitting convex surface, is reflected by the inner ring portion, and penetrates completely The curved surface is reflected, and the second sub-beam from the light-emitting element sequentially penetrates the outer ring portion, is reflected by the light-emitting convex surface, and penetrates the total reflection curved surface.
在本發明的一實施例中,上述的發光元件配置於光軸上。In an embodiment of the invention, the light-emitting element is disposed on an optical axis.
基於上述,本發明的實施例的光源裝置藉由透鏡的配置,將可使光源裝置往側邊及側上方發光,進而具有大的光線發散角度,並達到較為均勻的整體光能量分佈。進一步而言,本發明的實施例的直下式光源模組亦可藉由多個光源裝置的配置而可提供一均勻的面光源。Based on the above, the light source device of the embodiment of the present invention can illuminate the light source device to the side and the side by the arrangement of the lens, thereby having a large light divergence angle and achieving a relatively uniform overall light energy distribution. Further, the direct type light source module of the embodiment of the present invention can also provide a uniform surface light source by the configuration of a plurality of light source devices.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.
60‧‧‧光束60‧‧‧ Beam
61‧‧‧第一子光束61‧‧‧First sub-beam
63‧‧‧第二子光束63‧‧‧Second sub-beam
65‧‧‧第三子光束65‧‧‧ Third sub-beam
100、400‧‧‧透鏡100,400‧‧‧ lens
110、410‧‧‧入光面110, 410‧‧‧ into the glossy surface
111‧‧‧子凹面111‧‧‧Sub-concave
113‧‧‧子彎曲凸面113‧‧‧Child curved convex
115‧‧‧子環狀凹面115‧‧‧Sub-annular concave surface
115a‧‧‧外環部115a‧‧‧Outer Rings
115b‧‧‧內環部115b‧‧‧ Inner Ring Department
120‧‧‧全反射曲面120‧‧‧ total reflection surface
130‧‧‧出光凸面130‧‧‧Light convex
200、500‧‧‧光源裝置200, 500‧‧‧ light source device
210‧‧‧發光元件210‧‧‧Lighting elements
300‧‧‧直下式光源模組300‧‧‧Direct light source module
310‧‧‧反射單元310‧‧‧Reflection unit
320‧‧‧擴散板320‧‧‧Diffuser
330‧‧‧光學膜片330‧‧‧Optical diaphragm
415‧‧‧子環狀平面415‧‧‧Sub-ring plane
S1‧‧‧容置空間S1‧‧‧ accommodating space
O‧‧‧光軸O‧‧‧ optical axis
α、β、θ1、θ2、γ1、γ2、γ3‧‧‧角度α, β, θ1, θ2, γ1, γ2, γ3‧‧‧ angle
d、D‧‧‧距離d, D‧‧‧ distance
圖1是本發明一實施例的一種直下式光源模組的架構示意圖。FIG. 1 is a schematic structural diagram of a direct type light source module according to an embodiment of the invention.
圖2是圖1的一種光源裝置的剖面示意圖。2 is a schematic cross-sectional view of a light source device of FIG. 1.
圖3A是圖2的光源裝置的光跡圖。3A is a light trace of the light source device of FIG. 2.
圖3B是圖2的光源裝置的光形分佈圖。Fig. 3B is a light distribution diagram of the light source device of Fig. 2;
圖3C是圖2的光源裝置的發光強度的光學模擬數據圖。Fig. 3C is a view showing optical simulation data of the luminous intensity of the light source device of Fig. 2;
圖4是本發明另一實施例的一種光源裝置的剖面示意圖。4 is a cross-sectional view showing a light source device according to another embodiment of the present invention.
圖5A是圖4的光源裝置的光跡圖。Fig. 5A is a light trace of the light source device of Fig. 4.
圖5B是圖4的光源裝置的光形分佈圖。Fig. 5B is a light distribution diagram of the light source device of Fig. 4.
圖5C是圖4的光源裝置的發光強度的光學模擬數據圖。Fig. 5C is a view showing optical simulation data of the luminous intensity of the light source device of Fig. 4.
圖1是本發明一實施例的一種直下式光源模組的架構示意圖。圖2是圖1的一種光源裝置的剖面示意圖。圖3A是圖2的光源裝置的光跡圖。請參照圖1及圖2,在本實施例中,直下式光源模組300包括多個光源裝置200。具體而言,在本實施例中,每一光源裝置200包括一透鏡100以及一發光元件210。此外,本實施例的發光元件210例如為發光二極體,但本發明不以此為限。FIG. 1 is a schematic structural diagram of a direct type light source module according to an embodiment of the invention. 2 is a schematic cross-sectional view of a light source device of FIG. 1. 3A is a light trace of the light source device of FIG. 2. Referring to FIG. 1 and FIG. 2 , in the embodiment, the direct type light source module 300 includes a plurality of light source devices 200 . Specifically, in the embodiment, each light source device 200 includes a lens 100 and a light emitting element 210. In addition, the light-emitting element 210 of the present embodiment is, for example, a light-emitting diode, but the invention is not limited thereto.
詳細而言,在本實施例中,透鏡100包括一入光面110、一全反射曲面120以及一出光凸面130。具體而言,如圖2所示,入光面110包括一子凹面111、一子彎曲凸面113以及一子環狀凹 面115。其中,子環狀凹面115環繞子彎曲凸面113,子彎曲凸面113連接子凹面111與子環狀凹面115。更詳細而言,子環狀凹面115包括一外環部115a以及一內環部115b。外環部115a背對出光凸面130。內環部115b背對全反射曲面120,且連接外環部115a與子彎曲凸面113。In detail, in the embodiment, the lens 100 includes a light incident surface 110, a total reflection curved surface 120, and a light exit convex surface 130. Specifically, as shown in FIG. 2, the light incident surface 110 includes a sub-concave surface 111, a sub-curved convex surface 113, and a sub-annular concave surface. Face 115. The sub-annular concave surface 115 surrounds the sub-curved convex surface 113, and the sub-curved convex surface 113 connects the sub-concave surface 111 and the sub-annular concave surface 115. In more detail, the sub-annular concave surface 115 includes an outer ring portion 115a and an inner ring portion 115b. The outer ring portion 115a faces away from the light convex surface 130. The inner ring portion 115b faces away from the total reflection curved surface 120, and connects the outer ring portion 115a and the sub-bend convex surface 113.
另一方面,全反射曲面120則相對於入光面110,並形成一凹陷。此外,出光凸面130連接入光面110與全反射曲面120。在本實施例中,出光凸面130與入光面110的相接處的夾角α例如是落在75度至85度的範圍內,而出光凸面130與全反射曲面120的相接處的夾角β例如為例如是落在80度至90度的範圍內。應注意的是,此處角度的數值範圍皆僅是做為例示說明之用,其並非用以限定本發明。On the other hand, the total reflection curved surface 120 is opposite to the light incident surface 110 and forms a depression. In addition, the light-emitting convex surface 130 is connected to the light surface 110 and the total reflection curved surface 120. In this embodiment, the angle α between the light-convex convex surface 130 and the light-incident surface 110 is, for example, in the range of 75 degrees to 85 degrees, and the angle between the light-convex surface 130 and the total reflection curved surface 120 is β. For example, it falls within the range of 80 to 90 degrees. It should be noted that the numerical ranges of the angles herein are for illustrative purposes only and are not intended to limit the invention.
此外,在本實施例中,透鏡100更包括一光軸O,其中透鏡100相對於光軸O為軸對稱,且發光元件210配置於光軸O上。更詳細而言,在本實施例中,透鏡100的全反射曲面120相對於光軸O的傾斜角從靠近光軸O處往遠離光軸O處遞增。舉例而言,如圖2所示,全反射曲面120於靠近光軸O處相對光軸O的傾斜角θ1即小於全反射曲面120於遠離光軸O處相對光軸O的傾斜角θ2。此外,在本實施例中,入光面110的邊緣至透鏡100的光軸O的距離D與子環狀凹面115的底部至透鏡100的光軸O的距離d之比值是落在1.1至1.5的範圍內。應注意的是,此處的數值範圍皆僅是做為例示說明之用,其並非用以限定本發明。In addition, in the embodiment, the lens 100 further includes an optical axis O, wherein the lens 100 is axisymmetric with respect to the optical axis O, and the light emitting element 210 is disposed on the optical axis O. In more detail, in the present embodiment, the tilt angle of the total reflection curved surface 120 of the lens 100 with respect to the optical axis O is increased from near the optical axis O to away from the optical axis O. For example, as shown in FIG. 2, the inclination angle θ1 of the total reflection curved surface 120 with respect to the optical axis O near the optical axis O is smaller than the inclination angle θ2 of the total reflection curved surface 120 with respect to the optical axis O away from the optical axis O. Further, in the present embodiment, the ratio of the distance D from the edge of the light-incident surface 110 to the optical axis O of the lens 100 to the distance d from the bottom of the sub-annular concave surface 115 to the optical axis O of the lens 100 falls between 1.1 and 1.5. In the range. It should be noted that the numerical ranges herein are for illustrative purposes only and are not intended to limit the invention.
進一步而言,在本實施例中,當發光元件210發光時,發光元件210可發出一光束60。在本實施例中,由於發光元件210具有指向性,所以光束60會朝上行進而經由入光面110進入透鏡100中。更具體而言,在本實施例中,光束60包括以不同角度入射至透鏡100中的一第一子光束61、一第二子光束63以及一第三子光束65,其中第一子光束61、第二子光束63以及第三子光束65與光軸O的夾角分別為γ1、γ2以及γ3,且γ3介於γ1與γ2之間。換言之,在本實施中,由於第一子光束61、第二子光束63以及第三子光束65以不同角度入射至透鏡100中,因此在經過透鏡100內部的反射及折射作用後,第一子光束61、第二子光束63以及第三子光束65亦將由自透鏡100的不同處出光。Further, in the present embodiment, when the light emitting element 210 emits light, the light emitting element 210 can emit a light beam 60. In the present embodiment, since the light-emitting element 210 has directivity, the light beam 60 enters the lens 100 upward and further via the light-incident surface 110. More specifically, in the present embodiment, the light beam 60 includes a first sub-beam 61, a second sub-beam 63, and a third sub-beam 65 incident on the lens 100 at different angles, wherein the first sub-beam 61 The angle between the second sub-beam 63 and the third sub-beam 65 and the optical axis O is γ1, γ2, and γ3, respectively, and γ3 is between γ1 and γ2. In other words, in the present embodiment, since the first sub-beam 61, the second sub-beam 63, and the third sub-beam 65 are incident on the lens 100 at different angles, after passing through the reflection and refraction inside the lens 100, the first sub- Beam 61, second sub-beam 63, and third sub-beam 65 will also be emitted from different portions of lens 100.
更進一步而言,如圖2及圖3A所示,與光軸O具有較小夾角的第一子光束61經由入光面110進入透鏡100後,將可被擴光,並依據光學的折射及反射原理,而依序穿透入光面110、被全反射曲面120全反射及穿透出光凸面130。也就是說,光源裝置200將可藉由透鏡100的配置使第一子光束61往光源裝置200的側邊出射,進而可增大光束60的發散角度。Furthermore, as shown in FIG. 2 and FIG. 3A, after the first sub-beam 61 having a small angle with the optical axis O enters the lens 100 via the light-incident surface 110, it can be diffused and according to optical refraction and The principle of reflection, which penetrates into the light surface 110 in sequence, is totally reflected by the total reflection surface 120 and penetrates the light convex surface 130. That is to say, the light source device 200 can cause the first sub-beam 61 to be emitted toward the side of the light source device 200 by the arrangement of the lens 100, thereby increasing the divergence angle of the light beam 60.
另一方面,亦如圖2及圖3A所示,與光軸O具有較大夾角的第二子光束63則可經由入光面110的子環狀凹面115的外環部115a進入透鏡100,並依序穿透入光面110的子環狀凹面115的外環部115a、被出光凸面130反射及穿透全反射曲面120。此外,第三子光束65經由入光面110的子彎曲凸面113進入透鏡100 後亦可依序穿透入光面110的子彎曲凸面113、被全反射曲面120全反射、被出光凸面130反射、被入光面110的子環狀凹面115的內環部115b反射及穿透全反射曲面120。換言之,第二子光束63以及第三子光束65是經由與入光面110相對的全反射曲面120往光源裝置200的側上方出射。On the other hand, as shown in FIG. 2 and FIG. 3A, the second sub-beam 63 having a larger angle with the optical axis O can enter the lens 100 via the outer ring portion 115a of the sub-annular concave surface 115 of the light incident surface 110. The outer ring portion 115a of the sub-annular concave surface 115 of the light-incident surface 110 is sequentially penetrated and reflected by the light-emitting convex surface 130 and penetrates the total reflection curved surface 120. In addition, the third sub-beam 65 enters the lens 100 via the sub-bend convex surface 113 of the light incident surface 110. Then, the sub-curved convex surface 113 of the light-incident surface 110 may be sequentially penetrated, totally reflected by the total reflection curved surface 120, reflected by the light-emitting convex surface 130, and reflected and worn by the inner ring portion 115b of the sub-annular concave surface 115 of the light-incident surface 110. The total reflection surface 120 is transmitted through. In other words, the second sub-beam 63 and the third sub-beam 65 are emitted toward the upper side of the light source device 200 via the total reflection curved surface 120 opposite to the light incident surface 110.
如此一來,藉由透鏡100的配置,光源裝置200不僅可藉由第一子光束61而往側邊發光,亦可藉由第二子光束63以及第三子光束65往側上方發光。此外,需要說明的是,如圖3A所示,在本實施例中,第一子光束61從出光凸面130出射的光通量大於第二子光束63從全反射曲面120出射的光通量,且第一子光束61的光通量亦大於第三子光束65的光通量。此外,第一子光束61的光通量大於第二子光束63與第三子光束65的光通量的總合。因此,在本實施例中,光源裝置200主要是往側邊發光。In this way, by the arrangement of the lens 100, the light source device 200 can emit light not only to the side by the first sub-beam 61 but also to the upper side by the second sub-beam 63 and the third sub-beam 65. In addition, as shown in FIG. 3A, in the present embodiment, the luminous flux of the first sub-beam 61 emerging from the light-emitting convex surface 130 is greater than the luminous flux of the second sub-light beam 63 from the total reflection curved surface 120, and the first sub-beam The luminous flux of the beam 61 is also greater than the luminous flux of the third sub-beam 65. Further, the luminous flux of the first sub-beam 61 is greater than the sum of the luminous fluxes of the second sub-beam 63 and the third sub-beam 65. Therefore, in the present embodiment, the light source device 200 mainly emits light to the side.
圖3B是圖2的光源裝置的光形分佈圖。圖3C是圖2的光源裝置的發光強度的光學模擬數據圖。在圖3B中,0度方向是對應至圖2之沿著光軸O往上的方向,+90的方向是對應至圖2之與光軸O垂直且往右的方向,而-90度的方向是對應至圖2之與光軸O垂直且往左的方向,且徑向方向對應至發光強度(luminous intensity),且越遠離圓心發光強度越大。在圖3C的發光強度圖形中,縱軸為照度,單位為勒克斯(Lux),橫軸為與光軸O的垂直距離,單位為毫米。如圖3B至3C所示,在本實施例中,光源裝置200具有大的光線發散角度,且亦具有較為均勻的整體光能量分 佈。更詳細而言,如圖3B所示,在本實施例中,光源裝置200的光形主要是分佈在介於負50度至負180度以及50度至180度的範圍。如圖3C所示,經過透鏡100作用後,光源裝置200的發光強度分佈呈現雙峰分佈,且雙峰頂部相對平坦,而在接近光軸O處的照度亦有300勒克斯左右,因此可達到較為均勻的整體光能量分佈。應注意的是,此處的數值範圍皆僅是做為例示說明之用,其並非用以限定本發明。Fig. 3B is a light distribution diagram of the light source device of Fig. 2; Fig. 3C is a view showing optical simulation data of the luminous intensity of the light source device of Fig. 2; In FIG. 3B, the 0 degree direction corresponds to the upward direction along the optical axis O of FIG. 2, and the direction of +90 corresponds to the direction perpendicular to the optical axis O and to the right of FIG. 2, and -90 degrees. The direction corresponds to the direction perpendicular to the optical axis O and to the left in FIG. 2, and the radial direction corresponds to the luminous intensity, and the farther away from the center, the greater the luminous intensity. In the luminous intensity pattern of Fig. 3C, the vertical axis is illuminance in units of lux, and the horizontal axis is the vertical distance from the optical axis O in millimeters. As shown in FIGS. 3B to 3C, in the present embodiment, the light source device 200 has a large light divergence angle and also has a relatively uniform overall light energy score. cloth. In more detail, as shown in FIG. 3B, in the present embodiment, the light shape of the light source device 200 is mainly distributed in a range from minus 50 degrees to minus 180 degrees and from 50 degrees to 180 degrees. As shown in FIG. 3C, after the action of the lens 100, the luminous intensity distribution of the light source device 200 exhibits a bimodal distribution, and the top of the bimodal peak is relatively flat, and the illuminance near the optical axis O is also about 300 lux, so that it can be compared. Uniform overall light energy distribution. It should be noted that the numerical ranges herein are for illustrative purposes only and are not intended to limit the invention.
此外,請再次參照圖1,在本實施例中,直下式光源模組300更包括一反射單元310、一擴散板320以及至少一光學膜片330。詳細而言,在本實施例中,反射單元310及擴散板320共同形成一容置空間S1,用以容置光源裝置200,亦即反射單元310為一燈箱。在另一實施例中,反射單元310亦可以是設於燈箱底部的反射片。此外,擴散板320並位於反射單元310及一光學膜片330之間。在本實施例中,光學膜片330可包括稜鏡片、擴散片、其他光學膜片的至少其中之一,但本發明不以此為限。In addition, referring to FIG. 1 again, in the embodiment, the direct type light source module 300 further includes a reflection unit 310, a diffusion plate 320, and at least one optical film 330. In detail, in the present embodiment, the reflecting unit 310 and the diffusing plate 320 together form an accommodating space S1 for accommodating the light source device 200, that is, the reflecting unit 310 is a light box. In another embodiment, the reflective unit 310 can also be a reflective sheet disposed at the bottom of the light box. In addition, the diffusion plate 320 is located between the reflective unit 310 and an optical film 330. In this embodiment, the optical film 330 may include at least one of a cymbal sheet, a diffusion sheet, and other optical films, but the invention is not limited thereto.
具體而言,請參照圖1,在本實施例中,反射單元310及擴散板320配置於來自光源裝置200的光束60的傳遞路徑上,且光源裝置200分佈於擴散板320的一側。進一步而言,當光束60自透鏡100的不同處出光後,部分光束60(如往下傳遞的光)將可被反射單元310反射至擴散板320處,且另一部分光束60要如往上傳遞的光)可直接傳遞至擴散板320。此外,位於直下式光源模組300底部的反射單元310,更可將被折射回底部的光線再反 射至擴散板320,進而可增加光線的利用效率。Specifically, referring to FIG. 1 , in the present embodiment, the reflection unit 310 and the diffusion plate 320 are disposed on the transmission path of the light beam 60 from the light source device 200 , and the light source device 200 is distributed on one side of the diffusion plate 320 . Further, when the light beam 60 is emitted from a different portion of the lens 100, a portion of the light beam 60 (such as light transmitted downward) will be reflected by the reflective unit 310 to the diffuser plate 320, and the other portion of the light beam 60 will be transmitted as above. The light can be directly transmitted to the diffusion plate 320. In addition, the reflecting unit 310 located at the bottom of the direct-type light source module 300 can further reverse the light that is refracted back to the bottom. The light is emitted to the diffusion plate 320, thereby increasing the utilization efficiency of light.
更進一步而言,當光線被傳遞擴散板320處時,直下式光源模組300將可透過擴散板320使光線分佈均勻化,並藉由光學膜片330來修正出光方向,以提升直下式光源模組300的正向輝度。如此一來,直下式光源模組300將可提供一均勻的面光源。Furthermore, when the light is transmitted to the diffuser 320, the direct-type light source module 300 will uniformize the light distribution through the diffuser 320, and correct the light direction by the optical film 330 to enhance the direct light source. The positive luminance of the module 300. In this way, the direct light source module 300 will provide a uniform surface light source.
在本實施例之透鏡100、光源裝置200及直下式光源模組300中,由於大部分的光束60是從透鏡100的側面(即出光凸面130)出射,因此光源裝置200的正上方的光強度不會過強。此外,由於仍有少部分的光束是從透鏡100的頂面(即全反射曲面120)出射,因此光源裝置200的正上方的光強度不會過弱。如此一來,當將光源裝置200應用於直下式光源模組300中時,直下式光源模組300的上方之位於光源裝置200的正上方的位置的光強度便不會過強或過弱,因此本實施例之直下式光源模組300可提供均勻的面光源。In the lens 100, the light source device 200, and the direct-type light source module 300 of the present embodiment, since most of the light beams 60 are emitted from the side surface of the lens 100 (ie, the light-emitting convex surface 130), the light intensity directly above the light source device 200 is obtained. Not too strong. In addition, since a small portion of the light beam is emitted from the top surface of the lens 100 (i.e., the total reflection curved surface 120), the light intensity directly above the light source device 200 is not too weak. In this way, when the light source device 200 is applied to the direct light source module 300, the light intensity at a position directly above the light source device 200 above the direct light source module 300 is not too strong or too weak. Therefore, the direct type light source module 300 of the embodiment can provide a uniform surface light source.
圖4是本發明另一實施例的一種光源裝置的剖面示意圖。圖5A是圖4的光源裝置的光跡圖。圖5B是圖4的光源裝置200的光形分佈圖。圖5C是圖4的光源裝置的發光強度的光學模擬數據圖。請參照圖4至圖5A,本實施例的光源裝置500與圖2至圖3A的光源裝置200類似,而兩者的差異如下所述。本實施例的光源裝置500的透鏡400的入光面410主要由子彎曲凸面113以及一子環狀平面415所形成,且子環狀平面415環繞子彎曲凸面113。4 is a cross-sectional view showing a light source device according to another embodiment of the present invention. Fig. 5A is a light trace of the light source device of Fig. 4. FIG. 5B is a light distribution diagram of the light source device 200 of FIG. 4. Fig. 5C is a view showing optical simulation data of the luminous intensity of the light source device of Fig. 4. Referring to FIGS. 4 to 5A, the light source device 500 of the present embodiment is similar to the light source device 200 of FIGS. 2 to 3A, and the differences between the two are as follows. The light incident surface 410 of the lens 400 of the light source device 500 of the present embodiment is mainly formed by the sub-curved convex surface 113 and a sub-annular plane 415, and the sub-annular plane 415 surrounds the sub-curved convex surface 113.
當發光元件210發光時,第一子光束61、第二子光束63以及第三子光束65皆經由入光面410進入透鏡400,其中第一子光束61在光源裝置500中的傳遞路徑與在光源裝置200中類似,即第一子光束61經由入光面410的子彎曲凸面113進入透鏡400後,會依序穿透入光面410、被全反射曲面120全反射及穿透出光凸面130,而可由光源裝置500的側邊出射,相關細節請見上述段落,在此不再贅述。另一方面,第二子光束63與第三子光束65則可分別經由入光面410的子環狀平面415以及子彎曲凸面113進入透鏡400。當第二子光束63經由入光面410的子環狀平面415進入透鏡400後,第二子光束63可依序穿透入光面410、被出光凸面130反射及穿透全反射曲面120。當第三子光束65經由入光面410的子彎曲凸面113進入透鏡400後,第三子光束65則可依序穿透入光面410、被全反射曲面120全反射至出光凸面130、被出光凸面130反射及再次穿透入光面410。如此一來,如圖5A所示,藉由透鏡400的配置,光源裝置500亦可達到往側邊及側上方發光的功效,並可獲得如圖5B及圖5C所示的光形及發光強度分佈。When the illuminating element 210 emits light, the first sub-beam 61, the second sub-beam 63 and the third sub-beam 65 enter the lens 400 via the light-incident surface 410, wherein the transmission path of the first sub-beam 61 in the light source device 500 Similar to the light source device 200, the first sub-beam 61 enters the lens 400 via the sub-bend convex surface 113 of the light-incident surface 410, and then penetrates into the light surface 410, is totally reflected by the total reflection curved surface 120, and penetrates the light convex surface 130. The light source device 500 can be emitted from the side of the light source device 500. For details, please refer to the above paragraphs, and details are not described herein. On the other hand, the second sub-beam 63 and the third sub-beam 65 can enter the lens 400 via the sub-annular plane 415 and the sub-curved convex surface 113 of the light incident surface 410, respectively. After the second sub-beam 63 enters the lens 400 via the sub-annular plane 415 of the light-incident surface 410, the second sub-beam 63 can sequentially penetrate into the light surface 410, be reflected by the light-emitting convex surface 130, and penetrate the total reflection curved surface 120. After the third sub-beam 65 enters the lens 400 via the sub-bend convex surface 113 of the light-incident surface 410, the third sub-beam 65 can sequentially penetrate into the light-emitting surface 410, be totally reflected by the total reflection curved surface 120 to the light-emitting convex surface 130, and be The light exiting convex surface 130 reflects and re-penetrates into the light surface 410. In this way, as shown in FIG. 5A, by the arrangement of the lens 400, the light source device 500 can also achieve the effect of emitting light to the side and the side, and can obtain the light shape and the luminous intensity as shown in FIG. 5B and FIG. 5C. distributed.
更詳細而言,在本實施例中,圖5B中的0度方向是對應至圖4之沿著光軸O往上的方向,+90的方向是對應至圖4之與光軸O垂直且往右的方向,而-90度的方向是對應至圖4之與光軸O垂直且往左的方向,且徑向方向對應至發光強度(luminous intensity),且越遠離圓心發光強度越大。在圖5C的發光強度圖形 中,縱軸為照度,單位為勒克斯(Lux),橫軸為與光軸O的垂直距離,單位為毫米。In more detail, in the present embodiment, the 0 degree direction in FIG. 5B corresponds to the upward direction along the optical axis O of FIG. 4, and the direction of +90 corresponds to the optical axis O perpendicular to FIG. In the right direction, the direction of -90 degrees corresponds to the direction perpendicular to the optical axis O and to the left in FIG. 4, and the radial direction corresponds to the luminous intensity, and the farther away from the center, the greater the intensity of illumination. Luminous intensity pattern in Figure 5C In the middle, the vertical axis is the illuminance, the unit is Lux, and the horizontal axis is the vertical distance from the optical axis O, and the unit is mm.
進一步而言,如圖5B所示,在本實施例中,光源裝置500的光形主要是分佈在介於負60度至負150度以及60度至150度的範圍。如圖5C所示,經過透鏡400作用後,光源裝置500的發光強度分佈呈現雙峰分佈,且雙峰頂部相對平坦,因此亦可達到較為均勻的整體光能量分佈。應注意的是,此處的數值範圍皆僅是做為例示說明之用,其並非用以限定本發明。此外,本實施例的光源裝置500亦可應用在圖1的直下式光源模組300中,並亦可使直下式光源模組300達到前述功效,在此就不予贅述。Further, as shown in FIG. 5B, in the present embodiment, the light shape of the light source device 500 is mainly distributed in a range from minus 60 degrees to minus 150 degrees and from 60 degrees to 150 degrees. As shown in FIG. 5C, after the action of the lens 400, the luminous intensity distribution of the light source device 500 exhibits a bimodal distribution, and the top of the bimodal peak is relatively flat, so that a relatively uniform overall light energy distribution can be achieved. It should be noted that the numerical ranges herein are for illustrative purposes only and are not intended to limit the invention. In addition, the light source device 500 of the present embodiment can also be applied to the direct type light source module 300 of FIG. 1 , and the direct light source module 300 can also achieve the foregoing functions, which will not be described herein.
綜上所述,本發明的實施例的光源裝置藉由透鏡的配置,將可使光源裝置往側邊及側上方發光,進而具有大的光線發散角度,並達到較為均勻的整體光能量分佈。進一步而言,本發明的實施例的直下式光源模組亦可藉由光源裝置的配置而可提供一均勻的面光源。In summary, the light source device of the embodiment of the present invention, by means of the arrangement of the lens, can cause the light source device to emit light to the side and the side, thereby having a large light divergence angle and achieving a relatively uniform overall light energy distribution. Further, the direct type light source module of the embodiment of the present invention can also provide a uniform surface light source by the configuration of the light source device.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
60‧‧‧光束60‧‧‧ Beam
61‧‧‧第一子光束61‧‧‧First sub-beam
63‧‧‧第二子光束63‧‧‧Second sub-beam
65‧‧‧第三子光束65‧‧‧ Third sub-beam
100‧‧‧透鏡100‧‧‧ lens
110‧‧‧入光面110‧‧‧Into the glossy surface
111‧‧‧子凹面111‧‧‧Sub-concave
113‧‧‧子彎曲凸面113‧‧‧Child curved convex
115‧‧‧子環狀凹面115‧‧‧Sub-annular concave surface
115a‧‧‧外環部115a‧‧‧Outer Rings
115b‧‧‧內環部115b‧‧‧ Inner Ring Department
120‧‧‧全反射曲面120‧‧‧ total reflection surface
130‧‧‧出光凸面130‧‧‧Light convex
200‧‧‧光源裝置200‧‧‧Light source device
210‧‧‧發光元件210‧‧‧Lighting elements
O‧‧‧光軸O‧‧‧ optical axis
α、β、θ1、θ2、γ1、γ2、γ3‧‧‧角度α, β, θ1, θ2, γ1, γ2, γ3‧‧‧ angle
d、D‧‧‧距離d, D‧‧‧ distance
Claims (21)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361844433P | 2013-07-10 | 2013-07-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201502592A TW201502592A (en) | 2015-01-16 |
TWI503581B true TWI503581B (en) | 2015-10-11 |
Family
ID=52718378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102133049A TWI503581B (en) | 2013-07-10 | 2013-09-12 | Lens, light source device and direct type light source module |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI503581B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI686626B (en) * | 2019-07-11 | 2020-03-01 | 友達光電股份有限公司 | Lens and face light source module |
US10908344B2 (en) | 2018-04-19 | 2021-02-02 | Lextar Electronics Corporation | Light-emitting module structure |
US11474289B2 (en) | 2020-10-30 | 2022-10-18 | Lextar Electronics Corporation | Light-emitting device and backlight module thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI567338B (en) * | 2015-08-17 | 2017-01-21 | 隆達電子股份有限公司 | Lens having through hole and lighting module |
CN113534532A (en) * | 2020-04-22 | 2021-10-22 | 华为技术有限公司 | Lens, backlight module and terminal equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7244924B2 (en) * | 2000-07-14 | 2007-07-17 | Omron Corporation | Transparent optical component for light emitting/receiving elements |
CN102282416A (en) * | 2009-11-04 | 2011-12-14 | 纳卢克斯株式会社 | Lighting device |
TWM446344U (en) * | 2012-06-29 | 2013-02-01 | Tpv Display Technology Xiamen | Backlight module and optical lens thereof |
TW201323779A (en) * | 2011-10-06 | 2013-06-16 | Hitachi Appliances Inc | Lighting system |
-
2013
- 2013-09-12 TW TW102133049A patent/TWI503581B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7244924B2 (en) * | 2000-07-14 | 2007-07-17 | Omron Corporation | Transparent optical component for light emitting/receiving elements |
CN102282416A (en) * | 2009-11-04 | 2011-12-14 | 纳卢克斯株式会社 | Lighting device |
TW201323779A (en) * | 2011-10-06 | 2013-06-16 | Hitachi Appliances Inc | Lighting system |
TWM446344U (en) * | 2012-06-29 | 2013-02-01 | Tpv Display Technology Xiamen | Backlight module and optical lens thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10908344B2 (en) | 2018-04-19 | 2021-02-02 | Lextar Electronics Corporation | Light-emitting module structure |
US11422296B2 (en) | 2018-04-19 | 2022-08-23 | Lextar Electronics Corporation | Light-emitting module structure |
TWI686626B (en) * | 2019-07-11 | 2020-03-01 | 友達光電股份有限公司 | Lens and face light source module |
US11474289B2 (en) | 2020-10-30 | 2022-10-18 | Lextar Electronics Corporation | Light-emitting device and backlight module thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201502592A (en) | 2015-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5241068B2 (en) | Side light emitting device, backlight unit using the same as light source, and liquid crystal display device using the same | |
WO2011096192A1 (en) | Flat light source device, liquid crystal display device, and lens | |
WO2011048735A1 (en) | Lighting lens, light-emitting device, surface light source, and liquid crystal display device | |
TWI471615B (en) | Backlight module and its optical lens | |
TWI487983B (en) | Optical film and backlight module using the same | |
JP2011014434A (en) | Lighting device, surface light source, and liquid crystal display apparatus | |
JP2011014831A (en) | Light emitting device, surface light source, and liquid crystal display device | |
TWI404893B (en) | An illuminating device without a light guide board | |
TWI503581B (en) | Lens, light source device and direct type light source module | |
TWI596304B (en) | Lens structure and lamp, backlight module and display device using the same | |
JP2015197624A (en) | Luminous flux control member, light emitting device, surface light source device and display device | |
TWM616691U (en) | Backlight module | |
TWM466278U (en) | Thinning LED direct-type backlight module | |
TW200409974A (en) | Light guide plate and plane light source using the same | |
JP2019061945A (en) | Surface light source device and display device | |
JP2017050262A (en) | Luminous flux control member, light emitting device, surface light source device and display device | |
TWI516807B (en) | Lens and direct type light source module | |
JPWO2016194798A1 (en) | Surface light source device and liquid crystal display device | |
JP2017016995A (en) | Light-emitting device, surface light source device and display device | |
TWM446344U (en) | Backlight module and optical lens thereof | |
JP2011228226A (en) | Lens for lighting, light-emitting device, plane light source, and liquid crystal display | |
JP2019046649A (en) | Light emitting device, surface light source device and display device | |
TW201723579A (en) | Lens and light source device | |
TWI768715B (en) | Backlight module | |
TWI526744B (en) | Lens structure and backlight module thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |