TWI593987B - FM radar transceiver - Google Patents
FM radar transceiver Download PDFInfo
- Publication number
- TWI593987B TWI593987B TW105113643A TW105113643A TWI593987B TW I593987 B TWI593987 B TW I593987B TW 105113643 A TW105113643 A TW 105113643A TW 105113643 A TW105113643 A TW 105113643A TW I593987 B TWI593987 B TW I593987B
- Authority
- TW
- Taiwan
- Prior art keywords
- positioning
- frequency signal
- frequency
- signal
- electrically connected
- Prior art date
Links
Landscapes
- Radar Systems Or Details Thereof (AREA)
Description
本發明係關於一種無線收發機,特別是一種可將高頻中雜訊濾除的雷達收發機。 The present invention relates to a wireless transceiver, and more particularly to a radar transceiver capable of filtering high frequency noise.
習知技藝中,專利號CN102058411B揭示一種多通道基於UWB雷達生命探測儀,一種可用於多目標探測的多通道基於UWB的雷達式生命探測儀,利用兩脈衝的時間差,可以計算單元對採集到的三路雷達回波信號進行分析處理,最終提取多個人體目標生命信息和各目標的二維位置信息。但UWB無提供調變功能,針對容易多重干擾的環境下,無法有效提供目標距離之二維距離,另外其演算法只能提供多目標之二維XY平面之距離,無法利用脈衝時間差來定義三維量測。 In the prior art, patent number CN102058411B discloses a multi-channel UWB radar life detector, a multi-channel UWB-based radar life detector that can be used for multi-target detection, and the time difference of two pulses can be used to calculate the unit pair acquisition. The three-way radar echo signal is analyzed and processed, and finally the plurality of human target life information and the two-dimensional position information of each target are extracted. However, UWB does not provide modulation function. In the environment where multiple interference is easy, the two-dimensional distance of the target distance cannot be effectively provided. In addition, the algorithm can only provide the distance of the multi-objective two-dimensional XY plane, and the pulse time difference cannot be used to define the three-dimensional. Measure.
本發明目的係以提供一種調頻雷達收發機,主要用於調頻雷達FMCW發射與接收機。由發射電路送出連續調頻訊號,經由設計定位標與作為參考點之定位標電路,訊號回傳至接收電路,再由後端之特定定位演算法消除空間內的環 境所造成之多重路徑干擾。 The object of the present invention is to provide a frequency modulation radar transceiver, which is mainly used for a frequency modulation radar FMCW transmission and receiver. The continuous frequency modulation signal is sent by the transmitting circuit, and the signal is transmitted back to the receiving circuit by designing the positioning target and the positioning target circuit as the reference point, and then the loop in the space is eliminated by the specific positioning algorithm of the back end. Multiple path interference caused by the environment.
本發明所述定位訊號收發單元14為調頻雷達收發機,該調頻雷達收發機包括:一功率放大器146,用以接收一調頻頻率訊號後,放大該調頻頻率訊號,一發射天線陣列147,電連接該功率放大器146,用以接收該放大後的調頻頻率訊號發射至一定位標12,一接收天線陣列141,用以接收由該定位標12所回傳的一定位標頻率訊號,一帶通濾波器,具有第一帶通濾波器142及第二帶通濾波器1421,第一帶通濾波器142電連接該接收天線陣列141,第一帶通濾波器142及第二帶通濾波器1421用以濾除該定位標頻率訊號頻帶外的干擾訊號與雜訊。 The positioning signal transceiver unit 14 of the present invention is a frequency modulation radar transceiver. The frequency modulation radar transceiver includes: a power amplifier 146 for receiving an FM frequency signal, amplifying the frequency modulation frequency signal, a transmitting antenna array 147, and electrical connection. The power amplifier 146 is configured to receive the amplified frequency modulation frequency signal and transmit it to a positioning target 12, and a receiving antenna array 141 for receiving a positioning standard frequency signal returned by the positioning target 12, a band pass filter The first band pass filter 142 and the second band pass filter 1421 are electrically connected to the receiving antenna array 141, and the first band pass filter 142 and the second band pass filter 1421 are used. Filtering out interference signals and noise outside the frequency band of the positioning standard signal.
10‧‧‧定位模組 10‧‧‧ Positioning Module
11‧‧‧脊椎 11‧‧‧Spine
12‧‧‧定位標 12‧‧‧ Positioning
12A、12B‧‧‧天線 12A, 12B‧‧‧ antenna
12A1、12B1‧‧‧定位標頻率訊號 12A1, 12B1‧‧‧ positioning standard frequency signal
13A、13B‧‧‧天線 13A, 13B‧‧‧ Antenna
13A1、13B1‧‧‧器械頻率訊號 13A1, 13B1‧‧‧ device frequency signal
121‧‧‧定位標頻率訊號 121‧‧‧ Positioning frequency signal
121A‧‧‧識別碼 121A‧‧‧ID
13‧‧‧手術器械 13‧‧‧Surgical instruments
131‧‧‧器械頻率訊號 131‧‧‧Device frequency signal
131A‧‧‧器械識別碼 131A‧‧‧Device ID
14‧‧‧定位訊號收發單元 14‧‧‧Location signal transceiver unit
140‧‧‧調頻頻率訊號 140‧‧‧FM frequency signal
141‧‧‧接收天線陣列 141‧‧‧Receiving antenna array
142‧‧‧第一帶通濾波器 142‧‧‧First bandpass filter
1421‧‧‧第二帶通濾波器 1421‧‧‧Second bandpass filter
143‧‧‧低雜訊放大器 143‧‧‧Low noise amplifier
144‧‧‧混頻器 144‧‧‧mixer
145‧‧‧功率分配器 145‧‧‧Power splitter
146‧‧‧功率放大器 146‧‧‧Power Amplifier
147‧‧‧發射天線陣列 147‧‧‧transmit antenna array
148‧‧‧可調增益放大器 148‧‧‧Adjustable Gain Amplifier
L1、L11‧‧‧定位標距離 L1, L11‧‧‧ positioning distance
L2、L21‧‧‧器械距離 L2, L21‧‧‧ instrument distance
20‧‧‧處理單元 20‧‧‧Processing unit
30‧‧‧手術影像 30‧‧‧Surgical images
31‧‧‧脊椎影像 31‧‧‧Spine image
311‧‧‧脊椎空間座標 311‧‧‧Spine Space Coordinates
32‧‧‧手術器械影像 32‧‧‧Surgical instrument images
321‧‧‧器械空間座標 321‧‧‧ device space coordinates
D1、D2‧‧‧訊號差 D1, D2‧‧‧ signal difference
T1‧‧‧時間 T1‧‧‧ time
S1、S2‧‧‧角度 S1, S2‧‧‧ angle
圖1A係手術導航作業的示意圖。 Figure 1A is a schematic illustration of a surgical navigation procedure.
圖1B係本發明之區域型定位模組的示意圖。 1B is a schematic view of a zone type positioning module of the present invention.
圖2係本發明應用於手術導航作業的方塊圖。 2 is a block diagram of the present invention applied to a surgical navigation operation.
圖3A及圖3B係本發明之調頻頻率訊號示意圖。 3A and 3B are schematic diagrams of the frequency modulation frequency signal of the present invention.
圖4係本發明應用於手術導航作業的影像示意圖。 4 is a schematic diagram of an image of the present invention applied to a surgical navigation operation.
圖5係本發明應用於手術導航作業之定位標天線示意圖。 FIG. 5 is a schematic diagram of a positioning target antenna applied to a surgical navigation operation according to the present invention.
圖6係本發明應用於手術導航作業之手術器械天線示意圖。 Fig. 6 is a schematic view showing the antenna of the surgical instrument applied to the surgical navigation operation of the present invention.
為了讓本創作之上述和其他目的、特徵、和優點 能更明顯,下文將配合所附圖式,作詳細說明如下。 For the above and other purposes, features, and advantages of this creation It can be more obvious, and the following description will be made in detail with reference to the accompanying drawings.
請參閱圖1A至圖4,圖1A係手術導航作業的示意圖,圖1B係本發明之區域型定位模組的示意圖,圖2係本發明應用於手術導航作業的方塊圖,圖3A及圖3B係本發明之手術導航作業的調頻頻率訊號示意圖,圖4係本發明應用於手術導航作業的影像示意圖。首先,在脊椎手術前已先拍攝脊椎CT(Computed tomography)影像後,再拍攝已植入於脊椎上之本發明所述的定位標12之C-arm影像,接著將二影像疊合為手術影像30,因此手術影像30可包括脊椎影像31及手術器械影像32,接著再匯入本發明所述的區域型定位模組以進行手術導航作業,而本發明區域型定位模組,包括:定位模組10,定位模組10包括:定位訊號收發單元14,用以發射調頻頻率訊號140至該複數個定位標12及手術器械13。 1A to FIG. 4, FIG. 1A is a schematic diagram of a surgical navigation operation, FIG. 1B is a schematic diagram of a regional positioning module of the present invention, and FIG. 2 is a block diagram of the present invention applied to a surgical navigation operation, FIG. 3A and FIG. 3B The schematic diagram of the frequency modulation frequency signal of the surgical navigation operation of the present invention, and FIG. 4 is a schematic diagram of the image applied to the surgical navigation operation of the present invention. First, the spinal CT (Computed tomography) image is taken before the spinal surgery, and then the C-arm image of the positioning target 12 of the present invention which has been implanted on the spine is photographed, and then the two images are superimposed into the surgical image. 30. The surgical image 30 can include a spinal image 31 and a surgical instrument image 32, and then reintroduced into the regional positioning module of the present invention for performing a surgical navigation operation, and the regional positioning module of the present invention includes: a positioning module The positioning module 10 includes a positioning signal transceiver unit 14 for transmitting a frequency modulation frequency signal 140 to the plurality of positioning targets 12 and the surgical instrument 13.
接著參考圖1B,本發明所述定位訊號收發單元14為調頻雷達收發機,該調頻雷達收發機包括:一功率放大器146,用以接收一調頻頻率訊號後,放大該調頻頻率訊號,一發射天線陣列147,電連接該功率放大器146,用以接收該放大後的調頻頻率訊號發射至一定位標12,一接收天線陣列141,用以接收由該定位標12所回傳的一定位標頻率訊號,一帶通濾波器,具有第一帶通濾波器142及第二帶通濾波器1421,第一帶通濾波器142電連接該接收天線陣列141,第一帶通濾波器142及第二帶通濾波器1421用以濾除該定位標頻 頻率訊號頻帶外的干擾訊號與雜訊。 Referring to FIG. 1B, the positioning signal transceiver unit 14 of the present invention is a frequency modulation radar transceiver. The FM radar transceiver includes: a power amplifier 146 for receiving an FM frequency signal, amplifying the FM frequency signal, and a transmitting antenna. The array 147 is electrically connected to the power amplifier 146 for receiving the amplified frequency modulation frequency signal and transmitting to the positioning target 12, and a receiving antenna array 141 for receiving a positioning standard frequency signal returned by the positioning target 12. a band pass filter having a first band pass filter 142 and a second band pass filter 1421, the first band pass filter 142 electrically connecting the receive antenna array 141, the first band pass filter 142 and the second band pass Filter 1421 is used to filter the positioning frequency Interference signals and noise outside the frequency signal band.
上述中該調頻頻率訊號與該定位標頻率訊號為相同波形。 In the above, the frequency modulation frequency signal and the positioning target frequency signal are the same waveform.
上述中該調頻頻率訊號與該定位標頻率訊號範圍為24至24.4GHz之間。 In the above, the frequency modulation frequency signal and the positioning target frequency signal range between 24 and 24.4 GHz.
上述中更包括一低雜訊放大器143,其電連接該帶通濾波器,用以穩定該定位標頻率訊號。 The above further includes a low noise amplifier 143 electrically connected to the band pass filter for stabilizing the positioning frequency signal.
上述中更包括一功率分配器145,其電連接該功率放大器146的接收端,用以將該調頻頻率訊號分配至一混頻器144。 The above includes a power divider 145 electrically coupled to the receiving end of the power amplifier 146 for distributing the frequency modulated frequency signal to a mixer 144.
上述中該混頻器144更電連接該第二帶通濾波器1421,該混頻器144隔離該調頻頻率訊號與該定位標頻率訊號。 In the above, the mixer 144 is electrically connected to the second band pass filter 1421, and the mixer 144 isolates the frequency modulation frequency signal from the positioning target frequency signal.
上述中更包括一中頻可調增益放大器148,其電連接該混頻器144,用以放大該定位標頻率訊號。 The above includes an intermediate frequency adjustable gain amplifier 148 electrically coupled to the mixer 144 for amplifying the positioning frequency signal.
複數個定位標12,其分別設置於脊椎11的一椎節上,每一定位標12用以接收該調頻頻率訊號140後,回傳定位標頻率訊號121至該定位訊號收發單元14,該定位訊號收發單元14接收定位標頻率訊號121,其中該定位標頻率訊號121與該調頻頻率訊號140為相同波形,更詳細而言,該些定位標12內具有天線,當該天線接收到調頻頻率訊號140後將該訊號反射回該定位訊號收發單元14,因此定位標頻率訊號121與該調 頻頻率訊號140為相同波形。 A plurality of positioning targets 12 are respectively disposed on a segment of the spine 11 , and each of the positioning targets 12 is configured to receive the frequency-modulated frequency signal 140 and then transmit the positioning target frequency signal 121 to the positioning signal transceiver unit 14 . The signal transceiving unit 14 receives the positioning frequency signal 121, wherein the positioning frequency signal 121 and the FM frequency signal 140 are the same waveform. In more detail, the positioning target 12 has an antenna, and when the antenna receives the FM frequency signal After 140, the signal is reflected back to the positioning signal transceiver unit 14, so the positioning frequency signal 121 and the tone are located. The frequency frequency signal 140 is the same waveform.
另外,手術器械13,用以接收該調頻頻率訊號140後,回傳該器械頻率訊號131至該定位訊號收發單元14,該定位訊號收發單元14接收器械頻率訊號131,其中該器械頻率訊號131與該調頻頻率訊號140為相同波形,更詳細而言,該手術器械13內具有天線,當該天線接收到調頻頻率訊號140後將該訊號反射回該定位訊號收發單元14,因此器械頻率訊號131與該調頻頻率訊號140為相同波形。 In addition, the surgical device 13 is configured to receive the FM frequency signal 140, and then return the device frequency signal 131 to the positioning signal transceiver unit 14. The positioning signal transceiver unit 14 receives the device frequency signal 131, wherein the device frequency signal 131 and The FM frequency signal 140 is the same waveform. In more detail, the surgical instrument 13 has an antenna. When the antenna receives the FM frequency signal 140, the signal is reflected back to the positioning signal transceiver unit 14, so that the device frequency signal 131 and The FM frequency signal 140 is the same waveform.
處理單元20,電性連接該定位訊號收發單元14,根據定位標頻率訊號121與該調頻頻率訊號140的訊號差D1,以演算法計算該些定位標12與該定位訊號收發單元14間的定位標距離L1,其中該演算法為頻率調制連續波(Frequency rmodulated continuous waveform;FMCW)定位演算法,該處理單元20根據同一時間T1所接收到定位標頻率訊號121與該調頻頻率訊號140之間的訊號差D1來計算該定位標距離L1,並根據該定位標距離L1計算出脊椎空間座標311。 The processing unit 20 is electrically connected to the positioning signal transceiver unit 14 and calculates the positioning between the positioning target 12 and the positioning signal transceiver unit 14 according to the signal difference D1 between the positioning standard frequency signal 121 and the FM frequency signal 140. The standard distance L1, wherein the algorithm is a frequency modulated continuous wave (FMCW) positioning algorithm, and the processing unit 20 receives the positioning target frequency signal 121 and the frequency modulation frequency signal 140 according to the same time T1. The signal difference D1 is used to calculate the positioning target distance L1, and the spinal space coordinate 311 is calculated according to the positioning target distance L1.
上述中,詳細而言,因傳輸速度快,時間差極小,因此本發明取同一時間T1做為取樣。 In the above, in detail, since the transmission speed is fast and the time difference is extremely small, the present invention takes the same time T1 as the sampling.
於一實施例中,該定位訊號收發單元14至少為二定位訊號收發單元14,其分別設置於該脊椎11周緣,該處理單元20根據二定位訊號收發單元14所接收到的該二定位標頻率訊號121計算所對應的該二定位標距離L1、L11,再以三角 定位法計算出該脊椎空間座標311。 In one embodiment, the positioning signal transceiving unit 14 is at least two positioning signal transceiving units 14 respectively disposed on the periphery of the vertebra 11 , and the processing unit 20 receives the two positioning frequency according to the two positioning signal transceiving units 14 . The signal 121 calculates the corresponding two positioning distances L1 and L11, and then the triangle The spine space coordinates 311 are calculated by the positioning method.
另外,處理單元20根據器械頻率訊號131與該調頻頻率訊號140的訊號差D2,以頻率調制連續波定位演算法計算該手術器械13與該定位訊號收發單元14的器械距離L2,根據並根據該器械距離L2計算出器械空間座標321。 In addition, the processing unit 20 calculates the instrument distance L2 of the surgical instrument 13 and the positioning signal transceiving unit 14 according to the signal difference D2 of the instrument frequency signal 131 and the FM frequency signal 140, according to the The instrument space coordinate 321 is calculated from the instrument distance L2.
於一實施例中,該定位訊號收發單元14至少為二定位訊號收發單元14,其分別設置於該手術器械13周緣,該處理單元20根據二定位訊號收發單元14所接收到的該二器械頻率訊號131計算所對應的該二器械距離L2、L21,再以三角定位法計算出該脊椎空間座標311。 In one embodiment, the positioning signal transceiver unit 14 is at least two positioning signal transceiving units 14 respectively disposed on the periphery of the surgical instrument 13, and the processing unit 20 receives the two instrument frequencies according to the two positioning signal transceiving units 14. The signal 131 calculates the corresponding two instrument distances L2 and L21, and then calculates the spinal space coordinate 311 by the triangulation method.
進一步地,請參考圖4,該些定位標12更包括器械識別碼131A,該手術器械13更包括器械識別碼121A,該定位訊號收發單元14用以接收該識別碼121A及該器械識別碼131A後,該處理單元20將該識別碼121A定義到相對應的該脊椎空間座標311,該處理單元20將該器械識別碼131A定義到相對應的該器械空間座標321,就由該識別碼121A及該器械識別碼131A可確認所對應的定位標12及手術器械13是否正確。 Further, please refer to FIG. 4 , the positioning target 12 further includes a device identification code 131A, and the surgical instrument 13 further includes a device identification code 121A, and the positioning signal transceiver unit 14 is configured to receive the identification code 121A and the device identification code 131A. The processing unit 20 defines the identification code 121A to the corresponding spinal space coordinate 311, and the processing unit 20 defines the device identification code 131A to the corresponding device space coordinate 321 by the identification code 121A and The device identification code 131A can confirm whether the corresponding positioning target 12 and the surgical instrument 13 are correct.
進一步說明,請參閱圖5,每一定位標12更進一步包括至少二天線12A、12B,其接收該調頻頻率訊號140後,回傳該二定位標頻率訊號12A1、12B1至該定位訊號收發單元14,該處理單元20藉由該二定位標頻率訊號12A1、12B1計算出該二天線12A、12B與定位訊號收發單元14之距離,以此計 算出該定位標12植入脊椎與一預設施行手術導航路徑之間的角度S1,以確認該定位標植入植椎是否與預設施行手術導航路徑相同。 For further description, please refer to FIG. 5 , each of the positioning targets 12 further includes at least two antennas 12A and 12B. After receiving the FM frequency signal 140 , the two positioning target frequency signals 12A1 and 12B1 are returned to the positioning signal transceiver unit 14 . The processing unit 20 calculates the distance between the two antennas 12A and 12B and the positioning signal transceiver unit 14 by using the two positioning target frequency signals 12A1 and 12B1. An angle S1 between the implant 12 and the pre-fabricated surgical navigation path is calculated to determine whether the implant is the same as the pre-installation surgical navigation path.
另外,請參閱圖6,該手術器械13更進一步包括至少二器械天線13A、13B,其接收該調頻頻率訊號140後,回傳該二器械頻率訊號13A1、13B1至該定位訊號收發單元14,該處理單元20藉由該二器械頻率訊號13A1、13B1計算出該器械二天線13A、13B與定位訊號收發單元14之距離,以此計算出該手術器械與預設施行手術導航路徑之間的角度S2,以確認該手術器械的操作是否與預設施行手術導航路徑相同。 In addition, referring to FIG. 6 , the surgical instrument 13 further includes at least two device antennas 13A and 13B. After receiving the FM frequency signal 140 , the two device frequency signals 13A1 and 13B1 are returned to the positioning signal transceiver unit 14 . The processing unit 20 calculates the distance between the two antennas 13A and 13B of the device and the positioning signal transceiving unit 14 by using the two device frequency signals 13A1 and 13B1, thereby calculating an angle S2 between the surgical instrument and the pre-installation surgical navigation path. To confirm whether the operation of the surgical instrument is the same as the pre-installation surgical navigation path.
如上述,利用本發明,在脊椎手術前可先匯入術前規劃資訊,接著根據該脊椎空間座標、該器械空間座標及定位標和手術器械角度等資料來進行手術導航作業。 As described above, with the present invention, preoperative planning information can be imported prior to spinal surgery, and then surgical navigation operations can be performed based on the spatial coordinates of the spinal space, the space coordinates of the instrument, the positioning target, and the angle of the surgical instrument.
本發明利用無線定位技術實現多椎節定位追蹤導航手術技術,透過調頻式射頻定位技術加上識別碼辨識功能,於椎節設置定位天線標記,透過獨立追蹤設置定位天線標記之椎節而非使用數值推算方式將全部脊椎視為剛體,進而提升醫學影像註冊精度與速度(加速演算收斂),且本發明能擁有足夠操作頻寬以涵蓋FMCW掃頻範圍(24-24.4GHz),加強室內定位精準度達到mm等級誤差,提升手術植入物施打安全性與精準度,另外本發明加入切換調變機制,在頻譜上將可以區隔環境雜波與目標物之回波訊號,降低環境干擾,同 時本導航系統適用於長節脊椎手術(脊椎側彎矯正、多節脊椎骨折),使施術不受大型紅外線反光球定位標記器械限制。 The invention utilizes wireless positioning technology to realize multi-vertebral positioning tracking and navigation surgery technology, and adopts a frequency-modulated radio frequency positioning technology and an identification code identification function to set a positioning antenna mark on a vertebra, and locates an antenna-marked vertebra through independent tracking setting instead of using The numerical calculation method regards all the spines as rigid bodies, thereby improving the accuracy and speed of medical image registration (acceleration calculation convergence), and the invention can have sufficient operation bandwidth to cover the FMCW sweep range (24-24.4 GHz), and enhance indoor positioning accuracy. The degree of error reaches the mm level, and the safety and precision of the surgical implant are improved. In addition, the invention adds a switching modulation mechanism, which can separate the environmental clutter and the echo signal of the target in the spectrum, thereby reducing environmental interference. with The navigation system is suitable for long spine surgery (spine correction, multi-spine fracture), so that the operation is not limited by the large infrared reflective ball positioning marker device.
本發明影像導引手術除了能夠提供外科醫生於器械使用時更具立體感、更多病灶數據及精確的影像資訊之外,更能完整規劃手術前步驟與預習,達到手術中即時影像導引與病灶處顯影,以及手術後的評估實習醫生教學與研究使用,且目前先針對以脊椎手術為臨床應用方向,改善現有脊椎手術導航系統直視性遮蔽問題,此外人體電磁吸收率影響定位精度,突破體內定位追蹤技術瓶頸,未來根據此室內定位技術,朝向NOTES手術應用或者腹腔手術應用,針對病患之病灶產生定位功能,縮短手術時間,也減少手術風險的可能性。 In addition to providing surgeons with more stereoscopic sense, more lesion data and accurate image information, the image-guided surgery of the present invention can fully plan pre-operative steps and previews, and achieve immediate image guidance during surgery. The development of the lesion, as well as the post-operative evaluation of the intern's teaching and research, and the current application of spinal surgery as a clinical application direction to improve the direct vision shielding problem of the existing spinal surgery navigation system, in addition, the human body electromagnetic absorption rate affects the positioning accuracy, breaking through the body According to the indoor positioning technology, the positioning tracking technology bottleneck will be applied to the operation of the NOTES operation or the abdominal cavity surgery to locate the lesions of the patient, shorten the operation time and reduce the possibility of surgery.
本發明可有效提升醫師執行脊椎手術安全性與施術品質,同時降低手術中穿透式醫學影像使用量並減輕醫護人員游離輻射吸收量;另外醫學影像導航技術為未來智能手術輔助系統主要核心基礎,未來進一步結合手術機械臂與高聚焦式穿透性治療設備(HIFU、伽瑪刀、質子治療)可實現高精準治療,降低患者術後併發症與影響。 The invention can effectively improve the safety and quality of the operation of the spine surgery, reduce the use of the penetrating medical image during the operation and reduce the amount of free radiation absorbed by the medical staff; and the medical image navigation technology is the main core foundation of the future intelligent surgical assist system. In the future, combined with surgical robotic arm and high-focus penetrating therapeutic equipment (HIFU, gamma knife, proton therapy), high-precision treatment can be achieved, and postoperative complications and effects can be reduced.
綜上所述,乃僅記載本創作為呈現解決問題所採用的技術手段之實施方式或實施例而已,並非用來限定本創作專利實施之範圍。即凡與本創作專利申請範圍文義相符,或依本創作專利範圍所做的均等變化與修飾,皆為本創作專 利範圍所涵蓋。 In summary, it is merely described that the present invention is an implementation or embodiment of the technical means employed to solve the problem, and is not intended to limit the scope of implementation of the present patent. That is, any change and modification made in accordance with the scope of the patent application scope of this creation or in accordance with the scope of the patent creation is Covered by the scope of interest.
14‧‧‧定位訊號收發單元 14‧‧‧Location signal transceiver unit
140‧‧‧調頻頻率訊號 140‧‧‧FM frequency signal
141‧‧‧接收天線陣列 141‧‧‧Receiving antenna array
142‧‧‧第一帶通濾波器 142‧‧‧First bandpass filter
1421‧‧‧第二帶通濾波器 1421‧‧‧Second bandpass filter
143‧‧‧低雜訊放大器 143‧‧‧Low noise amplifier
144‧‧‧混頻器 144‧‧‧mixer
145‧‧‧功率分配器 145‧‧‧Power splitter
146‧‧‧功率放大器 146‧‧‧Power Amplifier
147‧‧‧發射天線陣列 147‧‧‧transmit antenna array
148‧‧‧可調增益放大器 148‧‧‧Adjustable Gain Amplifier
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105113643A TWI593987B (en) | 2016-04-29 | 2016-04-29 | FM radar transceiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105113643A TWI593987B (en) | 2016-04-29 | 2016-04-29 | FM radar transceiver |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI593987B true TWI593987B (en) | 2017-08-01 |
TW201738581A TW201738581A (en) | 2017-11-01 |
Family
ID=60189208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105113643A TWI593987B (en) | 2016-04-29 | 2016-04-29 | FM radar transceiver |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI593987B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI695989B (en) * | 2018-11-30 | 2020-06-11 | 財團法人金屬工業研究發展中心 | Rf positioning system |
US10915718B2 (en) | 2018-12-21 | 2021-02-09 | Metal Industries Research & Development Centre | Radio frequency positioning system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI720711B (en) * | 2019-11-29 | 2021-03-01 | 財團法人金屬工業研究發展中心 | Radio frequency positioning method for measuring the position of transceiver |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200509552A (en) * | 2003-07-18 | 2005-03-01 | Artimi Ltd | Communications systems and methods |
US20080146281A1 (en) * | 2006-12-19 | 2008-06-19 | Broadcom Corporation, A California Corporation | Cellular telephone IC and applications thereof |
TW200845474A (en) * | 2006-12-29 | 2008-11-16 | Broadcom Corp | An integrated circuit antenna structure |
US20120224617A1 (en) * | 2005-08-03 | 2012-09-06 | Kamilo Feher | Detection, communication and control in multimode cellular, TDMA, GSM, spread spectrum, CDMA, OFDM WiLAN and WiFi systems |
TW201345047A (en) * | 2012-03-22 | 2013-11-01 | Broadcom Corp | Programmable antenna having a programmable substrate |
-
2016
- 2016-04-29 TW TW105113643A patent/TWI593987B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200509552A (en) * | 2003-07-18 | 2005-03-01 | Artimi Ltd | Communications systems and methods |
US20120224617A1 (en) * | 2005-08-03 | 2012-09-06 | Kamilo Feher | Detection, communication and control in multimode cellular, TDMA, GSM, spread spectrum, CDMA, OFDM WiLAN and WiFi systems |
US20080146281A1 (en) * | 2006-12-19 | 2008-06-19 | Broadcom Corporation, A California Corporation | Cellular telephone IC and applications thereof |
TW200845474A (en) * | 2006-12-29 | 2008-11-16 | Broadcom Corp | An integrated circuit antenna structure |
TW201345047A (en) * | 2012-03-22 | 2013-11-01 | Broadcom Corp | Programmable antenna having a programmable substrate |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI695989B (en) * | 2018-11-30 | 2020-06-11 | 財團法人金屬工業研究發展中心 | Rf positioning system |
US10915718B2 (en) | 2018-12-21 | 2021-02-09 | Metal Industries Research & Development Centre | Radio frequency positioning system |
Also Published As
Publication number | Publication date |
---|---|
TW201738581A (en) | 2017-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10939053B2 (en) | System and method for radio-frequency imaging, registration, and localization | |
JP6776064B2 (en) | Field-based position coordinate correction | |
US20200170807A1 (en) | Determining anatomical orientations | |
US20060030771A1 (en) | System and method for sensor integration | |
EP4353157A2 (en) | Non-invasive system and method for tracking bones | |
TWI593987B (en) | FM radar transceiver | |
WO2020006360A1 (en) | In-body backscatter communication and localization | |
US20230346338A1 (en) | Portable ultrasound based nerve imaging system | |
TWI580987B (en) | A positioning algorithm for calculating the positioning distance | |
TWI581754B (en) | Regional positioning module | |
CN115500868B (en) | B-ultrasonic positioning system capable of interactively confirming position information with detected target | |
US20070225596A1 (en) | Implant, Apparatus and Method for Tracking a Target Area | |
US20170312033A1 (en) | Surgery navigation system | |
US20230270506A1 (en) | Systems and methods for medical object tracking in obstructed environments | |
TWI605789B (en) | Surgical navigation system | |
US20210128012A1 (en) | Systems and methods for imaging a body region using implanted markers | |
WO2008129510A2 (en) | Localization system for interventional instruments | |
US20090124893A1 (en) | Apparatus and method to perform stereotactic treatment of moving targets | |
CN103055430B (en) | A kind of based on infrared guiding it is accurately positioned tracking and system | |
CN107402378A (en) | Frequency modulated(FM) radar transceiver | |
CN109009436B (en) | Body surface positioning equipment for infrared navigation | |
CN109044539B (en) | Body surface positioning method for infrared navigation | |
CN209884326U (en) | Positioning marking device and registration system for surgical navigation | |
CN107402373A (en) | Domain type locating module | |
US20030084909A1 (en) | Apparatus and method for three dimensional spatial registration of surgical procedures using radio tagging |