TWI575741B - High voltage semiconductor device and method for manufacturing the same - Google Patents
High voltage semiconductor device and method for manufacturing the same Download PDFInfo
- Publication number
- TWI575741B TWI575741B TW104133153A TW104133153A TWI575741B TW I575741 B TWI575741 B TW I575741B TW 104133153 A TW104133153 A TW 104133153A TW 104133153 A TW104133153 A TW 104133153A TW I575741 B TWI575741 B TW I575741B
- Authority
- TW
- Taiwan
- Prior art keywords
- region
- high voltage
- semiconductor device
- voltage semiconductor
- isolation structure
- Prior art date
Links
Landscapes
- Element Separation (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Description
本揭露係關於一種半導體技術,且特別是關於一種具有良好隔離能力之高壓半導體裝置。 The present disclosure relates to a semiconductor technology, and more particularly to a high voltage semiconductor device having good isolation capabilities.
高壓半導體裝置技術適用於高電壓與高功率的積體電路領域。傳統高壓半導體裝置,例如雙擴散汲極金氧半場效電晶體(Double Diffused Drain MOSFET,DDDMOS)及橫向擴散金氧半場效電晶體(Lateral diffused MOSFET,LDMOS),主要用於高於或約為18V的元件應用領域。高壓半導體裝置技術的優點在於符合成本效益,且易相容於其他製程,已廣泛應用於顯示器驅動IC元件、電源供應器、電力管理、通訊、車用電子或工業控制等領域中。 The high voltage semiconductor device technology is suitable for the field of high voltage and high power integrated circuits. Conventional high-voltage semiconductor devices, such as Double Diffused Drain MOSFET (DDDMOS) and Lateral diffused MOSFET (LDMOS), are mainly used for higher or higher than 18V. The field of component applications. The advantages of high-voltage semiconductor device technology are cost-effective and easy to be compatible with other processes, and have been widely used in display driver IC components, power supplies, power management, communications, automotive electronics or industrial control.
雙擴散汲極金氧半場效電晶體(DDDMOS)具有體積小、輸出電流大的特性,廣泛應用在操作電壓為小於30V的源極驅動IC(Source Driver IC)中。雙擴散汲極係由二個佈值區形成用於高壓金氧半場效電晶體的一源極或一汲極。此處「高壓金氧半場效電晶體」用語所指的是具有高崩潰電壓(breakdown down voltage)的電晶體。 The double-diffused bungee MOSFET has its small size and large output current and is widely used in source driver ICs with operating voltages less than 30V. The double diffused drain is formed by a two-valued region for a source or a drain of a high voltage MOS field effect transistor. The term "high-voltage gold-oxygen half-effect transistor" as used herein refers to a transistor having a high breakdown voltage.
相鄰的DDDMOS通常透過場氧化物(field oxide),例如溝槽隔離結構,提供隔離作用。溝槽隔離結構與其上方的 金屬化層(例如,內層介電(ILD)層與內連導線層)及與其下方的井區會構成一寄生MOS電晶體。當DDDMOS進行操作時,施加於內連導線層的電壓容易導通寄生MOS電晶體,使溝槽隔離結構失去隔離作用失效而造成電路功能失效。因此,溝槽隔離結構必須增加寬度及/或深度,以防止寄生MOS電晶體在DDDMOS進行操作時被導通。 Adjacent DDDMOS typically provides isolation through field oxides, such as trench isolation structures. Trench isolation structure and above The metallization layer (eg, the inner dielectric (ILD) layer and the interconnect wiring layer) and the well region below it form a parasitic MOS transistor. When the DDDMOS is operated, the voltage applied to the interconnected wiring layer easily turns on the parasitic MOS transistor, causing the trench isolation structure to lose the isolation failure and causing the circuit function to fail. Therefore, the trench isolation structure must increase the width and/or depth to prevent the parasitic MOS transistor from being turned on when the DDDMOS is operating.
然而,增加溝槽隔離結構的寬度會增加裝置的尺寸而使晶片面積增加。另外,增加溝槽隔離結構的深度會增加製程的困難度及製造成本。因此,有必要尋求一種高壓半導體裝置及其製造方法,其能夠解決或改善上述的問題。 However, increasing the width of the trench isolation structure increases the size of the device and increases the wafer area. In addition, increasing the depth of the trench isolation structure increases the difficulty of the process and the manufacturing cost. Therefore, it is necessary to find a high voltage semiconductor device and a method of fabricating the same that can solve or ameliorate the above problems.
本揭露一實施例提供一種高壓半導體裝置,包括:一半導體基底,其具有一第一導電型的一井區及位於井區內的一隔離結構,其中於隔離結構兩側分別定義出一第一區及一第二區;一第一閘極結構及一第二閘極結構,分別設置於第一區及第二區上;一第一佈植區及一第二佈植區,分別位於第一區及第二區內且鄰近於隔離結構,其中第一佈植區及第二佈植區具有不同於第一導電型的一第二導電型;以及一反佈植區,位於隔離結構下方的井區內且橫向延伸於第一佈植區及第二佈植區下方,其中反佈植區具有第一導電型,且具有一摻雜濃度大於井區的一摻雜濃度。 An embodiment of the present disclosure provides a high voltage semiconductor device including: a semiconductor substrate having a well region of a first conductivity type and an isolation structure disposed within the well region, wherein a first surface is defined on each side of the isolation structure a first gate structure and a second gate structure are respectively disposed on the first zone and the second zone; a first planting zone and a second planting zone are respectively located at the first zone a zone and a second zone adjacent to the isolation structure, wherein the first planting zone and the second planting zone have a second conductivity type different from the first conductivity type; and a reverse planting zone located below the isolation structure The well region extends laterally below the first implant region and the second implant region, wherein the reverse implant region has a first conductivity type and has a doping concentration greater than a doping concentration of the well region.
本揭露另一實施例提供一種高壓半導體裝置之製造方法,包括:提供一半導體基底,其具有一第一導電型的一井區及位於井區內的一隔離結構,其中於隔離結構兩側分別定 義出一第一區及一第二區;於隔離結構下方的井區內形成具有第一導電型的一反佈植區,其中反佈植區橫向延伸於第一區及第二區內,且具有一摻雜濃度大於井區的一摻雜濃度;分別於第一區及第二區的反佈植區上形成鄰近於隔離結構的一第一佈植區及一第二佈植區,其中第一佈植區及第二佈植區具有不同於第一導電型的一第二導電型;以及分別於第一區及第二區上形成一第一閘極結構及一第二閘極結構。 Another embodiment of the present invention provides a method of fabricating a high voltage semiconductor device, comprising: providing a semiconductor substrate having a well region of a first conductivity type and an isolation structure disposed within the well region, wherein set Forming a first zone and a second zone; forming a reverse planting zone having a first conductivity type in the well zone below the isolation structure, wherein the reverse planting zone extends laterally in the first zone and the second zone, And having a doping concentration greater than a doping concentration of the well region; forming a first implanting region and a second implanting region adjacent to the isolation structure on the anti-planting regions of the first region and the second region, respectively The first implanting zone and the second implanting zone have a second conductivity type different from the first conductivity type; and forming a first gate structure and a second gate on the first zone and the second zone respectively structure.
10‧‧‧佈植罩幕 10‧‧‧ implant mask
20‧‧‧第一離子佈植 20‧‧‧First ion implantation
30‧‧‧第二離子佈植 30‧‧‧Second ion implantation
100‧‧‧半導體基底 100‧‧‧Semiconductor substrate
102‧‧‧井區 102‧‧‧ Well Area
102a‧‧‧第一區 102a‧‧‧First District
102b‧‧‧第二區 102b‧‧‧Second District
104‧‧‧隔離結構 104‧‧‧Isolation structure
106‧‧‧反佈植區 106‧‧‧Replanting area
106a、106b、108a、110a‧‧‧邊緣 Edges 106a, 106b, 108a, 110a‧‧
108‧‧‧第一佈植區 108‧‧‧First planting area
110‧‧‧第二佈植區 110‧‧‧Second planting area
112‧‧‧第一閘極結構 112‧‧‧First gate structure
114‧‧‧第二閘極結構 114‧‧‧Second gate structure
115‧‧‧內層介電層 115‧‧‧ Inner dielectric layer
116‧‧‧第三佈植區 116‧‧‧ Third planting area
117、119‧‧‧源極/汲極電極 117, 119‧‧‧ source/drain electrodes
118‧‧‧第四佈植區 118‧‧‧The fourth planting area
121‧‧‧內連導線層 121‧‧‧Internal conductor layer
200‧‧‧高壓半導體裝置 200‧‧‧High voltage semiconductor device
W‧‧‧表面寬度 W‧‧‧ surface width
第1A至1E圖係繪示出根據本揭露一實施例之高壓半導體裝置之製造方法的剖面示意圖。 1A to 1E are schematic cross-sectional views showing a method of manufacturing a high voltage semiconductor device according to an embodiment of the present disclosure.
以下說明本揭露實施例之高壓半導體裝置及其製造方法。然而,可輕易了解本揭露所提供的實施例僅用於說明以特定方法製作及使用本發明,並非用以侷限本發明的範圍。 Hereinafter, a high voltage semiconductor device and a method of manufacturing the same according to embodiments of the present disclosure will be described. However, the present invention is to be understood as being limited to the details of the invention and is not intended to limit the scope of the invention.
本揭露之實施例提供一種高壓半導體裝置,例如橫向擴散金氧半場效電晶體,其利用反佈植區(counter implant region)來提升相鄰的高壓半導體裝置之間的隔離能力,進而藉由縮短高壓半導體裝置之間的距離來縮小裝置尺寸或晶片面積。 Embodiments of the present disclosure provide a high voltage semiconductor device, such as a laterally diffused MOS field effect transistor, which utilizes a counter implant region to enhance isolation between adjacent high voltage semiconductor devices, thereby shortening The distance between the high voltage semiconductor devices reduces the device size or wafer area.
請參照第1E圖,其繪示出根據本揭露一實施例之高壓半導體裝置200的剖面示意圖。在本實施例中,高壓半導體裝置200包括一半導體基底100,其具有一井區102及至少一隔離結構104,其中於隔離結構104兩側的井區102內定義出的 一第一區102a及一第二區102b。在本實施例中,井區102作為高壓半導體裝置200的一高壓井區且具有一第一導電型,例如P型或N型。在一範例中,井區102為P型,且具有一摻雜濃度為1.0×1016ions/cm3。在另一範例中,井區102為N型,且具有一摻雜濃度為9.0×1015ions/cm3。 Referring to FIG. 1E, a cross-sectional view of a high voltage semiconductor device 200 in accordance with an embodiment of the present disclosure is shown. In the present embodiment, the high voltage semiconductor device 200 includes a semiconductor substrate 100 having a well region 102 and at least one isolation structure 104, wherein a first region 102a defined in the well region 102 on both sides of the isolation structure 104 and A second zone 102b. In the present embodiment, the well region 102 acts as a high voltage well region of the high voltage semiconductor device 200 and has a first conductivity type, such as a P-type or an N-type. In one example, well region 102 is P-type and has a doping concentration of 1.0 x 10 16 ions/cm 3 . In another example, well region 102 is N-type and has a doping concentration of 9.0 x 10 15 ions/cm 3 .
在一實施例中,隔離結構104可為場氧化物,例如溝槽隔離(trench isolation)結構。在一範例中,溝槽隔離結構的深度大於4000埃,且不超過8000埃。亦即,溝槽隔離結構的深度大於典型的淺溝槽隔離結構,但小於典型的深溝槽隔離結構。在其他實施例中,隔離結構104為局部矽氧化層(local oxidation of silicon,LOCOS)。 In an embodiment, the isolation structure 104 can be a field oxide, such as a trench isolation structure. In one example, the trench isolation structure has a depth greater than 4000 angstroms and no more than 8000 angstroms. That is, the trench isolation structure has a depth greater than that of a typical shallow trench isolation structure, but less than a typical deep trench isolation structure. In other embodiments, the isolation structure 104 is a local oxidation of silicon (LOCOS).
在本實施例中,高壓半導體裝置200更包括一第一閘極結構112及一第二閘極結構114。第一閘極結構112設置於半導體基底100的第一區102a上,而第二閘極結構114設置於半導體基底100的第二區102b上。每一閘極結構包括與半導體基底100的井區102接觸的閘極介電層、位於閘極介電層上的閘極電極以及位於閘極電極側壁的閘極間隙壁。 In the embodiment, the high voltage semiconductor device 200 further includes a first gate structure 112 and a second gate structure 114. The first gate structure 112 is disposed on the first region 102a of the semiconductor substrate 100, and the second gate structure 114 is disposed on the second region 102b of the semiconductor substrate 100. Each gate structure includes a gate dielectric layer in contact with the well region 102 of the semiconductor substrate 100, a gate electrode on the gate dielectric layer, and a gate spacer on the sidewall of the gate electrode.
在本實施例中,高壓半導體裝置200更包括一第一佈植區108及一第二佈植區110。第一佈植區108及第二佈植區110係作為高壓半導體裝置200的雙擴散汲極區。在本實施例中,第一佈植區108位於第一區102a內,其延伸於第一閘極結構112下方且鄰近於隔離結構104。再者,第二佈植區110位於第二區102b內,其延伸於第二閘極結構112下方且鄰近於隔離結構104。在本實施例中,第一佈植區108及第二佈植區110的 深度小於隔離結構104的深度。再者,第一佈植區108及第二佈植區110具有不同於第一導電型的一第二導電型。在一範例中,第一導電型可為P型,而第二導電型則為N型。在另一範例中,第一導電型可為N型,而第二導電型則為P型。 In the embodiment, the high voltage semiconductor device 200 further includes a first implant region 108 and a second implant region 110. The first implant region 108 and the second implant region 110 serve as double diffusion drain regions of the high voltage semiconductor device 200. In the present embodiment, the first implant region 108 is located within the first region 102a and extends below the first gate structure 112 and adjacent to the isolation structure 104. Moreover, the second implant region 110 is located in the second region 102b and extends below the second gate structure 112 and adjacent to the isolation structure 104. In this embodiment, the first planting area 108 and the second planting area 110 are The depth is less than the depth of the isolation structure 104. Furthermore, the first implant region 108 and the second implant region 110 have a second conductivity type different from the first conductivity type. In one example, the first conductivity type may be a P type and the second conductivity type is an N type. In another example, the first conductivity type may be an N type and the second conductivity type is a P type.
在本實施例中,高壓半導體裝置200更包括一第三佈植區116及一第四佈植區118,其具有第二導電型。第三佈植區116位於第一佈植區108內,而第四佈植區118位於第二佈植區110內。第三佈植區116及第四佈植區118作為源極/汲極佈植區,其摻雜濃度大於作為雙擴散汲極區的第一佈植區108及第二佈植區110。 In this embodiment, the high voltage semiconductor device 200 further includes a third implant region 116 and a fourth implant region 118 having a second conductivity type. The third planting zone 116 is located within the first planting zone 108 and the fourth planting zone 118 is located within the second planting zone 110. The third implanting area 116 and the fourth implanting area 118 serve as a source/drainage implanting region having a doping concentration greater than the first implanted region 108 and the second implanted region 110 that are double diffused drain regions.
在本實施例中,高壓半導體裝置200更包括一反佈植區106,其位於隔離結構104下方的井區102內且橫向延伸於第一佈植區108及第二佈植區110下方。在一實施例中,反佈植區106具有二個相對的邊緣106a及106b(標示於第1C圖)。邊緣106a及106b分別大體上對準於第一佈植區108的一邊緣108a(標示於第1C圖)與第二佈植區110的一邊緣110a(標示於第1C圖)。在本實施例中,反佈植區106具有第一導電型,且具有一摻雜濃度大於井區102的摻雜濃度。在一範例中,反佈植區106為P型,且摻雜濃度為5.0×1016ions/cm3。在另一範例中,反佈植區106為N型,且摻雜濃度為6.0×1016ions/cm3。 In the present embodiment, the high voltage semiconductor device 200 further includes a reverse implant region 106 located in the well region 102 below the isolation structure 104 and extending laterally below the first implant region 108 and the second implant region 110. In one embodiment, the reverse implant region 106 has two opposing edges 106a and 106b (shown in Figure 1C). The edges 106a and 106b are generally aligned with an edge 108a of the first implant region 108 (labeled in FIG. 1C) and an edge 110a of the second implant region 110 (labeled in FIG. 1C). In the present embodiment, the reverse implant region 106 has a first conductivity type and has a doping concentration greater than the doping concentration of the well region 102. In one example, the anti-planting region 106 is P-type and has a doping concentration of 5.0 x 10 16 ions/cm 3 . In another example, the anti-planting region 106 is N-type and has a doping concentration of 6.0 x 10 16 ions/cm 3 .
在本實施例中,高壓半導體裝置200更包括一金屬化層位於半導體基底100上,且覆蓋第一閘極結構112及第二閘極結構114。金屬化層可包括一內層介電(ILD)層115及一內連接結構。內連接結構至少包括分別耦接至第三佈植區116及第 四佈植區118的源極/汲極電極117及119,及位於隔離結構104上方的ILD層115上的內連導線層121。 In the present embodiment, the high voltage semiconductor device 200 further includes a metallization layer on the semiconductor substrate 100 and covers the first gate structure 112 and the second gate structure 114. The metallization layer can include an inner dielectric (ILD) layer 115 and an inner connection structure. The inner connecting structure at least includes a coupling to the third implanting area 116 and the first The source/drain electrodes 117 and 119 of the four implant regions 118 and the interconnect trace layer 121 on the ILD layer 115 above the isolation structure 104.
接著,請參照第1A至1E圖,其繪示出根據本揭露一實施例之高壓半導體裝置200製造方法的剖面示意圖。請參照第1A圖,提供一半導體基底100,其具有一井區102及至少一隔離結構104,其中於隔離結構104兩側的井區102內定義出的一第一區102a及一第二區102b。在本實施例中,半導體基底100可為矽基底、鍺化矽(SiGe)基底、塊體半導體(bulk semiconductor)基底、化合物半導體(compound semiconductor)基底、絕緣層上覆矽(silicon on insulator,SOI)基底或其他習用之半導體基底。 Next, please refer to FIGS. 1A to 1E , which are schematic cross-sectional views showing a method of manufacturing the high voltage semiconductor device 200 according to an embodiment of the present disclosure. Referring to FIG. 1A, a semiconductor substrate 100 having a well region 102 and at least one isolation structure 104 is provided, wherein a first region 102a and a second region are defined in the well region 102 on both sides of the isolation structure 104. 102b. In this embodiment, the semiconductor substrate 100 can be a germanium substrate, a germanium telluride (SiGe) substrate, a bulk semiconductor substrate, a compound semiconductor substrate, a silicon on insulator (SOI). A substrate or other conventional semiconductor substrate.
井區102作為高壓半導體裝置200的一高壓井區且具有一第一導電型,例如P型或N型。在一範例中,井區102為P型,且具有一摻雜濃度為1.0×1016ions/cm3。在另一範例中,井區102為N型,且具有一摻雜濃度為9.0×1015ions/cm3。 The well region 102 acts as a high voltage well region of the high voltage semiconductor device 200 and has a first conductivity type, such as a P-type or an N-type. In one example, well region 102 is P-type and has a doping concentration of 1.0 x 10 16 ions/cm 3 . In another example, well region 102 is N-type and has a doping concentration of 9.0 x 10 15 ions/cm 3 .
隔離結構104可為場氧化物,例如溝槽隔離(trench isolation)結構。在一範例中,溝槽隔離結構的深度大於4000埃,且不超過8000埃。 The isolation structure 104 can be a field oxide, such as a trench isolation structure. In one example, the trench isolation structure has a depth greater than 4000 angstroms and no more than 8000 angstroms.
請參照第1B圖,利用一佈植罩幕10進行一第一離子佈植20,以在鄰近隔離結構104底部下方的井區102內形成具有第一導電型的一反佈植區106,其具有一摻雜濃度大於井區102的摻雜濃度。在一範例中,反佈植區106為P型,且摻雜濃度為5.0×1016ions/cm3。在另一範例中,反佈植區106為N型,且摻雜濃度為6.0×1016ions/cm3。在本實施例中,由於佈植罩 幕10具有一開口,露出隔離結構104及鄰近隔離結構104的一部分的第一區102a及一部分的第二區102b,因此形成的反佈植區106橫向延伸於第一區102a及第二區102b內。 Referring to FIG. 1B, a first ion implant 20 is performed using a implant mask 10 to form a reverse implant region 106 having a first conductivity type in the well region 102 below the bottom of the isolation structure 104. There is a doping concentration that is greater than the doping concentration of the well region 102. In one example, the anti-planting region 106 is P-type and has a doping concentration of 5.0 x 10 16 ions/cm 3 . In another example, the anti-planting region 106 is N-type and has a doping concentration of 6.0 x 10 16 ions/cm 3 . In the present embodiment, since the implant mask 10 has an opening exposing the isolation structure 104 and the first region 102a adjacent to a portion of the isolation structure 104 and a portion of the second region 102b, the formed reverse implant region 106 extends laterally. In the first zone 102a and the second zone 102b.
請參照第1C圖,利用同一佈植罩幕10進行一第二離子佈植30,以在分別於第一區102a及第二區102b內形成鄰近於隔離結構104的一第一佈植區108及一第二佈植區110。在本實施例中,第一佈植區108及第二佈植區110的深度小於隔離結構104的深度且分別位於延伸於第一區102a及第二區102b的反佈植區106上。再者,第一佈植區108及第二佈植區110具有不同於第一導電型的一第二導電型。在一範例中,第一導電型可為P型,而第二導電型則為N型。在另一範例中,第一導電型可為N型,而第二導電型則為P型。在本實施例中,由於第一佈植區108及第二佈植區110與形成反佈植區106係利用同一佈植罩幕製作,因此反佈植區106的二個相對的邊緣106a及106b分別大體上對準於第一佈植區108的一邊緣108a與第二佈植區110的一邊緣110a。 Referring to FIG. 1C, a second ion implant 30 is performed using the same implant mask 10 to form a first implant region 108 adjacent to the isolation structure 104 in the first region 102a and the second region 102b, respectively. And a second planting area 110. In this embodiment, the depths of the first implanting area 108 and the second planting area 110 are smaller than the depth of the isolation structure 104 and are respectively located on the reverse planting areas 106 extending from the first area 102a and the second area 102b. Furthermore, the first implant region 108 and the second implant region 110 have a second conductivity type different from the first conductivity type. In one example, the first conductivity type may be a P type and the second conductivity type is an N type. In another example, the first conductivity type may be an N type and the second conductivity type is a P type. In this embodiment, since the first planting area 108 and the second planting area 110 are formed by the same planting mask 106, the two opposite edges 106a of the backing area 106 and 106b is generally aligned with an edge 108a of the first implant region 108 and an edge 110a of the second implant region 110, respectively.
請參照第1D圖,利用習知MOS製程,分別於第一區102a及第二區102b上形成一第一閘極結構112及一第二閘極結構114。再者,分別於第一佈植區108及第二佈植區110內形成具有第二導電型的一第三佈植區116及一第四佈植區118。第三佈植區116及第四佈植區118作為源極/汲極佈植區,其摻雜濃度大於作為雙擴散汲極區的第一佈植區108及第二佈植區110。 Referring to FIG. 1D, a first gate structure 112 and a second gate structure 114 are formed on the first region 102a and the second region 102b, respectively, by using a conventional MOS process. Furthermore, a third implanting region 116 and a fourth implanting region 118 having a second conductivity type are formed in the first implanting region 108 and the second implanting region 110, respectively. The third implanting area 116 and the fourth implanting area 118 serve as a source/drainage implanting region having a doping concentration greater than the first implanted region 108 and the second implanted region 110 that are double diffused drain regions.
請參照第1E圖,利用習知金屬化製程,於半導體基底100上形成一金屬化層,並覆蓋第一閘極結構112及第二閘 極結構114。如此一來,便形成高壓半導體裝置200。在一實施例中,金屬化層可包括一內層介電(ILD)層115及一內連接結構。在一實施例中,內連接結構至少包括分別耦接至第三佈植區116及第四佈植區118的源極/汲極電極117及119,及位於隔離結構104上方的ILD層115上的內連導線層121。 Referring to FIG. 1E, a metallization layer is formed on the semiconductor substrate 100 by using a conventional metallization process, and covers the first gate structure 112 and the second gate. Pole structure 114. As a result, the high voltage semiconductor device 200 is formed. In an embodiment, the metallization layer can include an inner dielectric (ILD) layer 115 and an inner connection structure. In one embodiment, the interconnect structure includes at least source/drain electrodes 117 and 119 coupled to the third implant region 116 and the fourth implant region 118, respectively, and the ILD layer 115 above the isolation structure 104. The interconnecting wire layer 121.
在高壓半導體裝置200中,內連導線層121、ILD層115、隔離結構104及井區102係構成一寄生金氧半電晶體。當高壓半導體裝置200進行操作時,可透過反佈植區106阻止施加於內連導線層121的高電壓導通寄生MOS電晶體,進而幫助隔離結構104維持其隔離作用。再者,由於第一佈植區108及第二佈植區110下方具有反佈植區106,因此可改善降低表面電場效應(reduced surface electric field,RESURF)。 In the high voltage semiconductor device 200, the interconnect wiring layer 121, the ILD layer 115, the isolation structure 104, and the well region 102 constitute a parasitic gold oxide semiconductor. When the high voltage semiconductor device 200 is operated, the high voltage conduction parasitic MOS transistor applied to the interconnect wiring layer 121 can be prevented by the reverse implant region 106, thereby helping the isolation structure 104 maintain its isolation. Furthermore, since the first implanting area 108 and the second planting area 110 have a back implanting area 106, the reduced surface electric field (RESURF) can be improved.
請參照表1,其顯示不具反佈植區的N型高壓MOS電晶體中的寄生MOS電晶體與具反佈植區的N型高壓MOS電晶體(如第1E圖所示)的寄生MOS電晶體在工作電壓為40伏特(V)時,不同的隔離結構的表面寬度(μm)所對應的汲極電流(A)。 Please refer to Table 1, which shows the parasitic MOS transistor in the N-type high voltage MOS transistor without the anti-implantation region and the parasitic MOS device of the N-type high voltage MOS transistor with the anti-implantation region (as shown in Fig. 1E). The gate current (A) corresponding to the surface width (μm) of the different isolation structures at a working voltage of 40 volts (V).
如表1所示,當隔離結構的表面寬度(μm)由2.0μm縮減至1.2μm,不具反佈植區的N型高壓MOS電晶體中的寄生MOS電晶體的汲極電流(A)由4.2×10-6A快速增加至2.2×10-3A。然而,當隔離結構的表面寬度(μm)由2.0μm縮減至1.0μm,具反佈植區的N型高壓MOS電晶體中的寄生MOS電晶體的汲極電流(A)則維持在2.7×10-12至2.8×10-12的範圍且遠小於4.2×10-6A。亦即,即使隔離結構的表面寬度(μm)由2.0μm縮減至1.0μm,N型高壓MOS電晶體中的反佈植區仍可有效防止寄生MOS電晶體導通。 As shown in Table 1, when the surface width (μm) of the isolation structure is reduced from 2.0 μm to 1.2 μm, the drain current (A) of the parasitic MOS transistor in the N-type high voltage MOS transistor without the anti-implantation region is 4.2. ×10 -6 A is rapidly increased to 2.2 × 10 -3 A. However, when the surface width (μm) of the isolation structure is reduced from 2.0 μm to 1.0 μm, the drain current (A) of the parasitic MOS transistor in the N-type high voltage MOS transistor having the reverse implant region is maintained at 2.7 × 10 The range of -12 to 2.8 x 10 -12 is much smaller than 4.2 x 10 -6 A. That is, even if the surface width (μm) of the isolation structure is reduced from 2.0 μm to 1.0 μm, the anti-implantation region in the N-type high voltage MOS transistor can effectively prevent the parasitic MOS transistor from being turned on.
請參照表2,其顯示不具反佈植區的P型高壓MOS電晶體中的寄生MOS電晶體與具反佈植區的P型高壓MOS電晶體(如第1E圖所示)的寄生MOS電晶體在工作電壓為-40伏特(V)時,不同的隔離結構的表面寬度(μm)所對應的汲極電流(A)。 Please refer to Table 2, which shows the parasitic MOS transistor in the P-type high voltage MOS transistor without the anti-implantation region and the parasitic MOS device of the P-type high voltage MOS transistor with the anti-implantation region (as shown in Fig. 1E). The gate current (A) corresponding to the surface width (μm) of the different isolation structures when the operating voltage is -40 volts (V).
如表2所示,當隔離結構的表面寬度(μm)由2.0μm縮減至1.0μm,不具反佈植區的P型高壓MOS電晶體中的寄生MOS電晶體的汲極電流(A)由-3.7×10-8A快速增加至-4.1×10-4A。然而,當隔離結構的表面寬度(μm)由2.0μm縮減至1.0μm,具反佈植區的P型高壓MOS電晶體中的寄生MOS電晶體的汲極電流(A)則維持在-7.4×10-13至-1.3×10-12的範圍且遠小於-3.7×10-8A。亦即,即使隔離結構的表面寬度(μm)由2.0μm縮減至1.0μm,P型高壓MOS電晶體中的反佈植區同樣可有效防止寄生MOS電晶體導通。 As shown in Table 2, when the surface width (μm) of the isolation structure is reduced from 2.0 μm to 1.0 μm, the drain current (A) of the parasitic MOS transistor in the P-type high voltage MOS transistor without the anti-planting region is caused by - 3.7 × 10 -8 A quickly increased to -4.1 × 10 -4 A. However, when the surface width (μm) of the isolation structure is reduced from 2.0 μm to 1.0 μm, the drain current (A) of the parasitic MOS transistor in the P-type high voltage MOS transistor having the reverse implant region is maintained at -7.4 × The range of 10 -13 to -1.3 × 10 -12 is much smaller than -3.7 × 10 -8 A. That is, even if the surface width (μm) of the isolation structure is reduced from 2.0 μm to 1.0 μm, the anti-implantation region in the P-type high voltage MOS transistor can also effectively prevent the parasitic MOS transistor from being turned on.
根據上述實施例,由於高壓半導體裝置200內具有反佈植區106,因此相較於不具反佈植區的P型或N型高壓半導體裝置,隔離結構104的表面寬度W可至少縮減50%以上。如此一來,可透過降低隔離結構104的平面尺寸而有效縮小晶片面積,進而增加每一晶圓中的晶片數量。再者,相較於使用深溝槽隔離結構的高壓半導體裝置,具有反佈植區106的高壓半導體裝置200中深度大於4000埃且不超過8000埃的溝槽隔離結構可相對降低製程的困難度及製造成本。另外,由於反佈植區106與第一及第二佈植區108及110係利用同一佈植罩幕而形成,因此無需使用額外的佈植罩幕。 According to the above embodiment, since the high voltage semiconductor device 200 has the reverse implant region 106, the surface width W of the isolation structure 104 can be reduced by at least 50% compared to the P-type or N-type high voltage semiconductor device without the reverse implant region. . In this way, the wafer area can be effectively reduced by reducing the planar size of the isolation structure 104, thereby increasing the number of wafers in each wafer. Furthermore, the trench isolation structure having a depth of more than 4000 angstroms and not more than 8000 angstroms in the high voltage semiconductor device 200 having the reverse implant region 106 can relatively reduce the difficulty of the process and the high voltage semiconductor device using the deep trench isolation structure. manufacturing cost. In addition, since the reverse planting zone 106 and the first and second planting zones 108 and 110 are formed using the same implant mask, there is no need to use an additional implant mask.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can be modified and retouched without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
100‧‧‧半導體基底 100‧‧‧Semiconductor substrate
102‧‧‧井區 102‧‧‧ Well Area
102a‧‧‧第一區 102a‧‧‧First District
102b‧‧‧第二區 102b‧‧‧Second District
104‧‧‧隔離結構 104‧‧‧Isolation structure
106‧‧‧反佈植區 106‧‧‧Replanting area
108‧‧‧第一佈植區 108‧‧‧First planting area
110‧‧‧第二佈植區 110‧‧‧Second planting area
112‧‧‧第一閘極結構 112‧‧‧First gate structure
114‧‧‧第二閘極結構 114‧‧‧Second gate structure
115‧‧‧內層介電層 115‧‧‧ Inner dielectric layer
116‧‧‧第三佈植區 116‧‧‧ Third planting area
117、119‧‧‧源極/汲極電極 117, 119‧‧‧ source/drain electrodes
118‧‧‧第四佈植區 118‧‧‧The fourth planting area
121‧‧‧內連導線層 121‧‧‧Internal conductor layer
200‧‧‧高壓半導體裝置 200‧‧‧High voltage semiconductor device
W‧‧‧表面寬度 W‧‧‧ surface width
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104133153A TWI575741B (en) | 2015-10-08 | 2015-10-08 | High voltage semiconductor device and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104133153A TWI575741B (en) | 2015-10-08 | 2015-10-08 | High voltage semiconductor device and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI575741B true TWI575741B (en) | 2017-03-21 |
TW201714305A TW201714305A (en) | 2017-04-16 |
Family
ID=58766167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104133153A TWI575741B (en) | 2015-10-08 | 2015-10-08 | High voltage semiconductor device and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI575741B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10957820B2 (en) | 2017-12-21 | 2021-03-23 | Lumileds Llc | Monolithic, segmented light emitting diode array |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI635611B (en) * | 2017-09-25 | 2018-09-11 | 新唐科技股份有限公司 | High voltage semiconductor device |
TWI709196B (en) * | 2018-12-21 | 2020-11-01 | 新唐科技股份有限公司 | Semiconductor device and method for forming the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201320335A (en) * | 2011-11-03 | 2013-05-16 | United Microelectronics Corp | High voltage semiconductor device and fabricating method thereof |
-
2015
- 2015-10-08 TW TW104133153A patent/TWI575741B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201320335A (en) * | 2011-11-03 | 2013-05-16 | United Microelectronics Corp | High voltage semiconductor device and fabricating method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10957820B2 (en) | 2017-12-21 | 2021-03-23 | Lumileds Llc | Monolithic, segmented light emitting diode array |
Also Published As
Publication number | Publication date |
---|---|
TW201714305A (en) | 2017-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9660074B2 (en) | Methods and apparatus for LDMOS devices with cascaded RESURF implants and double buffers | |
US11152459B2 (en) | Lateral MOSFET with buried drain extension layer | |
US10510882B2 (en) | Embedded JFETs for high voltage applications | |
US7750401B2 (en) | Self-aligned complementary LDMOS | |
US8431990B2 (en) | Semiconductor device | |
US20080237707A1 (en) | Semiconductor device | |
TW201409698A (en) | Semiconductor device | |
KR20100067834A (en) | Semiconductor and method of manufacturing the same | |
US9461117B2 (en) | High voltage semiconductor device and method of manufacturing the same | |
US20140117416A1 (en) | Semiconductor device and associated method for manufacturing | |
TWI575741B (en) | High voltage semiconductor device and method for manufacturing the same | |
JP2013012577A (en) | Semiconductor device | |
US10256340B2 (en) | High-voltage semiconductor device and method for manufacturing the same | |
US10128331B1 (en) | High-voltage semiconductor device and method for manufacturing the same | |
TWI634660B (en) | High voltage semiconductor device and method for manufacturing the same | |
TWI587402B (en) | High voltage semiconductor device and method for manufacturing the same | |
US8492233B2 (en) | Configurable NP channel lateral drain extended MOS-based transistor | |
CN111509044B (en) | Semiconductor structure and forming method thereof | |
CN111223931B (en) | Trench MOSFET and manufacturing method thereof | |
CN107146814B (en) | High voltage semiconductor device and method for manufacturing the same | |
US9660073B1 (en) | High-voltage semiconductor device and method for manufacturing the same | |
CN106611785B (en) | High voltage semiconductor device and its manufacturing method | |
US10008594B2 (en) | High voltage semiconductor device | |
WO2024193060A1 (en) | Semiconductor device | |
CN109216453B (en) | High voltage semiconductor device and method for manufacturing the same |