TWI587540B - Method of performing plating process on transparent conductive film for solar cells - Google Patents
Method of performing plating process on transparent conductive film for solar cells Download PDFInfo
- Publication number
- TWI587540B TWI587540B TW105115394A TW105115394A TWI587540B TW I587540 B TWI587540 B TW I587540B TW 105115394 A TW105115394 A TW 105115394A TW 105115394 A TW105115394 A TW 105115394A TW I587540 B TWI587540 B TW I587540B
- Authority
- TW
- Taiwan
- Prior art keywords
- mask
- layer
- barrier layer
- conductive film
- transparent conductive
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 50
- 238000007747 plating Methods 0.000 title claims description 6
- 239000010410 layer Substances 0.000 claims description 175
- 230000004888 barrier function Effects 0.000 claims description 81
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 60
- 229910052802 copper Inorganic materials 0.000 claims description 60
- 239000010949 copper Substances 0.000 claims description 60
- 239000011241 protective layer Substances 0.000 claims description 36
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 26
- 238000009713 electroplating Methods 0.000 claims description 24
- 238000005530 etching Methods 0.000 claims description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 13
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- 239000010936 titanium Substances 0.000 claims description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 229910052732 germanium Inorganic materials 0.000 description 12
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 12
- 239000000758 substrate Substances 0.000 description 7
- 230000002378 acidificating effect Effects 0.000 description 6
- 239000012670 alkaline solution Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1884—Manufacture of transparent electrodes, e.g. TCO, ITO
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022466—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
- H01L31/022475—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1884—Manufacture of transparent electrodes, e.g. TCO, ITO
- H01L31/1888—Manufacture of transparent electrodes, e.g. TCO, ITO methods for etching transparent electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
- Electroplating Methods And Accessories (AREA)
- Electrodes Of Semiconductors (AREA)
Description
本發明是有關於一種實施電鍍製程的方法,更特別是有關於一種於透明導電膜上實施電鍍製程的方法,能夠用來形成太陽能電池的電極。此技術特點為利用兩階段遮罩製作搭配電鍍製程的方式,可精確控制與定義出金屬電極結構圖形,該方式能有效避免製作過程中因蝕刻劑的橫向蝕刻而產生所謂的「底切」(undercut)現象,致使阻障層無法精確地蝕刻出所要的圖案,因此,最終形成的金屬電極結構亦不會受到蝕刻劑的侵蝕。The present invention relates to a method of performing an electroplating process, and more particularly to a method of performing an electroplating process on a transparent conductive film, which can be used to form an electrode of a solar cell. The technical feature is that the two-stage mask is used to make the electroplating process, and the metal electrode structure pattern can be precisely controlled and defined, which can effectively avoid the so-called "undercut" caused by the lateral etching of the etchant during the manufacturing process ( Undercut phenomenon, the barrier layer cannot accurately etch the desired pattern, and therefore, the finally formed metal electrode structure is not eroded by the etchant.
在石化能源短缺以及能源需求量與日俱增的情況下,再生能源(Renewable energy)的開發成為近年來非常重要的課題之一。再生能源泛指永續且無污染的天然能源,例如太陽能、風能、水利能、潮汐能或是生質能等,其中太陽能的開發更是近幾年來在能源開發的研究上相當重要且受歡迎的一環,而太陽能電池則是一種能夠將太陽能轉換為電能之裝置。The development of renewable energy (Renewable energy) has become one of the most important issues in recent years due to the shortage of petrochemical energy and increasing energy demand. Renewable energy refers to sustainable and non-polluting natural energy sources such as solar energy, wind energy, hydropower, tidal energy or biomass energy. Among them, the development of solar energy is very important in the research of energy development in recent years. A welcome part, and solar cells are a device that converts solar energy into electricity.
已知的矽晶太陽能電池主要包含有:一用於將光能轉換成電能的基板,以及用於傳導電流的一正面電極與一背面電極。前述正面電極與背面電極在製造上可透過電鍍或網版印刷之方式來形成。Known twinned solar cells mainly include: a substrate for converting light energy into electrical energy, and a front electrode and a back electrode for conducting current. The front surface electrode and the back surface electrode are formed by electroplating or screen printing.
請參照圖1,其顯示一種習知太陽能電池的結構。習知太陽能電池包含有一單晶或多晶的矽基板110,該矽基板110的摻雜類型可為N型。矽基板110具有一受光面111以及相對於該受光面111的一背面112。在受光面111及背面112上各形成有一本質氫化非晶矽( ia-Si:H)層121及122。本質氫化非晶矽層121上形成有一與矽基板110不同摻雜類型的P+氫化非晶矽層130作為射極,以形成p-n接面(p-n junction)。本質氫化非晶矽層122上形成有一與矽基板110相同摻雜類型的N+氫化非晶矽層140作為背面電場(Back Surface Field; BSF)。在P+氫化非晶矽層130與N+氫化非晶矽層140上各形成有一透明導電膜151及152,例如是以氧化銦錫(Indium Tin Oxide; ITO)製成的透明導電膜。在透明導電膜151上形成有一正面電極170,而在透明導電膜152上則形成有一背面電極180。 Please refer to FIG. 1, which shows the structure of a conventional solar cell. The conventional solar cell comprises a single crystal or polycrystalline germanium substrate 110, and the doping type of the germanium substrate 110 may be N-type. The germanium substrate 110 has a light receiving surface 111 and a back surface 112 opposite to the light receiving surface 111. On the light-receiving surface 111 and the back surface 112, an intrinsically hydrogenated amorphous germanium ( i a-Si:H) layer 121 and 122 are formed. A substantially doped P+ hydrogenated amorphous germanium layer 130 is formed on the substantially hydrogenated amorphous germanium layer 121 as an emitter to form a pn junction. An N+ hydrogenated amorphous germanium layer 140 of the same doping type as the germanium substrate 110 is formed on the substantially hydrogenated amorphous germanium layer 122 as a back surface field (BSF). A transparent conductive film 151 and 152 are formed on each of the P+ hydrogenated amorphous germanium layer 130 and the N+ hydrogenated amorphous germanium layer 140, for example, a transparent conductive film made of indium tin oxide (ITO). A front surface electrode 170 is formed on the transparent conductive film 151, and a back surface electrode 180 is formed on the transparent conductive film 152.
請參照圖2,其顯示上述太陽能電池的正面電極170的細部結構。若正面電極170是以電鍍方式形成,其能夠包含有一阻障層(barrier layer)171、一銅層172及一保護層173。阻障層171是沈積在透明導電膜151上,用來防止銅層172的銅擴散至矽基板110。銅層172是電鍍在阻障層171上,而保護層173則形成在銅層172上,以防止銅層172氧化。Referring to FIG. 2, the detailed structure of the front surface electrode 170 of the above solar cell is shown. If the front electrode 170 is formed by electroplating, it can include a barrier layer 171, a copper layer 172, and a protective layer 173. The barrier layer 171 is deposited on the transparent conductive film 151 to prevent copper of the copper layer 172 from diffusing to the germanium substrate 110. The copper layer 172 is plated on the barrier layer 171, and the protective layer 173 is formed on the copper layer 172 to prevent oxidation of the copper layer 172.
製作上述正面電極170的方法,是先以濺鍍或物理氣相沈積等方式在透明導電膜151上沈積一層連續的鎳層或鈦層,以供後續用來形成阻障層171。之後,在上述鎳層或鈦層上沈積一圖案化的遮罩,該遮罩具有圖案化的開口,對應到銅層172在阻障層171上的位置。再來將遮罩浸在酸性的含銅電鍍液,以於遮罩開口內在鎳層或鈦層上電鍍形成銅層172。在銅層172形成之後,利用電鍍的方式在銅層172上形成一錫層或銀層作為保護層173。接著利用鹼性溶液移除遮罩,讓鎳層或鈦層裸露出。而後利用蝕刻劑,例如是酸性蝕刻液或氧化劑對鎳層或鈦層進行蝕刻,以移除在銅層172正下方之外連續鎳層或鈦層的其他部分,也就是鎳層或鈦層裸露在銅層172下方之外的部分被移除,僅位在銅層172下方的部分得以保留,於是形成了正面電極170的阻障層171。The method of fabricating the front electrode 170 described above is to deposit a continuous layer of nickel or titanium on the transparent conductive film 151 by sputtering or physical vapor deposition for subsequent use to form the barrier layer 171. Thereafter, a patterned mask is deposited over the nickel or titanium layer, the mask having a patterned opening corresponding to the location of the copper layer 172 on the barrier layer 171. The mask is then immersed in an acidic copper-containing plating solution to form a copper layer 172 on the nickel or titanium layer in the mask opening. After the copper layer 172 is formed, a tin layer or a silver layer is formed as a protective layer 173 on the copper layer 172 by electroplating. The mask is then removed using an alkaline solution to expose the nickel or titanium layer. The nickel or titanium layer is then etched using an etchant, such as an acidic etchant or oxidant, to remove other portions of the continuous nickel or titanium layer just below the copper layer 172, that is, the nickel or titanium layer is exposed. A portion other than below the copper layer 172 is removed, and only a portion located under the copper layer 172 is retained, thus forming a barrier layer 171 of the front electrode 170.
然而,上述為了形成阻障層171而對鎳層或鈦層蝕刻所使用的蝕刻劑也會接觸到早已形成的銅層172及保護層173而造成侵蝕,且鎳層或鈦層位在銅層172正下方的部分也會因為蝕刻劑的橫向蝕刻而產生所謂的「底切」(undercut)現象,致使阻障層171無法精確地形成所要的圖案。However, the etchant used to etch the nickel layer or the titanium layer in order to form the barrier layer 171 may also be in contact with the already formed copper layer 172 and the protective layer 173 to cause erosion, and the nickel layer or the titanium layer is located on the copper layer. The portion directly under 172 also causes a so-called "undercut" phenomenon due to lateral etching of the etchant, so that the barrier layer 171 cannot accurately form a desired pattern.
有鑑於此,便有需要提出一種方案,以解決上述問題。In view of this, there is a need to propose a solution to solve the above problems.
本發明提供一種於太陽能電池透明導電膜上實施電鍍製程的方法。The invention provides a method for performing an electroplating process on a transparent conductive film of a solar cell.
於第一實施例中,本發明之於太陽能電池透明導電膜上實施電鍍製程的方法包含:於一透明導電膜上形成一阻障層;於該阻障層上形成一第一遮罩,其中該第一遮罩局部覆蓋該阻障層;對該阻障層進行蝕刻,以移除未被該第一遮罩覆蓋的部分,並殘留下被該第一遮罩覆蓋的部分;移除該第一遮罩,以裸露出該殘留的阻障層;於該透明導電膜上形成一第二遮罩,其中該第二遮罩具有一開口,裸露出該殘留的阻障層的至少一部份;於該開口中的阻障層上電鍍形成一銅層;於該銅層上電鍍形成一保護層;以及於該保護層形成後移除該第二遮罩。In a first embodiment, the method for performing an electroplating process on a transparent conductive film of a solar cell comprises: forming a barrier layer on a transparent conductive film; forming a first mask on the barrier layer, wherein The first mask partially covers the barrier layer; etching the barrier layer to remove a portion not covered by the first mask, and leaving a portion covered by the first mask; removing the portion a first mask to expose the residual barrier layer; a second mask is formed on the transparent conductive film, wherein the second mask has an opening to expose at least one of the remaining barrier layers And forming a copper layer on the barrier layer in the opening; forming a protective layer on the copper layer; and removing the second mask after the protective layer is formed.
根據本發明第一實施例之於太陽能電池透明導電膜上實施電鍍製程的方法,在銅層電鍍形成之後,沒有再經歷任何的蝕刻製程,因此銅層與保護層將不會受到蝕刻劑的侵蝕。此外,蝕刻製程係在銅層及保護層形成之前實施,故蝕刻劑的選用不需要考慮到是否會侵蝕到銅層及保護層,如此蝕刻劑的使用係可選擇對阻障層有較高的蝕刻率,以加快蝕刻速度。According to the first embodiment of the present invention, the method of performing the electroplating process on the transparent conductive film of the solar cell does not undergo any etching process after the copper layer is formed, so that the copper layer and the protective layer are not eroded by the etchant. . In addition, the etching process is performed before the formation of the copper layer and the protective layer, so the selection of the etchant does not need to consider whether it will erode to the copper layer and the protective layer, so that the use of the etchant can select a higher barrier layer. Etching rate to speed up the etching.
於第二實施例中,本發明之於太陽能電池透明導電膜上實施電鍍製程的方法包含:於一透明導電膜上形成一阻障層;於該阻障層上形成一第一遮罩,其中該第一遮罩具有一開口,裸露出該阻障層的至少一部分;於該開口中的阻障層上電鍍形成一銅層;於該銅層上電鍍形成一保護層;於該保護層形成後移除該第一遮罩;形成一第二遮罩以覆蓋該保護層及該銅層;對該阻障層進行蝕刻,以移除未被該第二遮罩覆蓋的部分;以及於該蝕刻後移除該第二遮罩。In a second embodiment, the method for performing an electroplating process on a transparent conductive film of a solar cell comprises: forming a barrier layer on a transparent conductive film; forming a first mask on the barrier layer, wherein The first mask has an opening exposing at least a portion of the barrier layer; a copper layer is electroplated on the barrier layer in the opening; a protective layer is formed on the copper layer; and the protective layer is formed on the protective layer Thereafter removing the first mask; forming a second mask to cover the protective layer and the copper layer; etching the barrier layer to remove a portion not covered by the second mask; The second mask is removed after etching.
根據本發明第二實施例之於太陽能電池透明導電膜上實施電鍍製程的方法,銅層及保護層係被第二遮罩所覆蓋,因此不會受到蝕刻劑的侵蝕。此外,因銅層及保護層不會接觸到蝕刻劑,故蝕刻劑的選用不需要考慮到是否會侵蝕到銅層及保護層,如此蝕刻劑的使用係可選擇對阻障層有較高的蝕刻率,以加快蝕刻速度。According to the second embodiment of the present invention, in the method of performing an electroplating process on a transparent conductive film of a solar cell, the copper layer and the protective layer are covered by the second mask, and thus are not corroded by the etchant. In addition, since the copper layer and the protective layer do not contact the etchant, the selection of the etchant does not need to consider whether it will erode to the copper layer and the protective layer, so that the use of the etchant may have a higher barrier layer. Etching rate to speed up the etching.
為了讓本發明之上述和其他目的、特徵和優點能更明顯,下文將配合所附圖示,詳細說明如下。此外,於本發明之說明中,相同之構件係以相同之符號表示,於此先述明。The above and other objects, features, and advantages of the present invention will become more apparent from the accompanying drawings. In the description of the present invention, the same components are denoted by the same reference numerals and will be described.
請參照圖3a至圖3g-3,其顯示本發明第一實施例之於太陽能電池透明導電膜上實施電鍍製程的方法。首先,提供一透明導電膜210,並於該透明導電膜210上沈積一層連續的阻障層220。於一實施方式中,透明導電膜210能夠是以氧化銦錫(Indium Tin Oxide; ITO)製成的透明導電膜,而連續的阻障層220能夠是鎳層或鈦層等金屬層,可以濺鍍或物理氣相沈積(Physical Vapor Deposition; PVD)等方式所形成(請參見圖3a)。Referring to FIG. 3a to FIG. 3g-3, there is shown a method for performing an electroplating process on a transparent conductive film of a solar cell according to a first embodiment of the present invention. First, a transparent conductive film 210 is provided, and a continuous barrier layer 220 is deposited on the transparent conductive film 210. In one embodiment, the transparent conductive film 210 can be a transparent conductive film made of Indium Tin Oxide (ITO), and the continuous barrier layer 220 can be a metal layer such as a nickel layer or a titanium layer, which can be splashed. Formed by plating or physical vapor deposition (PVD) (see Figure 3a).
請參見圖3b,之後在阻障層220上沈積一第一遮罩291,該第一遮罩291係局部覆蓋阻障層220,亦即第一遮罩291係覆蓋阻障層220的至少一部分,並裸露出阻障層220的其他部分。需要說明的是,第一遮罩291於本實施例是以一個為例,但不以一個為限。Referring to FIG. 3b, a first mask 291 is deposited on the barrier layer 220. The first mask 291 partially covers the barrier layer 220, that is, the first mask 291 covers at least a portion of the barrier layer 220. And expose other portions of the barrier layer 220. It should be noted that the first mask 291 is exemplified by one embodiment, but not limited to one.
請參見圖3c,之後對覆蓋有第一遮罩291的阻障層220進行蝕刻,使阻障層220未被第一遮罩291覆蓋的部分被蝕刻掉,而僅殘留下被第一遮罩291覆蓋的部分,亦即阻障層220位在第一遮罩291正下方的部分被保留,而位在第一遮罩291正下方之外的部分被蝕刻掉。於一實施方式中,可使用酸性蝕刻液或氧化劑等蝕刻劑對覆蓋有第一遮罩291的阻障層220進行濕蝕刻(wet etching)。惟要注意的是,形成第一遮罩291的材質是要對該蝕刻劑具有較高的蝕刻選擇比(etch selectivity),以防止第一遮罩291被過度蝕刻,因而無法精確地將阻障層220蝕刻出所要的圖案。Referring to FIG. 3c, the barrier layer 220 covered with the first mask 291 is etched, so that the portion of the barrier layer 220 not covered by the first mask 291 is etched away, and only the first mask remains. The portion covered by 291, that is, the portion of the barrier layer 220 located directly under the first mask 291 is retained, and the portion located just below the first mask 291 is etched away. In one embodiment, the barrier layer 220 covered with the first mask 291 may be wet etched using an etchant such as an acidic etchant or an oxidizing agent. It should be noted that the material forming the first mask 291 is to have a higher etch selectivity to the etchant to prevent the first mask 291 from being over-etched, thereby failing to accurately block the barrier. Layer 220 etches the desired pattern.
請參見圖3d,之後利用鹼性溶液移除第一遮罩291,以裸露出殘留的阻障層220。Referring to FIG. 3d, the first mask 291 is removed using an alkaline solution to expose the remaining barrier layer 220.
請參見圖3e-1、3e-2、3e-3,之後在透明導電膜210上沈積一第二遮罩292。而第二遮罩292的設置方式,至少可以有下述三種態樣:第一種態樣是,如圖3e-1所示,第二遮罩292具有一開口295,且該開口295裸露出殘留阻障層220的整個頂面221以及與該頂面221連接的所有複數個側面223。第二種態樣是,如圖3e-2所示,第二遮罩292的開口295裸露出殘留阻障層220的整個頂面221,但第二遮罩292遮蓋了殘留阻障層220的所有側面223,也就是殘留阻障層220的整個頂面221裸露出,但所有側面223被第二遮罩292遮蓋住。第三種態樣是,如圖3e-3所示,第二遮罩292的開口295裸露出殘留阻障層220的部分頂面221,且第二遮罩292遮蓋了殘留阻障層220的所有側面223,也就是殘留阻障層220頂面221的中央部分裸露出,但頂面221的邊緣部分以及所有側面223皆被第二遮罩292遮蓋住。除了上述三種態樣外,第二遮罩292還可僅局部遮蓋住殘留阻障層220的側面223,且開口295裸露出殘留阻障層220的部分或整個頂面221。Referring to FIGS. 3e-1, 3e-2, and 3e-3, a second mask 292 is deposited on the transparent conductive film 210. The second mask 292 can be arranged in at least three ways. In the first aspect, as shown in FIG. 3e-1, the second mask 292 has an opening 295, and the opening 295 is exposed. The entire top surface 221 of the residual barrier layer 220 and all of the plurality of sides 223 connected to the top surface 221. In the second aspect, as shown in FIG. 3e-2, the opening 295 of the second mask 292 exposes the entire top surface 221 of the residual barrier layer 220, but the second mask 292 covers the residual barrier layer 220. All sides 223, that is, the entire top surface 221 of the residual barrier layer 220, are exposed, but all sides 223 are covered by the second mask 292. In a third aspect, as shown in FIG. 3e-3, the opening 295 of the second mask 292 exposes a portion of the top surface 221 of the residual barrier layer 220, and the second mask 292 covers the residual barrier layer 220. All sides 223, that is, the central portion of the top surface 221 of the residual barrier layer 220 are exposed, but the edge portion of the top surface 221 and all of the sides 223 are covered by the second mask 292. In addition to the above three aspects, the second mask 292 may only partially cover the side 223 of the residual barrier layer 220, and the opening 295 exposes a portion of the residual barrier layer 220 or the entire top surface 221.
請參見圖3f-1、3f-2、3f-3,接著進行電鍍製程,將殘留阻障層220浸在酸性的含銅電鍍液,以於第二遮罩292的開口295內在殘留阻障層220上形成一銅層230,該銅層230形成後能夠具有一凸出的頂面231。之後,再利用電鍍的方式在銅層230的頂面231上形成一錫層或銀層作為保護層(capping layer)240,以防止銅層230氧化。Referring to FIGS. 3f-1, 3f-2, and 3f-3, an electroplating process is performed to immerse the residual barrier layer 220 in an acidic copper-containing plating solution to form a residual barrier layer in the opening 295 of the second mask 292. A copper layer 230 is formed on the 220, and the copper layer 230 can have a convex top surface 231 after being formed. Thereafter, a tin layer or a silver layer is formed on the top surface 231 of the copper layer 230 as a capping layer 240 by electroplating to prevent oxidation of the copper layer 230.
最後,利用鹼性溶液移除第二遮罩292,形成了如圖3g-1、3g-2或3g-3所示的結構,其中,圖3g-1、3g-2及3g-3所示者,係分別經過圖3e-1、3e-2與3e-3所示的步驟而最終形成的結構。Finally, the second mask 292 is removed using an alkaline solution to form a structure as shown in Figures 3g-1, 3g-2 or 3g-3, wherein Figures 3g-1, 3g-2 and 3g-3 are shown. The structure finally formed by the steps shown in Figs. 3e-1, 3e-2, and 3e-3, respectively.
與前述習知方法相比,根據本發明第一實施例之於太陽能電池透明導電膜上實施電鍍製程的方法,在銅層230電鍍形成之後,沒有再經歷任何的金屬蝕刻製程,因此銅層230與保護層240將不會受到蝕刻劑的侵蝕。此外,因蝕刻製程係在銅層230及保護層240形成之前實施,故蝕刻劑的選用不需要考慮到是否會侵蝕到銅層230及保護層240,如此蝕刻劑的使用係可選擇對阻障層220有較高的蝕刻率,以加快蝕刻速度。Compared with the conventional method described above, the method for performing the electroplating process on the transparent conductive film of the solar cell according to the first embodiment of the present invention does not undergo any metal etching process after the copper layer 230 is plated, so the copper layer 230 The protective layer 240 will not be attacked by the etchant. In addition, since the etching process is performed before the formation of the copper layer 230 and the protective layer 240, the selection of the etchant does not need to be considered whether it will erode to the copper layer 230 and the protective layer 240, so that the use of the etchant can be selected as a barrier. Layer 220 has a higher etch rate to speed up the etch rate.
特別一提的是,經過圖3e-1、3f-1所示步驟而形成如圖3g-1所示的結構中,保護層240除了形成在銅層230的頂面231外,也覆蓋在銅層230的側面233,因此能更進一步防止銅層230氧化。In particular, in the structure shown in FIG. 3g-1 through the steps shown in FIGS. 3e-1 and 3f-1, the protective layer 240 is formed on the copper surface 230 in addition to the top surface 231 of the copper layer 230. The side 233 of the layer 230 thus further prevents oxidation of the copper layer 230.
請參照圖4a至圖4g,其顯示本發明第二實施例之於太陽能電池透明導電膜上實施電鍍製程的方法。首先,提供一透明導電膜310,並於該透明導電膜310上沈積一層連續的阻障層320。於一實施方式中,透明導電膜310能夠是以氧化銦錫製成的透明導電膜,而連續的阻障層320能夠是鎳層或鈦層等金屬層,可以濺鍍或物理氣相沈積等方式所形成(請參見圖4a)。Referring to FIG. 4a to FIG. 4g, there is shown a method for performing an electroplating process on a transparent conductive film of a solar cell according to a second embodiment of the present invention. First, a transparent conductive film 310 is provided, and a continuous barrier layer 320 is deposited on the transparent conductive film 310. In one embodiment, the transparent conductive film 310 can be a transparent conductive film made of indium tin oxide, and the continuous barrier layer 320 can be a metal layer such as a nickel layer or a titanium layer, which can be sputtered or physically vapor deposited. The way is formed (see Figure 4a).
請參見圖4b,之後在阻障層320上沈積一第一遮罩391,該第一遮罩391具有一開口395,裸露出阻障層320的至少一部分。需要說明的是,開口395於本實施例是以一個為例,但不以一個為限。Referring to FIG. 4b, a first mask 391 is deposited on the barrier layer 320. The first mask 391 has an opening 395 exposing at least a portion of the barrier layer 320. It should be noted that the opening 395 is exemplified by one embodiment, but not limited to one.
請參見圖4c,接著進行電鍍製程,將阻障層320浸在酸性的含銅電鍍液,以於第一遮罩391的開口395內在阻障層320上形成一銅層330,該銅層330形成後能夠具有一凸出的頂面331。之後,再利用電鍍的方式在銅層330的頂面331上形成一錫層或銀層作為保護層340,以防止銅層330氧化。Referring to FIG. 4c, an electroplating process is performed to immerse the barrier layer 320 in an acidic copper-containing plating solution to form a copper layer 330 on the barrier layer 320 in the opening 395 of the first mask 391. The copper layer 330 is formed on the barrier layer 320. After formation, it can have a convex top surface 331. Thereafter, a tin layer or a silver layer is formed on the top surface 331 of the copper layer 330 as a protective layer 340 by electroplating to prevent oxidation of the copper layer 330.
請參見圖4d,之後利用鹼性溶液移除第一遮罩391。Referring to Figure 4d, the first mask 391 is then removed using an alkaline solution.
請參見圖4e,之後在保護層340上沈積一第二遮罩392,以完全覆蓋保護層340及銅層330的側面333,並覆蓋至銅層330旁的部分阻障層320。Referring to FIG. 4e, a second mask 392 is deposited on the protective layer 340 to completely cover the protective layer 340 and the side 333 of the copper layer 330 and cover a portion of the barrier layer 320 adjacent to the copper layer 330.
請參見圖4f,之後對覆蓋有第二遮罩392的阻障層320進行蝕刻,使阻障層320在未被第二遮罩392覆蓋的部分被蝕刻掉,而殘留下被第二遮罩392覆蓋的部分以及保護層340與銅層330。於一實施方式中,可使用酸性蝕刻液或氧化劑等蝕刻劑對覆蓋有第二遮罩392的阻障層320進行濕蝕刻。惟要注意的是,形成第二遮罩392的材質是要對該蝕刻劑具有較高的蝕刻選擇比,以防止第二遮罩392被過度蝕刻,因而無法精確地將阻障層320蝕刻出所要的圖案。Referring to FIG. 4f, the barrier layer 320 covered with the second mask 392 is etched, so that the barrier layer 320 is etched away in the portion not covered by the second mask 392, and remains under the second mask. 392 covered portion and protective layer 340 and copper layer 330. In one embodiment, the barrier layer 320 covered with the second mask 392 may be wet etched using an etchant such as an acidic etchant or an oxidizing agent. It should be noted that the material of the second mask 392 is formed to have a higher etching selectivity to the etchant to prevent the second mask 392 from being over-etched, thereby failing to accurately etch the barrier layer 320. The desired pattern.
最後,利用鹼性溶液移除第二遮罩392,形成了如圖4g所示的結構。Finally, the second mask 392 is removed using an alkaline solution to form a structure as shown in Figure 4g.
與前述習知方法相比,根據本發明第二實施例之於太陽能電池透明導電膜上實施電鍍製程的方法,銅層330及保護層340係被第二遮罩392所覆蓋,因此不會受到蝕刻劑的侵蝕。此外,因銅層330及保護層340不會接觸到蝕刻劑,故蝕刻劑的選用不需要考慮到是否會侵蝕到銅層230及保護層240,如此蝕刻劑的使用係可選擇對阻障層320有較高的蝕刻率,以加快蝕刻速度。Compared with the conventional method described above, according to the second embodiment of the present invention, the method of performing the electroplating process on the transparent conductive film of the solar cell, the copper layer 330 and the protective layer 340 are covered by the second mask 392, and thus are not subject to Erosion of the etchant. In addition, since the copper layer 330 and the protective layer 340 do not contact the etchant, the selection of the etchant does not need to be considered whether it will erode to the copper layer 230 and the protective layer 240, so that the etchant can be selected for the barrier layer. 320 has a higher etch rate to speed up the etch.
根據本發明之於太陽能電池透明導電膜上實施電鍍製程的方法,係可用來形成太陽能電池的電極,例如是圖1所示太陽能電池的正面電極170,但不限於此。The method of performing an electroplating process on a transparent conductive film of a solar cell according to the present invention is an electrode which can be used to form a solar cell, for example, the front electrode 170 of the solar cell shown in Fig. 1, but is not limited thereto.
雖然本發明已以前述實例揭示,然其並非用以限定本發明,任何本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與修改。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been disclosed by the foregoing examples, it is not intended to be construed as limiting the scope of the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
110‧‧‧矽基板
111‧‧‧受光面
112‧‧‧背面
121‧‧‧本質氫化非晶矽層
122‧‧‧本質氫化非晶矽層
130‧‧‧P+氫化非晶矽層
140‧‧‧N+氫化非晶矽層
151‧‧‧透明導電膜
152‧‧‧透明導電膜
170‧‧‧正面電極
171‧‧‧阻障層
172‧‧‧銅層
173‧‧‧保護層
180‧‧‧背面電極
210‧‧‧透明導電膜
220‧‧‧阻障層
221‧‧‧頂面
223‧‧‧側面
230‧‧‧銅層
231‧‧‧頂面
233‧‧‧側面
240‧‧‧保護層
291‧‧‧第一遮罩
292‧‧‧第二遮罩
295‧‧‧開口
310‧‧‧透明導電膜
320‧‧‧阻障層
330‧‧‧銅層
331‧‧‧頂面
333‧‧‧側面
340‧‧‧保護層
391‧‧‧第一遮罩
392‧‧‧第二遮罩
395‧‧‧開口110‧‧‧矽 substrate
111‧‧‧Glossy surface
112‧‧‧Back
121‧‧‧ Essential hydrogenated amorphous layer
122‧‧‧ Essential hydrogenated amorphous layer
130‧‧‧P+ hydrogenated amorphous layer
140‧‧‧N+ hydrogenated amorphous layer
151‧‧‧Transparent conductive film
152‧‧‧Transparent conductive film
170‧‧‧ front electrode
171‧‧‧Barrier layer
172‧‧‧ copper layer
173‧‧‧Protective layer
180‧‧‧Back electrode
210‧‧‧Transparent conductive film
220‧‧‧Barrier layer
221‧‧‧ top surface
223‧‧‧ side
230‧‧‧ copper layer
231‧‧‧ top surface
233‧‧‧ side
240‧‧‧protection layer
291‧‧‧ first mask
292‧‧‧ second mask
295‧‧‧ openings
310‧‧‧Transparent conductive film
320‧‧‧Barrier layer
330‧‧‧ copper layer
331‧‧‧ top surface
333‧‧‧ side
340‧‧‧Protective layer
391‧‧‧ first mask
392‧‧‧ second mask
395‧‧‧ openings
圖1是一種習知太陽能電池結構的示意圖。 圖2為圖1之A部分的局部放大圖。 圖3a至圖3g-3是繪示本發明第一實施例之於太陽能電池透明導電膜上實施電鍍製程的方法。 圖4a至圖4g是繪示本發明第二實施例之於太陽能電池透明導電膜上實施電鍍製程的方法。1 is a schematic view of a conventional solar cell structure. Figure 2 is a partial enlarged view of a portion A of Figure 1. 3a to 3g-3 illustrate a method of performing an electroplating process on a transparent conductive film of a solar cell according to a first embodiment of the present invention. 4a to 4g are views showing a method of performing an electroplating process on a transparent conductive film of a solar cell according to a second embodiment of the present invention.
210‧‧‧透明導電膜 210‧‧‧Transparent conductive film
220‧‧‧阻障層 220‧‧‧Barrier layer
230‧‧‧銅層 230‧‧‧ copper layer
231‧‧‧頂面 231‧‧‧ top surface
233‧‧‧側面 233‧‧‧ side
240‧‧‧保護層 240‧‧‧protection layer
292‧‧‧第二遮罩 292‧‧‧ second mask
Claims (11)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105115394A TWI587540B (en) | 2016-05-18 | 2016-05-18 | Method of performing plating process on transparent conductive film for solar cells |
JP2017004897A JP2017208524A (en) | 2016-05-18 | 2017-01-16 | Execution of electric plating to penetration conductive film of solar battery and manufacturing of electrode of solar battery |
CN201710095674.8A CN107403846A (en) | 2016-05-18 | 2017-02-22 | Method for implementing electroplating process on transparent conductive film of solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105115394A TWI587540B (en) | 2016-05-18 | 2016-05-18 | Method of performing plating process on transparent conductive film for solar cells |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI587540B true TWI587540B (en) | 2017-06-11 |
TW201742261A TW201742261A (en) | 2017-12-01 |
Family
ID=59688118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105115394A TWI587540B (en) | 2016-05-18 | 2016-05-18 | Method of performing plating process on transparent conductive film for solar cells |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2017208524A (en) |
CN (1) | CN107403846A (en) |
TW (1) | TWI587540B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108400175A (en) * | 2018-01-24 | 2018-08-14 | 苏州太阳井新能源有限公司 | A kind of heterojunction solar battery and preparation method with electroplated electrode |
CN108649077A (en) * | 2018-06-21 | 2018-10-12 | 苏州太阳井新能源有限公司 | A kind of two-sided galvanic metallization solar battery sheet of no main grid, production method and methods for using them |
CN109402571A (en) * | 2018-11-01 | 2019-03-01 | 厦门建霖健康家居股份有限公司 | A method of production local transparent electroplated product is combined by semidry method and shielding |
CN115132856B (en) * | 2021-03-24 | 2024-02-13 | 浙江爱旭太阳能科技有限公司 | Manufacturing method of battery electrode and solar battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201414000A (en) * | 2012-06-08 | 2014-04-01 | Tetrasun Inc | Selective and/or faster removal of a coating from an underlying layer, and solar cell applications thereof |
TW201501341A (en) * | 2013-06-27 | 2015-01-01 | Au Optronics Corp | Solar cell and fabricating method thereof |
TW201505225A (en) * | 2012-11-30 | 2015-02-01 | Lg Chemical Ltd | Conducting substrate and method for preparing the same |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5950576A (en) * | 1982-09-16 | 1984-03-23 | Agency Of Ind Science & Technol | Formation of electrode of solar battery |
JPH0715908B2 (en) * | 1987-08-31 | 1995-02-22 | 日本電気株式会社 | Method of forming bump electrode |
JPH0728115B2 (en) * | 1989-03-17 | 1995-03-29 | 株式会社日立製作所 | Printed board and manufacturing method thereof |
JP2581299B2 (en) * | 1990-10-19 | 1997-02-12 | 日本電気株式会社 | Method for manufacturing semiconductor device having bump electrode |
JPH05102143A (en) * | 1991-10-04 | 1993-04-23 | Toshiba Corp | Method for forming wiring of semiconductor device |
JP2000357671A (en) * | 1999-04-13 | 2000-12-26 | Sharp Corp | Method of manufacturing metal wiring |
JP2003338676A (en) * | 2002-05-20 | 2003-11-28 | Mec Kk | Method of manufacturing copper wiring board |
US6933171B2 (en) * | 2003-10-21 | 2005-08-23 | Intel Corporation | Large bumps for optical flip chips |
KR100864616B1 (en) * | 2006-07-04 | 2008-10-22 | 손경애 | Method for manufacturing pcb and pcb manufactured using the same |
US7704352B2 (en) * | 2006-12-01 | 2010-04-27 | Applied Materials, Inc. | High-aspect ratio anode and apparatus for high-speed electroplating on a solar cell substrate |
WO2008100603A1 (en) * | 2007-02-15 | 2008-08-21 | Massachusetts Institute Of Technology | Solar cells with textured surfaces |
CN101807628B (en) * | 2010-04-02 | 2012-05-23 | 日强光伏科技有限公司 | Method for manufacturing front grid line electrode of solar cell |
JP5313202B2 (en) * | 2010-04-30 | 2013-10-09 | 日本メクトロン株式会社 | Build-up type multilayer printed wiring board and manufacturing method thereof |
JP5705968B2 (en) * | 2011-03-25 | 2015-04-22 | 三洋電機株式会社 | Photoelectric conversion device and manufacturing method thereof |
US20130125968A1 (en) * | 2011-11-18 | 2013-05-23 | Sunpreme, Ltd. | Low-cost solar cell metallization over tco and methods of their fabrication |
US20130264214A1 (en) * | 2012-04-04 | 2013-10-10 | Rohm And Haas Electronic Materials Llc | Metal plating for ph sensitive applications |
EP2709160B1 (en) * | 2012-09-14 | 2016-03-30 | ATOTECH Deutschland GmbH | Method for metallization of solar cell substrates |
JP2015053303A (en) * | 2013-09-05 | 2015-03-19 | シャープ株式会社 | Solar cell, solar cell module, and method for manufacturing solar cell |
US9087941B2 (en) * | 2013-09-19 | 2015-07-21 | International Business Machines Corporation | Selective self-aligned plating of heterojunction solar cells |
JP2015159198A (en) * | 2014-02-24 | 2015-09-03 | 三菱電機株式会社 | Photovoltaic element, manufacturing method therefor and manufacturing apparatus therefor |
-
2016
- 2016-05-18 TW TW105115394A patent/TWI587540B/en not_active IP Right Cessation
-
2017
- 2017-01-16 JP JP2017004897A patent/JP2017208524A/en active Pending
- 2017-02-22 CN CN201710095674.8A patent/CN107403846A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201414000A (en) * | 2012-06-08 | 2014-04-01 | Tetrasun Inc | Selective and/or faster removal of a coating from an underlying layer, and solar cell applications thereof |
TW201505225A (en) * | 2012-11-30 | 2015-02-01 | Lg Chemical Ltd | Conducting substrate and method for preparing the same |
TW201501341A (en) * | 2013-06-27 | 2015-01-01 | Au Optronics Corp | Solar cell and fabricating method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2017208524A (en) | 2017-11-24 |
TW201742261A (en) | 2017-12-01 |
CN107403846A (en) | 2017-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101863294B1 (en) | Solar cell and method for fabricating the same | |
JP5705968B2 (en) | Photoelectric conversion device and manufacturing method thereof | |
JP2011199045A (en) | Solar cell, solar cell module using the same, and method for manufacturing the solar cell | |
TWI587540B (en) | Method of performing plating process on transparent conductive film for solar cells | |
JP2012164961A (en) | Solar cell and method of manufacturing the same | |
JP6817764B2 (en) | Solar cell and manufacturing method of solar cell | |
JP6568518B2 (en) | Crystalline silicon solar cell manufacturing method and crystalline silicon solar cell module manufacturing method | |
JP6564874B2 (en) | Method for manufacturing crystalline silicon-based solar cell and method for manufacturing crystalline silicon-based solar cell module | |
CN104701410A (en) | Manufacturing method of metal grating on silicon-based heterojunction cell | |
WO2012132655A1 (en) | Back-junction photoelectric conversion element and method for manufacturing back-junction photoelectric conversion element | |
KR101878397B1 (en) | Solar cell and method for fabricating the same | |
WO2017179317A1 (en) | Crystalline silicon solar cell, production method therefor, and solar cell module | |
CN104701411A (en) | Edge insulating method used during manufacturing of silicon-based heterojunction battery piece | |
JPWO2010064549A1 (en) | Method for manufacturing thin film photoelectric conversion device | |
CN103081123A (en) | Device for generating solar power and method for manufacturing same | |
KR101380540B1 (en) | Method for fabricating metal electrode of solar cell | |
JP2014183073A (en) | Photoelectric conversion element and method of manufacturing photoelectric conversion element | |
CN116613247A (en) | Manufacturing method of heterojunction battery with back P/N doped region isolated | |
JP2013168605A (en) | Manufacturing method of solar cell | |
CN104350612A (en) | Solar cell and method for manufacturing same | |
TW201442260A (en) | Solar cell and manufacturing method thereof | |
JP6004946B2 (en) | Solar cell and solar cell module | |
EP2538453A1 (en) | Solar power generating device, and method for manufacturing same | |
WO2013046376A1 (en) | Solar cell | |
TWI518928B (en) | Solar cell and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |